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Abstract. Trees record climatic conditions during their growth, and tree -rings serve as a proxy to reveal the features of the 17 

historical climate of a region. In this study, we collected tree-ring cores of forest hemlock (Tsuga forrestii) from the 18 

northwestern Yunnan area of the southeastern Tibetan Plateau (SETP), and created a residual tree-ring width (TRW) 19 

chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growth 20 

growing season (NGS) (from November of the previous year to February of the current year) was the most important 21 

constraining factor on the radial tree growth of forest hemlock in this region. In addition, the influence of NGS precipitation 22 

on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation 23 

over the period spanning from A.D. 14751600–2005. The reconstruction accounted for 28.5% of the actual variance during 24 

the common period 1956–2005, and the leave-one-out verification parameters indicated the reliability of the reconstruction. 25 

Based on the reconstruction, NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 26 

1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 1536, 1558, 1627, 1638, 27 

1654, 1832, 1834–1835, and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought 28 

Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present 29 
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reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our 30 

reconstruction was representative of the NGS precipitation variability of a large region in the SETP. 31 

Keywords: Tree- rings; Winter Non-growing season precipitation; Reconstruction; Southeastern Tibetan Plateau 32 

1 Introduction 33 

Unravelling the past climate often relies on proxy records. As a widely used proxy material, tree -rings provide an opportunity 34 

to obtain long-term climate data (Fritts, 1976; Esper et al., 2002; D’Arrigo et al., 2005; Li et al., 2011; Büntgen et al., 2011, 35 

2016; Cai et al., 2014; Yang et al., 2014; Schneider et al., 2015; Wilson et al., 2016; Keyimu et al., 2021). These long-term 36 

records enable us to identify the inter-annual, decadal and multi-decal variability of historical climatic conditions. They also 37 

provide a reference to better understand the nature of current climatic conditions (warming/cooling, drying/wetting) and to 38 

project the future regional climate, as well as the dynamic response of earth processes (e.g., forest growth, glacier 39 

retreat/advance, stream flow, drought frequency, and forest fires) to climate change. 40 

Being the “third pole” of the planet Earth, the Tibetan Plateau (TP) (average 4000 m a.s.l.) is particularly sensitive to climate 41 

change and is one of the fastest warming places in the world (Chen et al., 2020). The average decadal temperature increase at 42 

the TP is 0.33°C, which is higher than the world’s average decadal temperature increase of 0.20°C (Yan and Liu, 2014). 43 

Because of its geographical extent and position within the global circulation system, the TP plays a key role in regional and 44 

global atmospheric circulation patterns (Griessinger et al., 2017), not only affecting the mid-latitude westerlies, but also 45 

influencing the Asian monsoon circulation through its thermo-dynamical feedbacks (Duan et al., 2006; Rangwala, 2009; Wu 46 

et al., 2015). 47 

There are large areas of coniferous forest distributed at high altitudes in the southeastern Tibetan Plateau (SETP). Due to 48 

their age and relative lack of disturbance they are a source of proxy material (tree -rings) that can be used to reveal the past 49 

climatic conditions in this region (Bräuning and Mantwill, 2004; Griessinger e t al., 2017; Fan et al., 2009; Fang et al., 2010; 50 

Li et al., 2011; Wang et al., 2015; Li and Li., 2017; Shi et al., 2017; Huang et al., 2019; Shi et al., 2019; Keyimu et al., 2021). 51 

Many dendroclimatological reconstructions of hydroclimatic variables have also been conducted in the SETP (Fan et al., 2008; 52 

Zhang et al., 2015; Wernicke et al., 2015; Griessinger et al., 2017; Li et al., 2017; He et al., 2018). However, few studies have 53 

focused on the reconstruction of precipitation history (He et al., 2012). The non-growingth season (NGS) of vegetation (from 54 

November of the previous year to February of the current year) includes the non-monsoon and pre-monsoon seasons in the 55 

SETP, and water availability during the NGS might therefore have a constraining effect on radial tree growth (Linderholm and 56 

