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Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are 

different than today’s. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback 

processes (e.g. changes in water vapor, snow, and clouds) that are captured in ECS, as well as the slower feedback processes 

(e.g. changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate 10 

forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum 

(LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcing and efficacy of 

land ice sheets (LIS) and greenhouse gases (GHG) in order to estimate ECS. Our forcing and efficacy quantification adopts 

the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, 

topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are ‒3.2 W m‒2 and 1.1, 15 

respectively. The larger-than-unity efficacy is caused by the relatively larger temperature changes over land and the Northern 

Hemisphere subtropical oceans than those in response to a doubling of atmospheric CO2. The subtropical SST response is 

linked to LIS-induced wind changes and feedbacks in ocean-atmosphere coupling and clouds. ERF and efficacy of LGM GHG 

are ‒2.8 W m‒2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder 

temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature 20 

response in CESM1.2 overestimates the true value in the model by approximately 25% due to the neglect of slow ocean 

dynamical feedback. This is supported by the greater cooling (6.8°C) in a fully coupled LGM simulation than that (5.3°C) in 

a slab ocean model simulation with ocean dynamics disabled. The majority (67%) of the ocean dynamical feedback is attributed 

to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-

ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of 25 

climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation. 

1 Introduction 

Equilibrium climate sensitivity (ECS) is defined as the global mean surface air temperature (GMST) response to a doubling of 

atmospheric CO2 and accounts for the Planck response and water vapor, ice albedo, lapse rate, and cloud feedbacks (with 
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timescales < 100 years; "Charney Sensitivity"; Charney et al., 1979). By tradition and for practical reasons, ECS does not 30 

account for slow feedback processes, such as changes in vegetation, cryosphere and ocean circulation, effects of which are 

included in Earth System Sensitivity (e.g. Lunt et al., 2010). ECS range is estimated to be 2.6–3.9°C (66% confidence interval) 

in a recent assessment (Sherwood et al., 2020), which represents a narrower range than the traditional one of 1.5–4.5°C (IPCC, 

2013). Nevertheless, ECS is difficulty to constrain from present-day observations due to the brevity of instrumental record, 

the small magnitude of radiative forcing and temperature response relative to the natural variability, and the dependence of 35 

ECS estimates on the transient sea-surface temperature (SST) pattern in the historical period (Knutti, Rugenstein, & Hegerl, 

2017; Sherwood et al., 2020).  

Paleoclimate records overcome these limitations and provide unique observational constraints on ECS. The Last Glacial 

Maximum (LGM; ~21 ka BP) has been considered to be an ideal target for estimating ECS since it represents a quasi-

equilibrium climate state with large changes in climate forcing and response and relatively high spatial coverage of well-dated 40 

proxy temperatures. PALAEOSENS Project Members (2012) proposed a framework to obtain ECS from reconstructions of 

paleo-temperatures and climatic forcings in which slow (timescales > 100 years) feedback processes such as changes in GHGs, 

LISs, Earth’s orbits, and land use are considered as climate forcings rather than feedbacks. This approach has been widely 

used to directly calculate ECS from proxy reconstructions of the LGM and glacial-interglacial cycles with estimates ranging 

from 2.6 to 8.1°C (Friedrich, Timmermann, Tigchelaar, Elison Timm, & Ganopolski, 2016; Köhler et al., 2017; Stap, Köhler, 45 

& Lohmann, 2019; Tierney et al., 2020; von der Heydt, Köhler, van de Wal, & Dijkstra, 2014).  

Direct ECS estimation using the PALAEOSENS Project Members (2012) approach relies on a complete understanding of the 

slow feedback processes. In the context of the LGM, both the radiative forcing due to changes in GHGs, LISs, vegetation, and 

aerosols and their efficacy (the ratio of the warming effect attributed to a given forcing, relative to that due to a doubling of 

atmospheric CO2 under pre-industrial conditions) must be known. Of these forcings, GHGs and LISs have been considered in 50 

most LGM-based ECS estimations (Friedrich et al., 2016; Köhler et al., 2017; Schmittner et al., 2011; Stap et al., 2019; Tierney 

et al., 2020; von der Heydt et al., 2014). Previous estimates of the LGM LIS forcing account for albedo changes associated 

with the presence of LISs and the exposure of shelves due to the lowered sea level (Figure 1a), yielding a shortwave forcing 

ranging from ‒1.5 to ‒5.2 W m‒2 (Braconnot et al., 2012; Braconnot & Kageyama, 2015; Friedrich et al., 2016; Hansen, Sato, 

Russell, & Kharecha, 2013; Köhler et al., 2010; Taylor et al., 2007; Tierney et al., 2020). However, these estimates neglect 55 

changes in surface topography (Figure 1b), which can change surface temperature and longwave emission. Moreover, LIS 

topographic changes altered atmospheric (Figure 1c) and ocean circulations (Herrington & Poulsen, 2012; Kutzbach & Guetter, 

1986; Zhu, Liu, Zhang, Eisenman, & Liu, 2014), which can change surface temperatures without directly involving radiative 

processes (e.g., through a wind-evaporation-SST feedback (Xie & Philander, 1994)). To our knowledge, a complete 

quantification of the LGM LIS forcing that accounts for the radiative, topographic, and dynamical effects has not been done. 60 
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Furthermore, the efficacy of LIS forcing has received relatively little attention (Yoshimori, Yokohata, & Abe-Ouchi, 2009), 

although it is clear that albedo effects are mostly distributed over high latitude land. This oversight is problematic since 

assumptions of LIS efficacy can greatly impact the resulting ECS estimates (Stap et al., 2019; Tierney et al., 2020). 

Another caveat with the direct ECS estimation approach is that fast feedbacks depend on the climate state and interact with 

slow feedbacks. Global climate model (GCM) studies have shown that the magnitude of fast climate feedbacks vary with 65 

global temperature (e.g., stronger cloud and water vapor feedbacks at higher GMSTs; (Caballero & Huber, 2013; Schneider, 

Kaul, & Pressel, 2019; Yoshimori et al., 2009; Zhu & Poulsen, 2020; Zhu, Poulsen, & Tierney, 2019). Furthermore, the LGM 

ocean circulation was different than today (e.g., Curry & Oppo, 2005). Ocean dynamical processes can influence global 

temperature through interactions with sea ice, SST pattern, and cloud processes (Dong, Proistosescu, Armour, & Battisti, 2019; 

Ferrari et al., 2014; Rose, Armour, Battisti, Feldl, & Koll, 2014; Shin et al., 2003; Winton, Griffies, Samuels, Sarmiento, & 70 

Frölicher, 2013; Zhou, Zelinka, & Klein, 2017), constituting an ocean dynamical feedback that takes place on timescales longer 

than 100 years. The contribution of the ocean dynamical feedback to the magnitude of LGM cooling and its impact on direct 

ECS estimation have not been thoroughly studied. 

