RESPONSE TO ANONYMOUS REFEREE #1 COMMENTS (JUNE 2020)

Referee #1:

General Comment: “Deep time climate and ecosystem reconstructions are challenging. Understanding how Earth’s climate, tectonic and ecosystem modifications are linked represent an interesting advance. Consequently, this paper is an important contribution. Overall the article is well written however the discussion can be improved (not enough well organized). I identified several areas requiring clarification (listed below). These problems being easily solvable, I recommend a minor revision (ranked by order of importance).”

Response: We thank reviewer #1 for their appreciation of this work.

Comment (1): “The discussion is not very clear. Indeed short-term variations and long-term processes are included in same sub-sections without to distinguish between modeling results and proxy (for instance lines 191-225 introduce modeling results while lines 226-243 present short-term pCO2 variations and biological turnovers. I do not think this presentation is very clear for the reader, indeed these parts have no links (or there is something lacking)). Moreover the discussion about ecosystem perturbations is interesting but has a modest impact to understand links between paleo-pCO2 and biological events. To highlight their results, the authors may consider to split their discussion (long-term vs short term) or creating a new sub-section for presenting modeling results.”

Response: We, respectfully, do not agree that the discussion needs to be reorganized. We chose to present the discussion holistically by integrating modeling and proxy components via time increments. That is, we present three segments that not only correspond to three climatically and ecologically unique intervals (Middle to Late Pennsylvanian, Asselian and Sakmarian portion of the early Permian, and the remainder of the early Permian) but also correspond to long term pCO2 trends and important superimposed short-term trends. We strongly feel that removing the short-term trends into a separate section results in loss of context in relation to the long-term trends throughout the record.

That said, in order to resolve reviewer #1’s concern that short- and long-term term CO2 variability and processes are presented together in the discussion, we have reorganized the manuscript in the following manner:

We have altered lines 226-227 (lines 230-232 after changes suggested by reviewers 1 and 2) to “Short-term fluctuations in pCO2 are superimposed on the long-term decline through the latter portion of the Carboniferous. These short-term fluctuations have been confirmed as statistically significant (99.9 to 100% of estimates; Fig. 4b-d) and coincide with major environmental and biotic events.” in order to provide a better segue the switch from discussion of the long-term trends to the superimposed short-term trends.
In addition, we have removed subsection 4.3 and rearranged and integrated that text into the latter portion of subsection 4.2 (lines 351-382 after changes suggested by reviewers 1 and 2). In this manner, all sections in the discussion are now arranged by subsections that correspond to time and CO$_2$ trends. Each subsection is structured such that the long-term proxy trends and model explanation of those long-term trends are discussed first, followed by discussion of short terms trend and their correlation ecosystem perturbation. This reconfiguration preserves the intended holistic presentation of the discussion while also clearing delineating long- and short-term trends within each subsection. We hope that this resolves the issue brought forth by reviewer 1.

Comment (2): “A few sentences of the discussion need to be rephrased or revised in order to reflect that initiation and deglaciation CO$_2$-thresholds are different due to the climate hysteresis. Indeed the authors tend to consider the “CO$_2$ glacial threshold” as an absolute value which determines the climate state of the Earth. The line 299 is correct because the final pCO$_2$ (case at 270Ma, blue dot fig.5) is far above the glacial threshold however elsewhere even if the simulated CO$_2$ overcomes the proposed glacial threshold, that does not mean the termination of the Late Paleozoic Ice Age. ex : line 314 (the sentence can be removed) ex : line 383-390 (this issue can be solved by adding error bars for age determination for each steady state - indeed boundary conditions used to force climate models have their own uncertainties, especially paleomagnetic data used to reconstruct paleographies)”

Response: We certainly did not intend to imply that the CO$_2$ threshold for initiation of continental ice was a threshold above which all glaciers would collapse. Also on the time scales at which we are dealing with in this paper (10s of thousands to millions of years), the time lag between the rise in CO$_2$ above a level at which continental glaciers can be sustained and the timing of glacier collapse determined by hysteresis (1000 of years) would not be discernable.

We have clarified the original statement (Line 314, lines 335-339 after changes suggested by reviewers 1 and 2) to address this by the following revision: “This finding, together with the hypothesized need (the aforementioned mechanism two) for minimally a 4-fold increase in mafic-rock outcropping in order to maintain CO$_2$ concentrations below the ice initiation threshold for a sustained period longer than that of hysteresis (i.e., throughout the interval of minimum CO$_2$ and apex of glaciation; Fig. 5), argues for a substantial increase in weatherability from the Carboniferous to early Permian driven by a compositional shift in outcropping rocks available for weathering to a higher mafic-to-granite ratio.”

Concerning Lines 383-390 (lines 401-409 after changes suggested by reviewers 1 and 2), we have added error bars to simulated steady-state CO$_2$ and 87Sr/86Sr trendlines, constrained by the simulated intervals (symbols on the figure) as requested.

Comment (3): “fig.3b. the chosen colour are misleading and implicitly suggests “anomalies”. Moreover authors seem to assume two climate states characterized by a threshold close to 400ppmv of CO$_2$. This
point needs more explanation (why this threshold is so different compared to values used in fig.5 and published by Lowry et al. 2014 ?)"

