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Abstract To test hypotheses about glacial dynamics, the Mid-Brunhes event, and the stage 11 paradox, we evaluate 10 
the ability of a statistical model to simulate climate during the previous ~800,000 years. Throughout this period, the 

model simulates the timing and magnitude of glacial cycles, including the saw-tooth pattern in which ice accumulates 

gradually and ablates rapidly, without nonlinearities or threshold effects. This suggests that nonlinearities and/or 

threshold effects do not play a critical role in glacial cycles. Furthermore, model accuracy throughout the previous 

~800,000 years suggest that changes in glacial cycles associated with the Mid-Brunhes event, which occurs near the 15 
division between the out-of-sample period and the in-sample period, are not caused by changes in the dynamics of the 

climate system. Conversely, poor model performance during MIS stage 11 and Termination V is consistent with 

arguments that the ‘stage 11 paradox’ represents a mismatch between orbital geometry and climate. Statistical 

orderings of simulation errors indicate that periods of reduced accuracy start with significant reductions in the model’s 

ability to simulate carbon dioxide, non-sea-salt sodium, and non-sea-salt calcium. Their importance suggests that the 20 
stage 11 paradox is generated by changes in atmospheric and/or oceanic circulation that affect ocean ventilation of 

carbon dioxide.  

1 Introduction 

 
When considered over the last eight-hundred thousand years, climate shows highly persistent movements. Most 25 
notable are glacial cycles.  During glaciations, temperature, greenhouse gas concentrations, and sea level remain below 

their sample mean for extended periods; during these same periods, land and sea ice remain above their sample means. 

These positions are reversed for extended periods known as inter-glacials. These persistent movements and complex 

climate dynamics create difficulties for statistical analyses of climate data over this long time-span. Using ordinary 

least squares to analyze time series that show persistent movements tends to indicate statistically meaningful relations 30 
among time series when none are present (Yule, 1929; Engle and Granger, 1987). Monte Carlo simulations indicate a 

relation (based on t statistics) for about 85 percent of random pairings of time series with highly persistent movements 

(Hendry and Juselius, 2000). 

The difficulties posed by highly persistent movements and complex dynamics are greatly alleviated using the 

econometric methods of vector-autoregression, cointegration, and equilibrium correction.  Using these methods, 35 
Kaufmann and Juselius (2013), herein KJ2013, estimate a statistical model of climate over the previous 391 thousand 

years.  The model, termed a cointegration vector autoregression (CVAR), specifies four exogenous variables for orbital 

geometry; eccentricity, obliquity, precession, and summer time insolation at 65o south to simulate ten endogenous 
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variables that proxy various aspects of climate; Antarctic land and sea surface temperature, carbon dioxide and 

methane concentrations, land and sea ice, sea level, iron dust, and non sea-salt sulfate and calcium. The CVAR model 

explicitly represents long-run relations between climate and orbital geometry, which are given by ten cointegrating 

relations, and climate dynamics, which are given by the rates at which the climate system ‘equilibrium corrects’ from 

disequilibrium in the long-run (cointegrating) relations. Davidson et al., (2016) apply a similar approach for a subset 5 
of climate variables. 

These relations validate some basic hypotheses about the mechanisms that are postulated to drive glacial cycles (e.g. 

carbon dioxide affects temperature via radiative forcing), reproduce the main features of glacial cycles (e.g. the timing, 

magnitude, and saw-tooth pattern of changes in land ice volume), and separate observed deglaciations from skipped 

obliquity/precession beats (e.g. Huybers, 2012), which are peaks in insolation, including obliquity that do not generate 10 
deglaciations (Huybers and Wunsch, 2005; Tzedakis et al., 2017). Subsequent analyses of the statistical model suggest 

a weak form of the Milankovitch hypothesis in which orbital geometry drives glacial cycles, with small perturbations 

imposed by internal climate dynamics (Kaufmann and Juselius, 2016). 

Conclusions that are based on a model conditioned solely on orbital geometry are notable because many climate 

models cannot simulate atmospheric concentrations of CO2 (Archer et al., 2000). This has lead to hypotheses that 15 
orbital geometry and GHG are the ‘two primary forcings’ to the climate system (e.g. Yin and Berger, 2012).  But KJ 

2013 test and reject the hypothesis that carbon dioxide or methane is exogenous to the climate system; their 

concentrations are endogenous, driven by orbital geometry, which is  exogenous to and is the primary driver of climate. 

Models that do simulate CO2 endogenously cannot simulate other aspects of climate jointly (e.g. ice volume) and so 

are simulated in absence of feedbacks (Brovkin et al., 2012) or in two steps (e.g. Ganopolski et al., 2016), which may 20 
cause models to understate the effects of changes in orbital position (Pretis and Kaufmann, in review).  

Despite the strengths of the CVAR model, the resultant conclusions about the drivers of glacial cycles are tempered 

by the fact they are based on in-sample simulations over the previous 391 thousand years (i.e. the model simply 

reproduces the data from which it is estimated). A more rigorous methodology would use the four variables for orbital 

geometry to simulate the ten climate/physical variables for the entire period for which proxy data are available, which 25 
spans the previous ~800 thousand years. 

Here, we simulate the model reported by KJ2013 for the previous 800 thousand years, which corresponds to the entire 

period recorded by the Dome C core. We evaluate model performance by computing the root mean square of the 

simulation errors (RMSE) and identifying periods when differences between simulated and observed values are 

statistically significant. These measures are used to test three hypotheses about glacial dynamics that have been 30 
discussed in the literature (see section 4 for discussion): 

1. Nonlinearities, threshold effects, or phase-specific governing equations play an important role in the timing 

and magnitude of glacial cycles.  

2. The Mid-Brunhes event (MBE), which refers to a climatic shift that occurs during the transition between 

marine isotope stage (MIS) 12 and MIS 11 (Jansen et al., 1986), changes the dynamics that drive glacial 35 
cycles. 

3. The ‘stage 11 paradox’ represents a mismatch between orbital geometry and climate. 
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Values for the RMSE and statistical differences between simulated values and values from the proxy record indicate 

that the model generally performs well during the in- and out-of-sample period. We interpret this general accuracy 

to indicate that: 

1. Nonlinear relations,threshold effects, and/phase-specific governing equations do not play a critical role in 

glacial cycles.  5 
2.  Glacial cycles are driven by the same dynamics before and after the MBE. 

3. Terminations in general - and the ‘stage 11 paradox’ in particular - may be caused by changes in atmospheric 

circulation and/or the extent of sea ice, which affects the ventilation of the deep ocean and ultimately, affects 

the atmospheric concentration of carbon dioxide. 