In this study, we address whether ECS can be accurately estimated using the direct calculation approach and knowledge of the 

LGM climate forcing and global temperature. To answer this question, we adopt the adjusted forcing-feedback framework 75 

(Sherwood et al., 2015) to provide a complete quantification of the forcing and efficacy of LGM LIS and GHG using a suite 

of climate simulations, in comparison to previous studies that only considered surface albedo effects of LIS. We also 

investigate the role of the ocean dynamical feedback in modulating the magnitude and spatial distribution of the LGM cooling 

by comparing fully coupled and slab ocean simulations. Finally, we discuss the implications of our results for direct ECS 

estimation using paleoclimate reconstructions. 80 

2 Method, model, and experiments 

2.1 Model and fully coupled simulations 

We employ the Community Earth System Model (CESM) version 1.2 with a horizontal resolution of 1.9 × 2.5° (latitude × 

longitude) for the atmosphere and land, and a nominal 1° for the sea ice and ocean (Hurrell et al., 2013). CESM1.2 is among 

the models that best reproduce climate features from instrumental records (Knutti, Masson, & Gettelman, 2013) and has been 85 

extensively used for studying past climates (DiNezio et al., 2016; Otto-Bliesner et al., 2015; Zhu et al., 2017; Zhu, Poulsen, & 

Otto-Bliesner, 2020; Zhu et al., 2019). Our CESM1.2 experiments were run with prescribed satellite phenology (SP) in the 

land model (Community Land Model version 4; CLM4) without an active carbon-nitrogen (CN) biogeochemical cycle. In the 

SP mode, leaf area and stem area indices, and vegetation heights in CLM4 are prescribed according to data derived from 

satellite observations (Lawrence et al., 2011). Our choice of CLM4 with satellite phenology is based on the overall poorer 90 
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simulation of vegetation phenology with an active CN, which could potentially be more problematic for paleoclimate 

simulations (Lawrence et al., 2011). 

We make use of the fully coupled preindustrial and LGM simulations (FCM_PI and FCM_LGM; Table 1) from our previous 

studies (Tierney et al., 2020; Zhu et al., 2017). FCM_LGM was forced by boundary conditions consistent with protocols from 

the Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4), including altered GHG concentrations, Earth orbital 95 

parameters, and LISs (Kageyama et al., 2017). LIS forcing is derived from the ICE-6G reconstruction (Peltier, Argus, & 

Drummond, 2015) and includes changes in land elevation and surface properties due to the presence of LGM ice sheets, as 

well as changes in the land-sea mask to account for the lower sea level. FCM_LGM used prescribed preindustrial vegetation 

cover and aerosol emissions, as reliable global reconstructions are not available (Kageyama et al., 2017; Köhler et al., 2010). 

Although FCM_LGM contains the orbital forcing, its effect on GMST is small (e.g., Liu et al., 2014) and neglected in the 100 

following analysis. The FCM_LGM ocean state was initialized from the LGM simulation using the Community Climate 

System Model version 4, which had been spun-up for more than 2,400 years and reached a quasi-equilibrated state (Brady, 

Otto-Bliesner, Kay, & Rosenbloom, 2013). FCM_LGM was integrated for an additional ~1,800 years to reach equilibration 

under an updated atmosphere model (DiNezio et al., 2016; Tierney et al., 2020; Zhu et al., 2017). The TOA energy imbalance 

averaged over the last 100 years is ‒0.06 W m‒2 in FCM_LGM, which is comparable to the 0.09 W m‒2 in FCM_PI, indicating 105 

the surface climate has reached a quasi-equilibrium glacial state. The global volume-mean ocean temperature exhibited a cool 

of 0.15°C in the last 900 years of FCM_LGM. GMST in FCM_LGM is 6.8°C lower than that in FCM_PI and falls within the 

range directly estimated from proxy data in a recent study (‒6.8 to ‒4.4°C; Tierney et al., 2019). 

2.2 “Fixed SST” simulations and the effective radiative forcing  

We adopt the forcing-feedback framework with the concept of rapid adjustments (Sherwood et al., 2015). We use fixed-SST 110 

experiments to calculate the effective radiative forcing (ERF), defined as the change in net top-of-atmosphere (TOA) radiative 

flux after adjustments of the atmospheric temperature profile, water vapor, and clouds (Hansen et al., 2005). Our results show 

that this method is especially well-suited for quantifying the LIS forcing and is an advancement over either simplified bulk 

calculations or the approximate partial radiative perturbation method used in previous studies, which only provide an 

estimation of the shortwave forcing from albedo effects. In the fixed-SST experiments, an LGM climate forcing (e.g., GHGs) 115 

is introduced into a preindustrial simulation with active atmosphere and land models, but with SST and sea ice prescribed to 

the unperturbed preindustrial climatology. The land surface temperature is allowed to adjust as it is impractical to fix in the 

model. The ERF attributed to a forcing is obtained as the change in TOA net radiation between simulations with and without 

the forcing. ERF and land temperature change in the fixed-SST experiments are termed ERF!""#  and ∆T!""# , respectively. 

Changes in atmospheric temperature, water vapor, and clouds in response to the climate forcing, without mediation by the 120 

global-mean temperature, are referred to as “adjustments” (see Figure 1 of Sherwood et al. (2015) for an illustration). 
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To quantify the ERF due to LGM LIS and GHG, we performed two fixed-SST experiments with LGM GHG and LIS forcing, 

respectively (ATM_GHG and ATM_LIS; Table 1). To examine whether ERFs from GHG and LIS are additive, we performed 

an additional experiment with both forcings included (ATM_LGM). To compare the forcing and response of LGM GHG and 

LIS to CO2 increasing, we also carried out an experiment with twice the pre-industrial atmospheric CO2 concentration 125 

(ATM_2CO2). Finally, a standard preindustrial atmosphere-only simulation was performed and used as a reference (ATM_PI). 

These fixed-SST experiments used the same set of preindustrial SST and sea ice coverage derived from the FCM_PI 

climatology. All fixed-SST simulations were run for 30 years with the last 25 used for analysis.  