Response: The 400 ppm value is not a threshold, but rather the mean value for the 16 million-year record of atmospheric pCO$_2$ through the later Pennsylvanian reported in Montañez et al. 2016 and was used here as a guide solely. We have clarified this in the figure 3b caption (lines 493-494 after changes suggested by reviewers 1 and 2).

Comment (4): “line 167. I don’t understand how the duration of the “interglacial phase” has been estimated (104 yr). S6 suggests a range of values for the sedimentation rate. Why the duration does not seem to be affected by uncertainties (or explain why the duration does not depend on geological parameters)? In addition could you precise if the proposed duration (104 yr) is the mean value or the maximal value (or something else)? A brief paragraph summarizing limitations will be helpful for readers not familiar with this method.”

Response: The Midcontinent and Appalachian cyclothems from which many of the samples were obtained, are inferred as eccentricity cycles (Fielding et al. 2020). Fielding et al. 2020 has recently concluded that “geochronological constraints are consistent with each cycle representing a 100 ky (short eccentricity) interval, most likely related to waxing and waning of contemporaneous ice centers on Gondwana.” In addition, given that interglacials of today have a duration of 10s of 1000s of years, by analogy, interglacials of the past are also 10s of 1000s of years in duration. We have revised Lines 166 to 168 (lines 167-171 after changes suggested by reviewers 1 and 2) to clarify this. The sentence now reads: “Notably, the newly integrated record confirms elevated atmospheric CO$_2$ concentrations (482 to 713 ppm [-28/+72 ppm]) during Pennsylvanian interglacials in comparison to pCO$_2$ during glacial periods (161 to 299 ppm [-96/+269 ppm]), with interglacial durations on the order of 1000s to 10s of 1000s of years given the inferred eccentricity scale duration of the glacial-interglacial cycles (Horton et al. 2012; Montañez et al. 2016; Fielding et al. 2020).”

RESPONSE TO ANONYMOUS REFEREE #2 COMMENTS (JUNE 2020)

General Comment: “This paper improves the CO2 proxy record for the late Paleozoic and compares CO2 variations to other Earth system indices. Considerable care has been taken in assembling this record and evaluating it statistically, which is much appreciated and it will be a useful resource for the community. The paper also adapts previous modeling to assess what has driven the changes in CO2, and concludes that a change towards more reactive silicate lithology is necessary, for which there is independent support. Overall in my opinion it is a good, clear paper that needs little revision. I do have some minor revisions to suggest:”

Response: We thank reviewer #2 for their appreciation of this work and encouraging comments.
Comment (1): “Line 39: typo “DiMichele, 2104”

Response: This has been fixed.

Comment (2): “Line 67: note the DOI address here does not currently work”

Response: This was intentional. The underlying data has been deposited in the Dryad Digital Repository, but we chose to keep the data private during the process of peer review. If this work is accepted, we will make the data fully public. Until that time, the data set can be shared privately via a URL if requested by either the editor or reviewers.

Comment (3): “Line 78: it is a bit confusing that this paper appears to cite itself? Again on line 137.”

Response: That is not a citation of this paper, but the underlying data. The author guide to Climate of the Past mandates “the proper citation of data sets in the text and the reference list (see section references) including the persistent identifier.” We have cited the dataset as Richey et al. 2020 to comply with these instructions. However, we have altered all of the in-text citations of the dataset to include the DOI and make it clear that the dataset is being cited (lines 74, 79, 82, 138, 478 after changes suggested by reviewers 1 and 2). If we have misunderstood the instructions on how and when to cite the underlying data, please let us know and we will make any necessary changes.

Comment (4): “Line 112: Estimates of mean annual temperature are used to help determine past CO2 levels. Any circularity should be considered here when going on to link the CO2 estimates to climate.”

Response: Yes, this is correct; we used mean annual air temperatures as input for the PBUQ model to estimate the paleo-CO2 estimates in cases where the paleosol estimates were reformulated in this study. For the part of the paleosol-based reconstruction that comes from Montañez et al. 2016 (i.e., the Pennsylvanian and earliest Permian estimates), a broad range of temperatures of 20 to 26°C (i.e., 23°C ±3°C) was prescribed. For the estimates from Montañez et al. 2007 reformulated in this study (most Permian paleosol estimates), we use proxy soil temperatures that come from many of the same paleosols (Tabor and Montañez 2005; Tabor et al., 2013). For the latter, for intervals with proxy soil temperatures of > 30°C, we used temperatures 5°C lower as the MAAT, for proxy soil temperatures of >25°C to ≤ 30°C, we used temperatures 3°C lower, and for temperatures ≤ 25°C, we used the actual proxy value. This scheme resulted in MAAT temperatures that range from 23 to 30°C. The error on these temperatures was assigned at ±3°C, like the estimates from Montañez et al. 2016. Despite the differences in the method by which MAAT was prescribed or calculated, out of the 103 paleosol-based estimates, only 5 MAAT values used fall out of the range of 20 to 26°C (i.e., 23°C ±3°C).