These results and the methods used to obtain them are described in five sections. Section 2 describes the data and 10 
methods used to generate and analyze the simulations. The results are described in section 3. Section 4 interprets the 

results relative to the three hypotheses described previously, and section 5 concludes. 

2 Methods 

 
The CVAR model described by KJ2013 is simulated in a dynamic simulation (equivalent to a dynamic forecast) 15 
conditioned on orbital geometry alone over the 791 thousand years before the present (kyr BP). Simulated values (𝑥"#) 

are subtracted from the corresponding values from the proxy record (𝑥#) to calculate simulation errors 𝜀# = 	𝑥# − 𝑥"#. 

Simulation errors (𝜀t) are analyzed three ways. First, we compute the root mean square error (RMSE) to evaluate 

model accuracy over pre-defined periods. Second, simulation errors are analyzed to identify periods when the model 

fails systematically, either in a single time step (outlier) or during two or more consecutive time steps (persisting 20 
errors). Third we examine the statistical ordering among simulation errors (and the explanatory power of simulations 

that are generated by conditioning the model on endogenous variables) to evaluate competing hypotheses for the ‘stage 

11 paradox,’ which is a significant mismatch between orbital geometry and climate associated with marine isotope 

stage (MIS) 11, 424 – 375 kyr BP (Imbrie et al., 1993). 

 25 
2.1Model Data 

 

The four series used to represent orbital position, the six series used to represent climate, and the four series used to 

represent physical and biological mechanisms that link the six climate variables to each other and orbital geometry 

are the same as those used in KJ2013 (Table 1). KJ2013 uses four series to represent the effect of orbital geometry: 30 
precession (Prec), obliquity (Obl), eccentricity (Ecc), and summer-time insolation at 65oS (SunSum). Observations for 

these time series are compiled back to 800 kyr BP from the same sources used by KJ 2013 (Paillard, 1996). 

KJ2013 uses these four measures of orbital geometry alone to simulate ten endogenous variables (six climate and four 

mechanisms); climate variables include land surface temperature (Temp), the atmospheric concentration of carbon 

dioxide (CO2) methane (CH4), sea surface temperature (SST), land ice volume (Ice), and sea level (Level). Variables 35 
that capture mechanisms include iron dust (Fe), sea-salt sodium (Na), non sea-salt sulfate (SO4), and non sea-salt 

calcium (Ca); for additional details about the each series see Section I of the Supplemental Material. 
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Data for Temp, CO2, and CH4 are obtained from cores drilled into the Antarctic ice sheet. Carbon dioxide and methane 

are well-mixed gases and so measurements from Antarctic ice proxy global concentrations. Temp represents local 

conditions, but can be converted to global values by assuming that a scaling factor, which is derived from a limited 

set of observations can be applied across all observations (Masson-Delmotte et al., 2010; Masson-Delmotte et al., 

2006). The 𝛿*+𝑂 data that are used to proxy ice volume, which also includes information about deep water temperature 5 
(Chappell and Shackleton., 1986; Shackleton, 2000), are derived from 57 cores drilled by the Deep-Sea Drilling 

Project and Ocean Drilling Program across the globe (Lisiecki and Raymo, 2005). Sea surface temperature is 

constructed using alkenones from site PS2489-2/ODP1090 in the sub-Antarctic Atlantic. Data for sea level are 

reconstructed using oxygen isotope records from Red Sea sediments (Siddall et al.,  2003). 

These six variables are linked to each other and orbital position via physical and biological mechanisms that are 10 
represented by the four proxy variables. Fe is derived almost entirely from terrestrial sources and proxies changes in 

atmospheric circulation and a so-called iron fertilization effect, which may enhance the biotic uptake of CO2 (Martin, 

1990). Sulfate SO4 originates mainly from marine biogenic emissions of dimethylsulphide (after removing sea-salt 

sources using the Na data), and so proxies marine biological activity (Cosme et al., 2005). It is included to represent 

the possible effect of iron-containing dust on biological activity and/or the effect of biological activity on atmospheric 15 
CO2. Sea salt sodium Na is derived from the sea-ice surface and proxies the extent of winter sea-ice (Wolff et al 2003). 

It is included to represent the possible effect of sea ice on the flow of CO2 from the ocean to the atmosphere (Stephens 

and Keeling, 2000). Non sea-salt calcium Ca has a terrestrial origin (mainly Patagonia) and may represent changes in 

temperature, moisture, vegetation, wind strength, glacial coverage, or changes in sea level in and around Patagonia 

(Basile et al., 1997), a locale thought to play an important role in glacial cycles. 20 
To make these data amenable to a statistical analysis, we convert them to a common time scale (EDC3) using 

conversions from Parrenin et al., (2007) and Ruddiman and Raymo (2003). Unevenly spaced observations are 

interpolated (linearly) to generate a data set in which each series has a time step of 1 kyr (Miller, 2019). To eliminate 

the effects on inverting matrices with elements that differ greatly in size (due to different units of measurement), each 

of the fourteen time series is standardized as follows: 25 
𝑥- = (𝑦- − 𝑦0)/3𝑉𝑎𝑟(𝑦),					     𝑡 = 1,… ,391	  (1) 

where  is the value (in original units),  is the average value over the in-sample period, and 𝑉𝑎𝑟(𝑦)	is the variance 

over the in-sample period. 

 

2.2  Simulating the CVAR Model 30 
 

The  equations used to estimate the CVAR model in KJ2013 are given by: 

∆𝑥# 	= 	𝐴?∆𝑤# +	𝐴*∆𝑤#B + Γ*∆𝑥# + Π𝑧#B*′ +	𝜀#   (2) 

in which 𝑥# is a 10 × 1 vector that includes the ten endogenous variables; Temp, CO ,CH , Ice, Fe, Na, Ca, SO , 

Level, and SST;  is a 4 × 1  vector that includes the four exogenous variables Ecc, Prec, Obliq, and SunsumS; 𝑧I =35 

[𝑥#I ,𝑤#I, 1],	 Γ*, 𝐴?,	𝐴*, are 10 × 14	matrices of short-run coefficients; Π	is a 10 × 15 matrix of long-run coefficients, 

t
y y

2 4 4
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∆ is the first difference operator (∆𝑥# = 	𝑥# − 𝑥#B*), 𝜀- is an error term with mean value zero and variance Ω that is 

normally, independently, and identicially distributed.  