ERF!""# contains radiation changes (biases) resulting from land-surface temperature changes (∆T!""#). For example, ∆T!""# is 

negative in ATM_GHG (see Figure 2a), leading to an underestimation of the magnitude of ERF due to the decrease of Planck 130 

emission at lower land-surface temperatures. To account for the radiative effects from ∆T!""#, two corrected versions of ERF 

were computed. In the first, the ∆T!""# effect on TOA radiation was corrected using the climate sensitivity parameter (α; units: 

K W‒1 m‒2) as: 

ERF$ = ERF!""# − ∆T!""#	/	α  (1). 

α was obtained from the coupled simulation in a slab ocean configuration (See Section 2.3). In the second correction, radiative 135 

kernels were used: 

ERF%&'(&) = ERF!""# − A*" − A*+ − A, − A+)-  (2). 

In this approach, ERF%&'(&) is obtained by subtracting the direct rapid adjustments associated with ∆T!""# from ERF!""# while 

keeping the indirect rapid adjustments, such as cloud responses (Tang et al., 2019). The direct rapid adjustments that are 

subtracted include effects over land from changes in surface temperature (A*" ), tropospheric air temperature (A*+ ), 140 

tropospheric water vapor (A,), and albedo (A+)-). A*+ is calculated by assuming a constant lapse rate in the troposphere, i.e. 

the same tropospheric air temperature change as the surface. Similarly, A, accounts for the effect from tropospheric water 

vapor change under the assumption of a constant lapse rate. A, is calculated by scaling the total water vapor effect with the 

ratio between the temperature-induced radiative flux change from a constant lapse rate and that from the full tropospheric 

temperature change. 145 

2.3 SOM simulations and the efficacy of forcing 

To compare temperature responses to different climate forcings and to estimate α, we performed sensitivity experiments in a 

slab ocean model (SOM) configuration without ocean dynamics (Table 1). The SOM uses prescribed mixed layer depth and 

heat transport convergence (“q-flux” hereafter) (Bitz et al., 2011) that are derived from FCM_PI. As a result, temperature 

responses in SOM simulations are caused by the fast feedback processes and exclude the ocean dynamical feedback. 150 

SOM_GHG includes LGM GHG levels and the preindustrial values of all the other boundary conditions. Similarly, SOM_LIS 

incorporates the LGM ice-sheet forcing including a higher topography, an altered land-sea distribution to account for effects 
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from sea-level change, and modified land surface properties over ice sheets. To examine whether the climate responses are 

additive, we performed SOM_LGM, in which both LGM GHG and LIS forcings were added. In addition, we conducted 

SOM_2CO2 with CO2 level two times the preindustrial value. These SOM simulations were integrated for 60 years to allow 155 

the model to reach equilibrium (with TOA energy imbalance < 0.1 W m‒2) (Danabasoglu & Gent, 2009). Averages over the 

last 20 years are used for analysis. 

The climate sensitivity parameter (𝛼 ) was obtained from fixed-SST and SOM simulations and used to calculate ERF$ 

(Equation (1)). Specifically, for a climate forcing (GHG, LIS, or 2×CO2), 𝛼 was estimated as: 

α = ∆*SOM/∆*fsst
012!""#

   (3). 160 

∆TSOM is the equilibrated GMST response in the SOM simulation. ∆TSOM − ∆Tfsst represents the SST-mediated surface air 

temperature changes that is associated with ERF!""#. 

We define the efficacy (𝜀) of a climate forcing (GHG or LIS) as a ratio of its temperature response scaled by its ERF$ to that 

of 2×CO2: 

ε =
∆*SOM

012$3

(∆*SOM 012$3 )2CO2
   (4). 165 

We note that the LGM GHG forcing and efficacy in this study is calculated using a “low-top” atmosphere model with 

prescribed stratospheric chemical tracers and excludes indirect effects from stratosphere chemistry (Hansen et al., 2005). 

2.4 The radiative kernels and APRP approach 

To correct the ERFs of doubling CO2 and LGM GHG and to understand their efficacy, we employ the radiative kernels that 

are developed for CESM (Pendergrass, Conley, & Vitt, 2018). In the analysis, we calculate changes in the 12-month 170 

climatology of variable of interest (e.g., surface temperature) and multiply that by the corresponding radiative kernel to 

estimate the TOA radiation changes. Climate feedback parameters are obtained by normalizing the TOA radiation anomalies 

by the GMST changes. Kernels analyses are not performed for LGM LIS simulations, as the present-day kernels are not 

suitable due to the large difference in the characteristics of the forcing and response (Yoshimori, Hargreaves, Annan, Yokohata, 

& Abe-Ouchi, 2011). 175 

The approximate partial radiative perturbation (APRP; Taylor et al., 2007) is used to quantify the shortwave forcing and 

feedback, in particular for the LIS simulations. In contrast to the radiative kernels method, APRP is independent of the forcing 

and background climate state and produces results that differ from PRP by less than 7% (Taylor et al., 2007; Yoshimori et al., 

2011; Zhu & Poulsen, 2020; Zhu et al., 2019). APRP represents the atmosphere as a single layer with bulk optical properties 

and usually uses monthly mean model output to derive the radiative effects and feedbacks associated with changes in surface 180 

albedo, clear-sky processes, and clouds. The shortwave cloud feedback is further decomposed into contributions from changes 

in cloud amount, scattering, and absorption. APRP has been used in many previous studies to quantify the shortwave forcing 
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associated with LIS albedo changes (Braconnot et al., 2012; Braconnot & Kageyama, 2015; Brady et al., 2013; Taylor et al., 

2007; Tierney et al., 2020). When using APRP to quantify shortwave feedbacks, we only show results over model grid points 

that are ocean in both PI and LGM simulations; in this way, climate feedbacks are separated from forcings, e.g. from LIS, 185 

although feedback processes over land are overlooked.  

