

1 **Water level change of Lake Machang in eastern China**
2 **over 1814–1902 AD**

3
4 Jie Fei¹

5 Institute of Historical Geography, Fudan University, Shanghai 200433, China

6
7 **Abstract**

8 Lake Machang, occupying an area of approximately 30 km² in Jining City, eastern
9 China, was a historical reservoir on the Grand Canal existing from early 15th century
10 to early 20th century. The premodern monthly water level observation of Lake Machang
11 commenced in 1814 AD and ended in 1902 AD. The available observation data from
12 the monthly records covered 75.6% of the entire study period 1814–1902. Although the
13 water level was seemingly artificially intervened by human activities, monthly and
14 annual water level changes still correlated well with precipitation. That is, climate is
15 still the dominant factor of water level changes on seasonal and annual scales. The
16 flooding of the Yellow River in 1871 carried a large amount of silt into Lake Machang,
17 which resulted in the rise of lake bed and reclamation initiated by local residents. After
18 the reclamation activity was officially approved in 1900, Lake Machang was massively
19 reclaimed and eventually dried up in the early 20th century.

20
21 **Key words**

22 Lake Machang, reservoir, Grand Canal, reclamation, water level

23
24

25

26

27

28

29

30

31

32

¹ Email: jiefei@fudan.edu.cn

33
34 **Introduction**

35 Historical reservoir evolution is a promising subfield of climatic change studies
36 (Cardoso-Silva et al., 2021; Margarint et al., 2021; Bábek et al., 2021; Fei et al., 2021;
37 Halac et al., 2020). However, water level change of reservoirs needs to be interpreted
38 carefully, as is affected by a combination of factors. Historical textual records are
39 effective in studying the long-term evolution of lakes, but they are fragmentary and
40 qualitative, thus hampering the reconstruction of water level change with high
41 resolution. Here we utilize a combination of premodern monthly water level
42 observation data, textual records, and historical maps to reconstruct the evolution
43 history of Lake Machang in Jining City, eastern China, and differentiate the effects of
44 various factors, including climate, hydrology and human activities. To improve the
45 practice of using water level data to understand past climate change, the water level
46 change of this reservoir during 1814-1902 AD has been reconstructed in this work.
47 (Figure 1).

48 Lake Machang, which occupies an area of nearly 30 km², was a historical reservoir
49 on the Grand Canal (Figure 1) that had existed for several centuries before it dried up
50 in the early 20th century. The climate in this area is a warm temperate semi-humid east
51 Asian monsoon type. The monthly average temperature varies from -2 °C in January
52 to 27 °C in July. The annual precipitation is around 700 mm and mainly occurs in
53 summer as monsoon precipitation (Shen et al., 2008).

54 The Grand Canal, stretching around 1,800 km, is a world heritage site. Running from
55 Beijing in the north to Hangzhou in the south, it is one of the greatest artificial
56 waterways constructed in historical times in the world. Constructed in sections from
57 the 5th century BC onwards, the current waterway system was completed in the late
58 13th century (Ji, 2008).

59 The middle section of the Grand Canal was repaired and modified in 1411. A group
60 of reservoirs were established along the canal to ensure the water supply (Zhu, 2014;
61 Fei et al., 2021). Water was collected in the reservoirs in every autumn when the
62 monsoon precipitation was over and supplied the canal in spring until the monsoon
63 precipitation came (Lu, 1775).

64 The channels of River Guang and a few small rivers were also slightly modified, and
65 water was introduced into the Machang area and forming a new reservoir, which was
66 named as Lake Machang (Yang, 1430; Figure 1). The official gazetteer recorded that
67 the area was previously a horse pastureland; therefore, the new *shuigui* (reservoir) was
68 named Machang Hu² (Xu, 1859). In this regard, the official documents indicated that
69 Lake Machang formed in 1411.

70 However, a poem indicated that a lake already existed in this area by early 14th
71 century. The poem is entitled *West Lake of Jizhou Prefecture*³.... The author LI Gang

² *Ma* means horse, *Chang* means pastureland, and *Hu* means lake.