The condition that the conditional process (𝑥#|𝑤#) is nonstationary is formulated as a reduced rank hypothesis on the 

matrix Π 

Π = 	𝛼𝛽′  (3) 5 
in which 𝛼 is a 10 × 𝑟 matrix of coefficients, which describe the rate at which the ten climate variables adjust back 

towards equilibrium after the system has been pushed away by exogenous shocks (i.e. changes in orbital geomtery); 

𝑟	is the number of cointegration relations given by the reduced rank of the Π matrix; and 𝛽 is a 𝑟 × 15  matrix of 

cointegration coefficients that define the r stationary deviations from long-run equilibrium relationships, the so called 

cointegration relations, 𝛽I𝑧# . Maximum likelihood estimates for the elements of the 𝛽 and 𝛼  matrices as reported by 10 
KJ 2013 are given in section II of the Supplemental Material. The model in KJ2013 is estimated as a partial system 

(Johansen 1992, Harbo et al., 1998, Juselius 2006) where orbital variables are weakly exogenous. 

Here we simulate the estimated model model over the full time period using a dynamic simulation in an open model, 

conditioned on the (strongly) exogenous orbital variables 𝑤#   (equivalent to a dynamic forecast). To simulate climate 

during the in- and out-of-sample periods,  the ten endogenous variables x are expressed as a function of the exogenous 15 
solar variables and shocks to the climate system by inverting Equation (2) into the moving average form: 

𝑥# = 𝐶 ∑ 𝜀##
-S* +	𝐶∗(𝐿)𝜀# + 𝐶V𝑤# +	𝐶V∗ (𝐿)Δ𝑤#	  (4) 

where 𝐶 = 	𝛽X(1 − Γ*)B*𝛼X;  	𝛼X is a 10 × (10 − 𝑟) matrix orthogonal to 𝛼 describing the stochastic trends and 𝛽X 

is a 10 × (10 − 𝑟)  matrix orthogonal to 𝛽 determining how the stochastic trends load into the climate variables; L is 

the lag operator (for example, 𝐿𝜀# = 	 𝜀#B*); 𝐶∗(𝐿) and 𝐶V∗ (𝐿) are stationary lag polynomials; 𝐶V is 10 × 4; and the 20 
matrices are functions of the parameters (𝐴?,	𝐴*,Γ*,𝛼, 𝛽). Based on the ten cointergating relations reported by KJ2013 

r = 10, then C = 0, the in- and out-of-sample simulations are based on model (2) subject to (3) by setting 𝜀# = 0 which 

implies that the simulated variables, 𝑥"#,  are calculated from the exogenous drivers, 𝐶V𝑤# ,  (𝐴?∆𝑤#), the dynamics 

attached to them, 𝐶V∗ (𝐿)∆𝑤#B*, (𝐴*∆𝑤#B*), and the internal climate dynamics 𝐶∗(𝐿)𝜀#(Γ*Δ𝑥"#B*, 𝛼𝛽IYZ[\). 

The out-of-sample simulation is generated by allowing the model to ‘spin up’ between 800 kyr BP and 792 kyr BP, 25 
which enables the endogenous variables to converge towards the values that are implied by the exogenous conditioning 

variables (Prec, Ecc, Obl, and SunSumS). During this ‘spin-up’ period, the model is initialized using observed values 

for Temp, SST, and Ice, which are available starting 800 kyr BP. The time series of CO2 CH4, Fe, Na, SO4, Ca, and 

Level have more recent start dates (Table 1). For these variables, the model is initialized with values that correspond 

to their sample mean. Once the model is spun-up, the model is run continuously through the present; values from 792 30 
kyr BP through 392 kyr BP constitute the out-of-sample period.  Values from 391 kyr BP through the present constitute 

the in-sample period. 

 

2.3 Statistical Measures of Model Performance 

 35 
We use RMSE as a simple heuristic to compare the model’s predictive accuracy during the in- and out-of-sample 

periods. Because accuracy may vary over time, we use an indicator saturation technique [R-package gets Pretis et al., 

2018; Castle et al., 2015] to identify periods during which the simulation significantly deviates from observations (i.e. 

simulation errors are statistically different from zero). Outliers refer to a statistically significant difference in the 
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simulated value of variable x relative to the observed value for a single time step, while persisting errors are statistically 

significant differences that persist for two or more consecutive time-steps. Outliers and persisting errors are evaluated 

for every possible time step. Here, we retain only those outliers or persisting errors that exceed the pα = 0.001 threshold. 

This tightly controls the false-positive rate of detected periods of model failure. The method used to identify outliers 

and persisting errors are summarized in Supplementary Section III. This approach is used to assess the time-varying 5 
performance of climate models (Pretis et al., 2015), the forecast accuracy of economic predictions (Ericsson 2017), as 

well as to detect volcanic eruptions in temperature reconstructions in both simulated climate data (Pretis et al., 2016) 

and proxy-reconstructions (Schneider et al., 2017).  

 

2.4 Identifying Periods of Simulation Failures 10 
 
If model performance does not change over time, we expect outliers and persisting errors to occur randomly 

throughout the sample and be equally likely in each sub-sample. We use this assumption to compare the distribution 

of outliers and persisting errors between in-sample and out-of-sample periods and among nineteen marine isotope 

stages. For each thousand-year time step, we count the number of variables that exhibit an outlier or persisting error. 15 
Following this procedure, the maximum number of outliers or persisting errors for any single time-step is ten. These 

sums (and values for individual variables) are assigned to the in- or out-of-sample period or individual marine isotope 

stages.  

To evaluate the distribution of outliers and persisting errors between the in- and out-of-sample periods and among 

marine isotope stages, we test whether their occurrence is different from a uniform random distribution (expected 20 
under the null-hypothesis of equal performance) using a Pearson chi-square test (P), which is calculated as follows: 

𝑃 = ∑ _`aBbac
d

ba
e
fS*           (5) 

in which n is the number of periods (n=2; in-sample j = 1; out-of-sample j = 2; or nineteen marine isotope stages), Oj 

is the number of outliers or persisting errors that are identified in period j, and Ej is the number of occurrences expected 

in period j. 25 
The number of occurrences expected in period j (Ej) is calculated based on the null hypothesis that outliers or persisting 

errors are distributed uniformly among periods. This null implies that the expected value (𝐸f) can be calculated as: 

