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Abstract.

During the Archean Eon in 2.7 billion years ago, solar luminosity was about 75% of the present-day level, but the surface

temperature was suggested to similar to or even higher than modern. What mechanisms act to maintain the temperate climate

of early Earth is not clearly known yet. Recent studies suggested that surface air pressure was different from the present level.

How does varying surface air pressure influence the climate? Using an atmospheric general circulation model coupled to a5

slab ocean with specified oceanic heat transport, we show that decreasing (increasing) surface pressure acts to cool (warm)

the surface mainly because the greenhouse effect of pressure broadening becomes weaker (stronger). The effect of halfing or

doubling the surface pressure on the global-mean surface temperature is about 10 K or even larger when ice albedo feedback

or water vapor feedback is strong. If the surface pressure was 0.5 bar, a combination of a CO2 partial pressure of about 0.04

bar and an oceanic heat transport of twice the present-day level or a combination of a CO2 partial pressure of about 0.10 bar10

and an oceanic heat transport of half the present-day level is required to maintain a climate similar to modern, under a given

CH4 partial pressure of 1 mbar. Future work with fully coupled atmosphere-ocean models is required to explore the strength of

oceanic heat transport and with cloud resolving models to examine the strength of cloud radiative effect under different surface

air pressures.

1 Introduction15

During the Archean Era, the solar luminosity was about 75% of the present day (Gough, 1981; Blake et al., 2010). If other

climate parameters were the same as their present values, Earth would have been much colder and entirely glaciated during

its early period (Sagan and Mullen, 1972). However, geochemical proxies suggest that the tropical ocean of early Earth in 2.9

billion years ago (Ga) might be ice-free and the climate was similar to or even warmer than today (Hren et al., 2009). The

contrast between paleoclimate proxies and climate theory is known as the ‘faint young Sun paradox’. To hold the hospitable20

Archean climate, a stronger greenhouse effect was required (Owen et al., 1979; Walker et al., 1981; Pavlov et al., 2000).

Archean temperature can be estimated from isotopic determination of marine sediments. Oxygen isotopic composition be-

tween seawater and sediments was used as an indication of temperature, and a low-δ18O sediment infer a high ocean tem-

perature (Kasting and Howard, 2006). The seawater temperature was inferred to reach 330–360 K from oxygen isotope data

(Knauth and Lowe, 2003). Observed silicon isotope also implies a high seawater temperature of about 340 K in 3.5 Ga (Robert25
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and Chaussidon, 2006). However, the observed low-δ18O sediment might be caused by local geothermal heat flows, therefore

the temperatures inferred are not the representation of global mean (Shields and Kasting, 2007; van den Boorn et al., 2007;

Feulner, 2012). Other studies suggested a moderate temperature, no higher than 313 K during the mid-Archean; a temperate

Archean climate is more acceptable (Hren et al., 2009; Blake et al., 2010).

It is generally validated that ancient CO2 concentration was much higher than the present level. On geological timescale,5

CO2 is released to the atmosphere through volcanoes and metamorphism and moved from the atmosphere by weathering of

silicate minerals (Walker et al., 1981). A lower surface temperature leads to weaker weathering of silicate minerals, therefore

the residence time of CO2 in the atmosphere would be longer. A longer residence time is conducive to accumulation of CO2

in the air. As a result, a lower surface temperature tends to keep a higher CO2 partial pressure, which warms the planet, and

vice versa, forming a negative feedback for the long-time evolution of Earth’s climate. Analyses of ferrous carbonate minerals10

suggested that the CO2 partial pressure in 3 Ga was about 0.0025 to 0.04 bar, about 8-145 times of the pre-industrial level (Rye

et al., 1995; Hessler et al., 2004). Driese et al. (2011) suggested that the CO2 partial pressure was 10-50 times of pre-industrial

level in 2.69 Ga based on the weathering of the Saganaga Tonalite.

Methane likely played an important role in the Archean climate (Haqq-Misra et al., 2008). Methanogenesis is an anaero-

bic process used by methanogens to produce energy. This process releases methane into the surrounding environment from15

H3C-COOH . Meanwhile, the major removal mechanism of methane is oxidation by hydroxyl radical. Because the Archean

atmosphere is anoxic, the removal process of methane from the atmosphere would be much slower than present. Therefore, the

residence time of methane would be longer, leading to a methane-abundant atmosphere. However, if methane concentration

was so high that an organic haze can form when the ratio of CH4 to CO2 is larger than 0.2 (Trainer et al., 2006), there would

be a cooling effect because of stronger scattering and less shortwave flux reaching the surface. As Earth’s surface methanogen-20

esis is positively correlated with surface temperature, there is an upper limit on CH4 concentration (Pavlov et al., 2001). The

methane flux could hold a methane mixing ratio of about 10−3 (Pavlov et al., 2000).