³ The title of the poem is *Jizhou Xihu* (濟州西湖) in Chinese. Jizhou Prefecture was the historical name of Jining City during the Yuan dynasty (1271-1368). The original Chinese text reads, 渺渺澄湖望不窮, 畫船曾駐夕陽中。 *miao miao cheng hu wang bu qiong, hua chuan ceng zhu xi yang Zhong*. The English translation is as follows, the lake is clean

72 was the mayor of Jizhou Prefecture in the period of 1324–1327. Therefore, the poem
73 was probably created in the early 14th century.

74

75 Materials and results

76 Water level observations of reservoirs along the canal were organized by the General
77 Administration of the Grand Canal⁴ since the middle 18th century (Fei, 2009; Fei et
78 al., 2012; Fei et al., 2021). The extant water level observation records of Lake Machang
79 date back to 1763; however, early observations are fragmental and insufficient to
80 establish a chronology (Academy of Water Conservancy and Hydroelectric Power,
81 1988).

82 In 1814, the emperor decided to further regulate the water supply and ensure the
83 canal transportation. He ordered that the water levels of the reservoirs along the Grand
84 Canal should be observed monthly and the observation reports should be directly
85 submitted to the emperor himself (Academy of Water Conservancy and Hydroelectric
86 Power, 1988). Therefore, the water level observations were trustworthy and very
87 reliable.

88 Monthly observation of the water level of Lake Machang as well as other reservoirs
89 along the Grand Canal were henceforth organized since 1814. However, the function of
90 these reservoirs ended in 1902, when the General Administration of the Grand Canal
91 was dissolved (Fei et al., 2021). The observations of the water levels of the reservoirs
92 along the canal, including Lake Machang, were therefore terminated in 1902.

93 The extant observation data of Lake Machang could cover 75.6% of the entire study
94 period 1814–1902. The missing points, which account 24.4% over 1814–1902, were
95 interpolated using the mean of two neighboring points. The observations followed the
96 Chinese lunar calendar months, and they were conducted at the end of every month. A
97 unique length unit *yingzao chi* (1 *yingzao chi* = 0.32 m) was adopted in the observations
98 (Table 1). *Yingzao chi* was an official length unit during the Qing Dynasty. It was widely
99 adopted in hydraulic engineering and relevant affairs (Wanyan, 1836). Notably, the
100 water levels were not those of above sea level but the water depths at the observation
101 station. A water level ruler was erected somewhere on the bank of Lake Machang.
102 However, no relics or records of the water level ruler of Lake Machang are available to
103 date. The original water level observation reports are scattered through the imperial
104 archives of the Qing Dynasty (1644–1912), which are documented in the First
105 Historical Archives of China⁵. After converting the observation data into SI unit and
106 AD dates, the chronologies of the annual mean, maximum, and minimum water levels
107 were established (Figure 2). Accordingly, the average water level of Lake Machang
108 over 1814–1902 was 0.92 m. In other words, the average depth of Lake Machang was

and vast, and I cannot see the shoreline.

⁴ The General Administration of the Grand Canal (*Hedao Zongdu Yamen*) was an official department of the central government of the Qing Dynasty (1644–1912). It was located in Jining City, and was responsible for the transportation and water supply of the Grand Canal, as well as the water level observation of the reservoirs along the Grand Canal.

⁵ The First Historical Archives of China (*Zhongguo Diyi Lishi Dangan Guan*) is an official department of the Chinese central government. It is a national archive of China and collects the archives of the Ming (1368–1644) and Qing (1644–1912) dynasties.

109 less than 1 m, therefore it was really a shallow water reservoir, and vulnerable to
110 environmental change.

112 Comparison with relevant precipitation chronologies

113 The water level variability of Lake Machang was compared with that of precipitation
114 on monthly and annual scales.