𝐸f = 	
hia

∑ hiajk
j

× ∑ 𝑂f	e
fS*            (6)  

in which Yr is the number of thousand-year time steps in period j for which observed values are available and n is the 

number of periods for which observed values are available for the 791 kyr simulation period. P is evaluated against a 30 
𝜒m  distribution with n-1 degrees of freedom. If the test rejects the null hypothesis that outliers or persisting errors are 

distributed randomly among periods (i.e. some periods are simulated more/less accurately than others), the more 

accurate subsample is identified by the numerator of Equation (5) (𝑂f − 𝐸f). A negative value during the in-sample 

period ((𝑂* − 𝐸*) < 0) would indicate that the number of outliers or persisting errors detected during the in-sample 

period is less than expected by a uniform random distribution. This result would suggest that the model generates a 35 
more accurate simulation during the in-sample period. Equations (5) and (6) also are used to test whether outliers or 

persisting errors are distributed randomly across the nineteen marine isotope stages (n=19) that fall within the 791 kyr 

simulation. The first observation is 791 kyr BP, which falls in MIS 19. 
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2.5 Causes for Model Failure 

 
To evaluate the cause(s) for model failure, we test whether poor performance ‘starts’ with a specific variable(s) and 

whether this failure is communicated to the other variables through long- and short-run relations among endogenous 5 
variables. To identify the variable(s) that initiates the poor performance, we formalize techniques that are used by 

previous analyses.  Previous analyses estimate a regression equation that specifies a dependent variable as a function 

of lagged values for an independent variable thought to ‘precede’ the dependent variable. For example, Li et al., (1998) 

conclude that CO2 ‘precedes’	𝛿*+𝑂 based on regression results that indicate 𝛿*+𝑂 is related to five lagged values of 

CO2. 10 
But this approach is incomplete (from a statistical perspective) because it ignores the autocorrelation structure of the 

dependent variable. To account for this effect, we use a technique developed by Granger (1969) that is used to analyze 

relations among climate variables during the instrumental temperature record (e.g. Kaufmann and Stern, 1997; Stern 

and Kaufmann, 2014). For this application, we estimate the following regression: 

𝜀-,# = 	𝛼 +	∑ ∑ 𝜙-,fp
fS*

*?
-S* 𝜀-,#Bf +	∑ ∑ 𝐷-,#Bf𝜃-,fp

fS*
*?
-S* 𝜀-,#Bf +	∑ 𝜋f𝜔-,#Bfu

fS? +	𝜂-,#    (7)  15 
in which Di,t is an indicator variable that equals one if the simulation error for variable i during period t is statistically 

different from zero (i.e.  is a persisting error) (Di,t = 0 otherwise), 𝜂 is an error term (assumed to be normally 

distributed), and 𝛼,𝜙, 𝜃, 𝜋,	are regression coefficients that are estimated using ordinary least squares. The number of 

lags (s) is determined using the Akaike Information criterion (Akaike, 1973). Equation (7) is estimated ten times, once 

with the simulation error for each endogenous variable on the left-hand side. We expect the coefficients  generally 20 

to be statistically different from zero because simulation errors generally are correlated across variables, however, we 

are interested whether during the periods of simulation failure (as given by Di,t = 1), persisting errors for other 

endogenous variables propagate through the system, pre-dating/predicting persisting errors in the endogenous climate 

variable being modelled. Because the level of significance of selection in the first stage (pα ≃0.001) makes false-

positives in Di,t unlikely (approximately 1 outlier to be expected spuriously on average), the detection of breaks in the 25 
first stage probably has little effect on tests on Di,t in this second stage. We repeat this process without the simulation 

errors for sea level because the first observation for sea level (462 kyr BP) is much more recent than the other time 

series (Table 1), which limits the sample range when all ten simulation errors are analyzed using Equation (7). 

For each simulation error for variable i ( ), we estimate Equation (7) ten times. In each, we eliminate the simulation 

errors for one of the ten endogenous variables interacted with its non-zero mean simulation dummy 30 
∑ 𝐷-,#Bf𝜃-,f𝜀-,#Bfu
fS* .. This restriction is evaluated using an F-statistic that tests the null hypothesis that the persisting 

errors for the endogenous variable eliminated from Equation (7) have no information about the dependent variable 

beyond the additional variables included. These variables include the lagged values of simulation errors, the persisting 

simulation errors for the other endogenous variables, and the four exogenous variables for orbital geometry. Rejecting 

this null hypothesis allows us to state that the model’s inability to simulate the endogenous variable that is eliminated 35 
from Equation (7) (as indicated by persisting errors) precedes the simulation errors for the endogenous climate variable 

on the left-hand side of Equation (7). 

ε
i ,t

if

ε
i
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 3 Results 

 

3.1 Model Performance 

 5 
For both the in- and out-of-sample periods, Figure 1 suggests that the model generally captures the timing and 

magnitude of persistent changes in climate that are described by glacial cycles, which frequently are summarized by 

changes in land ice volume (Ice).  For this variable, the model generally simulates the timing and magnitude of 

glaciations and terminations, including the gradual accumulation of ice and its rapid ablation (i.e. the saw-tooth 

pattern). Furthermore, there are no skipped obliquity/precession beats (other than MIS 11). Finally, the model’s ability 10 
to simulate glacial cycles during the out-of-sample period is inconsistent with speculation that the CVAR model’s 

ability to reproduce the ten climate/physical variables during the in-sample period simply reflects the model’s ability 

to reproduce the data used to estimate the coefficients. Instead, the ability of the model to simulate climate during the 

out-of-sample period suggests that its coefficients capture relations among orbital geometry and the ten 

climate/physical proxies that govern the climate system beyond the sample period.  15 
 

3.1.1 In- vs. Out-of-Sample Comparisons 

 

The similarity between the model’s accuracy in- and out-of-sample (Figure 1) is consistent with comparisons of root 

mean square error (Figure 2).  As expected, the RMSE for the out-of-sample period generally is larger than the RMSE 20 
for the in-sample period. But much of this increase is associated with MIS 11, most of which occurs during the out-

of-sample period (Figure 1). If we eliminate MIS 11 from the out-of-sample period, the RMSE of the in- and out-of-

sample periods are similar (Figure 2). The outsized effect on the RMSE for the out-of-sample period is consistent with 

the ‘stage 11 paradox.’ 

Tests indicate that we cannot reject the null hypothesis that outliers are distributed randomly between the in- and out-25 
of-sample periods (Table 2). A test statistic χm(1) = 0.09	fails to reject (p > 0.76) the null hypothesis that as a group, 

outliers for the ten climate/physical variables are distributed randomly between the in- and out-of-sample periods. 

Conversely, a test statistic	χm(1) = 52.5 rejects (p < 0.001) the null hypothesis that as a group, persisting errors for 

the ten climate/physical variables are distributed randomly between the in- and out-of-sample periods. 