Chen, 2005). It is important to understand the long-term precipitation variations during the NGS to evaluate the current trend 57 

of precipitation variation and estimate its future patterns, and to determine the future responses of the forest ecosystem under 58 
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the changing precipitation trend. To our knowledge, however, there have been no reports of the reconstruction of NGS 59 

precipitation in this area. This hinders our understanding of NGS variability from a long-term perspective. 60 

In this study, we collected tree-ring cores of forest hemlock from the Xinzhu Village of northwestern Yunnan in the SETP. 61 

The main objectives of the present study were to (1) identify the relationship between the radial growth of forest hemlock and 62 

climate, (2) reconstruct the regional precipitation history, and (3) validate the reliability of the reconstruction. Our results not 63 

only improve the historical precipitation information available in the SETP, but also provide the basis to evaluate the current 64 

trend of regional NGS precipitation variation, as well as the future development of regional forest growth. 65 

2 Materials and methods 66 

2.1 Study area and sampling sites 67 

Tree-ring core samples were collected from Xinzhu Village in Lijiang County in northwestern Yunnan. The sample site was 68 

in the Hengduan Mountains in the SETP (Fig. 1). The climate of the study area is regulated by a westerly circulation and the 69 

monsoon circulations of the Indian and Pacific oceans. “Hengduan” means “transverse” in the Chinese language, which implies 70 

that the mountains in this region lie in the transverse direction from south to north, and the area is a passageway for the Indian 71 

monsoon to flow in and climb up to the TP and other parts of the mainland. The SETP is susceptible to monsoon flow and 72 

atmospheric circulations (Bräuning and Mantwill, 2004). According to the Weixi meteorological station of the China 73 

Meteorological Administration, which was the closest station to our sampling site, the mean annual precipitation was 953 mm 74 

from 1955 to 2016. Most of the annual precipitation (Nearly 70%) concentrated in the monsoon season from May to October 75 

in this region, and thus, tree growth is usually constrained by water availability during non-growingth season. The coldest 76 

temperature was 3.9°C in January and the warmest temperature was 18.6°C in July. Tree-ring cores of forest hemlock were 77 

collected at a site that had not been impacted by anthropogenic disturbances. The elevation of the sampling site was 2,966 m 78 

a.s.l. A total of 48 tree-ring cores were extracted from 48 trees using a 5.1 mm diameter increment borer. We have used one 79 

sampling per tree method to improve the spatial representativity of radial tree growth. Sampling was conducted along an axis 80 

perpendicular to the slope inclination to avoid the impact of tension wood (Keyimu et al., 2020). 81 
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 84 

Figure 1: Map of the study area. The green triangle is the study site. The red triangles are the sites used in other studies (previous year May 85 

– current year April PDSI reconstruction site in Fang et al., 2010; current year March – May PDSI reconstruction site in Fan et al., 2008; 86 

current year April – June PDSI reconstruction site in Li et al., 2017; current year May - June PDSI reconstruction site in Zhang et al., 2015). 87 

The blue dot is the meteorological station in Weixi County. On the right is the landscape image of tree ring sampling site.The figure at upper 88 

right position is the ombrothermic diagram of the climate variables in the study area. 89 

 90 

 91 

Figure 2: The figure at upper right position is the ombrothermic diagram of the climate variables in the study area. 92 

2.2 Establishment of the tree-ring chronology 93 

The tree-ring samples were treated with standard dendrochronological procedures. They were first glued onto wooden holders 94 

and air-dried, and then polished to a flat surface with sand paper until the tree -rings were clearly visible. The LINTAB 6.0 95 
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tree- ring measurement system was used to measure the tree-ring width (TRW). Crossdating was conducted visually by 96 

marking each sample at each ten-year interval, and then its quality was confirmed using the COFFECHA program (Holmes, 97 

1983). Thirty-eight of the tree-ring cores were adopted for a further analysis after excluding the bad quality samples and the 98 

un-crossdated samples. The tree-ring series was detrended with a negative exponential model to remove the age dependency 99 

of tree growth (Cook et al., 1995). We have used the residual chronology since it removes the auto-correlation in tree -ring 100 

growth and captures high frequent climate signal. The “dplR” software toolkit (Bunn, 2018) within the R software environment 101 

(R Core Team 20192020) was used for detrending and chronology establishment. The reliable period of the chronology was 102 

determined based on the criterion of expressed population signal (EPS) > 0.85 (Wigley, 1984). 103 