3 Results 

3.1 Effective radiative forcing 

The ERF!""# due to LGM GHG is ‒2.6±0.2 W m‒2 (±1σ; Table 1; Figure 2c,e). After correcting the radiative effects associated 

with land temperature changes (∆T!""# = −0.2°C; Figure 2a) using the climate sensitivity parameter and radiative kernels, the 190 

ERF$ and ERF%&'(&) are ‒2.8±0.3 and ‒2.8 W m‒2, respectively, and agree well with previous estimates of ‒2.8–‒3.0 W m‒2 

(Hansen et al., 2013; Köhler et al., 2010). For a doubling of CO2, ERF!""#, ERF$, and ERF%&'(&) are 3.7±0.3, 3.9±0.3, and 4.0 

W m‒2, respectively, well within the multi-model range in recent studies (Smith et al., 2018; Tang et al., 2019). For both LGM 

GHG and 2×CO2, ERF%&'(&) falls in the middle of the uncertainty range of ERF$, suggesting that both the correction methods 

using radiative kernels and climate sensitivity parameters produce meaningful and accurate results. 195 

In response to LGM LIS, ∆T!""# has a global mean of ‒1.3 °C with maximum cooling over ice sheets exceeding ‒24°C, much 

greater than the land temperature changes associated with GHG forcing (Table 1; Figure 2a,b). ∆T!""# results from the higher 

surface albedo over regions with increased coverage of ice sheets and land (due to shelf exposures), the elevated ice-sheet 

topography, and radiative and dynamic atmospheric adjustments. The global mean ERF!""# due to LGM LIS is –1.9±0.2 W m‒

2, resulting from a shortwave component of –3.7 W m‒2 (ERF!""#_"7; Figure 2d) and a longwave component of 1.8 W m‒2 200 

(ERF!""#_)7; Figure 2f). ERF!""#_"7 is lowest over ice sheets with values less than ‒80 W m‒2. Using shortwave APRP, we 

attribute 77% (–2.8 W m‒2) of ERF!""#_"7 to surface albedo changes over regions of ice sheets and shelf exposure, 13% (‒0.5 

W m‒2) to surface albedo changes associated with snow cover increases outside the ice sheet regions, and 8% (‒0.3 W m‒2) to 

cloud adjustments. The majority of the cloud adjustments (‒0.2 W m‒2) occurs over the Indo-Pacific warm pool, where the 

exposure of the Sunda and Sahul shelves produces a surface cooling and drying (DiNezio et al., 2016) and increases cloud 205 

condensates through enhanced large-scale moist advection (Zhang, Lin, Bretherton, Hack, & Rasch, 2003). Outside the tropics, 

clouds diminish over ice sheets and in the downwind regions and shift with the position of the storm tracks; yet, the overall 

impact on the global mean ERF!""#_"7 is small. ERF!""#_)7 exceeds 40 W m‒2 over ice sheets, which results primarily from the 

reduced longwave radiation due to a higher effective emission elevation and lower temperatures (Figures 1b and 2b). 

Using the climate sensitivity parameter (diagnosed in SOM_LIS; Table 1; Equations 1 and 3), we calculate a global mean 210 

ERF$ from LGM LIS of ‒3.2±0.2 W m‒2. Our calculation accounts for the radiative, topographic, and dynamic adjustments 

associated with LIS, in contrast to only the albedo effects considered in previous studies (Braconnot et al., 2012; Braconnot & 

Kageyama, 2015; Taylor et al., 2007; Tierney et al., 2020). Using the APRP approach as in these previous studies, we calculate 
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a shortwave forcing of –2.8 W m‒2 from surface albedo changes over regions with new ice-sheet coverage and shelf exposures 

in ATM_LIS. We note that this APRP approach overestimates the shortwave radiative forcing that is attributable exclusively 215 

to changes in LIS extent, as it includes the radiative effect of snow increases over ice sheets (or regions with shelf exposure); 

the albedo of fresh snow is considerably larger (0.8–0.9 versus ~0.6) (Cuffey & Paterson, 2010). The LIS-induced cooling 

increases the proportion of snow relative to rain, which reflects more shortwave radiation than that from ice-sheet albedo alone. 

The snow-induced overestimation of the LIS forcing is larger if the cooling over ice sheets is greater. For example, the 

shortwave forcing from APRP analysis is greater in coupled simulations than that in atmosphere-only simulations with fixed 220 

PI SST (e.g., ‒3.3 W m‒2 in FCM_LGM versus ‒2.8 W m‒2 in ATM_LIS), due to the greater cooling over ice sheets. 

3.2 Efficacy of LGM GHG and LIS forcings 

Our results suggest that the efficiency of lowering GHGs to LGM levels is smaller than that of doubling atmospheric CO2 

under PI conditions, i.e. the LGM GHG forcing has a smaller-than-unity efficacy of 0.9±0.1 (Table 1; Equation 4). In 

SOM_2CO2, GMST increases by 3.6 K in response to an ERF$ of 3.9 W m‒2. In SOM_GHG, GMST decreases by 2.2 K in 225 

response to an ERF$ of –2.8 W m‒2. The lower 𝜀 of LGM GHG forcing is caused by a weaker cloud feedback in response to 

cooling (Table 2). Using radiative kernels, we find that the Planck, albedo and combined lapse rate and water vapor feedbacks 

stay largely unchanged; however, the cloud feedback parameter is 30% smaller in SOM_GHG than in SOM_2CO2 (0.32 

versus 0.46 W m‒2 K‒1). The decrease in the cloud feedback is due to the shortwave component; the cloud scattering feedback 

is weaker in response to cooling than that to warming over high-latitude regions, leading to a weaker shortwave response 230 

(Figure 3c,f,j; Table 2 APRP columns). These results demonstrate a state-dependent cloud feedback that increases with GMST, 

a feature that has been found in the latest three CAM versions (Zhu & Poulsen, 2020; Zhu et al., 2019) and many other climate 

modes (e.g. Crucifix, 2006).  

The 𝜀 of LGM LIS is 1.1±0.1, resulting from an ERF$ of –3.2 W m‒2 and a ΔGMST of ‒3.2 K in SOM_LIS (Table 1) and 

suggesting that LIS forcing is 10% more effective in changing GMST than doubling CO2 when only fast feedbacks are 235 

considered. 40% of the LIS-induced cooling (1.3 of 3.2 K) is attributed to land temperature changes that involve radiative, 

topographic, and dynamical effects of the LIS forcing and are independent from SST changes (Figure 1,2; Table 1); land only 

accounts for 7–8% of the GMST change in SOM_2CO2 and SOM_GHG. In addition to the large contribution from processes 

over land, the shortwave cloud feedback over ocean is greater in response to the LIS forcing (0.30 W m‒2 K‒1) than that to the 

doubling CO2 forcing (0.31 versus 0.21 W m‒2 K‒1; APRP analysis in Table 2 and Figure 3). The greater shortwave cloud 240 

feedback is due to changes in both cloud amount and scattering and is especially prominent over the Northern Hemisphere 