115 The average monthly water level variability of Lake Machang in the period of 1814–
116 1902 was compared with the average monthly precipitation variability of Jining City in
117 modern times (1951–2000. [Figure 5](#)). We calculated the correlation (R) between the
118 two variables, and found that the monthly water level responded well with precipitation
119 but with a time-lag of 2 months ($R=0.753$, $N=12$). As we mentioned above, the water
120 level of Lake Machang as a reservoir was artificially intervened in order to ensure the
121 water supply of the Grand Canal. Water from the drainage basin was collected in
122 summer and autumn (rainy season of this area). The transportation of the Grand Canal
123 usually paused in winter, as the channels were frozen. The transportation usually
124 restarted in February or March when spring came. As precipitation was low in spring
125 in this area ([Figure 5](#)), water collected in Lake Machang as well as other reservoirs was
126 discharged into the Grand Canal to ensure the water supply of transportation ([Academy
127 of Water Conservancy and Hydroelectric Power, 1988](#)). This process possibly explained
128 the time-lag of two months of monthly water level variability.

129 The annual water level variability of Lake Machang was compared with the Dryness
130 Wetness Index (hereinafter DWI) dataset described in the [Central Meteorological
131 Administration of China \(1981\)](#). This dataset is based on the textual records on
132 precipitation in the historical local gazetteers in China. It covers 120 stations, including
133 four stations in the vicinity of Lake Machang, namely, Heze, Jinan, Linyi, and Xuzhou
134 ([Figure 1](#)). DWI is a five-grade dataset, i.e., 5 (very dry), 4 (dry), 3 (normal), 2 (wet),
135 and 1 (very wet). We calculated the correlation of the average DWI of Heze, Jinan,
136 Linyi, and Xuzhou (DWI_{HJLX}) with the annual mean, maximum, minimum water levels
137 of Lake Machang in the period of 1814–1902, and the correlation coefficients (R) of
138 $R_{\text{mean}} = -0.50$, $R_{\text{max}} = -0.52$, $R_{\text{min}} = -0.41$ ($N=89$). All these values are significant.
139 Furthermore, the relatively high correlation value indicates that precipitation was a
140 crucial factor of the annual water level changes of Lake Machang in the period of 1814–
141 1902.

142 We further examined the ten years with highest water levels and another ten years
143 with lowest water levels. These years with highest or lowest water levels will be
144 compared with the historical records of local flood and drought. The ten years with
145 highest annual maximum water levels are 1898, 1820, 1852, 1860, 1883, 1864, 1863,
146 1819, 1839, and 1892. Among them, all but two years (1883, and 1864) corresponded
147 with records of local floods. The ten years with lowest annual minimum water levels
148 are 1901, 1902, 1814, 1857 1874, 1850, 1866, 1847, 1837, and 1856. Among them,
149 only four years (1901, 1814, 1874, and 1856) corresponded with records of droughts.

150 The comparison possibly indicated that the extreme value of water level did not link
151 closely with local disasters, no matter flood or drought. Furthermore, the droughts
152 seldom resulted in the drying up of Lake Machang in the period of 1814–1902, and

153 only led to abnormally low water levels in winter and spring. The lake usually recovered
154 in several months when summer monsoon came. This proved that precipitation affected
155 annual maximum water level more significantly than annual minimum water level.

156 Beijing lies approximately 490 km north of Lake Machang, and the correlation
157 coefficient of the annual precipitation of Beijing and Jining over the period of 1951–
158 2010 is 0.148 (N=60). Beijing has the longest premodern and modern meteorological
159 observation histories in China. Continuous modern meteorological observation in
160 Beijing began in 1841. Premodern daily observations of precipitation days are available
161 from 1724 (Beijing Meteorology Service, 1982). We established the chronology of
162 annual precipitation of Beijing over the period of 1814–1902 using a combination of
163 the above mentioned two types of sources (Figure 4). The correlation coefficient of the
164 annual mean water level of Lake Machang and the annual precipitation of Beijing over
165 the period of 1814–1902 is merely 0.021 (N=89). This indicated that the water level of
166 Lake Machang was not a large-scale climate indicator, and it did not reflect the
167 precipitation of a large area.