2.3 Climate data 104 

Temperature and precipitation records were obtained from the Weixi meteorological station (27.17° N, 99.28° E, 2326 m 105 

a.s.l.) operated by the China Meteorological Administration. Data was available for the period of 1955–2005. Climate data 106 

(including the maximum, minimum and average temperatures, and precipitation) were provided by the China Meteorological 107 

Data Sharing Service Platform. A self-calibrated Palmer Drought Severity Index (scPDSI) was downloaded from the 3.26e 108 

gridded dataset of the Climate Research Unit (CRU) via the Royal Netherlands Meteorological Institute (KNMI) climate 109 

explorer (data accessed on 23rd December, 2020, data re-accessed for the updated version (CRU scPDSI 4.05 early) of PDSI 110 

data on 20th of April, 2021) using the coordinates of the tree -ring sampling site. The range of CRU grid box is 27.0 – 27.5° N, 111 

99.0 – 99.5° E. 112 

2.4 Tree growth and climate relationship analysis 113 

We analysed the relationship between climate and tree growth using Dendroclim 2002 software (Biondi and Waikul, 2004). 114 

Pearson correlation values and response function values were calculated for the relationships between TRW indices and climate 115 

variables for the period of 1955–2005. Due to the carry over effect of the climatic conditions of the previous-year on the current 116 

year tree growth (Fritts, 1976), the tree growth – climate relationship analysis spanned a 16-month period from June of the 117 

previous year to September of the current year. We also used the seasonalised climate variables because it made more eco-118 

physiological sense for growth than single months. To observe the temporal stability of the climate influence on radial tree 119 

growth, we conducted a moving correlation analysis at a moving interval of 32 years. All the correlation results were considered 120 

significant at the 95% confidence level. 121 

2.5 Climate reconstruction 122 

According to the analysis of the relationship between the TRW indices and constraining climatic factors, we developed a linear 123 

regression model (Cook and Kairiukstis, 1990) for the climate reconstruction. As in many other tree -ring based climate 124 

reconstructions, we tested the goodness-of-fit of the model using the leave-one-out cross-validation method (Michaelsen, 1987). 125 
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We used the Pearson’s correlation coefficient (r), explained variance (R2), adjusted explained variance (Radj
2), reduction of 126 

error (RE), sign test (ST), coefficient of efficiency (CE) and, product mean test (Pmt) and Durbin–Watson test (DW) to evaluate 127 

the fidelity of the reconstruction model (Fritts et al., 1990). 128 

3. Results 129 

3.1 Characteristics of the TRW chronology 130 

Residual TRW chronology of forest hemlock from the investigation area was established (Fig. 23). The descriptive statistics 131 

of the chronology were presented in Table 1. According to the criteria of EPS > 0.85, the most reliable length of the TRW 132 

chronology was 405 406 years (A.D. 1600–2005). The EPS value of the chronology over the period of A.D. 1475–1600 was 133 

below 0.85. The mean correlation among tree-ring series (Rbar) was 0.4748, and the variance in the first eigenvector (VFE) 134 

was 26 27 %, which implied a relatively strong common signal among individual trees constituting the chronology. The 135 

relatively low inter-annual variability of the chronology was expressed by the small mean sensitivity value (0.2423). The EPS 136 

and SNR values (average EPS and SNR were 0.86 89 and 5.996.87 for the total length chronology, respectively) further implied 137 

the existence of the common signal among each individual measurement series. In general, all the statistical parameters 138 

indicated the potential climate signal imprinted in our TRW chronology. 139 

 140 

0.6

0.8

1.0

1.2

1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1500 1600 1700 1800 1900 2000

S
a

m
p

le
 d

e
p

th

E
P

S

T
re

e
-r

in
g

 i
n

d
e

x

0.85

R
b

a
r

Year

0.0

0.2

0.4

0.6

0.8

1.0

0

7

14

21

28

35

42



8 

 

 141 

 142 

Figure 32: Plot of tree-ring residual chronology, the running inter-correlations among cores (Rbar, the green line), expressed population 143 

signal (EPS, the blue line) and the sample size (the red line). The Rbar and EPS were calculated using a 30-year window, with a 15-year lag. 144 

The horizontal dashed line denotes the EPS threshold level (0.85). 145 

 146 

Table 1. Site information, chronology statistics and results of a common interval span analysis of residual tree-ring width 147 

(TRW) chronology from the Xinzhu Village, northwestern Yunnan in China 148 

Type Location Elevation (m) Time length Number of cores SD MS Rbar SNR EPS VFE 

Tree ring 99.43°E, 27.25°N 2966 14751600–

2005 

38 0.2322 0.234 0.487 6.875.

