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Abstract. Milankovic cycles describe the changes in the Earth's orbit and rotation axis and their impact on its climate over 

thousands of years. Singular Spectrum Analysis (SSA) is a signal processing method that is best known for its ability to find and 

extract pseudo-cycles in complex signals. In this short paper, we propose to apply it to three time series that have been proposed as 

geological reference time scales, in order to retrieve, compare and identify their Milankovic periodicities: (1) LR04, a stack of Plio-15 

Pleistocene benthic microfossil  records (Lisiecki and Raymo, 2005), (2) the CO2 and CH4 records from the Vostok ice core (Petit et 

al, 1999) and (3) the long-term orbital solution La04 for the insolation of Laskar et al (2004). The Vostok CO2 and CH4 series 

share the first 7 SSA components, three main ones (98, 104, 39 kyr), and four smaller ones (18, 22, 65, 180 kyr). CO2 

displays a component at 28kyr and a doublet at 61 and 62 kyr. CH4 displays a doublet near 50 kyr. 18/22 ky is a precession 

doublet, 62 kyr an insolation component, and 95/105 kyr an insolation/eccentricity doublet. The 49/50 kyr doublet in CH4 is 20 

not found in the orbital model. The SSA results for the La04 orbital solution are in excellent agreement with the values 

obtained by Laskar et al (2004). Four SSA components of obliquity are almost identical (rounded figures are 41, 54, 29 and 

39 kyr). As far as eccentricity is concerned, the first five components are 404, 95, 124, 99, and 132 kyr. The next 

components are not found in our list of components for eccentricity, but they are in the SSA of insolation, at 2338, 970, 488 

and 684 kyr. With more than 20 components, the LR04 stack is the richest series. In order of decreasing amplitude, one 25 

encounters 41, 95 and 75 kyr components. Next are smaller 39.5 and 53.6 kyr components, and a 22.4 kyr component. One 

recognizes one of the two main precession components, the doublet of obliquity components, a line at 47.4 kyr that is not 

found in any of the other spectra, and a doublet at 53.6 and 55.7 kyr, corresponding to the line at 54 kyr found in all four 

orbital quantities. Next comes a line at 63.6 kyr that may correspond to a line in insolation, CH4 and CO2. Then come 

components from eccentricity variations at 75.2, 94.5, 107.2, 132.1, 198.6 and 400.9 kyr. The remaining components of 30 

LR04 show up in La04. The “elusive ~200 kyr eccentricity cycle” of Hilgen et al (2020) is actually present in all three series, 

in the La04 orbital model as a 195±6 kyr component of eccentricity and in LR04 as a 198.6±5.6 kyr component. Finding not 

only the main expected Milankovic periodicities but also many “secondary” components with much smaller amplitudes 
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gives confidence in our iterative SSA method (iSSA), on the quality of the La04 model and on the remarkable LR04 

sedimentary stack, with more than 15 “ Milankovic periods”. 35 

1 Introduction 

As the geosciences developed in the 19th century, the measure of time at a geological scale became an essential and 

often controversial topic. As paleontology, sedimentology and stratigraphy amassed information on past forms of life and 

sedimentary rock formations, a geological time scale of global significance emerged, primarily based on successions of fossil 

assemblages (Harland et al, 1964). At the turn of the 19th to 20th centuries, the discovery of radiometric dating allowed for 40 

the first time the measurement of absolute time (Strutt, 1906; Pigot, 1928). All along the 20th century, pairs of isotopes were 

added to the toolbox, allowing geologists to explore deeper time with increasing resolution (Wasserburg et al., 1964, 1969). 