168

169 **Flooding of the Yellow River, silt sedimentation, and reclamation**

170 Wang et al., (1999) reconstructed the chronology of the runoff of the Yellow River at
171 Sanmenxia City, using a combination of relevant historical records. It actually indicated
172 the runoff of the upper and middle reaches of the Yellow River Basin. The correlation
173 between the runoff of the Yellow River at Sanmenxia and the annual mean water level
174 change of Lake Machang over 1814–1902 is merely 0.139 (N=89) (Figure 6). This
175 indicated that the water level change of Lake Machang was not significantly affected
176 by the runoff of the Yellow River.

177 Over the period 1814–1902, Lake Machang was only flooded by the Yellow River in
178 1851 and 1871, though the lake was only nearly 100 km away from the Yellow River,
179 which flooded very frequently. The channel change of the Yellow River in 1855 was a
180 major hydrological event in the history of China, but it did not directly affect Lake
181 Machang.

182 The flooding of the Yellow River in 1851 was a large-scale hydrological disaster. It
183 resulted in the southward migration of the Huaihe River (ca.300 km south of Lake
184 Machang), which was also a major hydrological event in the history of China. Lake
185 Nansi (ca.30 km southeast of Lake Machang) recorded an extremely high water level
186 interval lasting four years over the period of 1851–1855 (Figure 7). However, Lake
187 Machang was only moderately flooded by the Yellow River in 1851 (Figure 2).

188 The autumn of 1871 was very rainy and the Yellow River burst its banks at Yuncheng
189 County, around 70 km to the northwest of Lake Machang (Cen, 1957). The breach was
190 not filled up until the next spring. Notably, the flooding of the Yellow River in 1871
191 was also a large-scale hydrological disaster.

192 The flooding of 1871 did not result in extremely high water level in Lake Machang
193 (Table 1). However, it carried a great amount of silt into the reservoir. The bed of the
194 reservoir increased significantly due to the silt sedimentation carried by the floods of
195 the Yellow River. The average water level of Lake Machang during 1814–1870 was 1.03
196 m, whereas that of 1871–1902 decreased to 0.72 m. From then on, the inflow of River

197 Guang no longer reached the reservoir. Local residents began to reclaim the reservoir
198 (Pan, 1927).

199 On the other hand, the flooding of 1871 severely destroyed the banks of the Grand
200 Canal in this region. There were four connected reservoirs along the Grand Canal to the
201 south of Lake Machang before 1871. The dikes separating them were destroyed by the
202 flooding of 1871, and these reservoirs merged into a united Lake Nansi (Fei, 2009; Fei
203 et al., 2012; Fei et al., 2021).

204 The flooding of 1871 significantly affected the evolution of Lake Machang, and it
205 marked the shrinkage of the reservoir and the beginning of the reclamation. The annual
206 minimum water level of Lake Machang before and after 1871 were 0.70 m (1814-1870)
207 and 0.39 m (1871-1902), respectively (Figure 2). Low water level could make
208 reclamation easier and further accelerate the shrinkage of the reservoir. In 1900, the
209 central government approved the local authority's application regarding the reclamation
210 of Lake Machang. Two years later, the General Administration of the Grand Canal was
211 dissolved, and the function of the Lake Machang as a reservoir of the Grand Canal was
212 ended. Hereby, local residents poured in and massively reclaimed the reservoir.

213 As a result, Lake Machang gradually dried up in the following decades. The local
214 authority organized a field investigation regarding the Grand Canal in Shandong
215 Province in 1916 and drew a map entitled "*The Plan of the Southern Part of the Grand*
216 *Canal, Including the Shallow Lakes and Swamps* (Scale 1:200,000) (Pan, 1916)"
217 (Figure 8). Lake Machang was drawn as a dry lake in this map. In 1927, Lake Machang
218 was also drawn as a dry lake in the local gazetteer of Jining (Yuan, 1927). From these
219 maps, it could easily be concluded that Lake Machang dried up no later than 1916.
220 Notably, the annual precipitation did not decrease significantly in the early 20th century
221 (Central Meteorological Administration of China, 1981). Therefore, although the
222 climate played a fundamental role in affecting the water level of Lake Machang, large-
223 scale reclamation accelerated its drying up.