N2 and O2 are the key bulk atmospheric constituents of the present air. During the early Earth period, O2 partial pressure

was lower than 1% of the pre-industrial level before the first Great Oxidation Event (GOE) in about 2.45 Ga (Bekker et al.,

2004; Canfield, 2005). Recent studies shown that N2 pressure was quite different from present, but whether it is lower or25

higher than present is not constrained yet. One method is measuring the ratio of N2 to Ar, with assuming atmospheric 36Ar

concentration to be constant since 3.5 Ga. Using this method, the study of Marty et al. (2013) and Avice et al. (2018) suggested

that the upper limit of Archean N2 partial pressure is likely lower than 1.1 bar, maybe as low as 0.5 bar in 3.0 to 3.5 Ga. Fossil

raindrop impressions were also used to estimate the surface air density. When assuming the maximum raindrop diameters

were essentially identical to today’s, an empirical relation between air density and maximal terminal velocity, Vterm ∝ ρ−1/2
air ,30

was used to estimate the surface air density (Som et al., 2012). The surface air pressure was constrained to be lower than

present. However, this method has large uncertainties mainly because raindrop imprint size distribution depends more strongly

on rainfall rate instead of surface air density (Kavanagh and Goldblatt, 2015). The upper limit on Archean surface air pressure

could be as high as about 9 bar based on the maximum raindrop size (Kavanagh and Goldblatt, 2015) or 3 bar based on the

bulk silicate Earth nitrogen inventory (Goldblatt et al., 2009; Mallik et al., 2018; Johnson and Goldblatt, 2015). Differences in35
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the gas bubble size between the top of basaltic lava flows and the bottom of the flows suggested that the air pressure in 2.7 Ga

might be as low as 0.23± 0.23 bar (Som et al., 2016).

Background atmospheric pressure doesn’t cause direct greenhouse effect, nevertheless, it can influence the climate via vari-

ous ways. (1) Air pressure influences shortwave radiation via Rayleigh scattering. Dense atmosphere reflects more shortwave

radiation and increases planetary albedo, thus less shortwave flux reaches the surface (Hartmann, 2016). (2) Air pressure influ-5

ences the thermal absorption of greenhouse gases. Pressure broadening widens the spectral lines of greenhouse gases such as

H2O, CO2, and CH4, leading to a positive radiative effect (Goldblatt et al., 2009; Wolf, 2014). Meanwhile, collision-induced

continuum absorption, such as the collision pairs of N2-N2, N2-CH4 and N2-H2, warms the surface if the atmospheric pressure

is high (Wordsworth and Pierrehumbert, 2013; Pierrehumbert, 2010). (3) Different background atmospheric pressure leads to

different molecular weights and heat capacities. Using a three-dimensional (3-D) idealized GCM, Kaspi and Showman (2015),10

Chemke et al. (2016), and Chemke and Kaspi (2017) found that an increase in the atmospheric heat capacity with increasing

air mass decreases the net radiative cooling in the lower layers of the atmosphere, which trends to warm the surface; moreover,

vertical heat advection by eddies decreases with increasing air pressure, which further warms the surface; both these two ef-

fects are more effective in middle and high latitudes. Therefore, the meridional temperature gradient decreases with increasing

air pressure, and the tropical trade winds and extratropical eddies and jets become weaker in strength and smaller in length15

scales. The reduced horizontal surface temperature gradient with air pressure was also confirmed in the simulations with other

global models (Komacek and Abbot, 2019) and even on tidally locked exoplanets (such as Yang et al. (2019)). (4) Background

air pressure also influences the thermal stratification of the atmosphere through its effect on the moist adiabatic lapse rate,

which is given by g RsdT
2+LvrT

cpdRsdT 2+L2
vrε

, where g is gravitational acceleration, Lv is the heat of water vapor condensation, Rsd is

the specific gas constant of dry air, r is the ratio of the mass of water vapor to the mass of dry air, and ε is the ratio of the20

specific gas constant for dry air to the specific gas constant for water vapor (Stone and Carlson, 1979; Charnay et al., 2013).