  30 
3.1.2 Comparisons Among Marine Isotope Stages  

 

Outliers and persisting errors are not distributed randomly among the nineteen marine isotope stages (Figure 3, Table 

2). This result is generated in part by the ‘stage 11 paradox.’ If this stage is eliminated from consideration, we cannot 

reject the null hypothesis that outliers for variables other than methane are distributed randomly among the remaining 35 
eighteen stages. Similarly, the RMSEs across variables are very similar in and out-of-sample when MIS 11 is excluded 

(Figure 2). Conversely, the number of persisting errors is not distributed randomly among the nineteen marine isotope 

stages, even if errors in MIS 11 are excluded (Table 2).  
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3.2 Causes for Model Failure 

 

Applying the p = 0.05 threshold to the tests that evaluate restrictions on Equation (7), sixteen of the one hundred tests 

reject the null hypothesis that lagged values for persisting errors (interacted with the non-zero dummy variable D) 

have no information about current values for the simulation errors on the left-hand side of Equation (7) beyond the 5 
right-hand side variables that remain in Equation 7 (Table 3). For the eighty-one tests run on the nine endogenous 

variables (other than sea level), the null is rejected eleven times (Table 4). In both cases, the number of rejections 

observed is greater than the number expected due to repeated testing at p = 0.05, five and four rejections, respectively. 

Together, these results suggest that the test results reveal information about the statistical ordering of simulation errors.  

4 Discussion 10 
  

4.1 Nonlinearties and/or threshold effects drive the timing and magnitude of glacial cycles 

 
A recent review of terminations states “Terminations clearly represent a strongly nonlinear response to regional 

changes in the seasonality of solar radiation (Past interglacials Working Group of Pages, 2016).” We test this statement 15 
by using the CVAR to evaluate hypotheses about the importance of thresholds (e.g.  Paillard, 1998; 2001; Ganopolski 

et al., 2016; Tzedakis, et al., 2017), nonlinearities (e.g. Tziperman et al., 2006), or governing equations that vary by 

phase of the glacial cycle. If any of these play an important role, the CVAR model, which does not include their effects, 

will not be able to simulate glacial cycles. 

The CVAR model is largely linear. Both long- and short-run relations among variables are linear. The only non-linear 20 
relation is given by the fractional rate at which variables adjust to disequilibrium in the long-run relations (𝛼). But this 

nonlinearity is constrained by the fact that the fractional rate of adjustment is constant and applies during all phases 

of the glacial cycle. 

Despite its largely linear specification, the CVAR generally simulates the timing and magnitude of changes in ice 

volume (and other variables) without any skipped beats other than stage 11. Furthermore, this linear specification 25 
allows the model to simulate the saw-tooth pattern by which ice volume builds slowly but melts rapidly. These results 

suggest that non-linear relations, thresholds, or changes in governing equations are not important drivers of glacial 

cycles. This suggestion does not reject their presence, rather, Occam’s razor implies that nonlinearities, threshold 

effects, and/or phase-specific governing equations are not needed to simulate important aspects of glacial cycles. 

Furthermore, the CVAR’s ability to simulate climate during the out-of-sample period is inconsistent with the 30 
hypothesis that “glacial cycles would exist even in the absence of the insolation changes (Tziperman et al., 2006).” If 

glacial cycles exist independently of changes in orbital geometry, a statistical model that is conditioned only on orbital 

geometry and spun up with no memory of previous cycles would not be able to simulate glacial cycles accurately 

during the initial out-of-sample period. As in Gonapolski and Calov (2011), the ten variables come to an equilibrium 

and do not change thereafter if orbital geometry is held constant. Furthermore, the accuracy of the out-of-sample 35 
simulation is inconsistent with the argument that changes in solar insolation account for less than 20 percent of the 

variance in glacial temperature records (Wunsch, 2004).  
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4.2 The Mid Brunhes Event 

 

The demarcation between the in- and out-of-sample period (391 kyr BP) falls close to the Mid-Brunhes event, MBE 

(Jansen et al., 1986). Compared to the in-sample period used to estimate KJ2013, the pre-MBE out-of-sample period 

has; (1) lower concentrations of CO2, (2) glacial cycles with a smaller amplitude, and (3) cooler but longer interglacial 5 
periods (EPICA, et al., 2004; Luthi et al., 2008; Hoenisch et al., 2009). These three changes beg the question, do they 

represent a change in the dynamics that drive glacial cycles and/or a change in the drivers of glacial cycles. The latter 

is supported by Yin (2013), who concludes, “through a set of internal mechanisms insolation alone induces a 

systematic difference between the interglacials before and after the 430 kyr ago in some ocean processes that are 

critical for the carbon cycle.” Conversely, Tzedakis et al., (2009) argue ‘astronomical forcing alone cannot explain 10 
the difference in interglacial intensity before and after the MBE.”  

Our model simulations contradict the latter, that the MBE represents a change in the dynamics that drive glacial cycles. 

As indicated in Figure 1, the single set of relations among orbital geometry and the climate system embodied in the 

CVAR model simulates the different characteristics of glacial cycles before and after the MBE. As such, the MBE is 

not a transition between regimes; rather there is something unique about the MBE in particular and MIS 11 in general. 15 
 

4.3 Mechanisms for the Stage 11 Paradox 

 

Imbrie et al., (1993) describe ‘the stage 11 paradox’ as a significant mismatch between orbital position and changes 

in climate associated with MIS 11 in general and termination V (430 -415 kyr BP) in particular. The latter is defined 20 
by the maximum in benthic 𝛿*+𝑂 of MIS 12 and the benthic 𝛿*+𝑂 plateau of MIS 11 (Broecker and van Donk, 1970). 

These periods are unique: Termination V is the longest of any during the previous half million years (Berger and 

Loutre, 1996; Droxler et al., 2003; Loutre and Berger, 2003; McManus et al., 2003; EPICA Community Members, 

2004; Rohling et al., 2010; Liseicki and Raymo, 2005; Ruddiman, 2007). MIS 11 also is the longest period of 

prolonged, stable warm climate in the North Atlantic (Oppo et al., 1998; McManus et al., 1999; 2003). Finally, many 25 
areas have air and sea surface temperatures that reach values consistent with interglacial periods even though large 

areas of the Earth’s surface are covered by ice (Ruddiman, 2007). Despite these large changes in climate, the changes 

in orbital geometry are small. 

Consistent with this seeming mismatch, the CVAR model does a poor job of simulating termination V in particular 

and MIS 11 in general. Figures 1-3 indicate that MIS 11 has more variables with persisting errors than any other 30 
period, either in- or out-of- sample (as well as driving the higher RMSE out-of-sample). This indicates MIS 11 is a 

prolonged period during which the model is not able to use the four variables for orbital geometry to simulate climate, 

which is the definition of the ‘stage 11 paradox.’ 