224 Overall, the road map of the drying up of Lake Machang was as follows: the flooding
225 of 1871 carried a large amount of silt into the reservoir and therefore resulted in the rise
226 of the lake bed and shrinkage of the reservoir, which caused the reclamation by local
227 residents and further shrinkage of the reservoir. After the central government formally
228 approved the reclamation activity in 1900, local residents poured in and further
229 reclaimed it massively, and caused the dried up of Lake Machang in the early 20th
230 century.

231 From the fate of Lake Machang, vulnerability of a local water body could come from
232 both natural and human aspects. Under the current climate change and its natural
233 impacts to water bodies, human adaption should be a key question in the era of
234 Anthropocene.

235 236 **Comparison with Lake Nansi**

237 Lake Nansi lies 30 km southeast to the Lake Machang, and it is actually the general
238 name of four connected reservoirs along the Grand Canal. The four reservoirs are Lake
239 Nanyang, Lake Dushan, Lake Zhaoyang, and Lake Weishan. Water level observations
240 were made for the four reservoirs. The average annual mean water level change of Lake

241 Nansi was calculated and compared with that Lake Machang over the period of 1814–
242 1902. The correlation coefficient is 0.374 (N=89) (Figure 7). The annual water level
243 change of Lake Machang showed great similarity to those of its neighbor reservoirs.

244 On the contrary, the long-term evolution of Lake Machang and Lake Nansi were very
245 different. Lake Machang was reclaimed and dried up in the early 20th century, but Lake
246 Nansi gradually expanded (Fei et al., 2021). Lake Nansi was even more frequently
247 flooded by the Yellow River. For example, the flooding of 1871 destroyed the dikes
248 separating these reservoirs, thus forming a united Lake Nansi (Fei, 2009; Fei et al.,
249 2012; Fei et al., 2021).

250 From the perspective of geomorphology, the altitude of Lake Machang is a little
251 higher than that of Lake Nansi, and the Grand Canal in this region flows southeastward.
252 That is, water flew from Lake Machang to Lake Nansi along the Grand Canal. When
253 Lake Machang was reclaimed, water that could otherwise be collected in it directly flew
254 into Lake Nansi, and resulted the expansion of Lake Nansi. Geologically, the basin of
255 Lake Nansi is slowly subsiding, whereas that of Lake Machang is stable (Shen et al.,
256 2008). The subsiding possibly compensated the silt sedimentation in Lake Nansi,
257 whereas Lake Machang was silted up and reclaimed.

259 **Conclusions**

260 We reconstructed the water level change of Lake Machang over the period of 1814–
261 1902 and the evolution history by using premodern monthly water level observations
262 and other historical records. Precipitation was still a dominant factor of water level
263 change of Lake Machang on monthly and annual scales, though human activities
264 intervened the monthly water level change.

265 The flooding of the Yellow River in 1871 carried a great amount of silt into Lake
266 Machang. The central government formally approved the reclamation activity of Lake
267 Machang in 1900. The administration of the Grand Canal was dissolved two years later,
268 and the function of the Lake Machang as a reservoir of the Grand Canal was ended.
269 Local residents poured in and massively reclaimed Lake Machang, and resulted in the
270 dried up in the early 20th century.

271 Shallow lakes and reservoirs are vulnerable to climatic and environmental changes,
272 and human activities like reclamation could accelerate the drying up of water bodies.

273
274 **Supplement.** The supplement related to this article is available online at: ...

275 **Competing interests.** The authors declare that they have no conflict of interest.

276
277 **Acknowledgments** This research was supported by the Shanghai Municipal
278 Philosophy and Social Science Grant (No. 2017BLS003).

282 **References**

283 Academy of Water Conservancy and Hydroelectric Power: Historical flood archive material in the
284 Huaihe River basin during the Qing dynasty. Zhonghua Book Company (Zhonghua Shuju),
285 Beijing, 1988 (in Chinese).