subtropics (Figure 3j), which likely reflects the southward shift of storm tracks and clouds. The process can also be understood 

as an “SST pattern effect”. The cloud feedback parameter is expressed as 

λCLD ≡
;<10
;=>?*

= @CRE
@SSTSUB

;SSTSUB
;=>?*

   (5), 
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where SSTSUB is the SST over the subtropical North Pacific and North Atlantic, and CRE denotes the global cloud radiative 245 

effects. SSTSUB is positively correlated with global CRE ( @CRE
@SSTSUB

> 0) (Dong et al., 2019; Zhou et al., 2017). As a result, a 

greater SSTSUB change relative to the GMST gives rise to a greater cloud feedback through changing the lower tropospheric 

stability (Wood & Bretherton, 2006). Over the subtropical North Pacific and North Atlantic, the shortwave cloud feedback 

exceeds 10 W m‒2 K‒1 in SOM_LIS, in comparison to a maximum of ~3 W m‒2 K‒1 in SOM_2CO2 (Figure 3c,f), which is 

consistent with the relative magnitude of SST change in each experiment (Figure 3b,h). 250 

The formation of the SST responses over the subtropical North Pacific and North Atlantic is attributed to the ice sheet-driven 

wind changes (Figure 3g). In response to the topographic effects of LGM LIS, the Northern Hemisphere westerly jet shifts 

southward in ATM_LIS, producing cyclonic low-level wind anomalies over the subtropical and mid-latitude North Pacific and 

anti-cyclonic anomalies over the subtropical North Atlantic (Kutzbach & Guetter, 1986; Zhu et al., 2014). This anomalous 

wind pattern force regional SST changes through changing latent heat flux and amplify the coupled response through the wind-255 

evaporation-SST feedback (Chiang & Bitz, 2005; Xie & Philander, 1994). For example, the trade wind strengthens over the 

subtropical North Atlantic, which cools the subtropical SST due to the enhanced evaporation and reinforces the anomalous 

wind pattern, forming a positive feedback. This non-radiative pathway of LIS’s influence on the surface temperature is largely 

absent when GHGs are changed (Figure 3a,d), highlighting the complex nature of non-GHG climate forcings and the 

importance of using efficacy to evaluate the overall effectiveness of their radiative forcing as compared to a doubling of 260 

atmospheric CO2. 

3.3 Are forcing/responses additive? 

Our simulations suggest that ERFs and surface temperature responses of LGM GHG and LIS are globally additive. In fixed-

SST experiments with both the LGM GHG and LIS forcings (ATM_LGM), ERF!""# is ‒4.4±0.3 W m‒2, approximately the 

sum of those in ATM_GHG and ATM_LIS (‒2.6±0.2 and ‒1.9±0.2, respectively). Similarly, the ERF$ in ATM_LGM, ‒265 

6.1±0.3 W m‒2, is nearly equal to the sum of those in ATM_GHG and ATM_LIS (‒2.8±0.3 and ‒3.2±0.2 W m‒2, respectively). 

The SOM_LGM ΔGMST in response to combined GHG and LIS forcings is ‒5.3±0.09°C and is close to the sum of ΔGMSTs 

in SOM_GHG and SOM_LIS (‒2.2±0.11 and ‒3.2±0.09°C, respectively). From these results, we conclude that ERF and 

ΔGMST due to individual forcings are additive at the global level, which supports the approach to separate the LGM climate 

forcing and response into components associated with individual forcing agents. We note that at the regional level, especially 270 

over high latitudes, the ERF and ΔGMST from the sum of individual forcings and combined forcings do not match as well as 

at the global level (figure not shown), likely due to local feedbacks related to sea ice. It remains unclear whether the temperature 

responses to individual forcings are additive when slow feedback processes (e.g. ocean dynamics) are included. 
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3.4 The ocean dynamical feedback 

Our results demonstrate that the full extent of LGM cooling cannot be produced using a SOM configuration that accounts for 275 

fast feedback processes but excludes the slow ocean dynamical changes. ΔGMST is ‒6.8°C in FCM_LGM and ‒5.3°C in 

SOM_LGM (Table 1; Figure 4a,b). Both simulations have reached an equilibrium state at surface under the same climate 

forcings and only differ in the complexity of the ocean model. The LGM cooling is 1.5°C (28%) greater with active ocean 

dynamics and interactions with the atmosphere and sea ice. The difference in LGM cooling between SOM and FCM primarily 

occurs in the Southern Ocean (SO), where SOM_LGM simulates a weaker LGM cooling by more than 10°C (Figure 4a–c). In 280 

the eastern equatorial Pacific and eastern subtropical oceans (except for the subtropical Atlantic), SOM_LGM simulates a 

smaller LGM cooling by 1–2°C. In the North Atlantic, LGM cooling in SOM_LGM is greater by ~1°C in the subtropics and 

more than 5°C along the sea-ice margin in subpolar regions. Over the Indo-Pacific Warm Pool and the western subtropics, 

surface temperature change is similar between FCM and SOM simulations, suggesting a limited role of ocean dynamical 

response over these regions. 285 

Accounting for the SO dynamical effects increases the LGM cooling in the SOM configuration and explains the majority 

(67%) of the difference from FCM simulations. This is shown in an LGM SOM simulation (SOM_SO), in which the prescribed 

“q-flux” over the SO (90–40°S) is replaced with those derived from FCM_LGM, with other regions remaining unchanged 

(using values from FCM_PI). SOM_SO simulates a colder LGM than SOM_LGM, especially over the SO, where the large 

temperature difference (>10°C) between SOM_LGM and FCM_LGM is mostly removed (Figure 4d versus c). In addition to 290 

the impact on local temperatures, SOM_SO simulates lower surface temperatures over the eastern equatorial Pacific and Indian 

Ocean and the Southern Hemisphere subtropics, producing a better match with FCM_LGM over these regions. This reflects a 

remote impact of the SO processes on the lower latitudes through changing tropical atmospheric circulations (Hwang, Xie, 

Deser, & Kang, 2017). 