99 

0.896 0.276 

Note: SD: standard deviation, MS: mean sensitivity, Rbar: mean inter-series correlation, SNR: signal-to-noise ratio, EPS: Expressed 149 

Population Signal, VFE: Variance in first eigenvector. 150 
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3.2 Tree growth and climate relationship analysis 151 

According to the results of the tree growth and climate relationship analyses (Fig. 34), the precipitation during the NGS was 152 

the most important constraining factor (R = 0.56, p < 0.001) on the radial growth of forest hemlock in the study area. The 153 

results of a response function analysis further confirmed the strong correlation between NGS precipitation and forest hemlock 154 

radial growth. The results of a moving correlation analyses between TRW chronology and instrumental NGS precipitation 155 

record (Fig. 45) were positively significant (at 99%) during the investigated period (1956-2005), indicating that the NGS 156 

precipitation influence was stationary over time. 157 
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 160 

Figure 43: Correlations between tree-ring indices and temperature, precipitation, and scPDSI in the correlation windows from 161 

previous year June to current year September, as well as in NDJF (non-growingth season, NGS) for the common period from 162 

1956 to 2005. The horizontal dashed and dotted lines indicate the threshold of the correlations at the 95% and 99% significance 163 

levels. Black line with squares denotes the results of response function analysis between tree-ring indices and climate variables. 164 

The asterisks next to the squares denote the significant effects (p < 0.05) of response function analyses. 165 
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 168 

Figure 54: The moving correlation result between tree-ring width (TRW) chronology and non-growingth season (NGS) precipitation during 169 

the period of 1956–2005. The horizontal red and green dashed lines denote the significance levels of 0.05 and 0.01, respectively. 170 

3.3 Non-growingth season precipitation reconstruction 171 

According to the relationship between the TRW chronology and NGS precipitation, we developed a linear regression model 172 

(y = 229.94x-109.45mm) and reconstructed the historical NGS precipitation series, which extended back to A.D. 1475 600 173 

(Fig. 5a6a). In the model, y is the NGS precipitation, and x is the TRW index. The reconstruction accounted for 28.5% of the 174 

instrumental NGS precipitation variability during the common time span (1956–2005). Figure 5b 6b shows the similarities 175 

between the instrumental and reconstructed NGS precipitation series. We used a leave-one-out cross-verification method to 176 

evaluate the legitimacy of the reconstruction model (Table 2). The positive RE and CE values (0.18 and 0.15, respectively) 177 

were indicative of legitimacy of the reconstruction. The significant value (at 95%) of sign test implied that the model predicted 178 

values were generally in line with the variation trend of instrumental values. In addition, the significant values of F test (at 179 

99%) and PM test (at 95%) further confirmed the validity of the reconstruction. Overall, the statistics indicated that the 180 

reconstruction model possessed good predictive skills. 181 
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 184 

Figure 65: Non-growingth season (NGS) precipitation reconstruction from A.D. 1475 1600 to 2005. (a). The black line is the 185 

reconstruction series, the thick cyan line is the 11- year loess smoothed result. The horizontal black dashed line is the mean of 186 

NGS precipitation value during from A.D. 14751600–2005. The horizontal green and red dashed lines are the one time and 187 

two times the of standard deviations of NGS precipitation, which indicated the boundaries for demonstrating demonstrated the 188 

boundaries of dry and extremely dry (below mean), and wet and extreme wet (above mean) years. The grey shading indicated 189 

the 95% confidence interval of the reconstruction; (b) Instrumental (black) and reconstructed (grey) NGS precipitation during 190 

their common period of 1956–2005. 191 

 192 

Table 2. Leave-one-out verification statistics for the non-growingth season (NGS) precipitation reconstruction 193 