286 Bábek O., Sedláček J., Lendáková Z., Elznicová J., Tolaszová J., Pacina J.: Historical pond systems
287 as long-term composite archives of anthropogenic contamination in the Vrchlice River,
288 Czechia. *Anthropocene*, 33, 100283, 2021.

289 Beijing Meteorological Service: Beijing climate sources. Beijing Meteorological Service, Beijing,
290 1982 (in Chinese).

291 Cardoso-Silva S., Mizael J. O. S. S., Frascareli D., Alves de Lima Ferreira P., Rosa A. H., Vicente
292 E., Figueira R. C. L., Pompeo M. L. M., Moschini-Carlos V.: Paleolimnological evidence of
293 environmental changes in seven subtropical reservoirs based on metals, nutrients, and
294 sedimentation rates. *Catena*, 206, 105432, 2021.

295 Cen Z.: Evolution history of the Yellow River. The People's Press (*Renmin Chubanshe*), p582, 1957
296 (in Chinese).

297 Central Meteorological Administration of China: Yearly charts of dryness/wetness in China for the
298 last 500-year period. Sino-Maps Press, Beijing, 1981 (in Chinese).

299 Fei J.: Water-level Observations of Lake Weishan-Zhaoyang-Nanyang in China over 1814–1902
300 AD. *Lake and Reservoir Management*, 25, 131–135, 2009.

301 Fei J., Lai Z.-P., Zhang D. D., He H.-M., Zhou. J.: Historical Water Level Change of Lake Weishan
302 in East China from 1758–1902 AD: relationship with the Flooding of the Yellow River.
303 *Limnology*, 13: 117–124, 2012.

304 Fei J., Pei Q., Zhong Y.: Water level changes of Lake Nansi in east China during 1758–1902.
305 *Regional Environmental Change*, 21, 17: 1–9, 2021.

306 Halac S., L. Mengo, Guerra L., Lami A., Musazzi S., Loizeau J.L., Ariztegui D., Piovano E. L.:
307 Paleolimnological reconstruction of the centennial eutrophication processes in a sub-tropical
308 South American reservoir. *Journal of South American Earth Sciences*, 103, 102707, 2020.

309 Ji G.H.: History of canals in China during the past 3000 years (*Zhongguo sanqian nian yunhe shi*).
310 China Encyclopedia Press, Beijing, 2008 (in Chinese).

311 Lu Y.: Comprehensive introduction of the canal in Shandong Province (Shandong Yunhe Beilan).
312 Printed in 1775. Published by the Wenhui Publishing House (Taipei), 1969. (In classical
313 Chinese)

314 Margarint M. C., Niculita M., Nemeth A., Cristea A. I., Doru S. C.: The reconstruction of an
315 abandoned historical reservoir network in a continental temperate climate region using a multi-
316 method approach. *Applied Geography*, 130, 202447, 2021.

317 Pan F.: The Plan of the Southern Part of the Grand Canal, Including the Shallow Lakes and Swamps
318 (Map. Scale 1:200,000) printed in 1916. (In English and Chinese)

319 Pan Shoulian: Continued Gazetteer of Jining Prefecture. Vol. 3. Printed in 1927. (In classical
320 Chinese).

321 Shen J., Zhang Z.L., Yang L.Y., Sun Q.Y.: Lake Nansi: environment and resource research.
322 Seismology Press, Beijing, pp 6–20, 2008 (in Chinese).

323 Wang G, Shi F, Zheng X, Gao Z, Yi Y, Ma G, Mu P Natural annual runoff estimation from 1470 to
324 1918 for Sanmenxia Gauge Station of Yellow River. *Advances Water Science*, 10: 170–

325 176,1999 (in Chinese).

326 Wanyan L.Q.: Illustrated handbook of hydraulic engineering (*Hegong Qiju Tushuo*). ,Printed in
327 1836 and published in 2015 by the Zhejiang people's fine arts press (In classical Chinese).