From the 1960s on, the confirmation of the reality of magnetic reversals, as the plate tectonics revolution took place, led to 

the determination of a reversal time scale (Cande and Kent, 1995). A series of numerical geologic time scales were built and 

published over the following decades, blending the fossil and magnetic records, with paleontological and magnetic polarity 45 

“tie points” anchored on multiple radiometric age determinations (“golden spikes”). The resolution of the best radiometric 

ages (often performed on volcanic ash layers) was an achievement but did not in general exceed 1% of the age (i.e. 10 kyr at 

1 Myr) and involved hypotheses on sedimentation rate (and disintegration constants of isotope pairs). 

Rythmic sedimentary cycles (alternating series of layers such as limestone and marl repeated tens of times and more), that 

had for long been observed but left unexplained, became an extremely active topic of research in the 1980s as they were interpreted 50 

to reflect orbitally induced climate oscillations (Schwartzacher, 1987, 1993; Berger, 1988). With recognition of the validity of 

Milankovic's ideas, geologists collaborated on the construction of astronomical time-scales. This peaceful race is still going on, 

leading to unprecedented precision (a fraction of a 20,000 yr precession cycle back to tens of millions of years, or less than 1 per 

mil). 

In this paper, we use iterative Singular Spectrum Analysis (SSA, e.g. Golyandina et Zhigljavsky, 2013) to determine and 55 

compare the (periodical or quasi-periodical) spectral components of three time series, each of a different nature, that have been 

proposed as reference time scales or used for their construction: a stack of Plio-Pleistocene benthic microfossil  records (Lisiecki and 

Raymo, 2005), the CO2 and CH4 records from the famous Vostok ice core (Petit et al, 1999) and the long-term numerical solution for 

the insolation of Laskar et al (2004). 

We describe the main features of the three series in section 2, compute their SSA components in section 3 and in 60 

particular list the periods and quasi-periods of the main components (note: in the present study, SSA was able to extract up to 

75 cycles; we have limited our discussion and figures to the first ten to twenty, depending on which series is analyzed - see 

Table 01).  We discuss the similarities and differences between the sets of periods and their possible origins in section 4 and 

then conclude in section 5. 
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2 Data 65 

In this section, we describe the sources and main features of the three time series (actually 8 series from three 

sources) we analyze with SSA in the next section. 

2.1 The Plio-Pleistocene benthic stacked record (Lisiecki and Raymo, 2005) 

 
 70 

Figure 1: The global benthic stack LR04 back to 5Myr from Liesecki and Raymo (2005) 

 

Lisiecki and Raymo (2005) present a 5 Myr benthic  stack (LR04) that they propose  as a paleo-oceanographic type 

section (Figure 1). It contains 38,229 individual measurements from 57 globally distributed sites. This is archived at 

https://www.ngdc.noaa.gov/paleo-search/study/5847. The δ18O are measured on calcite microfossils of foraminifera, for 75 

which they are functions of global ice volume and salinity. The alignment of individual profiles is evaluated by eye and 

adjusted to paleomagnetic reversals and biostratigraphic data. Lisiecki and Raymo (2005) align their stack to a simple model 

of ice volume, taking into account the average sedimentation rate of the 57 sediment cores in their stack. The top 22 kyr are 

correlated with a reference 14C-dated benthic  record. The 22-120 kyr stack is aligned to the high resolution record from site 

MD95-2042, itself dated by millennial features of the ratio planktonic to ice from the GRIP ice core. The U-Th dating of 80 

coral terraces is used. The tuning target is a non-linear model of ice volume forced by the 21 June insolation at 65°N from 

the Laskar et al (1993) orbital solution. The above short description is not sufficient for the reader to reconstruct the whole  
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Figure 2: The concentrations of CH4, (black) and CO2 (blue) and δ18O (red) down the Vostok ice-core back to 400 kyr 85 

from Petit et al (1999). 

 

process; it is just intended to show that the data we analyze have gone through a rather long and complex suite of scalings. 

Lisiecki and Raymo (2005) state that the largest uncertainties can shift the age model by 5 kyr at 5 Myr. 
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 90 

2.2 The δ18O, CO2 and CH4 histories of the past 420,000 years from the Vostok ice core (Petit et al, 1999) 

The Vostok ice core in Antarctica (78°S, 106°E) gave access to a number of paleoclimate series (Petit et al, 1999), 

among which (paleo-) atmospheric concentrations in CO2 and CH4 found to be closely correlated with Antarctic temperature. 