The SO dynamical effects primarily result from upper-ocean stratification changes and the coupling with sea ice. In FCM_PI, 295 

the SO is stratified with the maximum ocean temperature occurring in the subsurface (500–1000m; Figure 5a). In zonal and 

annual mean, isotherms (shadings in Figure 5a) intersect isopycnals (contours) mostly near 65–60°S and along the Antarctic 

coast, indicating strong heat diffusion towards the mixed layer, i.e., a heat flux convergence of approximately ‒20 W m‒2 

(Figure 5c; red curve). The strong heat flux convergence warms the mixed layer and inhibits sea-ice formation, resulting in a 

quasi-permanent sea-ice extent to 68°S (red horizontal bar in Figure 5c; defined using a 70% annual mean sea-ice cover). In 300 

comparison, the upper-ocean stratification in FCM_LGM is greatly reduced with a potential density change of less than 0.4 kg 

m‒3 over most water columns and a largely invariant ocean temperature of ‒2°C (Figure 5b). Meanwhile, the centre of mixed-

layer heat flux convergence is shifted northward to ~56°S and the quasi-permanent sea ice expands to ~58°S (Figure 5c). An 

initial LGM cooling in the SO (e.g., caused by fast feedback processes) increases sea-ice formation and brine rejection, which 

enhances convection and decreases the upper-ocean stratification, resulting in a decrease of heat flux convergence to the mixed 305 

layer and amplifying sea-ice expansion. This feedback loop is absent in a SOM configuration with prescribed mixed layer 



11 
 

depth and heat flux convergence, leading to little expansion of the quasi-permanent sea ice (cyan horizontal bar in Figure 5c) 

and much less LGM cooling in SOM_LGM (Figure 4b,c). When the LGM changes in mixed layer depth and heat flux 

convergence is prescribed in SOM_SO, sea-ice expands northward (light green bar in Figure 5c) and the SO experiences 

cooling (Figure 4d versus c). 310 

Accounting for additional ocean dynamical effects in the low latitudes and the Northern Hemisphere further decreases the 

difference in LGM cooling between SOM and FCM simulations. This is supported by additional SOM simulations, in which 

we replace the prescribed “q-flux” with those derived from FCM_LGM over 90°S–30°N and the entire global ocean, 

respectively. The tropical ocean dynamical effects decrease SST in the eastern equatorial Pacific and the Southern Hemisphere 

subtropics (Figure 4e). Ocean dynamics in the Northern Hemisphere middle and high latitudes increases SST over the North 315 

Atlantic (Figure 4f). The tropical ocean dynamical effects primarily result from changes in tropical ocean circulations and the 

coupling with the atmosphere (DiNezio et al., 2011; Vecchi & Soden, 2007). The Northern Hemisphere ocean dynamical 

effects are related to a stronger AMOC and a greater northward ocean heat transport in the model (Brady et al., 2013). After 

accounting for the global ocean dynamical effects by using the “q-flux” derived from FCM_LGM, high-latitude oceans still 

exhibit a temperature difference of ~1–2°C, contributing to a GMST of ~0.3°C, likely reflecting the challenge of using 320 

prescribed “q-flux” to approximate the full extent of ocean dynamical effects (Bitz et al., 2011). Nevertheless, these results 

highlight the important role of the slow ocean dynamical feedback in modulating regional and global temperatures. 

4 Discussion: implications for estimating climate sensitivity 

Results presented herein highlight major caveats of the direct ECS estimation approach. Firstly, a complete understanding of 

the magnitude and efficacy of forcing agents is necessary, especially for non-GHG forcings (e.g. LIS, vegetation, and aerosols) 325 

that may have distinct spatial distribution and non-radiative pathways to change the energy balance of Earth. We suggest a 

GCM-based approach using the effective radiative forcing and adjustment framework to account for the complicated aspects 

of paleoclimate non-GHG forcings. In this approach, a fixed-SST simulation of ~30 years with a forcing of interest is first 

conducted to calculate the effective radiative forcing (ERFfsst) and the associated land temperature changes. An ERF$ is then 

obtained by correcting the ERFfsst using the climate sensitivity parameter that is derived in an additional SOM simulation of 330 

~60 years. Moreover, efficacy of the forcing can also be derived using these simulations. This approach provides a complete 

consideration of the radiative and non-radiative effects of the forcing agent and is more consistent with the basic definition of 

the forcing-feedback framework. In contrast, the APRP-based approach used in previous studies only accounts for the effects 

from albedo changes. We note that, due to the inclusion of snow effects in the forcing quantification, the APRP-based approach 

overestimates the direct shortwave albedo effects that are attributable only to changing LIS extent. Our simulations suggest an 335 

LGM LIS efficacy of 1.1, which differs from the 0.45 in Stap et al. (2019). A precise explanation about this difference is 

challenging, given the large differences in the definition of forcing/efficacy, model complexity, and experimental design. 
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Future studies are needed to quantify the effective radiative forcing and efficacy of the LGM vegetation and aerosols, as they 

are prescribed at the preindustrial values in our LGM simulations. 

A second caveat concerns the role of the ocean dynamical feedback, which occurs on timescales of 102–103 years and should 340 

be accounted for when directly estimating ECS using forcing/response of an equilibrium climate. This complication stems 

from defining ECS to include only fast feedback processes with timescales less than 100 years. Ocean feedback processes, 

including the heat redistribution by ocean circulation and the coupling with the atmosphere or sea ice, require more than 100 

years to develop. Reconstructions of past climate forcings and GMST usually do not directly constrain ocean circulations and 

therefore could potentially impact the ECS estimation. 345 

To demonstrate the above caveats, we assume CESM1.2 is a perfect model and estimate ECS using LGM constraints that are 

derived from model simulations as: 

ECS = ∆=>?*/∆=>?*()*
EGHG×012GHGGELIS×012LIS

ERF2CO2   (6). 

In the above equation, ΔGMSTODF denotes the GMST change (approximately ‒1.5°C; see Section 3.4) that is caused by the 

slow ocean dynamical feedback and is subtracted from the total LGM cooling (ΔGMST = ‒6.8°C in CESM1.2). ERFGHG, 350 

ERFLIS, and ERF2CO2 in our simulations are ‒2.8±0.3, ‒3.2±0.2, and 3.9±0.3 W m‒2, respectively (Table 1). ɛGHG and ɛLIS are 

0.9 and 1.1, respectively. In our “perfect model” assumption, all the above values are unbiased, and the “true” ECS is 3.6°C. 