When the air pressure increases, air temperature is closer to dry adiabatic because the warming effect of a given condensation

heat on the upper atmosphere is smaller with increasing background air mass. (5) Air pressure also influences the strength of

surface wind stresses and thereby wind-driven oceanic circulation (Yang and Dai, 2015; Duhaut and Straub, 2006). In global

circulation models, the wind stresses are always parameterized as τwind = ρairCD(Us−Uo)2, where ρair is the density of the25

air, CD is the wind-drag coefficient, Us is the wind speed at a certain height above the sea surface, and Uo is the speed of ocean

currents. A thinner (thicker) atmosphere results in weaker (stronger) wind stresses and smaller (larger) meridional oceanic heat

transport, for a given surface wind speed.

In this study, we use a 1-D radiative-transfer model and a 3-D global atmospheric circulation model to examine the climatic

influences of varying background atmosphere pressure under a dimmer sunlight. Our aim is to figure out how changes in30

atmosphere pressure affect the climate during the early period of Earth. In section 2, we introduce the model and experimental

designs. In sections 3 and 4, we show the results of the radiative transfer model and the global circulation model, respectively.

Section 5 is the summary.
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Figure 1. The divergence of oceanic heat transport (OHT) specified in the simulations with positive value representing a cooling effect and

negative value a warming effect on the surface. Black line: the modern Earth’s value but it is set to be symmetrical about the equator. Red

line: twice the modern level. Blue line: half of the modern level.

2 Model descriptions and experimental designs

2.1 1-D radiative-transfer model

Firstly, we use the 1D radiative-transfer model, Climate Modelling Toolkit (CliMT, Monteiro and Caballero (2016)) to

examine the radiative effect of varying surface air pressure. The main radiative effect can be divided into two parts. On one

hand, a thicker atmosphere leads to more Rayleigh scattering in shortwave radiation, which would be a negative forcing for5

surface temperature. On the other hand, a thicker atmosphere increases the absorption of greenhouse gases due to pressure

broadening, leading to a positive forcing. To test the influences of these two parts under different situations, we run four groups

of experiments. In the groups A and B, we test a moist atmosphere and the air temperature decreases from the surface to the

top of the model following moist adiabatic (i.e., relative humidity is 100%) until the temperature reaches a minimum of 200

K. Above this level, the atmosphere is set to be isothermal with a temperature of 200 K and has a constant specific humidity.10

In the groups C and D, we test a dry atmosphere with no water vapor. The temperature profile is similar to the cases of A and

B but replaced with dry adiabatic below the layer of 200 K. In the groups of A and C, the partial pressure of CO2 is 33.4 Pa

(close to the value of the present atmosphere), and in B and D, it is 10,000 Pa, i.e., 0.1 bar. In each group, we test a series of

different surface air pressures: 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 bar. The model has 300 vertical levels. Through these

four groups of experiments, we can know the effect of air pressure on the radiative transfer of CO2 and H2O.15

2.2 3-D atmospheric general circulation model

Secondly, we employed a general circulation model (GCM) to examine the influences of atmosphere background pressure

and oceanic heat transport (OHT). The Community Atmosphere Model (CAM3) developed at the National Center for Atmo-
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Table 1. 3D general circulation model settings and the simulated global-mean surface temperature. In these experiments, the effect of

doubling or halving the surface pressure on the global-mean surface temperature is between 10 and 84 K, depending on the strengths of ice

albedo and water vapor feedbacks.

Oceanic heat transport CO2 partial pressure Surface air pressure Global-mean surface temperature

0.5×OHT 0.04 bar

0.5 bar 209 K

1.0 bar 287 K

2.0 bar 301 K

4.0 bar 318 K

1.0×OHT 0.04 bar

0.5 bar 211 K

1.0 bar 295 K

2.0 bar 305 K

4.0 bar 321 K

2.0×OHT 0.04 bar

0.5 bar 287 K

1.0 bar 300 K

2.0 bar 310 K

4.0 bar 326 K

0.5×OHT

0.06 bar

0.5 bar

212 K

0.08 bar 275 K

0.10 bar 284 K

0.12 bar 289 K

spheric Research (NCAR) (Collins et al., 2004) is a widely used model to study climates of Earth’s present, past, and future.