These MAAT estimates are purposefully broad, given the uncertainty in paleo-temperatures for these past periods. However, the temperature ranges overlap with the range (18 to 26°C) indicated by the climate modeling for the terrestrial realm of the Pennsylvanian and early Permian Pangaean tropics (Poulsen et
In addition, the temperatures used overlap with the lower range of the pedogenic phyllosilicate temperatures (23 to 32°C) published by Rosenau and Tabor (2013). Importantly, there is no circular reasoning involved in using these values, as the reviewer raised as a concern, as these temperature estimates of 20 to 26°C encapsulate the minimum and maximum temperatures simulated by a GCM (GENESIS3; Horton et al. 2010; 2012) and an Earth System Model (iCESM 1.2; Macarewich et al. 2019; in revision) for the continental tropics over a CO\textsubscript{2} range of 280 to 840 ppm (overlapping the range of CO\textsubscript{2} calculated in the LOESS analysis in this study (175 to 750 ppm). Thus, by using the full range of MAATS (20 to 26°C, rarely >26°C) consistently throughout the modeling of the samples of Pennsylvanian and earliest Permian age, we feel we have conservatively represented the realistic MAATs in the paleotropics during the late Paleozoic in a manner that precludes circularity.

Comment (5): “Line 118: The Donnadieu paper cited is about the Cretaceous? Surely the model runs are not from that work?”

Response: The Donnadieu et al. 2016 paper was solely referenced for the model and methods – not the results. However, after review, we have decided that Donnadieu et al. (2006) would be a more appropriate citation for model and methods than Donnadieu et al. (2016). We have addressed this removing Donnadieu et al. (2016) and adding “and approach as described in Donnadieu et al., (2006).” to the statement. The revised sentence now reads “The spatial distributions of the mean annual runoff and surface temperature were calculated offline for five time increments (Goddéris et al., 2017) covering the period of interest and for various atmospheric CO\textsubscript{2} levels using the 3D ocean-atmosphere climate model FOAM and the approach as described in Donnadieu et al., (2006) (lines 117-119 after changes suggested by reviewers 1 and 2).

Comment (6): Line 170: “307 and 304.5 Ma” should read “307 until 304.5 Ma”?, “<400 to ⇠ 200 ppm” also a bit confusing.

Response: This has been changed to “…2.5-Myr interval (307 to 304.5 Ma) of minimum CO\textsubscript{2} values (less than 400 to as low as 200 ppm)...” (line 173 after changes suggested by reviewers 1 and 2).

Comment (7): Line 173: missing subscript in CO\textsubscript{2}

Response: This has been fixed (line 176 after changes suggested by reviewers 1 and 2).

Comment (8): Line 269: “Notably, the 10-Myr pCO2 nadir raises a paradox as to what was the primary CO2 sink(s) at the time given that the CO2 sinks of the Pennsylvanian were no longer prevalent. This paradox reflects the waning denudation rates of the CPM by the early Permian”. Note that Joshi et al. (2019) in GRL have run climate model simulations for the earliest Permian and find higher silicate weathering rates as the denudation rate wanes. They argue that denudation rates are not a strong control
on silicate weathering in mountains where the rate is high. Perhaps a weaker relationship between
denudation and silicate weathering may help explain the paradox identified here?

Response: We thank reviewer 1 for bringing to our attention this very important paper. Indeed, Joshi et
al.’s (2019) modeling results would support the idea of a delayed capacitor-discharge mechanism as the
origin of the long-term decline in pCO_2 through the last 16 Myr of the Carboniferous (in our record) from
~500 ppm to <300 ppm by the earliest Permian, as well as the return to rising pCO_2 (to >500 ppm) after
10 million years into the early Permian.

However, we think that we must delve deeper into the respective models. The main improvement of Joshi
et al. (2019) compared to GEOCLIM is higher spatial resolution. The model used by Joshi et al. (2019)
allows a better representation of runoff, and hence, weathering, especially in the Central Pangean
Mountains (CPM). However, the major difference between both models is the absence of climate
dependence in the calculation of the spatially resolved physical erosion in Joshi et al. (2019). In their
model, physical erosion is only dependent on the prescribed altitude of each grid cell, meaning that
physical erosion is an external forcing of the model. This has major implications for the results of the
Joshi et al. (2019) model. Indeed, when the CPM are high, the drop in temperature limits weathering rates,
without compensation by enhanced runoff linked to orographic impact on the atmospheric circulation.
Consequently, in the Joshi et al. (2019) model, the maximum weathering is reached when the mountains
are already eroded (due to temperature rise at lower altitude), but physical erosion is also a function of
runoff. In GEOCLIM, the dependence of the physical erosion on runoff does not allow the existence of
such a delay between the maximum altitude of the CPM and the lowest atmospheric CO2.

Thus, we have a new paragraph to address this in Section 4.2 An Early Permian CO2 Nadir (see lines 284-
304 after changes suggested by reviewers 1 and 2). We hope that this change provides a balanced
discussion of our and Joshi et al., (2019) work. The new paragraph reads:

“Two mechanisms have the potential to resolve this paradox. The first, referred to as a delayed climate-
controlled capacitor (Joshi et al. 2019), leads to a multi-million-year delay between the timing of peak
orogenic uplift and maximum chemical weathering potential and CO2 drawdown due to substantial
differences in chemical weathering rates during the different phases of an orogenic cycle. In their study,
the highest intensity of chemical weathering and capacity for CO2 consumption occurs when mountains
have been somewhat denuded rather than during peak uplift, reflecting the disproportionate influence of
runoff temperature over hydrology and erosion on weathering potential. Notably, Joshi et al.’s (2019)
coupled climate and geochemical modeling of the Late Paleozoic Ice Age yield an evolution of simulated
pCO_2 over the period of uplift and denudation of the CPM that corresponds both in absolute CO2
concentrations and magnitude of change over this period (~320 to 290 Ma). That said, in Joshi et al.
(2019), the physical erosion parameter is not dependent on climate, but, rather, is defined by the prescribed
altitude. Thus physical erosion is an external forcing in their model. The absence of runoff dependence
for physical erosion (as is the case for GEOCLIM) and the strong dependence of weathering on
temperature may be the trigger for their simulated delay between maximum uplift and the highest intensity
of CO2 consumption by silicate weathering. In GEOCLIM, the dependence of the physical erosion on
runoff does not allow for a millions of years delay between maximum uplift of the CPM and lowest simulated pCO_2. Further study is needed to interrogate the influence of this approach on the results.