The record extends to 400 kyr at 3310m depth. Some data are shown in Figure 2; they can be accessed at 

https://www.ncdc.noaa.gov/paleo-search/?dataTypeId=7. The δ18O of (atmospheric) O2 reflects changes in global ice volume 95 

and in the hydrological cycle. 

As explained by Petit et al (1999), a glaciological timescale for the top 100 kyr of the core was established by Lorius 

et al (1983), combining an ice-flow and an accumulation model. Robin (1977) had found a strong correlation between 

precipitations and temperature in Antarctica. This physics based chronology was extended by Jouzel et al (1993), who called 

it the Extended Glaciological Timescale (EGT), and again by Petit et al (1999) to derive GT4 as their primary chronology. 100 

They estimated the accuracy of GT4 to be better than 10 kyr for most of the record; it never differed by more than 4 kyr from 

the orbitally tuned timescale of Waelbroeck et al (1995). Using 10Be, Raisbeck et al (1987) found ages differing by no more 

than 5 kyr from the EGT. Spectral analysis of their records led Petit et al (1999) to emphasize the dominance of the 100 kyr 

cycle for CO2 and CH4 but not for atmospheric . They also noted a strong signature of the 40 and 20 kyr periodicities. 

 105 

2.3 A long-term numerical solution for the insolation quantities of the Earth (Laskar et al, 2004) 

The model of Laskar et al (2004) is a major step (among a large series of models by Jacques Laskar and colleagues) 

in building solutions computed from astronomy, taking into account changes in the orientation of the Earth’s rotation axis, 

which results in variations of insolation on Earth and thus leading to climate change. In that paper, the authors recall the 

history of successive improvements and standstills in computing the secular variations of the Earth’s orbital elements. 110 

Starting with the names of Lagrange, Laplace and some less famous but important contributors such as Pontécoulant, 

Agassiz, Adhémar, Croll, Pilgrim, Laskar et al (2004) highlight the names of Milankovic (1941) for the theory, and Hays et 

al (1976) for observations of the records over the past 500 kyr. 

Laskar et al. (2004) have solved the astronomical equations for the insolation quantities on Earth back to −250 Myr. 

In Laskar et al’s (2004) terms, “this solution has been improved with respect to La93 (Laskar et al. 1993) by using a direct 115 

integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular 

in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period 

(Lourens et al. 2004).” 

Laskar et al’s (2004) orbital model comprises all 9 planets of the solar system. It involves post-Newtonian general 

relativity corrections due to the Sun and the leading coefficients of the gravitational potential of Earth and the Moon, and 120 

tidal dissipation in the Earth-Moon system. Numerical integration is an important part of the computations. We will be 
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particularly interested in Laskar et al’s (2004) Tables 6 and 7, respectively giving the 20 leading frequency components of 

eccentricity and obliquity. The time series of insolation, eccentricity, obliquity and precession are found on the IMCCE 

(Institut de Mécanique Céleste et du Calcul des Ephémérides) site at 

http://vo.imcce.fr/insola/earth/online/earth/online/index.php. 125 

 

3 Singular Spectrum Analysis 

We now submit the three series described in the previous section to Iterative Singular Spectrum Analysis (iSSA, see 

Golyandina and Zhigljavsky, 2013). The reason why we have thought of applying SSA (that is less common than the Fourier 

or Wavelet transforms) to these time series is that we have recently successfully applied the method to a number of 130 

geophysical and heliophysical time series. We have explained the method in a number of papers (Lopes et al., 2017, 2021; 

Le Mouël et al., 2020a). A symmetric matrix is decomposed following Golub and Kahan’s (1965) Singular Value 

Decomposition (SVD). The “constant descent” diagonal (Hankel) matrix has column vectors that are pieces of the signal 

under analysis (see Golyandina and Zhigljavsky,  2013). 