The model is able to well simulate the present climate (Hurrell et al., 2006; Hack et al., 2006). CAM3 has also been used to

successfully study past climates, such as the Eocene epoch (Huber and Caballero, 2011). A slab ocean module is coupled to

the GCM. It allows for a fully-interactive treatment of surface energy exchange processes (Collins et al., 2004). The slab ocean

module represents the mixing layer of ocean and calculates the sea surface temperature, sea ice coverage and ice thickness5

based on surface energy balance. A thermodynamic sea ice model is coupled to the slab ocean (Collins et al., 2006). The sea

ice model is based on Briegleb et al. (2004) and is used to calculate ice fraction and ice thickness. For the visible band (<0.7

µm), the snow albedo is 0.91 and ice albedo is 0.68 if surface temperature is below −1 ◦C. For the near infrared band (>0.7

µm), it is 0.63 for snow and 0.30 for sea ice. Between −1 ◦C and 0 ◦C, the surface albedo decreases linearly with temperature,

and the albedo at 0 ◦C is assumed to be 0.425 for sea ice and 0.656 for snow. The albedo of open ocean is varied from 0.05 to10

0.1 for different solar zenith angles and is uniform for all wavelengths (Collins et al., 2004; Yang et al., 2012).

In our study, we set an aqua planet without lands. The solar constant is set to be 1,024 W m−2, which is 75% of the

present level. The surface pressure is varied from 0.5 to 4.0 bar in different experiments (Table 1). Bulk compositions of

the atmosphere are N2, CO2, and CH4, and Oxygen and ozone are removed. The CH4 concentration is taken to be 100 Pa

(i.e., ≈1,385 times of the pre-industrial level). The partial pressure of N2O is 0.27 Pa. The total surface pressure is ptotal =15

5
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pN2 +pCO2 +pCH4 +pN2O+pH2O. By default, atmospheric CO2 partial pressure is set to be 0.04 bar and the meridional

OHT is set to be close to the model value (Fig. 1). Four different air pressures (0.5, 1.0, 2.0, and 4.0 bar) and three different

OHT levels (0.5, 1.0, and 2.0 of the present-day level) have been tested. In our simulations, there is no land and the orbital

obliquity is set to be zero, thus we set the OHT symmetrically between the northern and southern hemispheres.

Three types of cloud are considered in the model: low-level marine stratus cloud, convective cloud, and layered cloud5

(Collins et al., 2006). Cloud fraction of marine stratocumulus depends on the potential temperature difference between the

surface and the level of 700 hPa (Klein and Hartmann, 1993). As we change the atmospheric pressure in this study, we change

the critical layer from 700 hPa to 70% of surface air pressure, so that the parameterization for stratus cloud fraction has been

replaced with Cst =min{1., max[0., (θ0.7− θs)× 0.057− 0.5573]}, where θ0.7 and θs are the potential temperatures at the

layer where the air pressure is 70% of the surface pressure and at the surface, respectively. For example, if the surface air10

pressure is 0.5 bar, the parameterization will use the surface and 350-hPa potential temperatures to calculate the low-level

marine stratus cloud fraction. For layered clouds, we did similar adjustments. For convective clouds, the parameterization of

cloud fraction does not depend on air pressure.

3 Results of the 1D radiative-transfer model

The net radiative effect of increasing surface air pressure is positive when the CO2 partial pressure is 33.4 Pa (same as the15

present level) and the atmospheric relative humidity is set to 100% (Fig. 2a). The longwave radiative effect increases with

surface air pressure because of pressure broadening on the absorption lines of greenhouse gases (CO2 and H2O). Without

pressure broadening, the natural width of gas absorption lines is quite narrow (Goldblatt, 2016; Goldblatt et al., 2009). The

pressure broadening effect becomes stronger as CO2 partial pressure is increased from 33.4 Pa to 0.1 bar (Fig. 2b). The

shortwave Rayleigh scattering effect increases with surface air pressure, cooling the surface. The trend of the shortwave cooling20

effect has no obvious difference when the CO2 partial pressure is 33.4 Pa or 0.1 bar. In this calculation, the effect of pressure

broadening overcomes the effect of Rayleigh scattering, so that the net radiative effect is positive. Based on these results, we

know that if the Archean has a thinner atmosphere, the radiative effect would be a cooling.

For the strength of the pressure broadening effect, the concentrations of greenhouse gases are important, besides of the level

of air pressure. The warming effect due to pressure broadening weakens when water vapor is removed in the radiative-transfer25

calculations while the effect of Rayleigh scattering has no significant change (Fig. 3 versus Fig. 2). As the CO2 partial pressure

is 33.4 Pa, the effect of Rayleigh scattering dominates over pressure broadening (Fig. 3a). As the CO2 partial pressure is 0.1

bar, the warming of pressure broadening and the cooling effect of Rayleigh scattering nearly cancels (Fig. 3b).