 R R2 Radj
2 F Sign-test Pmt RE CE 

Calibration 0.561 0.315 0.285 − − − − − 

Verification 0.524 0.274 0.235 18.6** 36+/13−∗ 7.89∗ 0.18 0.15 

Note: R correlation coefficient, R2 explained variance, Radj
2 is the adjusted explained variance, F F-test, Sign-test sign of paired observed 194 

and estimated departures from their mean on the basis of the number of agreements/disagreements, Pmt product mean test, RE reduction of 195 

error, CE coefficient of efficiency, DW Durbin–Watson test. * p < 0.05, ** p < 0.01 196 
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3.4 Characteristics of the NGS precipitation reconstruction 198 

Figure 5a 6a shows the reconstructed NGS precipitation over the past 531 406 years (A.D. 1475600–2005). The mean of the 199 

reconstructed NGS precipitation series was 118.25 mm, and the standard deviation (SD) was 25.22 mm. We pre-defined the 200 

years that had NGS precipitation below 93.03 mm (mean -– SD) as dry NGS years, and below 67.81 mm (mean–-2SD) as 201 

extremely dry years, whereas we defined years that had precipitation above 143.47 mm (mean+SD) as wet NGS years, and 202 

above 168.59 mm (mean+2SD) as extremely wet NGS years. Accordingly, the NGS was extremely dry during the years A.D. 203 

1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during 204 

the years A.D. 1491, 1536, 1558, 1627, 1638, 1654, 1832, 1834–1835, and 1992. The dry/wet periods and some of the extreme 205 

dry/wet NGS periods in the present reconstruction were synchronised with dry/wet periods and extreme dry/wet periods in 206 

previously reported PDSI reconstruction from the surrounding region (Fig. 76, Table S2, Table S3), though some dissimilarities 207 

were also existed. As shown in Fig. 78, the instrumental (a) and reconstructed (b) NGS precipitation series could represent the 208 

climatic conditions over a similar area in the SETP. 209 
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Figure 76: Comparisons of the hydroclimatic reconstructions in different studies. (a) The non-growingth season (NGS) 214 

precipitation reconstruction in the present study. (b) The current year March – May average Palmer Drought Severity Index 215 

(PDSI) reconstruction in Fan et al. (2008). (c) The reconstruction of average PDSI from May of the previous year to Apri l of 216 

the current year in Fang et al. (2010). (d) The current year May-June average PDSI reconstruction in Zhang et al. (2015). (e) 217 

The current year April-June average PDSI reconstruction in Li et al. (2017). (f) drought series extracted from Asian Monsoon 218 

Atlas from the nearest point (Cook et al.2010). The blue green and yellow purple bars show the common wet and dry periods 219 

of the different reconstructions, respectively. 220 

 221 
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 223 

 224 

Figure 87: Spatial correlations between the actual (a) and reconstructed (b) non-growingth season (NGS) precipitation and a 225 

gridded dataset of the NGS precipitation (average from November of the previous year to February of the current year) during 226 

their overlapping periods (1956–2005). The black square indicates the location of the study site. 227 

 228 

4. Discussion 229 

4.1 Tree growth and climate relationship 230 

The results of the tree growth and climate relationship analyses suggested that the forest hemlock radial growth in the 231 

northwestern Yunnan region of the SETP was strongly constrained by hydroclimatic factors. According to the Pearson 232 

correlation analysis, the influence of precipitation during the NGS on radial tree growth was greater than that of any other 233 

investigated climate variables and any correlation window. The response function analysis further confirmed the strong impact 234 

of NGS precipitation. In addition, the results of 32-year interval of moving correlation analysis (Fig. 45) suggested the 235 
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temporally consistent influence of NGS precipitation on forest hemlock radial growth in this region. The importance of NGS 236 

precipitation on the radial tree growth could be attributed to the fact that precipitation during the NGS compensated for the 237 

soil moisture, which was crucially important for supporting tree growth in the following season (Linderholm and Chen, 2005; 238 