The second mechanism, proposed here, is a substantial shift in the ratio of mafic-to-granite rocks available for weathering from the latest Carboniferous to the early Permian. This reflects the doubling or greater increase in weatherability of mafic mineral assemblages over granitic assemblages (Gaillardet et al., 1999; Dessert et al., 2003; Ibarra et al., 2016), thus enhancing weathering efficiency and CO_2 drawdown, and creating a tighter coupling between CO_2 and climate. In turn, with tighter coupling between CO_2 and climate, the global silicate weathering flux needed to maintain homeostatic balance in the carbon cycle for a given scenario can be attained at a lower pCO_2 level.”

Comment (9): Line 284: The comparison to Macdonald et al. is a little different in timing: their suture length reconstructions are small after 300 Ma.

Response: We are not sure whether we have misunderstood this comment. We agree that the compilation of suture zones made by Macdonald et al. (2019) indicates that the ~10,000 km long Hercynian arc-continent suture zone (in the paleotropics) was at a peak prior to 300 Ma (transition from Carboniferous to Permian). Lines 286–289 (lines 308-310 after changes suggested by reviewers 1 and 2), state that we used GEOCLIM to test the Macdonald et al. 2019 hypothesis that the influence of increased mafic (ophiolites in their study) on pCO_2 was greatest in the Carboniferous. As well as to “to evaluate the potential of increased weatherability, provided by increasing the ratio of outcropping mafic rocks to granite rocks available for weathering, as the predominant driver of the early Permian CO_2 nadir. We may have confused the reader by referring to both goals of the modeling in this section.

This has been resolved by revising the sentence (lines 308-310 after changes suggested by reviewers 1 and 2) to read “Here, we used the GEOCLIM model to, first, interrogate this Carboniferous hypothesis further and, second, to evaluate the potential of increased weatherability, provided by increasing the ratio of outcropping mafic rocks to granite rocks available for weathering, as the predominant driver of the early Permian CO_2 nadir.”

Comment (10): Line 306: “rapid (0.000043/Myr)” use standard form here perhaps?

Response: This has not been changed as we believe the reviewer was asking that we change Myr to Ma. However, this would be incorrect as Ma is for a specific time vs. Myr for an increment of time (here 1 million years).

Comment (11): Line 319: “our modeling results indicate that this is not compatible with proxy inferred moderate surface conditions of the late Carboniferous” I would imagine many of the model parameters are not known well enough to really rule this out? Perhaps a more tentative statement here?

Response: We very much appreciate the reviewer’s comment and we agree that the model parameters are
associated with uncertainty. The results that we refer to in this section of the Discussion (Lines 284-328, lines 305-339 after changes suggested by reviewers 1 and 2) are 1st-order differences in steady-state pCO$_2$ that would lead to climate regimes, which differ remarkably from one another. For example, the modeled steady-state pCO$_2$ for a 2- to 4-fold increase in the surface outcropping of mafic rocks available for weathering in the Pennsylvanian leads to near Snowball Earth conditions, which are incompatible with other earth system conditions at that time (from the literature). Conversely, modeling with the reference continental silicate mineral assemblage (GEOCLIM-REG) maintains the steady-state pCO$_2$ below the threshold for initiation of continental ice sheets but above unreasonably low values (<200 ppm). However, as the reviewer points out, there are uncertainties in the modeling. For example, if the solid Earth degassing rates increased through the Pennsylvanian (we invoke a constant CO$_2$ degassing rate), then it is feasible that an increased component of weathering of mafic rocks would have maintained sufficiently high CO$_2$ concentrations to accommodate the independent evidence for surface conditions at this time.

To that end, we have tempered the statements in Lines 318 to 328 (lines 340-350 after changes suggested by reviewers 1 and 2) by revising the text as follows:

“If peak ophiolite exhumation and maximum CO$_2$ consumption by their weathering occurred in the late Carboniferous, thus initiating the LPIA (~330 to 300 Ma) as has been suggested (Table S1 of Macdonald et al., 2019), then our modeling results suggest that a substantial increase in solid Earth degassing rate at this time would have been necessary. In our simulation, increasing the surface area of outcropping mafic rocks (2- to 4-fold) during the Pennsylvanian results in steady-state atmospheric CO$_2$ levels approaching Snowball Earth conditions given other operating influences on weatherability and CO$_2$ sequestration at the time and no change in degassing rate (Fig. S6). Such conditions are not compatible with proxy inferred moderate surface conditions of the late Carboniferous (Montañez and Poulsen, 2013) and the radiation of forest ecosystems throughout the tropics (DiMichele, 2014). Rather, we hypothesize that the sustained CO$_2$ nadir and expansion of ice sheets in the first 10 Myr of the Permian record a major reorganization of the predominant factors influencing weatherability in the tropics across the Carboniferous-Permian transition, in particular, a substantial shift in the ratio of mafic-to-granitic rocks available for weathering.”