328 Xu Z.G: Gazetteer of Jining Prefecture. Vol. 2. Printed in 1859 (In classical Chinese).

329 Yang S.Q.: Annals of the Emperor Taizong, Vol. 118. Printed in 1430. (In classical Chinese).

330 Yuan S.A.: Complete map of Jining County. In: Gazetteer of Jining County. Printed in 1927 (in
331 Chinese).

332 Zhu N.Z.: the Grand Canal in Shandong Province during the Ming Dynasty and the formation of
333 the reservoirs along the canal. Forward Position (*Qian Yan*), 4, 226–229, 2014 (in Chinese).

334

335

336

337

338

339

340

341

342

343

344

345

346

347 Table 1. Water level observations of Lake Machang in a Chinese lunar calendar year (The 10th year
348 of the Tongzhi Reign Period, that is, from 19 Feb 1871 to 8 Feb 1872).

Observing dates in Chinese lunar calendar	Observing dates in AD	Water levels in <i>yingzao chi</i> *	Water levels in SI unit (m)
30th, 1st month**	20 Mar 1871	1.2	0.384
30th, 2nd month	19 Apr 1871	1.2	0.384
29th, 3rd month	18 May 1871	1.2	0.384
30th, 4th month	17 Jun 1871	1.4	0.448
30th, 5th month	17 Jul 1871	1.6	0.512
29th, 6th month	15 Aug 1871	1.8	0.576
30th, 7th month	14 Sept 1871	1.7	0.544
29th, 8th month	13 Oct 1871	2.1	0.672
30th, 9th month	12 Nov 1871	2.1	0.672
29th, 10th month	11 Dec 1871	2.1	0.672
29th, 11th month	9 Jan 1872	1.9	0.608
30th, 12th month	8 Feb 1872	1.9	0.608

349 * denotes water levels in the length unit *yingzao chi* (1 *yingzao chi* = 0.32 m).

350 ** denotes the 30th day (i.e., the month end) of the 1st month.

351

352

Figure 1. Maps showing the location (upper part) and vicinity (lower part) of Lake Machang.

Figure 2. Annual mean (thick black line with dots), maximum (thin brown line with squares), and minimum (thin green line with diamonds) water levels of Lake Machang over the period of 1814–1902.

364
 365 Figure 3. The thick blue line with squares denotes the Average Dryness Wetness Index (hereinafter
 366 DWI) of four stations in the vicinity of Lake Machang, namely, Heze, Jinan, Linyi, and Xuzhou.
 367 DWI is a five-grade dataset, that is, 5 (very dry), 4 (dry), 3 (normal), 2 (wet), and 1 (very wet).
 368 The thin black line with dots denotes the annual water level of Lake Machang.
 369

370
 371 Figure 4. Annual precipitation of Beijing over the period of 1814–1902 (thick blue line with squares)
 372 and its comparison with annual mean water level of Lake Machang (thin black line with dots).
 373

374
375 Figure 5. Comparison of the average monthly water level variability of Lake Machang (1814–1902)
376 with the monthly precipitation variability of Jining City (1951–2010).
377

378
379 Figure 6. Runoff of the Yellow River at Sanmenxia (thick blue line with squares) over 1814–1902
380 and its comparison with annual mean water level of Lake Machang (thin black line with dots).
381

383 Figure 7. Annual mean water level change of Lake Nansi (thick blue line with squares) over 1814-
384 1902 and its comparison with annual mean water level of Lake Machang (thin black line with dots).
385

386 Figure 8. Part of the historical map entitled “*The Plan of the Southern Part of the Grand Canal, including the Shallow Lakes and Swamps* (Pan, 1916. See Figure S1 for the whole map)”
387 showing the area near Lake Machang. Lake Machang was noted as a ‘dry lake’ and ‘Machang
388 *Hu*’ (Hu means lake).
389
390
391
392
393
394
395

397 Figure S1. the historical map entitled “*The Plan of the Southern Part of the Grand Canal, including*
398 *the Shallow Lakes and Swamps (whole map. Pan, 1916)*