Treydte et al. 2006; Wu et al., 2019; Li et al., 2021). This is because tree growth is often water stressed in the early stages of 239 

its growth in each year on the SETP when the monsoon precipitation does not arrive (Bräuning and Mantwill, 2004; Zhang et 240 

al., 2015), and the earlywood of tree rings mainly use spring melt water (Zhu et al., 2021). The eco-physiological importance 241 

of NGS precipitation on tree growth and tree water usage was also revealed by isotope ratios method-based investigations. 242 

Brinkmann et al’s (2018) study showed that nearly 40% of the uptaken water by Fagus sylvatica and Picea abies trees in a 243 

temperate forest of middle Europe are sourced from NGS precipitation. Tree-ring oxygen isotope ratios (δ18O) are 244 

demonstrated to contain NGS precipitation signals in the Himalayan region (Huang et al., 2019; Zhu et al., 2021). Huang et 245 

al’s (2019) study revealed that NGS precipitation (snowfall) increased the snow-depth and the later snowmelt compensated 246 

soil moisture in the spring and early summer, which was a crucially important water source for the Juniper growth in the 247 

southwestern Tibetan Plateau. Zhu et al’s (2021) investigation in the western Himalaya revealed that formation of earlywood 248 

in tree rings of Pinus wallachina depended on the snowmelt originated from NGS precipitation. The weak influence of 249 

precipitation on regional forest hemlock growth during March and April and strong influence during May was connected with 250 

the saddle-shaped monthly rainfall pattern of this area (Fig. 12). The correlations between precipitation and the TRW 251 

chronology were not significant during the growth growing season (June-September) because an adequate water supply was 252 

available in the monsoon season. 253 

Precipitation during the NGS over the SETP falls as snow. According to Sommerfeld et al. (1993) and Stadler et al. (1996), 254 

the development of a snowpack insulates the underlying soil from freezing temperatures, which creates unfrozen soil 255 

conditions and most of the soil processes that are active during warmer conditions also persist under snow cover, albeit at a 256 

reduced rate (Edwards, 2007). Unfrozen soil can reduce the cold and frost damage to the shallow root systems of conifer trees 257 

in this region (Schenk and Jackson, 2002). A reduction in the cold damage to roots decreases the energy required to form new 258 

roots in the following growth year (Pederson et al., 2004), with the saved energy potentially used to initiate xylogenesis and 259 

form earlywood cells. Evergreen tree species are known to carry out year-round photosynthetic activity (Oquist and Huner, 260 

2003; Prats and Brodersen, 2020), albeit at a slower rate during the NGS, and therefore, the higher moisture availability 261 

contributes to the carbohydrate and energy accumulation process of forest hemlock in the investigation area. 262 

In contrast, the radial tree growth was negatively correlated to temperature in most correlation windows (Fig. 24). This can 263 

be explained by the fact that higher temperature enhances evapotranspiration, and thus decreases water availability, which 264 

eventually constrains tree growth. The negative impact of NGS temperature on radial tree growth was obvious because the 265 

strengthened evaporation due to higher temperatures might reduce the moisture compensation to the soil layer and cause water 266 

stress during the early stage of the following growth season. 267 
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4.2 Validity of the reconstructed precipitation series 268 

We have tried to validate the fidelity of the newly reconstructed series from different aspects. Although we used the residual 269 

TRW chronology in the present study, which removes autocorrelation (Cook and Kairiukstis, 1990) to capture the high 270 

frequency climate signals as in Fan et al. (2008) and Chen et al. (2016), the variability of dry and wet NGS at different scales 271 

was still retained in our reconstructed series. The reconstructed series in the present study demonstrated the variation in dry 272 

and wet NGS years (Fig. 56a). As in many other proxy based historical climate reconstruction studies, we compared our NGS 273 

precipitation series with other hydroclimatic reconstructions from the surrounding areas to investigate the reliability of our 274 

reconstruction. There are only countable numbers of hydroclimatic (PDSI) reconstructions in the nearby region, and not any 275 

case of precipitation reconstruction. Hence, we could only compare the present NGS precipitation reconstruction with existing 276 

PDSI reconstructions (Fig. 67). The compared PDSI reconstructions are of spring or early summer, because drought climate 277 

during these seasons usually associated with the winter precipitation, it makes certain sense to carry out the comparative 278 

analysis. The correlation coefficients between our NGS precipitation reconstruction and the PDSI reconstructions of Fan et al. 279 