 

4.3.1 Difficulties in orbital tuning 35 
 

The CVAR’s model’s poor performance during MIS 11 could be caused by difficulties in orbital tuning. The insolation 

peak for MIS 11 occurs in the middle of the warm stage therefore, orbital tuning delays the interglacial peak in 𝛿*+𝑂 

compared to other stages (Candy et al., 2014; Imbrie et al., 1984; Liseicki and Raymo, 2005). Furthermore, MIS 11 
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contains fewer tie points that can be used to anchor the chronology (Desprat et al., 2005), which means that the 

orbitally tuned chronology of MIS 11 is less secure than other warm stages (Candy et al., 2014). As such, the model’s 

failure during this period may simply represent the poor quality of the chronology to which the simulation is compared. 

To evaluate whether the stage 11 paradox is an artifact of the poor quality of the chronology, we condition the model 

on some of the endogenous variables that are thought to play an important role in glacial cycles. Conditioning a model 5 
on observed values for one or more endogenous variables always will improve performance (Oreskes et al., 1994), 

but the variable used to condition the model will have little effect on model performance if the model’s poor 

performance during MIS 11 is caused by the poor quality of the chronology because no endogenous variable will have 

more/less information about the poor chronology. Contrary to this expectation, model performance during stage 11 

depends on the variable used to condition the model. Conditioning the model on observed values of CO2 or Na allows 10 
the model to simulate more of the decline in Ice (and more accurately simulate other variables) throughout MIS 11, 

including termination V (Figure 4). Conversely, conditioning the model on observed values for SST, which is thought 

to play an important role in MIS 11 (see below), does not improve the model’s ability to simulate the interglacial in 

MIS 11. Although this failure may be explained by stronger latitudinal or meridional gradients in sea surface 

temperature (Kandiano et al., 2012), large variations in accuracy that depend on the endogenous variable used to 15 
condition the model suggest that the model’s failure during MIS 11 is not caused solely by weaknesses in orbital 

tuning. 

 

4.3.2 Mechanistic Explanations 

 20 
The mechanisms and sequences that generate the ‘stage 11 paradox’ cannot be fully identified by the CVAR model 

because it greatly simplifies physical relations and it has a relatively coarse temporal resolution (1 kyr). Conversely, 

its ability to accurately simulate glacial cycles (except MIS 11) using orbital position alone allows the CVAR model 

to test competing hypotheses about the ‘stage 11 paradox’ by identifying exceptions to the model sequences that 

accurately simulate terminations other than termination V. In other words, the statistical ordering of simulation errors 25 
allows us to identify what is unique about MIS 11 (and termination V) and whether these differences play an important 

role. 

Explanations for terminations in general - and stage 11 in particular - share several components.  Many start with a 

change in meridonal overturning circulation and a bipolar seesaw that create a negative correlation between changes 

in hemispheric temperatures. Specifically, terminations may start with changes in orbital position that add freshwater 30 
to the North Atlantic, this freshwater melt slows Atlantic meridonal overturning circulation (Elliot et al., 2002; 

McManus et al., 2004; Oppo et al., 1995; Vidal et al., 1997), and this slowdown creates a nearly simultaneous change 

in sea surface temperatures in the Southern Hemisphere via the bipolar seesaw (Barker et al., 2009; Broecker 1998; 

1986; Schmittner et al., 2002; Stocker and Johnson, 2003). In addition to an opposite change in sea surface 

temperature, there is evidence that changes in buoyancy (Watson and Garabato, 2006), latitudinal shifts in the 35 
Westerlies (Anderson et al., 2009; Ninnermann and Charles, 1997; Toggweiler et al., 2006), and/or a changes in sea 

ice (Stephens and Keeling, 2000) affect the flow of CO2 from the southern Ocean, which is an important reservoir for 

glacial/interglacial CO2 (Knox and McElroy, 1984; Sarmiento and Togeweiler, 1984; Seigenthaler and Wenk, 1984; 

Anderson et al., 2009; Skinner et al., 2013). 
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Uncertainties about this general schema include questions about the role of changes in sea surface temperature relative 

to the location of the Westerlies/sea ice and the role of CO2 from the Southern Ocean; does ventilation drive 

deglaciation or is it caused by the glaciation? Riveiros et al., (2013) postulate that termination V is driven “primarily 

via meridonal heat transport anomalies that would have enhanced the incipient warming arising from relatively weak 

insolation forcing and only secondarily via CO2 release.” Conversely, Andersen et al., (2009) show that changes in 5 
the position of the Westerlies are the main driver for the increased flow of CO2 to the atmosphere during the 

termination of the last ice age. Similarly, a shift by the Westerlies precedes the drop in atmospheric CO2 during MIS 

5 (Govin et al., 2009). 

These competing hypothesis for terminations in general and stage 11 in particular can be tested by the statistical 

ordering of the model errors. If changes in sea surface temperature initiate Termination V, the model’s inability to 10 
simulate termination V will ‘start’ with its inability to simulate SST. This inability will be indicated by simulation 

errors for SST that precede and have information about the simulation errors for other variables. Specifically, 

simulation errors for other variables, such as CO2, will not have prior information about the errors for SST and these 

errors will have prior information about the errors for the other variables, such as CO2. 

The statistical ordering of simulation errors indicates that the simulation errors for SST do not precede the model’s 15 
inability to simulate MIS 11 and termination V. Errors for SST are preceded by the persisting errors for other variables 

(read across the SST row in Tables 3 and 4), such as CO2, and the persisting errors for SST do not have prior information 

about the simulation errors for any variables (read down the SST column) at . Using a threshold 𝑝 ≤ 0.10, 

there is some evidence that persisting errors for SST have information about Ice. Consistent with these results, 

conditioning the model on SST, which eliminates the simulation errors for SST, does not improve the model’s ability 20 
to simulate Ice during MIS 11 relative to other potential causes for the stage 11 paradox (Figure 4). In toto, these 

results suggest that model failures do not ‘start with’ an inability to simulate sea surface temperature; rather the failure 

to simulate sea surface temperature is caused by the inability to simulate some other variable(s). As such, changes in 

sea surface temperature probably are not ultimately responsible for the ‘stage 11 paradox.’  