We perform ECS calculations using Equation (6) with 10,000 Monte-Carlo draws to sample the uncertainty in forcings and 

explore impacts from different assumptions of climate forcing/efficacy and the ocean dynamical feedback (Figure 6). If we do 

not remove the effects of the ocean dynamical feedback and assume that both GHG and LIS forcings have a unit efficacy, as 355 

has been done in most previous studies (e.g., PALAEOSENS Project Members, 2012), we obtain a median ECS of 4.5°C, an 

overestimate of 25% that is statistically distinguishable from uncertainties associated with climate forcings. Using the “true” 

efficacy of the LGM GHG or LIS produces a small change in ECS (<~0.3°C) that approximately cancels each other, as ɛGHG 

is smaller and ɛLIS is larger than unity. Accounting for the ocean dynamical feedback greatly improves the ECS calculation, 

yielding a median of 3.5°C, 0.1°C smaller than the true ECS. We note that here we account for the ocean dynamical effect by 360 

subtracting the corresponding contribution from the total LGM GMST change. Alternatively, we can also invoke a non-

constant sea-ice albedo feedback that depend on ocean dynamics (see Figure 5c). Nevertheless, this exercise highlights the 

importance of the ocean dynamical processes, which, if not accounted for, may cause an overestimation of the (‘fast feedback’) 

ECS value using reconstructions of LGM forcings/responses. 

The tight coupling between sea-ice extent and ocean dynamics in the Southern Ocean identified in our simulations is consistent 365 

with previous modelling and theoretical studies (Ferrari et al., 2014; Shin et al., 2003). The quantitative contribution of the 

ocean dynamical feedback to the LGM ΔGMST is likely model dependent, which, we speculate, could partly explain the lack 

of correlation between global and regional mean LGM cooling and ECS in Paleoclimate Modelling Intercomparison Project 

models (Hargreaves, Annan, Yoshimori, & Abe-Ouchi, 2012; Hopcroft & Valdes, 2015). Major features of the ocean 

circulation and seawater characteristics in our LGM simulations agree well with findings from proxy reconstructions (e.g., 370 
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Adkins, McIntyre, & Schrag, 2002; Curry & Oppo, 2005), including an expansion of the Antarctic Bottom Water, a shallower 

North Atlantic Deepwater, an increase in abyssal stratification, and a saltier and colder southern-source deep water; however, 

a detailed examination of these features is beyond the scope of this study. Due to limited computing resources, our fully 

coupled LGM simulation has a cooling trend in the deep ocean (see Section 2.1), which will not impact our results on LGM 

radiative forcing/efficacy but will likely cause an underestimation of LGM ΔGMST and the importance of the ocean dynamical 375 

feedback in the model. 

5 Conclusions 

In this study, we have quantified the radiative forcing and efficacy of LGM GHGs and LISs in CESM1.2 and examined the 

contribution of the ocean dynamical feedback to surface temperature changes by comparing simulations in fully coupled and 

slab ocean configurations. ERFs of LGM GHG and LIS are estimated to be –2.8 and ‒3.2 W m‒2, respectively. The efficacy 380 

of LGM GHG and LIS forcings are estimated to be 0.9 and 1.1, respectively, indicating that lowering GHGs to LGM levels is 

10% less efficient in changing global temperature than that of doubling atmospheric CO2 under PI conditions, while the LGM 

LIS is 10% more efficient. The smaller-than-unity efficacy of LGM GHG forcing is primarily attributed to a smaller shortwave 

cloud feedback at lower temperatures, which is consistent with previous studies showing a temperature-dependent cloud 

feedback over high latitudes (e.g., Zhu & Poulsen, 2020). The greater-than-unity efficacy of LGM LIS forcing is caused by 385 

relatively larger temperature changes over land and the Northern Hemisphere subtropical oceans, which are linked to the LIS-

induced wind changelabs and feedbacks in ocean-atmosphere coupling and clouds. Our calculations of LIS forcing and efficacy 

account for the radiative effects from ice-sheet albedo and the topographic and dynamic effects associated with the ice-sheet 

elevation, in contrast to previous estimation that only considered the former. In addition, our simulations suggest that the 

effective radiative forcings and surface temperature responses of LGM GHG and LIS forcings are additive on the global level, 390 

which supports the approach in which individual forcing agents are considered separately. 

Our simulations demonstrate that the full extent of LGM cooling cannot be realized if only fast feedbacks are accounted for. 

Overall, the slow ocean dynamical feedback amplifies the LGM cooling by 28% (from 5.3 to 6.8°C) in CESM1.2. LGM-based 

ECS calculations that fail to account for this ocean dynamical effects produce an overestimation of fast feedbacks (by 

approximately 25% in CESM1.2). In our simulations, the ocean dynamical feedback is primarily attributed to dynamical 395 

changes in the Southern Ocean, where a dynamical interaction between the upper-ocean stratification, mixed-layer heat flux 

convergence, and sea-ice cover is found to amplify the LGM cooling. Additionally, dynamical processes in the tropical oceans 

and the Atlantic also impact the regional and global temperatures. Overall, our results suggest an important role of climate 

models in the quantification of climate forcings and efficacy and the ocean dynamical feedback. 
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Table 1: List of CESM simulations conducted in this study, including experiment name, climate forcing configurations, run length (years), 
GMST and GMST changes (°C), effective radiative forcing (ERF; W m‒2), and efficacy (unitless). One standard deviation calculated using 
annual data is listed. Note that kernels-corrected ERF uses 12-month climatology and no uncertainty is provided. 

Experiment GHG LIS Length GMST or 

ΔGMST 
ERFfsst ERF$ ERFkernel ɛ 

FCM_PI PI PI 900+ 15.1 -- -- -- -- 

FCM_LGM 21ka 21ka 900+ ‒6.8 -- -- -- -- 

ATM_PI PI PI 30 14.9±0.03 -- -- -- -- 

ATM_2CO2 2×PI PI 30 +0.3±0.05 3.7±0.3 +3.9±0.3 +4.0 -- 

ATM_GHG 21ka PI 30 ‒0.2±0.04 ‒2.6±0.2 ‒2.8±0.3 ‒2.8 -- 

ATM_LIS PI 21ka 30 ‒1.3±0.03 ‒1.9±0.2 ‒3.2±0.2 -- -- 

ATM_LGM 21ka 21ka 30 ‒1.5±0.05 ‒4.4±0.3 ‒6.1±0.3 -- -- 

SOM_PI PI PI 60 14.9±0.06 -- -- -- -- 

SOM_2CO2 2×PI PI 60 +3.6±0.06 -- -- -- 1.00 

SOM_GHG 21ka PI 60 ‒2.2±0.11 -- -- -- 0.9±0.1 

SOM_LIS PI 21ka 60 ‒3.2±0.09 -- -- -- 1.1±0.1 

SOM_LGM 21ka 21ka 60 ‒5.3±0.09 -- -- -- 0.9±0.1 
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Table 2: Climate feedback parameters (units: W m‒2 K‒1) in the SOM simulations. Radiative kernels-based analysis is performed for 
SOM_2CO2 and SOM_GHG but not SOM_LIS due to the drastically different boundary conditions. APRP-based analysis is performed for 
all three simulations. APRP quantifies the shortwave climate feedback parameter and decomposes the cloud feedback into contributions 
from changes in cloud amount, scattering, and absorption. The cloud absorption feedback is not shown, as it is small and varies litter between 
simulations. Values in parentheses are the contribution to the global mean value from ocean grid points in LGM simulation. Note that the 575 
high value in the Albedo column for SOM_LIS (1.31) includes the contribution from the shortwave forcing over land. 