6
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Figure 2. The radiative effects of varying surface air pressure in a saturated atmosphere, calculated using the 1D radiative transfer model. (a)

CO2 partial pressure is 33.4 Pa (close to the present level) and the solar constant is 75% of the present level. (b) same as (a) but the partial

pressure of CO2 is 0.1 bar. The relative humidity is set to 100% everywhere. The surface temperature is 300 K and the temperature profile

follows moist adiabatic.

Figure 3. Same as Fig. 2 but for a dry atmosphere. The relative humidity is zero everywhere. The surface temperature is 300 K and the

temperature profile follows dry adiabatic.

4 Results of the 3D GCM

4.1 The effect of varying surface air pressure

As shown in Fig. 4a, the surface temperature increases with increasing surface pressure. When the solar constant is set to

75% of the present level, oceanic heat transport is fixed to the modern level of Earth, surface air pressure is 1 bar and CO2

partial pressure is set to 0.04 bar (about 145 times the pre-industrial level), the equator-to-pole surface temperature difference5

is 42 K and the global-mean surface temperature is 294 K, somewhat warmer than that of modern Earth. When the surface air

pressure is decreased from 1 to 0.5 bar, the planet enters into a snowball state (blue line in Fig. 5a) due to the weakening of

atmospheric greenhouse effect as addressed in the section 3 and to the strong effect of ice albedo feedback. The global-mean

surface albedo is 0.71 in the 0.5 bar case whereas it is only 0.08 in the 1.0 bar case. When the surface air pressure is increased

from 1.0 to 2.0 bar, the global-mean surface temperature increases by 10 K, and all the sea ice melts (green line in Fig. 5a).10

When the surface air pressure is further increased from 2.0 to 4.0 bar, the global-mean surface temperature increases by 17 K.
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Besides of the ice albedo feedback, other processes could also influence the response of surface temperature when the

surface air pressure is changed. Water vapor feedback, a positive feedback, acts to amplify the surface warming when the

surface pressure is increased whereas it acts to amplify the surface cooling when the surface pressure is decreased (Fig. 6). The

global-mean vertically integrated water vapor mass is 0.1, 36, 61, and 173 kg m−2 in the experiments of 0.5, 1.0, 2.0, and 4.0

bar, respectively.5

Cloud feedback is also positive in these experiments. The global-mean net (shortwave plus longwave) cloud radiative effect

at the top of the atmosphere is -9.0, -4.1, and 2.4 W m−2 in the experiments of 1.0, 2.0, and 4.0 bar, respectively (Fig. 7a). There

are two main characteristics in the response of the clouds as increasing the air pressure. Firstly, the fraction of low-level clouds

decreases whereas the fraction of high-level clouds increases, meaning that there is an upshift of the cloud system (Fig. 8a).

This is consistent with the response of the Hadley cells that reach higher levels as the surface pressures increase (Fig. 11).10

Secondly, the high-concentration regions of cloud water path exhibits a significant equatorward shift as increasing the surface

pressure (Fig. 9a). This equatorward shift is related to the response of mid-latitude jets that is associated with the change of

vertical stratification; we plan to address this in a separate paper, in which we will focus on atmospheric dynamics.

In the case of 0.5 bar, the shortwave cloud radiative effect is close to zero. This is because all of the surface is covered by ice

and snow and thereby the surface albedo is close to cloud albedo (Pierrehumbert, 2005). So that, the net cloud radiative effect15

in this case is dominated by the longwave cloud radiative effect, which is positive. In global mean, the net cloud radiative effect

is +8.0 W m−2. Moreover, the cloud water path is very low in the snowball state but the cloud fraction is the highest among

the four experiments. The latter is due to that relative humidity in the extremely cold snowball state is higher than that in other

cases.

Figure 10 shows the meridional atmospheric energy transport, which is calculated using 2πRcosθ
∫ Ps
0

(cpT+LQ+gZ)V dp
g ,20

where R is the planetary radius, g is the surface gravity, T is the air temperature, Q is the specific humidity, Z is the geopo-

tential height, cp is the specific heat capacity, and L is the latent heat of fusion. This figure shows that the atmospheric energy

transport nearly doesn’t change when the surface air pressure is varied. For given atmospheric meridional velocities, the merid-

ional atmospheric energy transport should increase as increasing the air mass. However, the meridional velocities decrease

when the surface air pressure is increased (Fig. 11b, c, & d). As a result, the meridional atmospheric energy transport doesn’t25

change obviously. An exception is the snowball case of 0.5 bar (Fig. 10a), in which the atmospheric energy transport is the

lowest. This is due to the higher surface and planetary albedos and consequently less energy is required to be transported from

the low latitudes to the high latitudes.