Instead, the statistical ordering generated by Equation (7) highlights the importance of the model’s inability to simulate 25 
atmospheric carbon dioxide. Reading across the CO2 row indicates that the simulation errors for other variables, 

including SST have no prior information about the simulation errors for CO2, which suggests that model failures ‘start 

with’ an inability to simulate carbon dioxide. Furthermore, these failures propagate through the system. Reading down 

the CO2 column indicates that the persisting errors for CO2 have information about the simulation errors for other 

variables including Ice and SST (Table 4). 30 
The importance of carbon dioxide is consistent with results that indicate conditioning the model on observed values 

of CO2 improves (compared to conditioning the model on SST) the model’s ability to simulate Ice during MIS 11 

(Figure 4). This supports the argument that high concentrations of CO2 are responsible for the warm interglacial during 

MIS 11 (Yin and Berger, 2012). Together, these results suggest that terminations in general, and termination V in 

particular, are driven by changes in atmospheric carbon dioxide. Furthermore, they are consistent with the notion that 35 
the peak in CO2 concentrations drive changes in the glacial cycle that occur after 450 kyr BP (Pages, 2016). On the 

other hand, they contradict the notion that changes in carbon dioxide are a positive feedback loop in the Earth system, 

as opposed to a cause of glacial terminations (Ganopolski and Calov, 2011).  

p ≤0.05
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But the model’s inability to simulate MIS stage 11 may not start solely with an inability to simulate CO2. Persisting 

errors for Ice also are preceded by persisting errors for Ca and Fe (proxies for wind strength and aridity Section 2.1 

and Supplemental Section I). And the persisting errors for Ca are preceded by the persisting errors for Na (a proxy for 

sea ice in the southern ocean Section 2.1 and Supplemental Section I) Although results cannot resolve the timing of 

the model’s inability to simulate wind (Ca, Fe) and sea ice (Na), their importance suggests that the model’s inability 5 
to simulate the long interglacial of MIS 11 is generated in part by the model’s inability to simulate the location and 

strength of winds, the extent of sea ice, and/or the ventilation of CO2 from the Southern Ocean. 

 

5 Conclusion 

 10 
Our model is able to accurately simulate entire glacial cycles for an out-of-sample period that does not prescribe GHG 

forcing: the simulation is driven only by changes in orbital geometry. This ability suggests that the model can 

accurately hindcast climate using known climate parameters, which is the criterion proposed by Tzedakis et al., (2009) 

for understanding the current climate and where it is headed. Although satisfying this criterion has to be interpreted 

with caution because predictability is not necessarily informative about the quality of a model with respect to capturing 15 
underlying causality (see e.g. Oreskes et al., 1994, or Clements and Hendry, 2005), the ability to hindcast climate 

suggests that our model could supplement the search for analogues for the Holocene (11,700 years before the present 

through the present), many of which focus on MIS 11 (Droxler et al., 2003; Tzedakis, 2010; Pol et al., 2011). Despite 

some similarities, our results suggest that such efforts are fraught with difficulty. Most importantly, the statistical 

model cannot use the four measures of orbital geometry to simulate the depth and length of the interglacial that is 20 
associated with MIS 11. Conversely, the model is able to simulate many aspects of the current warm period (Figure 1 

& 3): notable exceptions include peristing errors associated with Ice and SST (see below). This implies that any 

similarity in orbital geometry and feedback mechanisms (Imbrie et al., 1992; 1993, Ruddiman 2003; 2006) do not 

automatically translate into similar climates.  As such, there probably are important differences between the Holocene 

and MIS 11. 25 
Ironically, the interglacials during MIS 11 and the Holocene may share an important similarity: an important role for 

carbon dioxide. The inability to simulate the interglacial in MIS 11 is likely caused by a poorly-modelled physical 

mechanism that raises atmospheric carbon dioxide. It is highly unlikely that this mechanism is related to human 

activity, even though MIS 11 contains the first evidence for the use of fire by people in Britain (Gowlett, 2005; Preece 

et al., 2006). Conversely, others argue that Holocene warming is amplified by anthropogenic emissions of carbon 30 
dioxide and methane (Ruddiman 2003; 2005; 2007).   

Rather than trying to decide which aspects of the paleoclimate record ‘line up’ across marine isotope stages (e.g. 

Candy et al., 2014), future efforts will use the statistical model to identify the cause(s) for the current warming and 

how long it will last. Specifically, we will compile future values for orbital geometry and use them to simulate the 

model as a CVAR-based alternative to GCM-based simulations (see e.g. Ganopolski et al., 2016). These CVAR 35 
simulations also will be used to assess the early Anthropogenic hypothesis by evaluating the degree to which 

anthropogenic emissions of carbon dioxide and methane can account for outliers and persisting errors in Ice and other 

climate variables during the Holocene. 
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Figure captions 
 
Fig. 1. The observed values for temperature (black line) and values simulated by the system model conditioned only 
on the four variables for solar insolation (red line). Thick portions of the red line represent time steps in which the 
simulation error is significantly different from zero (non-zero error). Red circles represent time steps when the 5 
simulation error is an (innovational) outlier. The light gray area is the out-of-sample forecast period; MIS 11 is 
shaded dark gray. (b) same as above for carbon dioxide, (c) same as above for methane, (d) same as above for land 
ice, (e) same as above for Na, (f) same as above for SO4, (g) same as above for sea level, (h) same as above for SST1. 
 
Fig. 2. The root mean square simulation errors for all ten endogenous climate variables simulated by the CVAR system 10 
model conditioned only on the four variables for solar insolation. RMSE for the in-sample period are shown as dark 
grey (left), out-of sample as grey (middle), and out-of sample excluding Marine Isotope Stage 11 as light grey (right). 
 
Fig. 3. The number of outliers (red spikes) and non-zero errors (darkly shaded) for each time step.  Marine isotope 
stages are indicated by alternating areas of shading. 15 
 
Fig. 4: The value of Ice conditioned on orbital geometry only (green line), CO2 (red line), non-sea-salt sodium (blue 
line), Ca (yellow line), and SST (orange line). Values from the proxy record are given by the black line. 
 