For instance, oscillations (pseudo-cycles) of 80, 60, 20 and 11 yr appear in sunspots (Gleissberg, 1944; Coles et al., 135 

1980; Charvatova and  Strestik, 1991; Usoskin, 2017; Le Mouël et al., 2020b; Courtillot et al., 2021) as well as in a number 

of terrestrial phenomena (Wood and Lovett, 1974; Mörth  and Schlamminger, 1979; Schlesinger and  Ramankutty, 1991; 

Lau and Weng, 1995; Scafetta, 2010; Courtillot et al., 2013; Scafetta, 2016; Lopes et al., 2017; Le Mouël et al., 2019a; Le 

Mouël et al., 2019b; Le Mouël et al., 2020a;  Scafetta et al., 2020; Lopes et al., 2021; Scafetta, 2021), in particular sea-level 

(Jevrejeva et al., 2006; Chambers et al., 2012; Merrifield et al., 2012; Chen et al. 2012; Le Mouël et al., 2021). They can be 140 

compared to the commensurable periods of the Jovian planets acting on Earth and Sun as proposed by Mörth and 

Schlamminger (1979): a combination of the revolution periods of Neptune (165 yr), Uranus (84 yr), Saturn (29 yr) and 

Jupiter (12 yr) and several commensurable periods (see f.i. Table 1 in Lopes et al, 2021 and Courtillot et al. (2021) for the 

action of the Jovian planets on sunspots). 

 145 

3.1 SSA of the long-term numerical solution for insolation of Laskar et al. (2004) 

The SSA periods or quasi-periods of eccentricity, precession, obliquity and insolation computed with the Laskar et al 

(2004) La04 orbital model are listed in the last four columns of Table 1, together with their uncertainties and share of the 

total signal variance. The uncertainties are estimated to be the half-width at half maximum (peak) value of the Fourier 

transform of the relevant SSA component (e.g. Lopes et al, 2021). The components are listed in Table 1 in increasing order 150 

of the period. 
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Table 1: Synthesis of periods and quasi periods (components) extracted by iSSA from (from left to right) the LR04 stack of 

profiles from Liesecki and Raymo (2005), the CH4 and CO2 concentrations down the Vostok ice-core from Petit et al (1999), 

and the insolation, eccentricity, precession and obliquity of the La04 orbital solution of Laskar et al (2004). The contribution 

to the variance of each component is printed in bold between parentheses. 185 

 

Precession starts with a doublet at 22.3 and 18.9 kyr (respectively 26.0 and 18.6 % of the signal variance) and has a 

3rd component at 53.9 kyr (2.5% of the s.v.) for a total of 47% of the s.v. 

Obliquity starts with a doublet at 40.9 and 39.5 kyr (respectively 54.9 and 10.9 % of the s.v.), followed by a large 

component at 53.6 kyr (19.2% of the s.v.) and one at 28.8 kyr (11.3% of the s.v.). Taken together these 4 components 190 

amount to 96.3% of the s.v. 

Eccentricity has the richest spectrum. Twelve components are listed in Table 1, the main one at 404 kyr (34.8% of the 

s.v.), then at 95 kyr (20.8%), 124 kyr (10.6%), 99 kyr (6.0%), 132 kyr (3.3%) and 106 kyr (1.4%). Other components are 

well determined and identified at below 1% of the s.v. Taken together, the first six components amount to 76.9% of the 

signal variance. 195 
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Insolation is dominated by the spectrum of eccentricity, with which it shares 8 components. The first five components 

have essentially identical values and similar rank and shares of s.v. The sixth one at 970±110 kyr (2.8% of s.v.) is ill 

determined but is important; it does not appear in the SSA of eccentricity. Eccentricity and insolation also share components 

at 54, 106 and 118 kyr, but below 1% contribution to s.v. Some components are found only in eccentricity (77, 140, 195, 346 

kyr) or insolation (62, 88, 488, 684, 2338 kyr, the last three with large uncertainties). 200 

 

3.2 SSA of the Plio-Pleistocene benthic stacked record 

The periods or quasi-periods of the Plio-Pleistocene benthic  stacked record of Lisiecki and Raymo (2005) are listed 

in the first column of Table 1, together with their uncertainties and share of the total signal variance. The components are 

listed in Table 1 in increasing order of the period. In order of decreasing amplitude, one encounters a 41 kyr component 205 

(21.2% of the s.v.), a 95 kyr component (18.5% of the s.v.) and a 75 kyr component (5.3% of the s.v.).  Next at 1.3% are a 

39.5 and 53.6 kyr component, and at 1.2% a 22.4 kyr component. All other components are below 1% of the s.v. 