ADDITIONAL CHANGES MADE TO MANUSCRIPT.

In addition to the changes referenced in the “Response to Anonymous Referee #1” and “Response to Anonymous Referee #2” documents, we undertook the following additional changes:

1) Changed the in-text citations for consistency and clarity.

2) Made changes to text where necessary to improve consistency and clarity and to rectify typographical errors.

3) Added a citation for “Chen, J., Chen, B., and Montañez, I.P., in press, Carboniferous isotope

4) Rearranged references to conform with the rules stated on the Climate of the Past website pertaining to ordering of references.

In addition to the changes made to the main text outlined above, similar changes were made to the supplementary material for consistency and clarity.

MARKED UP VERSION OF MANUSCRIPT:

Influence of temporally varying weatherability on CO₂–climate coupling and ecosystem change in the late Paleozoic.

Jon D. Richey¹, Isabel P. Montañez¹*, Yves Goddéris², Cindy V. Looy³, Neil P. Griffis¹,₅ William A. DiMichele⁵

¹Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA.
²Géosciences Environnement Toulouse, CNRS – Université Paul Sabatier, Toulouse, France.
³Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA.
⁴Berkeley Geochronology Center, Berkeley, CA 94720, USA.
⁵Department of Paleobiology, Smithsonian Museum of Natural History, Washington, DC 20560, USA.

*Correspondence to: Jon D. Richey (jdrichey@ucdavis.edu); Isabel P. Montañez (ipmontanez@ucdavis.edu)

Abstract Earth’s penultimate icehouse, the Late Paleozoic Ice Age (LPIA), was a time of dynamic glaciation and repeated ecosystem perturbation, under conditions of substantial variability in atmospheric pCO_2 and O_2. Improved constraints on the evolution of atmospheric pCO_2 and O_2 during the LPIA and its subsequent demise to permanent greenhouse conditions is crucial for better understanding the nature of linkages between atmospheric composition, climate, and ecosystem perturbation during this time. We present a new and age-recalibrated pCO_2 reconstruction for a 40-Myr interval (~313 to 273 Ma) of the late Paleozoic that (1) confirms a previously hypothesized strong CO₂-glaciation linkage, (2) documents synchronicity between major pCO_2 and O_2 changes and compositional turnovers in terrestial and marine ecosystems, (3)
lends support for a modeled progressive decrease in the CO$_2$ threshold for initiation of continental ice sheets during the LPIA, and (4) indicates a likely role of CO$_2$ and O$_2$:CO$_2$ thresholds in floral ecologic turnovers. Modeling of the relative role of CO$_2$ sinks and sources, active during the LPIA and its demise, on steady-state pCO$_2$ using an intermediate complexity climate-C cycle model (GEOCLIM) and comparison to the new multi-proxy CO$_2$ record provides new insight into the relative influences of the uplift of the Central Pangean Mountains, intensifying aridification, and increasing mafic rock to-granite rock ratio of outcropping rocks on the global efficiency of CO$_2$ consumption and secular change in steady-state pCO$_2$ through the late Paleozoic.

1 Introduction

Earth’s penultimate and longest-lived icehouse (340 to 290 Ma) occurred under the lowest atmospheric CO$_2$ concentrations of the last half-billion years (Foster et al., 2017) and, potentially, the highest atmospheric pCO$_2$ of the Phanerozoic (Glasspool et al., 2015; Krause et al., 2018; Lenton et al., 2018). Anomalous atmospheric composition, along with 3% lower solar luminosity (Crowley and Baum, 1992), may have primed the planet for a near-miss global glaciation (Feulner, 2017). Notably, Earth’s earliest tropical forests assembled and expanded during this icehouse (the Late Paleozoic Ice Age; LPIA), leading to the emergence of large-scale wildfire. Paleotropical terrestrial ecosystems underwent repeated turnovers in composition and architecture, culminating in the collapse of wetland (coal) forests throughout tropical Pangea at the close of the Carboniferous (Cleal and Thomas, 2005; DiMichele, 2014), possibly promoting the diversification and ultimate dominance of amniotes (Pardo et al., 2019). In the marine realm, global rates of macroevolution (origination, extinction) decreased, in particular among tropical marine invertebrates, and genera with narrow latitudinal ranges went extinct at the onset of the LPIA (Stanley, 2016; Balseiro and Powell, 2019). Low marine macroevolutionary rates continued through to the demise of the LPIA in the early Permian (Stanley and Powell, 2003; McGhee, 2018).

Reconstructions of late Paleozoic atmospheric pCO$_2$ document a broad synchronicity between shifts in CO$_2$, glaciation history, glacioeustasy, and restructuring of paleotropical biomes, underpinning the hypothesized greenhouse-gas forcing of sub-million-year glacial-interglacial cycles (Montañez et al., 2016) and the terminal demise of the LPIA (Montañez et al., 2007). For late Paleozoic pCO$_2$ (and pO$_2$) reconstructions, however, broad intervals of low temporal resolution and significant
uncertainties limit the degree to which mechanistic linkages between atmospheric composition, climate, and ecosystem change can be further evaluated. Moreover, the potential impact of large magnitude fluctuations in atmospheric O₂:CO₂, which characterized the late Paleozoic, on the biosphere has been minimally addressed. On longer timescales (≥10⁶ yr), the relative role of potential CO₂ sinks and sources on secular changes in late Paleozoic atmospheric CO₂ and, in turn, as drivers of glaciation and its demise, remain debated (McKenzie et al., 2016; Goddéris et al., 2017; Macdonald et al., 2019).