                                                
1 Note that the series of SST exhibits non-zero simulation errors nearly throughout the sample, suggesting a non-

zero bias throughout the observational record – simulated model values persistently exceed observations. 
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Table 1: Time series included in the CVAR 

Variable Source Unit Time Scale Obs First 
Observation 

Temp Jouzel et al., (2007) ∆ avg. last 1 
kyr 

EDC3 710 801kyr BP 

CO2 Lüthi et al., 2008 ppmv ECD3 517 798 kyr BP 

CH4 Loulergue et al., 
(2008) 

ppbv EDC3 1477 799 kyr BP 

Ice Lisiecki and Raymo, 
(2005) 

180 LR04 390 801kyr BP 

Fe Wolff et al. (2006) µg m-2yr-1 EDC2 187 736 kyr BP 

Na Wolff et al. (2006) µg m-2yr-1 EDC2 195 739 kyr BP 

SO4 Wolff et al. (2006) µg m-2yr-1 EDC2 195 739 kyr BP 

Ca Wolff et al. (2006) µg m-2yr-1 EDC2 195 739 kyr BP 

Sea Level Siddal et al., (2003) Meters SPECMAP 125 466 kyr BP 

Sea Surface 
Temp 

Martinez-Garcia et al., 
(2009) 

Degrees C EDC3 121 801kyr BP 

Eccentricity Paillard et al., (1996) Dimensionless 
index 

_ 801 801kyr BP 

Obliquity Paillard et al., (1996) Degrees _ 801 801kyr BP 

Precession Paillard et al., (1996) Dimensionless 
index 

_ 801 801kyr BP 

Seasonal 
Insolation 

Paillard et al., (1996) W/m2 _ 801 801kyr BP 

€ 

δ

https://doi.org/10.5194/cp-2020-58
Preprint. Discussion started: 11 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 2: Tests of simulation accuracy during various periods. 
 
 In vs. out-of-sample Distribution among marine isotope stages 
 
Variable 

 
Outliers 

 
Persisting errors 

Outliers Persisting errors 
All stages Stage 11 

excluded 
All 
stages 

Stage 11 
excluded 

Temp 3.0+[0/3] 19.8** [34/6] 18.4 15.6 286.5** 53.8** 
CO2 3.0++[0/3] 2.5 [4/10] 15.8 13.2 57.9** 53.3** 
CH4 7.0**+[0/7] 49.3**[31/117] 46.5** 39.7** 535.9** 571.8** 
Ice 0.2 [3/2] 103.7**[4/116] 14.9 3.8 543.0** 506.5** 
Fe 1.4 [1/4] 91.8**[226/79] 19.1 12.6 325.4** 313.5** 
Na 4.2*+[6/1] 24.2**[172/107] 28.2 3.5 356.0** 342.2** 
SO4 7.9**+[7/0] 40.7**[36/0] 80.2** 3.8 398.2** 368.7** 
Ca 1.3 [3/1] 24.3 **[35/6] 22.9 3.00 332.3** 307.0** 
Sea Level 0.8 [0/4] 136.3**[73/69] 8.0 6.3 288.1** 275.4** 
SST 0.1 [4/5] 9.1 **[357/282] 20.0 11.6 101.7** 101.6** 
All 0.1 [24/30] 52.5**[972/793] 37.9** 3.5 561.4** 427.7** 
Value rejects the null hypothesis at p < .05 (*), p < 0.01 respectively (**). Blue indicates the out-of-sample 
simulation is more accurate than the in-sample simulation; red indicate the in-sample simulation is more 
accurate. Values in brackets indicate the number of outlier/persisting errors in the out-of-sample period 
relative to the number of outlier/nonzero mean errors in the in-sample period.. A large value implies that 
the in-sample simulation has significantly fewer outlier/persisting errors, which would make it more 
accurate than the out-of-sample simulation.  
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Table 3: p-values for test of significance on 𝜃"  (equation 8) for the sample that includes all endogenous 
variables. Red indicates rejection of the exclusion (p < 0.05) of lagged errors of other series, blue 
indicates rejection of the exclusion (p < 0.10) of lagged errors of other series, and green indicates 
rejection of the exclusion for the autoregressive lags ( p < 0.05). The red value of 0.023 in the second 
column of the first row indicates that the  indicates that the simulation errors for CO2 have information 
about the simulation errors for temperature. 
 
Dep.  
Variable 
Eq. 8  

Non zero simulation error excluded from equation 8 
Temp CO2 CH4 Ice Fe Na SO4 Ca Level SST 

Temp 0.005 0.023 0.041 0.144 0.140 0.314 0.314 0.878 0.795 0.169 
CO2 0.397 0.629 0.057 0.143 0.721 0.760 0.760 0.676 0.512 0.992 
CH4 0.829 0.516 0.000 0.074 0.285 0.101 0.101 0.168 0.746 0.867 
Ice 0.421 0.148 0.496 0.277 0.270 0.334 0.334 0.393 0.272 0.051 
Fe 0.054 0.055 0.658 0.586 0.014 0.910 0.910 0.000 0.337 0.600 
Na 0.013 0.442 0.064 0.917 0.007 0.875 0.875 0.752 0.476 0.622 
SO4 0.234 0.283 0.111 0.705 0.301 0.902 0.902 0.042 0.957 0.158 
Ca 0.044 0.842 0.884 0.902 0.032 0.475 0.475 0.006 0.965 0.106 
Level 0.259 0.152 0.422 0.028 0.405 0.415 0.415 0.938 0.637 0.617 
SST 0.015 0.036 0.368 0.052 0.949 0.119 0.119 0.271 0.969 0.000 
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Table	4:	p-values	for	test	of	significance	on	𝜃" 	(equation	8)	for	the	sample	that	includes	
variables	other	than	sea-level.	Red	indicates	rejection	of	the	exclusion	(p	<	0.05)	of	lagged	
errors	of	other	series,	blue	indicates	rejection	of	the	exclusion	(p	<	0.10)	of	lagged	errors	of	
other	series,	green	indicates	rejection	of	the	exclusion	for	the	autoregressive	lags.	
	
Dependent		
variable	
Eq.	8	

Non	zero	simulation	error	excluded	from	equation	8	

Temp	 CO2	 CH4	 Ice	 Fe	 Na	 SO4	 Ca	 SST	
Temp	 0.009	 0.311	 0.128	 0.349	 0.173	 0.644	 0.890	 0.571	 0.187	
CO2	 0.186	 0.852	 0.213	 0.136	 0.700	 0.312	 0.866	 0.149	 0.847	
CH4	 0.454	 0.471	 0.362	 0.371	 0.568	 0.181	 0.878	 0.775	 0.886	
Ice	 0.314	 0.006	 0.584	 0.000	 0.035	 0.228	 0.370	 0.046	 0.055	
Fe	 0.189	 0.202	 0.394	 0.860	 0.064	 0.711	 0.976	 0.059	 0.791	
Na	 0.212	 0.668	 0.632	 0.881	 0.272	 0.812	 0.066	 0.687	 0.932	
SO4	 0.166	 0.226	 0.039	 0.881	 0.736	 0.460	 0.000	 0.025	 0.246	
Ca	 0.094	 0.954	 0.766	 0.955	 0.376	 0.024	 0.000	 0.113	 0.204	
SST	 0.714	 0.011	 0.326	 0.012	 0.973	 0.337	 0.715	 0.180	 0.133	
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