 

3.3 SSA of the δ18O, CO2 and CH4 histories from the Vostok ice core 

The SSA periods or quasi-periods of the CO2 and CH4 histories of the past 420,000 years from the Vostok ice core 210 

(Petit et al, 1999) are listed in the second and third columns of Table 1. The two series share the first three components, 

sometimes with a slight exchange of rank (98, 104, 39 kyr), and four others (18, 22, 65, 180 kyr), the longest periods having 

large uncertainties. CO2 displays a component at 24kyr (5.4% of the s.v.) and a doublet at 61 and 62 kyr. CH4 displays a 

component at 28kyr (2.8% of the s.v.) and a doublet near 50 kyr. 

 215 

4 Comparisons and Discussion 

We can first compare the results of the SSA of the La04 orbital solution with respect to the actual values obtained by 

Laskar et al (2004). 

Four SSA components of obliquity are almost identical (to 0.3 to 2%) with those listed in Laskar et al’s (2004) Table 

7: 40.9, 53.6, 28.9 and 39.5 kyr vs 41.0, 39.6, 53.7 and 29.8 kyr. We note that the order of amplitudes is not exactly the 220 

same. This is because SSA finds only one component when La04 has many closely spaced multiplets (9 for the 41 kyr 

component, 5 for the 29 kyr component,…). 

In their Table 7 Laskar et al (2004) list the 20 frequency components of eccentricity on the [-15 Myr, +5 Myr] time 

interval. They also indicate the planetary conjunctions and resonances to which these periods correspond. A comparison of 

Table 1 (column 5) and Laskar et al’s (2004) Table 6 shows almost perfect agreement: in order of decreasing share of 225 

variance the first five components are 404, 95, 124, 99, and 132 kyr (Table 1, this paper) vs 405, 95, 124, 99, and 131 kyr 

(Laskar et al, 2004). Uncertainties for our values are on the order of 1 to 5% and are probably overestimates, the agreement 

of the list of frequencies being often better. The next components (6, 7, 9 and 10) are not found in our list, but they are in the 
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SSA of insolation (column 4): 2338, 970, 488 and 684 kyr vs 2373, 978, 486 and 688 kyr (with uncertainties on the order of 

10%). The first five components of eccentricity and insolation contain respectively 75 and 89% of the series total variance. 230 

Next, we encounter components 8, 11 to 15 and 17 to 20 (all still in kyr): 106, 99 (a doublet with component 4), 77, 

132, 106 (a doublet with component 8), 118, 124, 55, 95 (a doublet of component 2) and 345 kyr vs 105, 101, 77, 134, 103, 

118, 127, 55, 97 and 346 kyr. 

We find 3 components that are not in the La04 list at 109, 140 and 195 kyr. Eccentricity has the main influence on 

insolation. Indeed, they both comprise 12 identical periods (or quasi periods, see later). We have also seen that 4 additional 235 

components are in La04 insolation and eccentricity, but not in our decomposition of eccentricity. Components at 62 and 88 

kyr are found in our analysis of La04 insolation but not in eccentricity. 

We note that the 195 ± 6 kyr could well correspond to the “elusive ~200 kyr eccentricity cycle” claimed to have been 

revealed in paleoclimate records for the first time by Hilgen et al (2020). We will soon see that this cycle is present both in 

the CO2 record of Petit et al (1999) and more precisely in the LR04 stack of Lisiecky and Raymo (2005). 240 

The CH4 and CO2 records of Petit et al (1999) share 7 components. These include the precession doublet at 18 and 22 

kyr, the obliquity doublet at 39 and 41 kyr, an insolation component at 62 kyr, an insolation/eccentricity doublet at 95 and 

105 kyr and the “elusive” ~200 kyr component. CO2 has a component at 28.5 kyr (not found in CH4 but present in obliquity); 

CH4 has a component at 24.2 kyr (not found in CO2 or any other series), and a doublet at 48.6 and 50.3 kyr (not found in the 

orbital model). The sums of the nine first components of CH4 and CO2 (those in excess of 1%) carry 46 and 48% 245 

respectively of the series variances. 