Experiment 
Radiative kernels SW APRP 

Planck Albedo WV+LR CLDLW CLDSW CLD CLD amount CLD scattering Clear sky Albedo 

SOM_2CO2 ‒3.57 0.42 1.51 0.13 0.33 0.39 (0.21) 0.39 (0.19) 0.08 (0.06) 0.30 (0.16) 0.33 (0.15) 

SOM_GHG ‒3.52 0.41 1.52 0.13 0.19 0.15 (0.10) 0.37 (0.22) ‒0.16 (‒0.07) 0.31 (0.17) 0.39 (0.18) 

SOM_LIS -- -- -- --  0.17 (0.30) 0.25 (0.24) ‒0.05 (0.08) 0.19 (0.11) 1.31 (0.13) 
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Figure 1: (a) Changes in shortwave surface albedo associated with the presence of the LGM ice sheets and shelf exposures due to the 580 
lowered sea level. Albedo changes are diagnosed using “fixed-SST” experiments (ATM_LIS and ATM_PI; see Section 2.2). Note the uneven 
colour bar. (b) Changes in surface elevation associated with the LGM ice sheets. (c) Wind changes at 850 hPa as an illustration of the ice-
sheet dynamical forcing. Shown are anomalies in the “fixed-SST” experiments (ATM_LIS and ATM_PI). 
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 585 
Figure 2: (a) Land surface temperature changes (ΔTfsst) in response to the LGM GHG forcing diagnosed in “fixed-SST” experiment 
ATM_GHG. (b) ΔTfsst in response to the LGM LIS forcing diagnosed in ATM_LIS. (c) The shortwave component of effective radiative 
forcing associated with LGM GHG forcing diagnosed in ATM_GHG. (e) as (c), but for the longwave component. (d) and (f), as (c) and (e), 
but for the LGM LIS forcing. Note that a present-day land-sea mask is shown in all the figures, which differs from the LGM mask due to a 
lower sea level; this will result in a temperature difference over the shelf exposure regions in (b). Surface temperature above sea ice is 590 
allowed to adjust in “fixed-SST” experiments.  
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Figure 3: Changes in surface temperature in (a) SOM_2CO2, (d) SOM_GHG, and (g) SOM_LIS. Changes in 850-hPa winds (units: m s‒1) 
in fixed-SST experiments are shown as vectors in (a) ATM_2CO2, (d) ATM_GHG, and (g) ATM_LIS. Changes in SST scaled by the 
corresponding GMST change in (b) SOM_2CO2, (e) SOM_GHG, and (h) SOM_LIS. The shortwave cloud feedback parameter over LGM 595 
ocean grid points diagnosed using the APRP approach in (c) SOM_2CO2, (f) SOM_GHG, and (i) SOM_LIS. (j) Zonal mean shortwave 
cloud feedback over ocean in SOM_2CO2 (red), SOM_GHG (blue), and SOM_LIS (green). Note that temperature and wind changes in 
2×CO2 experiments in (a) have been multiplied by ‒1 to facilitate the comparison with those in SOM_GHG and SOM_LIS.  
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 600 

Figure 4: (a) LGM cooling in the fully coupled model simulations (FCM_LGM ‒ FCM_PI). (b) LGM cooling in the slab ocean model 
simulations (SOM_LGM ‒ SOM_PI). Both SOM_LGM and SOM_PI use the same ocean mixed layer depth and heat flux convergence 
(Qflx) that are derived from the fully coupled preindustrial simulation (FCM_PI). (c) Difference in the simulated LGM cooling between 
SOM and FCM ((b) ‒ (a)). (d) as (c), but for the SOM simulation with the prescribed Qflx over the Southern Ocean (90–40°S) replaced with 
that from FCM_LGM. (e) as (c), but for the SOM simulation with the prescribed Qflx over 90°S–30°N replaced with that from FCM_LGM. 605 
(f) as (c), but for the SOM simulation with the prescribed Qflx over the global ocean replaced with that from FCM_LGM. Note that a small 
intrinsic bias in surface temperature associated with SOM simulations (e.g. SOM_PI ‒ FCM_PI) has been subtracted when comparing SOM 
and FCM simulations.  
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Figure 5: (a) Zonal mean potential temperature (shadings; units: °C) and potential density (contours) over the Southern Ocean in the fully 610 
coupled preindustrial simulation (FCM_PI). Potential density values are reported in kg m−3 subtracting 1000 kg m−3. (b) as (a), but for the 
fully coupled LGM simulation (FCM_LGM). (c) Zonal mean heat flux convergence (units: W m−2) in the ocean mixed layer in FCM_PI 
(red) and FCM_LGM (blue). Negative values indicate ocean dynamical processes transport heat from below into the mixed layer. Horizonal 
bars indicate the zonal mean semi-permanent sea-ice extent, defined as a 70% of the annual mean sea-ice cover, in the FCM_PI (red), 
FCM_LGM (blue), SOM_LGM (cyan), and SOM simulations with Qflx over 90‒40°S (light green) or 90°S–30°N (dark green) replaced 615 
with that in FCM_LGM. 
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Figure 6: ECS in CESM1.2 (horizontal line) and the LGM-based estimates (box-and-whisker plots) using different values of forcing efficacy 
and ocean dynamical feedback (ODF)-induced ΔGMST changes. Each ECS estimation is obtained by performing 10,000 Monte-Carlo 620 
calculations, which incorporates the uncertainties (assumed to be Normal) in forcings and temperature responses. The box and whisker 
indicate a 68% and 95% confidence interval, respectively. ERFs and efficacy of LGM GHG and LIS are listed in Table 1. ΔGMST changes 
from the ocean dynamical feedback is the difference between FCM and SOM simulations (Table 1). 
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