Here, we present a multi-proxy atmospheric pCO₂ reconstruction for a 40-Myr interval (313 to 273 Ma) of the late Paleozoic, developed using new leaf fossil-based estimates integrated with recently published and age-recalibrated Pennsylvanian pCO₂ estimates of 10⁵-yr resolution (Montañez et al., 2016), and re-evaluated fossil soil- (paleosol) based CO₂ estimates for the early Permian (Montañez et al., 2007). Our new multi-proxy record offers higher temporal resolution than existing archives while minimizing and integrating both temporal and CO₂ uncertainties. This pCO₂ reconstruction, together with new O₂:CO₂ estimates of similar temporal resolution, permits refined interrogation of the potential links between fluctuations in atmospheric composition, climate shifts, and ecosystem events through Earth’s penultimate icehouse. Moreover, comparison of the new 40-Myr CO₂ record with modeled steady-state pCO₂ and seawater ⁸⁶Sr/⁸⁸Sr over the same interval provides new insight into the relative importance and evolution of CO₂ sinks and sources during late Paleozoic glaciation and its turnover to a permanent greenhouse state.

2 Materials and Methods

A brief account of the methods is presented here; more details are presented in the Supplementary Materials and Methods. Primary data generated or used in this study are deposited in the Dryad Digital Repository (Richey et al., 2020) and can be accessed at https://doi.org/10.25338/B8S90Q.

2.1 Sample Collection and Analysis

To build the pCO₂ record, 15 plant cuticle fossil species/morphotypes were used, collected from eight localities in Illinois, Indiana, Kansas, and Texas, USA, including four well-studied Pennsylvanian interglacial floras (Sub-Minshall [313 Ma; Šimůnek, 2018], Kinney Brick [305.7 Ma; DiMichele et al., 2013], Lake Sarah Limestone [303.7 Ma; Šimůnek,
Cuticle and organic matter occluded within pedogenic carbonates (OOM) were rinsed or dissolved, respectively, in 3M HCl to remove carbonates and analyzed at the Stable Isotope Facility, University of California, Davis, using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 IRMS. External precision, based on repeated analysis of standards and replicates, is ±0.2‰. For Hamilton Quarry (HQ), all material was previously mounted on slides for taxonomic analysis (Hernandez-Castillo et al., 2009a; Hernandez-Castillo et al., 2009b, c). Because of this, biomarker δ13C values of bulk stratigraphic sediment samples were used (Richey et al., unpublished data; see Supplementary Materials and Methods). HQ n-C27–31 n-alkane δ13C was analyzed using a Thermo Scientific GC-Isolink connected to a Thermo Scientific MAT 253. Standard deviation of n-alkane δ13C was ±0.3‰. For biomarker δ13C, a +4‰ correction was used to account for fractionation during biosynthesis (Diefendorf et al., 2015) and the standard deviation of all values was used as the uncertainty (1.6‰, five times the analytical precision).

2.2 Models
The MATLAB model Paleosol Barometer Uncertainty Quantification (PBUQ; Breecker, 2013) which fully propagates uncertainty in all input parameters, was used to derive pedogenic carbonate-based CO2 estimates (Figs. 2a, S1a). For each
locality, paleosols of inferred different soil orders were modeled separately. We applied improved soil-specific values for soil-respired CO$_2$ concentrations (S_{0i}; Montañez et al., 2013) and the δ^{13}C of organic matter occluded within carbonate nodules (δ^{13}C$_{OM}$; Fig. S5) as a proxy of soil-respired CO$_2$ δ^{13}C. For samples where OOM was not recovered, estimates were revised using PBUQ and the plant fossil organic matter δ^{13}C used in Montañez et al., (2007) (δ^{13}C$_{POM}$; Fig. S5). Because of the limited amount of carbonate nodules remaining after study by Montañez et al., (2007), δ^{13}C$_{OM}$ was substituted for δ^{13}C$_{POM}$ for localities that occur in the same geologic formation and a large error (\pm 2%) was used to account for the uncertainty in this approach. PBUQ model runs conducted in this study resulted in a small subpopulation of biologically untenable CO$_2$ estimates (i.e., \leq170 ppm; Gerhart and Ward, 2010). To limit estimates below that threshold, two changes to the PBUQ Matlab code were made (see Supplementary Materials and Methods for details). All other input parameters remained unchanged from Montañez et al., (2007).

For cuticle fossil-based (Figs. S2–4) CO$_2$ estimates (Fig. 2a, S1a), we utilized a mechanistic (non-taxon-specific) gas-exchange model (Franks et al., 2014). For some fossil cuticles, pore length (PL) was measured directly; for others, PL was inferred from guard cell length (GCL; Table S2). Guard cell width was estimated via GCL using the prescribed gymnosperms and ferns scaler (0.6; Franks et al., 2014; Table S2).