 

 

 

 250 

 

 

 

 

 255 

 

 

 

 

Figure 3: The theoretical (orbital model La04) spectra of eccentricity (grey curve, upper left), obliquity (grey curve, upper 260 

right), precession (grey curve, lower left), and insolation (grey curve, lower right) compared to (superimposed on) the 

observed sedimentary spectrum (black curves in all frames). 
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Last but not least, the LR04 stack of Lisiecki and Raymo  (2005). With more than 20 components, the LR04 stack is 

the richest series. From shorter to longer period (and pseudo-period) components, one recognizes in the first column of Table 265 

1 one of the two main precession components (22.4 kyr), the doublet of obliquity components (39.5 and 41.0 kyr), a line at 

47.4 kyr that is not found in any of the other spectra, a doublet at 53.6 and 55.7. This corresponds to the line at 54 kyr found 

in all four orbital quantities. Then comes a line at 63.6 kyr that may correspond to a line in insolation, CH4 and CO2. Then 

come components that must come from eccentricity variations at 75.2, 94.5, 107.2, 132.1, 198.6 and 400.9 kyr (viz La04 

values of 76.9, 95.1, 106.5, 131.9, 195.0 and 404.5 kyr). The remaining components show up in La04 but not in any other 270 

series we analyzed unless tentatively suggested in a parenthesis: 35.4 kyr, 47.4 (maybe in CH4 a member of the 48.6 and 50.3 

kyr doublet), a 69.1 plus 70.9 kyr doublet, 83.3, 90.8, 147.6, 161.5 and 293.3 kyr. The sum of the first six components of 

LR04 (those in excess of 1%) totals 49% of the signal variance. 

 

In Figure 3, we display the reconstructed spectrum of the LR04 benthic stack and compare it to the full spectra of the 275 

separate parameters of the La04 orbital model. The LR spectrum is shown as a brown curve in all four frames of Figure 3 

and the spectra from La04 are superimposed in red for the eccentricity (top left), in green for obliquity (top right), in blue for 

precession (bottom left) and in purple for insolation (bottom right). The spectral components of obliquity and precession are 

fully recorded but take place over a narrow period range. The 80 to 110 kyr parts of the eccentricity (and insolation) 

spectrum are well reflected in the sedimentary spectrum, but the 110 to 140 kyr part is present but strongly attenuated. Linear 280 

models are not suitable to describe these relationships and therefore temperature (a function of insolation) is not linearly 

related to isotopic ratios (δ18O). 

 

 

 285 

 

 

 

 

 290 
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Figure 4 from left to right and top to bottom: the trend (SSA component 0) of the , the 107 kyr SSA component associated to 295 

insolation, the 39 kyr SSA component associated to obliquity and the 198 kyr SSA component associated to eccentricity, all 

from sedimentary stack LR04. 

 

The SSA analysis of  from the LR04 stack of sedimentary cores, and CH4 and CO2 from the Vostok ice-core of course 

confirms many earlier findings on the forcing of proxies of climate by orbital dynamics. SSA allows one to reconstruct these 300 

series very well. An advantage of the SSA method over the Fourier or wavelet analyses is that individual components can 

vary in frequency and be modulated in amplitude and phase. This is illustrated by Figure 4, a selection of SSA components. 

From left to right and top to bottom: the trend (component 0) of the  from the sedimentary stack LR04, the 107 kyr 

component of insolation, the 39 kyr component associated to obliquity and the “elusive” (Hilgen et al, 2020) 198 kyr 

component associated to eccentricity. The SSA components have a finite width, and are more or less strongly modulated. 305 

They vary considerably in scales of amplitudes and can be quasi-periodical and not perfect sinusoids.. Figure 5 shows the 

corresponding components of orbital model La04. The shapes of the modulation envelopes of corresponding components are 

rather different. This may lead one to the response functions of the various components, which is beyond the purpose of the 

present paper. 