Besides of the warming of the global surface when the air pressure is increased, another obvious feature of the surface

response is that the increases of surface temperature at the polar regions are higher than that at the low latitudes (Fig. 4a).30

The surface temperature at the equator rises by 10 K as the surface pressure is increased from 1.0 to 2.0 bar, while the polar

surface temperature rises by 23 K. The main reason is the ice albedo feedback. When the surface air pressure is 1.0 bar, the

high latitudes are covered by sea ice and snow (Fig. 5a), which reflect shortwave radiation effectively. In the 2.0 bar case, all

the surface ice melts, absorbing more shortwave radiation at the sea surface. Moreover, cloud feedback also acts to reduce the

equator-to-pole temperature difference, especially in the cases of 2.0 and 4.0 bar (Figs. 8 and 9). As the surface pressure is35
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Figure 4. Zonal-mean surface air temperatures in all of the experiments. (a): Varying surface air pressure (0.5, 1.0, 2.0, and 4.0 bar) under

fixed oceanic heat transport (OHT) (equal to the modern level, or 1.0 OHT) and fixed CO2 partial pressure (0.04 bar). (b): Same as (a), but

for 0.5 times the modern OHT. (c): Same as (a), but for twice the modern OHT. (d): Varying CO2 partial pressure (0.06, 0.08, 0.1, and 0.12

bar) under fixed OHT (half of the modern level) and fixed surface air pressure (0.5 bar). In all these cases, the solar constant is 1,024 W m−2,

CH4 partial pressure is 1 mbar, and N2O partial pressure is 0.27 µbar.

increased from 2.0 to 4.0 bar, the low-level clouds reduce in both cloud fraction and cloud water path and the high-level clouds

exhibit a significant upper lift at middle and high latitudes of both hemispheres. Both these two responses act to warm the

surface through reflecting less shortwave radiation from the Sun and through trapping more infrared radiation from the surface.

Although the surface temperature increases with air pressure, the precipitation rate does not exhibit the same trend. As

shown in Fig. 12a, b & c, in general, the precipitation becomes weaker in the tropics but becomes stronger in the mid-latitudes5

as increasing the air pressure, under given oceanic heat transport and greenhouse gas concentrations. This is due to that a

stronger Rayleigh scattering with increasing surface pressure leads to more shortwave reflection and less shortwave radiation

reaching the surface, so that less evaporation and convection can be driven in the tropics. This mechanism was first proposed

in Poulsen et al. (2015). The increasing trend of precipitation in the mid-latitudes is due to the increases of surface and air

temperatures and more water vapor can be maintained in the atmosphere and supplied to rainfall.10
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Figure 5. Same as Fig. 4 but for sea ice fraction. Note that the green and red lines coincide in panels (a) and (b), and the black, green, and

red lines coincide in panel (c). The surface is completely ice-free in the cases of 2.0 and 4.0 bar in (a), of 2.0 and 4.0 bar in (b), and of 1.0,

2.0, and 4.0 bar in (c).

Figure 6. Same as Fig. 4 but for vertically-integrated zonal-mean water vapor in the atmosphere (kg m−2).

Figure 7. Same as Fig. 4 but for net (shortwave plus longwave) cloud radiative effect at the top of the atmosphere. In (a), the global-mean

values are 8.0, -8.9, -4.1, and 2.4 W m−2 for the blue, black, green, and red lines, respectively. In (b), the corresponding values are 8.5, -9.5,

-8.6, and 0.6 W m−2. In (c), the corresponding values are -9.1, -2.3, 2.0, and 7.0 W m−2. In (d), the corresponding values are 8.9, -11.2,

-13.0, and -14.1 W m−2.
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Figure 8. Cloud fraction (0-1) as a function of latitude and sigma coordinate (η = p
ps

). (a) Varying surface pressure under 1.0 OHT and 0.04

bar CO2; (b) varying surface pressure under 0.5 OHT and 0.04 bar CO2; (c) varying surface pressure under 2.0 OHT and 0.04 bar CO2; and

(d) varying CO2 concentration under 0.5 OHT and 0.5-bar surface pressure.

Figure 9. Same as Fig. 8 but for cloud water path (g m−2).