For both stomatal and pedogenic-carbonate-based CO$_2$ modeling, we calculated δ^{13}C of atmospheric CO$_2$ using the carbonate δ^{13}C record generated from an open-water carbonate slope succession (Naqing succession, South China; Buggisch et al., 2011), contemporaneous estimates of mean annual temperature (Tabor and Montañez 2005; Tabor et al., 2013), and temperature-sensitive fractionation between low-Mg calcite and atmospheric CO$_2$ (Romanek et al., 1992; Eq. S2; Table S2).

We used the spatially resolved, intermediate complexity GEOCLIM model (Goddéris et al., 2014) to quantitatively evaluate how steady-state atmospheric CO$_2$ may have responded to changes in weatherability and relative influence of different CO$_2$ sources and sinks. The spatial distributions of the mean annual runoff and surface temperature were calculated offline for five time increments (Goddéris et al., 2017) covering the period of interest and for various atmospheric CO$_2$ levels using the 3D ocean-atmosphere climate model FOAM (and the approach as described in Donnadieu et al., 2016, 2006). GEOCLIM uses generated lookup tables to calculate steady-state atmospheric CO$_2$ for a given continental configuration and to account for paleogeography and relief. Although GEOCLIM model does not include an explicit surface distribution of lithology,
weathering rate of mafic rocks and continental granites are calculated using different methods and the impact of physical erosion on granite weathering is accounted for (Goddéris et al., 2017). For mafic surfaces, a simple parametric law is used, linking the surface of the considered grid cell, the local runoff, and mean annual temperature to the local mafic weathering rate. The calibration of the GEOCLIM model was performed at the continental-scale by tuning the parameters of the model so that 30% of the alkalinity generated by the weathering of silicates originates from the weathering of mafic rocks (GEOCLIM_REG; Dessert et al., 2001; Goddéris et al., 2014).

2.3 O₂:CO₂
O₂:CO₂ ratios (Fig. 3a) were calculated using the 10,000 CO₂ estimates produced by our modeling and combined with O₂ estimates obtained using geochemical mass balance and biogeochemical models (Krause et al., 2018; Lenton et al., 2018). Unreasonably high O₂:CO₂ (generally those that correspond to CO₂ ~<200 ppm) were removed from the resulting 10,000 O₂:CO₂ data set.

2.4 Statistical Analyses
We utilize a bootstrap approach that assesses uncertainties of both CO₂ (or O₂:CO₂) and age. Each age uncertainty was truncated to ensure no overlap in locality ages, constrained by their relative stratigraphic position to one another (Richey et al., 2020). The 10,000 modeled CO₂ estimates were trimmed by 28% to remove anomalously high/low values. The means of the resulting 7,200 CO₂ estimates were compared to the trimmed means of the 10,000 CO₂ estimates to ensure that trimming did not alter the central tendency of the data. Locality ages were resampled and perturbed assuming that the individual ages and truncated age uncertainties represent the mean and standard deviation of the ages. Similarly, the trimmed CO₂/O₂:CO₂ datasets were resampled and the resampled ages and estimates were used to build 1000 resampled datasets. Each resampled dataset was subjected to LOESS analysis (0.25 smoothing) and the median and 95% and 75% confidence intervals were calculated (Figs. 2, 3a–b, S1). The Pennsylvanian and Permian portions of the record were analyzed separately due to differing data density, with significant overlap across the Pennsylvanian-Permian boundary interval (Figs. 2b, 3b, S1b).
To test the validity of short-term fluctuations in the LOESS CO₂ trend, we undertook further analysis of the raw Monte Carlo data produced by PBUQ and the mechanistic stomatal model in several short-term increments, by calculating individual CO₂ data points via bootstrapping for each increment (Figs. 2b, S1b). Eleven short-term highs or lows (A–K on Fig. 4A) were designated and used to form bins of ±0.5 to ±1 Myr. Within an individual bin, each shown ‘bootstrapped’ CO₂ data point is the trimmed mean of 10,000 Monte Carlo model runs. The Monte Carlo model runs for each data point were sorted from lowest to highest CO₂ value and the lowest CO₂ values for each data point within the bin were averaged. This averaging was repeated sequentially for each of the 10,000 values creating 10,000 means for each bin (n=11). To evaluate whether a visually perceived rise or fall (e.g., A to B decrease or B and C increase) is statistically valid, the 10,000 means of two adjacent bins were compared sequentially with one another (i.e., the mean of the lowest value of one bin was compared to the mean of the lowest value of the adjacent bin) in order to calculate a percent change (((V₂ – V₁)/V₁) * 100) for each of the 10,000 model runs, resulting in 10,000 percent changes for each set of adjacent bins. The percent of the 10,000 comparisons that confirm an increase or decrease between bins is reported (Fig. 4B–J) as a measure of the statistical significance of the short-term fluctuations in CO₂ concentration visually observed on the LOESS trend.