 310 

 

 

 

 

 315 

 

 

 

 

 320 

 

 

 

 

 325 

Figure 5 from left to right and top to bottom: the 107 kyr SSA component of insolation, the 39 kyr SSA component of 

obliquity and the 198 kyr SSA component of eccentricity, all from orbital model La04. 
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5 – Summary and Conclusion 330 

The main goal of this paper has been to check the efficiency of Singular Spectrum Analysis in determining the spectral 

components of three time series of a significantly different nature, three time series that have been proposed as reference time scales 

or used for their construction. They are a stack of Plio-Pleistocene benthic microfossil  records (Lisiecki and Raymo, 2005), the CO2 

and CH4 records from the Vostok ice core (Petit et al, 1999) and the long-term numerical solution for the insolation of Laskar et al 

(2004). We have submitted the three series to Iterative Singular Spectrum Analysis (iSSA, Golyandina and Zhigljavsky, 335 

2013); we have explained the method in several papers (Lopes et al., 2017, 2021; Le Mouël et al., 2020a) and we have 

successfully applied it to a number of geophysical and heliophysical time series.  

For instance, oscillations (pseudo-cycles) of 80, 60, 20 and 11 yr appear in sunspots as well as in a number of 

terrestrial phenomena, in particular sea-level (see references in section 3). These values belong to a well defined family of 

commensurable periods of the Jovian planets that act on the Earth and the Sun (Mörth and Schlamminger, 1979): a 340 

combination of the revolution periods of Neptune (165 yr), Uranus (84 yr), Saturn (29 yr) and Jupiter (12 yr) and several 

commensurable periods (see f.i. Table 1 in Lopes et al, 2021 and Courtillot et al. (2021) for the action of the Jovian planets 

on sunspots). 

 (1) The Vostok ice core in Antarctica (Petit et al, 1999) gives access to atmospheric paleo-concentrations in CO2 and 

CH4, that are closely correlated with Antarctic temperature. The record extends to 420 kyr. A glaciological timescale has 345 

been established that combines an ice-flow and an accumulation model. This physics based chronology was extended to 

derive chronology GT4 with an estimated accuracy better than 10 kyr for most of the record. The SSA periods or quasi-

periods of the CO2 and CH4 histories are listed in the second and third columns of Table 1. The two series share the first 7 

components, three main ones (98, 104, 39 kyr), and four smaller ones (18, 22, 65, 180 kyr). CO2 displays a component at 

28kyr and a doublet at 61 and 62 kyr. CH4 displays a doublet near 50 kyr. 18/22 ky is a precession doublet, 62 kyr an 350 

insolation component, and 95/105 kyr an insolation/eccentricity doublet. The 49/50 kyr doublet in CH4 is not found in the 

orbital model. 

(2) The Laskar et al. (2004) solution of the astronomical equations for insolation back to −250 Myr. The orbital model 

comprises all 9 planets of the solar system. Laskar et al’s (2004) Tables 6 and 7, give the 20 leading frequency components 

of eccentricity and obliquity. Table 1 gives our SSA determinations of the components. Precession starts with a doublet at 355 

22.3 and 18.9 kyr and has a 3rd component at 53.9 kyr. Obliquity starts with a doublet at 40.9 and 39.5 kyr, followed by a 

large component at 53.6 kyr and one at 28.8 kyr. Eccentricity has the richest spectrum. The main component is at 404 kyr, 

the next ones at 95, 124, 99, 132 and 106 kyr. Other components are well determined and identified at below 1% of the s.v. 

Insolation is dominated by the spectrum of eccentricity, with which it shares 8 components. The first five components have 

essentially identical values and similar rank and shares of s.v. The sixth one at 970±110 kyr does not appear in the SSA of 360 
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eccentricity. Eccentricity and insolation also share components at 54, 106 and 118 kyr, but below 1% contribution to s.v. 

Some components are found only in eccentricity (77, 140, 195, 346 kyr) or insolation (62, 88, 488, 684, 2338 kyr, the last 

three with large uncertainties). 