Figure 10. Same as Fig. 4 but for northward atmospheric energy transport (PW, 1 PW = 1015 W). The 0.5-bar surface pressure case in (a),

the 0.5-bar surface pressure case in (b), and the 0.06-bar CO2 case in (d) are in snowball state, so that the energy transports are small.
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Figure 11. Same as Fig. 8 but for atmospheric mass streamfunction (color shading, in units of 1011 kg s−1) and zonal-mean meridional

winds (contour lines, with an interval of 0.5 m s−1 and with positive (negative) values representing northward (southward). (a-d) Varying

surface pressure under 1.0 OHT and 0.04 bar CO2; (e-h) varying surface pressure under 0.5 OHT and 0.04 bar CO2; (i-l) varying surface

pressure under 2.0 OHT and 0.04 bar CO2; and (m-p) varying CO2 concentration under 0.5 OHT and 0.5-bar surface pressure.
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Figure 12. Same as Fig. 4 but for zonal-mean precipitation (mm per day).

4.2 The effect of varying oceanic heat transport

Oceanic heat transport (OHT) can also influence the surface temperature. In general, if the OHT is stronger, the surface

becomes warmer. This is due to the fact that oceanic heat transport acts to melt the ice and snow in the high latitudes; water

vapor feedback acts to further amplify the surface warming (Herweijer et al., 2005; Rose and Ferreira, 2012). For instance,

the surface ice coverage is 0.17, 0.03, and 0 (Fig. 5a, b, & c) and the global-mean surface temperature is 287, 295, and 300 K5

(Fig. 4a, b, & c) in the cases of 0.5, 1.0, and 2.0 times the present-day OHT under a surface pressure of 1 bar. Another example

is that when the surface pressure is 0.5 bar, OHT is able to avoid the planet falling into a snowball state if it is increased from

0.5 or 1.0 to 2.0 times the present-day level.

The warming effect of increasing OHT is weaker when the high latitudes are ice-free (see the green and red lines in Fig. 4a,

b, & c). In all the experiments, the changes of surface temperature in the tropics are weaker than those at high latitudes.10

This result is due to the combined response of atmospheric energy transport and clouds. Atmospheric energy transport tends

to compensate the change of OHT in spite of not 100% (Fig. 10a, b, & c). The atmospheric energy transport decreases as

increasing OHT, same as that found in previous studies of Winton (2003), Vallis and Farneti (2009), and Barreiro et al. (2011).

For the cloud feedback, the Hadley cells become weaker when OHT is increased, due to that OHT weakens the meridional

temperature gradient; as a result, both cloud fraction and cloud water path decrease in the deep tropics (Fig. 8a, b, & c and15

Fig. 9a, b, & c), which allows more shortwave radiation to reach the tropical surface and warms the surface, same as that found

in Koll and Abbot (2013).

Interesting, in the snowball cases (blue lines in Fig. 4a & b), the surface temperature around 20◦S and 20◦N are higher

than that in the deep tropics. This is due to the fact that the ice is covered by snow in the deep tropics and in the poleward

regions of 30◦S and 30◦N, but the ice is snow-free in the subtropics where sublimation is faster than snowfall. As a result, the20

direction of the atmospheric energy transport in the deep tropics is equatorward rather than poleward although the magnitude is

small (Fig. 10a & b). Moreover, the atmospheric energy transport is also equatorward in the cases of doubling OHT as shown

in Fig. 10c. This is due to that this specified value of OHT is so strong that the surface temperature in the deep tropics is

somewhat lower than that in the subtropics (Fig. 4c). This result is unrealistic and implies that fully coupled atmosphere-ocean

circulation models are required in this problem.25
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4.3 How much CO2 is required to maintain a temperate early Earth?

In this section, we discuss how much CO2 is required to maintain a temperate climate during the early Earth. Here, we define

a temperate climate for which the global-mean surface temperature is roughly within a 10-K range of the modern value, i.e.,

288± 10 K. The results of this study and other GCM studies of Wolf and Toon (2013), Wolf and Toon (2014), Charnay et al.

(2013), and Le Hir et al. (2014) are summarized in Table 2. Although these GCM simulations employed different oceanic heat5

transports (zero or a specified heat flux), different continental configurations (aqua-planet, idealized continents, or present-day

continents), different obliquities (23.4◦ or 0◦), different rotation period (24 or 18 hours per day), we could still find some

commonness. First, under a surface pressure of 1 bar, a CO2 partial pressure of about 0.01 bar plus a CH4 partial pressure of

about 1 mbar or a CO2 partial pressure of about 0.1 bar plus near-zero CH4 is required to maintain a temperate climate for early

Earth during which the solar constant was 75% or 80% of the present-day level. Second, increasing air pressure acts to warm10

the planet whereas decreasing air pressure acts to cool the planet. Third, if the meridional OHT is stronger (weaker) than the

modern value, less (more) greenhouse gases are required to sustain a temperate surface. Fourth, it seems the uncertainties in

continental configuration, obliquity (as long as it does not change much), and rotation period for the early Earth do not strongly

influence the global-mean climate although these factors do influence local and/or seasonal climate.