(2008), Fang et al. (2010), Zhang et al. (2015) and Li et al. (2017) were 0.51 (n = 702), 0.35 (n = 1062), 0.25 (n = 1062) and 280 

0.22 (n = 1016) (p < 0.001). We have extracted the drought series of Asian Monsoon Atlas (Cook et al.2010) from the nearest 281 

point to our investigation site and compared it with the NGS precipitation reconstruction in present study (R = 0.35, n = 1062, 282 

p < 0.001). As can be observed from Fig. 76, there were dry and wet periods in compared reconstruction series which were 283 

consistent with the NGS precipitation variabilities. These similarities indicated the reliability of our NGS precipitation 284 

reconstruction to some extent. The correlation coefficients for the present reconstruction with those of Fan et al. (2008) and 285 

Fang et al. (2010) were greater than those with Li et al. (2017) and Zhang et al. (2015). These differences were probably due 286 

to the different distances among the study sites. Although, the major dry and wet periods were similar in the hydroclimatic 287 

reconstructions referenced above, there were still certain discrepancies in duration and the strength of the dry/wet climatic 288 

conditions. This is probably because of the differences in the types of hydro-climatic variables (precipitation, PDSI), specific 289 

seasons reconstructed (annual, seasonal), the different tree species (species with different drought tolerances), different 290 

chronology recording methods (standard chronology, residual chronology), length of calibration period, sample replication 291 

and the geomorphic differences of the tree -ring sampling sites (altitude, slope) (Table S1). 292 

In addition, we uploaded both of the instrumental and reconstructed NGS precipitation data for the same period of 1956–293 

2005 on the KNMI website and conducted a spatial correlation analyses with the CRU gridded climate dataset. The similar 294 

patterns of spatial correlation between the instrumental and reconstructed dataset (Fig. 78) indicated that the present 295 

reconstruction was reliable and could represent the NGS precipitation over a large area of the SETP. Besides, the occurrence 296 

of some historical great drought events in the Asian monsoon area (Cook et al., 2010, Kang et al., 2013), i.e., the 1756–1768 297 

(strange parallels drought), 1790, 1792–1796 (east India drought) and 1920s (post–World War I China mega-drought), matched 298 

the dry NGS periods in our reconstruction, which also further confirmed the reliability of our reconstruction. 299 
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It should be noted that the lower sample replication prior to 1600 resulted in a reduced EPS, with a value below the commonly 300 

used threshold value of 0.85 in tree -ring based climate reconstruction studies. This may affect the reliability of the 301 

reconstruction before 1600. We therefore suggest caution in the interpretation of the reconstructed NGS precipitation series 302 

prior to the 17th century. Nevertheless, we found similarities between the wet/dry NGS conditions before A.D. 1600 in our 303 

reconstructed series and those of Fang et al. (2010) and Zhang et al. (2015) from the surrounding area (Fig. 6). 304 

5. Conclusion 305 

In this study, we investigated 531 406 years of residual TRW chronology of forest hemlock in the SETP, China. The climate 306 

and tree growth relationship analysis analyses showed that the TRW chronology was mostly negatively correlated with the 307 

thermal variable (temperature), whereas it was positively correlated with hydroclimatic variables (precipitation and PDSI) and 308 

PDSI, indicating that hydroclimatic conditions determined the radial growth of forest hemlock in this region. Accordingly, we 309 

derived a linear model of the relationship between climate and tree growth, which accounted for 28.5% of the actual NGS 310 

precipitation variance (1956–2005), and we used the model to reconstruct the historical (A.D. 14751600–2005) NGS 311 

precipitation. The reconstructed series showed that the NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 312 

1703, 1736, 1897, 1907, 1943, 1969, 1982 and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 313 

1536, 1558, 1627, 1638, 1654, 1832, 1834–1835 and 1992. A comparison between the NGS precipitation reconstruction in 314 

this study and PDSI reconstructions from nearby regions revealed a coherency in the timing of dry and wet episodes, suggesting 315 

the reliability of our reconstruction. 316 
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