Our SSA results of the La04 orbital solution are in excellent agreement with the values obtained by Laskar et al 

(2004), with a few interesting differences (that are part of the tests of the SSA method). Four SSA components of obliquity 365 

are almost identical (to better than 2%): rounded figures are 41, 54, 29 and 39 kyr. As far as eccentricity is concerned, the 

first five components are 404, 95, 124, 99, and 132 kyr. The next components (6, 7, 9 and 10) are not found in our list, but 

they are in the SSA of insolation: 2338, 970, 488 and 684 kyr. 

Next, we encounter components 8, 11 to 15 and 17 to 20 (all still in kyr): 106, 99 (a doublet with component 4), 77, 

132, 106 (a doublet with component 8), 118, 124, 55, 95 (a doublet of component 2) and 345 kyr. We find 3 components that 370 

are not in the La04 list at 109, 140 and 195 kyr. Eccentricity has the main influence on insolation. Indeed, they both 

comprise 12 identical periods (or quasi periods). We have also seen that 4 additional components are in La04 insolation and 

eccentricity, but not in our decomposition of eccentricity. Components at 62 and 88 kyr are found in our analysis of La04 

insolation but not in eccentricity. 

 (3) The periods or quasi-periods of the Plio-Pleistocene benthic  stacked record of Lisiecki and Raymo (2005) are 375 

listed in the first column of Table 1. With more than 20 components, the LR04 stack is the richest series. In order of 

decreasing amplitude, one encounters a 41 kyr component, a 95 kyr component and a 75 kyr component. Next are smaller 

39.5 and 53.6 kyr component, and a 22.4 kyr component. All other components are below 1% of the s.v. One recognizes one 

of the two main precession components (22.4 kyr), the doublet of obliquity components (39.5 and 41.0 kyr), a line at 47.4 

kyr that is not found in any of the other spectra, a doublet at 53.6 and 55.7. This corresponds to the line at 54 kyr found in all 380 

four orbital quantities. Next comes a line at 63.6 kyr that may correspond to a line in insolation, CH4 and CO2. Then come 

components from eccentricity variations at 75.2, 94.5, 107.2, 132.1, 198.6 and 400.9 kyr. The remaining components of 

LR04 show up in La04 but not in any other series we analyzed. 

Hilgen et al (2020) claim to have identified for the first time in paleoclimate records an “elusive ~200 kyr eccentricity 

cycle”. This cycle is possibly already present in the CO2 and CH4 Vostok cores, but with a very large uncertainty 385 

(187.6±71.5 and 178.4±60.6 kyr, respectivey). It is present in the La04 orbital model as a 195±6 kyr component of 

eccentricity. And finally it is found as a 198.6±5.6 kyr component of LR04 (all values from Table 1) 

It has long been known that Milankovic cycles could be identified in sediment and ice cores as well (Jouzel et al., 

2007; Loulergue et al., 2008; Cheng et al., 2016), with leading terms with periods 19 to 23 kyr due to equinoctial precession, 

41 kyr due to the obliquity variations of the Earth’s axis, and 95 to 100 kyr for variations in eccentricity of the Earth’s orbit. 390 

As is the case for Earth tides, the fact that one deals with celestial objects in rotation and revolution on slowly variable orbits, 

influencing each other, makes “harmonic” periods appear in the solutions obtained with the equations of celestial mechanics 

(Laplace, 1799), in addition to the main periods recalled above. Many of these “secondary” components have much smaller 

amplitudes. Yet, if they can be observed they give confidence in the theory and models built from it. In that respect, the 

https://doi.org/10.5194/cp-2021-126
Preprint. Discussion started: 1 November 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

identification by SSA of more than 15 “Milankovic periods” in the LR04 sedimentary stack and 9 in the Vostok core is 395 

important. 

The rich list of SSA (Milankovic) components in the sedimentary stack suggests that benthic foraminifera in marine 

sediments are particularly appropriate to study paleoclimates. This may be related to the fact that benthic sections are 

selected to be located in areas with stable environments, linked to water depth and the pattern of large oceanic currents. 

 400 
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