In our simulation of 1.0 bar surface pressure and 1.0×OHT, with 0.04 bar CO2 and 1 mbar CH4, the global-mean surface15

temperature reaches 295 K. This result is close to Wolf and Toon (2014), which obtains a global-mean surface temperature of

288 K with 0.032 bar CO2 and 0.1 mbar CH4 under 1.0 bar N2 and 75% solar constant. Other studies give a combination of

0.01 bar CO2 and 2 mbar CH4 to reach a temperate climate under 75% solar constant (Charnay et al., 2013). In Le Hir et al.

(2014), the surface temperature reaches 289 K with 0.056 bar of CO2 and 1.7 µbar of CH4 under 77% solar constant. When

the surface pressure is 0.5 bar but the oceanic heat transport is twice the modern level, a combination of 0.04 bar CO2 and 120

mbar CH4 is enough to keep a temperate climate.

5 Summary

Here, we employed CAM3 to study the effects of varying surface air pressure, oceanic heat transport, and greenhouse gas

concentrations on the Archean climate when the Sun was 25% dimmer than that in the present day. We confirm that a thicker

(thinner) atmosphere leads to a warmer (cooler) climate. Oceanic heat transport also plays a significant role in the climate. A25

stronger oceanic heat transport can prevent the planet from a fully ice-covered snowball case. Under a surface pressure of 1.0

bar, a combination of about 0.01 bar CO2 and 1 mbar CH4 is required for early Earth to retain a climate similar to modern Earth.

The effect of halfing or doubling the surface pressure on the global-mean surface temperature is about 10 K or even as large

as 17–84 K when the ice albedo feedback or water vapor feedback is strong (Table 1). If the Archean atmosphere is thinner

and the oceanic heat transport is weaker, a combination of 0.1 bar (or more) CO2 and 1 mbar CH4 is required to maintain a30

temperate climate. Future work should explore the magnitude of oceanic heat transport under different surface pressures using

coupled atmosphere-ocean models and the feedback of clouds under different surface pressures using cloud-resolving models.
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Table 2. Results of different AGCM experiments for early Earth

References Solar PS OHT CO2 CH4 Continent Obliquity Prot TS

[bar] [bar] [bar] [◦] [hr] [K]

Charnay et al. (2013)

75% 1.0 simplified ocean 0.1 2×10−3 aqua-planet 23.4 24 292

80% 1.0 simplified ocean 0.01 2×10−3 aqua-planet 23.4 24 287

80% 1.0 simplified ocean 0.01 2×10−3 present-day 23.4 24 284

80% 1.0 simplified ocean 0.01 2×10−3 supercontinent 23.4 24 285

Le Hir et al. (2014)
77% 1.0 diffusive ocean 0.056 1.7×10−6 Idealized 23.4 24 289

77% 1.0 diffusive ocean 0.112 1.7×10−6 Idealized 23.4 24 294

Wolf and Toon (2013)
80% 1.0 present-day 0.015 1×10−3 present-day 23.4 24 285

80% 1.0 present-day 0.02 0 present-day 23.4 24 296

Wolf and Toon (2014)

75% 1.0 mixed-layer ocean 0.032 1×10−4 present-day 23.4 18 288

75% 1.65 mixed-layer ocean 0.015 1×10−4 present-day 23.4 18 288

80% 0.86 mixed-layer ocean 0.06 0 present-day 23.4 18 286

80% 1.0 mixed-layer ocean 0.06 0 present-day 23.4 18 288

80% 1.26 mixed-layer ocean 0.06 0 present-day 23.4 18 290

80% 1.65 mixed-layer ocean 0.06 0 present-day 23.4 18 293

80% 2.44 mixed-layer ocean 0.06 0 present-day 23.4 18 298

This work

75% 1.0 0.5×OHT 0.04 1×10−3 aqua-planet 0 24 287

75% 1.0 1.0×OHT 0.04 1×10−3 aqua-planet 0 24 295

75% 0.5 2.0×OHT 0.04 1×10−3 aqua-planet 0 24 287

75% 0.5 0.5×OHT 0.10 1×10−3 aqua-planet 0 24 284

75% 0.5 0.5×OHT 0.12 1×10−3 aqua-planet 0 24 289

Code and data availability. The model CAM3 can be downloaded from http://www.cesm.ucar.edu/models/atm-cam/. Requirements for the

changes of model source codes can send an email to XJY: jybear@pku.edu.cn.
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