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Thank you for reading the paper and for your comments. The paper offers a simple perspective on
analyzing paleo data, it is not concerned with the provenance of the data. This does not require a long
exposition. We cited several authors pointing to “state dependency” in the paleo climate sensitivity
parameter. Many authors suggest non-linear regression. Problems with some of these approaches
motivated our study.

Since the reviewer finds nothing new, we call out the elements which are new, in our opinion.

(1) The first “new” aspect of our analysis -- i.e. new to the discussion of paleo climate sensitivity -- is to
point out that partitioned linear regression is another way to explore state dependence with certain
advantages, in our opinion. One well known feature of non linear regression is that the best fit can behave
wildly out of sample. Indeed, a cubic fit to the data in our Figure 1 allows temperature increase for
forcing below -2.5Wm™ (both with and without constrained intercept).

(2) Another “new” facet draws attention to reasons for not constraining the intercept to equal zero. It
may, and in this case does, happen that the regression line through the origin is a worse predictor of the
dependent variable than simply predicting the mean of the dependent variable for all values of the
independent variable. We have not found this insight in the cited literature.

(3) Nor have we encountered recognition in the literature that R? does not correspond to the fraction of
explained variance if the intercept is constrained to zero. (“Fractional explained variance” is statistical
parlance, meaning the fraction by which variance is reduced by the statistical model. In a physical sense,
statistics explains nothing). I n this light, strong arguments are needed to force the intercept to zero. The
arguments we found in the cited literature are weak. “However, note that here a necessary condition for
the calculation of Spx; over the whole range of AR x;, but not for the analysis of any state dependency, is
that any fitting function crosses the origin with ARcoxy = 0Wm™? and ATg = 0K, implying for the
fitting parameters that a [the intercept] = 0. This is also in line with the general concept that without any
change in the external forcing, no change in global mean temperature should appear.” (Kohler et al
2015, p1808). Our Figure 1 shows only CO, forcing, but the following remarks also apply when land ice
forcing is included (AF cozevpwi; from Martinez-Boti et al 2015).

There is substantial noise in the data. Thus, focusing on AFco; ~ 0, values of AT vary from /K to -3.5K
(with AFcozuivpwir this is 1K to -2K). If we constrain the regression line to pass through the origin, then
we must explain why the deflections at AFco, = 0 strongly tend to drive AT down, while those at AFcoz; =
-2 strongly tend to drive AT up. The attempt to circumvent the intercept issue leads to questionable
mathematics: “For the calculation of mean values of Srcoz Ly, we then analyse the Sicozp — ARrcoz Ly
space in a second step, where Sicos1yy = ATy x AR jcos 1y is first calculated individually for every data
point and then stacked for different background conditions (described by AR;coz1y). In doing so, we
circumvent the problem which appeared in the ATg — AR[X] space that the regression function needs to
meet the origin. Some of the individual values of Sycoz Ly are still unrealistically high or low; therefore,
values in Sycoz 1y out- side the plausible range of 0-3 K W' m? are rejected from further analysis.”
(Kohler et al 2015, p1808). Studying the dependence of random variables A7, and AR;co21; by studying
the mean or distribution of their ratio Sycoz Ly is problematic. Putting aside issues of stability and
truncation, consider two independent uniform variables on /-10,-1], called T and R. By definition there is
no dependence, yet the mean of 7/R is 1.41. Suppose we examine the state dependence of 7/R on R. The
conditional mean ur|g=- of T, given R = r, is -5.5, independent of ». However, the ratio [ur|r=-] /7
increases from 0.55 to 5.5 as » goes from -/0 to -/. Statisticians estimate the coefficient of linear
dependence of T on R as COV(T,R) /VAR(R), which has dimension [T]/[R].

Understanding causes of deflections from a trend line is important.



(4) We have not seen fractional explained variance used as a diagnostic in the cited literature. AFCO;
accounts for 64% of the variance in AT over the full Pleistocene data set. During deglaciation it accounts
for 75% and during glaciation it accounts for 48%. Does that tell us something?

(5) Moreover, before 424 KaBP, AFCO; accounts for 42% of the variance of AT and after 424 KaBP,
73%. This is also not found in the cited literature.

(6) AFCO;has low explanatory power on partitions into low, medium and high CO,. Different physical
situations with the same reconstructed forcing can have different global surface air temperatures. Perhaps
these facts can help us understand those differences. (Parenthetically, we note that Martinez-Boti et al
(2015) over-samples the recent past. Removing this feature did not materially affect our results, and
similar results are obtained with the dataset of Snyder (2019), which used /000y time steps.)

Much of the literature emphasizes Land Ice forcing, and the fact that this must be removed for predicting
the effects of doubling CO, when the land ice is vastly reduced. We looked at this and eventually decided
not to use these forcing terms as predicting the future was not our goal. We take advantage of this
opportunity to share the following:

In Martinez-Boti et al (2015), three versions of Land Ice forcing are considered: AFcozivpwii,
AFcoziroori2 and AFcozriri+ which include CO; forcing (see Martinez-Boti et al 2015 for detailed
definitions). When regressing AT on these Land Ice forcing terms, the climate sensitivity parameter is
lower than regressing on AFco;. At the same time, these forcings account for more of the variance in AT.
The lower values of § are explained by the wider range of values of the land ice forcing terms. The
strongest effect occurs with AFcozivpwii. The linear regression coefficient of AT on AF is COV(AT,
AF)/VAR(AF). For AF = Arcozthese values are 0.85/0.42 = 2.04. For AF = AFcozivpwis they are
2.18/1.99 = 1.096. Quadrupling the variance of the forcing term overwhelms the doubling of the
covariance term, roughly speaking.

If we remove the AFco; and regress AT on AF coznivpwii—AFcoz, something curious happens.
AFcoavpwii—AF oz yields a better predictor of AT (R?=0.94) than AFcozivpwir (R?=0.89). This suggests
that AFcozuivpwir may incorporate information on A7 to the extent that AFcozrvpwii—AFco2 becomes a
proxy for AT.

Finally, we believe that one of the fruits of the arduous work that has gone into preparing these high value
paleo climate data sets is that others, from neighboring disciplines, can perhaps bring new ideas and tools
to bear in analyzing these data. As non-specialists in paleo climate we have benefited enormously from
the inclusive and supportive atmosphere within the paleo climate community, and look forward to
strengthening these collaborations.

References

Kohler, P., de Boer, B., von der Heydt, A. S., Stap, L. B., and van de Wal, R. S. W. On the state
dependency of equilibrium climate sensitivity during the last 5 million years, Climate of the Past
11(12):1801-1823, doi:10.5194/cp-11-1801-2015, (2015).

Martinez-Boti, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO,
records. Nature 518, 49—54; doi:10.1038/nature14145 (2015).

Snyder, C.W. Revised estimates of paleoclimate sensitivity over the past 800,000 years. Climatic Change
156, 121-138; doi:10.1007/s10584-019-02536-0, (2019).