3 Results

Revised early Permian mineral-based CO₂ estimates define a substantially narrower range (45–1150 ppm; Fig. 2a) than previous estimates (175–3500 ppm) made using the same pedogenic carbonate sample set (Montañez et al., 2007) while maintaining the original trends and including fewer photosynthetically untenable concentrations (<170 ppm; Gerhart and Ward, 2010)). New early Permian cuticle-based estimates show a high level of congruence by locality and broad plant functional type, falling within the revised pedogenic-based CO₂ range (Figs. 2a, S1a). Similarly, stomatal-based estimates for the four Pennsylvanian interglacial floras are within the estimated ρCO₂ range defined by the pedogenic carbonates (Fig. 2a, S1a) and late-glacial wetland plant fossils (Montañez et al., 2016). Notably, the newly integrated record confirms that elevated atmospheric CO₂ concentrations (482 to 713 ppm [-28/±72 ppm]) during Pennsylvanian interglacials (<10^4 yr) were elevated (482 to 713 ppm [-28/±72 ppm]) relative to ρCO₂ during glacial periods (161 to 299 ppm [-96/±269 ppm]) with interglacial durations on the order of 1000s to 10s of 1000s of years given the inferred eccentricity scale duration of the
Overall, the new pCO₂ record documents declining CO₂ through the final 13-Myr of the Pennsylvanian into the earliest Permian, including a 2.5-Myr interval (307 and 304.5 Ma) of minimum CO₂ values (~less than 400 to ~as low as 200 ppm) in the Kasimovian (Fig. 2b, S1b). Declining pCO₂ in the late Carboniferous coincides with rising atmospheric pO₂ (Glasspool et al., 2015; Krause et al., 2018; Lenton et al., 2018); thus, O₂:CO₂ ratios in the interval of minimum Pennsylvanian CO₂ are nearly two times those of present-day (~515; gray line in Fig. 3a). A 10-Myr CO₂ nadir (~180 to <400 ppm) characterizes the first two stages (Asselian and Sakmarian; 298.9 to 290.1 Ma) of the early Permian, overlaps with the peak occurrence of glacial deposits in the LPIA (gray boxes in Fig. 2b; Soreghan et al., 2019) and defines a second interval of anomalously high O₂:CO₂ ratios (up to 970 ppm; Fig. 3a). A subsequent long-term rise (~17 Myr) in pCO₂ to peak values up to ~740 ppm (~190/+258 ppm) defines the remainder of the early Permian and coincides with multiple episodes of extensive and long-lived volcanism (Fig. 2b; Torsvik et al., 2008; Zhai et al., 2013; Sato et al., 2015; Shellnutt, 2018; Chen and Xu, 2019).

This pCO₂ rise is also coincident with a decline in O₂:CO₂ to below present-day values (Fig. 2b, S1b, 3a).

Short-term intervals of rising or falling CO₂ in the LOESS trend, within dating uncertainties, coincide with a brief but acute glaciation in the Kasimovian and with repeated deglaciations in south-central Gondwana in the early Permian (Griffis et al., 2018; Griffis et al., 2019), as well as with restructuring of marine and terrestrial ecosystems (Figs. 3b-d). The statistical significance of these short-term rises and falls in CO₂ was evaluated by analyzing the raw Monte Carlo estimates (10,000 model runs per data point shown on the LOESS trend) generated by the aforementioned CO₂ models (Breecker, 2013; Franks et al., 2014), from which the bootstrapped CO₂ estimates for eleven increments of short-term rise or fall were subsequently determined (Fig. 4a). The analysis of the Monte Carlo CO₂ estimates within these short-term intervals of rising or falling CO₂ indicates that 72.5 to 100% of the data confirm a visually observed increasing or decreasing trend (Fig. 4).

4 Discussion

4.1 Declining CO₂ through the Main Phase of the LPIA

Atmospheric CO₂ concentrations in the final 13 Myr of the Carboniferous (the Pennsylvanian portion of our record) are generally higher than those of the earliest Permian (Fig. 2b) and overall decline through the later part of the Carboniferous.
Higher pCO_2 in the latter half of the Pennsylvanian is compatible with the hypothesized waning of large Early to Middle Pennsylvanian glaciers in the Late Pennsylvanian (c.f. Fielding et al., 2008), including widespread terminal deglaciation in a major glacial depocenter in south-central Gondwana (Parana Basin, Brazil) toward the close of the Carboniferous (Griffis et al., 2018; Griffis et al., 2019). Declining pCO_2 toward a nadir in the earliest Permian is also consistent with a renewed increase in the geographic distribution of glacial deposits in Gondwana beginning in the Late Pennsylvanian and peaking (apex) in the earliest Permian (Fig. 2b; Soreghan et al., 2019).

A tectonically driven increase in CO$_2$ consumption via a strengthening of the silicate weathering (‘climate stabilizing’) negative feedback (Walker et al., 1981; Berner and Caldeira, 1997) has been proposed as the driver of the Pennsylvanian decline in pCO_2 (Goddéris et al., 2017). The strength of the negative feedback varies with the degree of ‘weatherability’ (i.e., the susceptibility to weathering), which, in turn, is predominantly controlled by the intensity of the hydrologic cycle (precipitation and surface runoff), with further influence by surface temperature and vascular plants (Dessert et al., 2001; Donnadieu et al., 2004; West, 2012; Maher and Chamberlain, 2014; Caves et al., 2016; Ibarra et al., 2016). Uplift of the Central-Pangea/Pangean Mountains (CPM) through the Pennsylvanian would have increased weatherability in the tropics by inducing orographic precipitation and creating steeper slopes (Goddéris et al., 2017), thus providing a greater supply of fresh mineral surfaces and enhanced surface runoff and longer fluid travel paths (cf. Maher and Chamberlain, 2014). Consequently, CPM-induced increased weatherability and CO$_2$ consumption would have enhanced the global efficiency of weathering and created a tighter coupling between CO$_2$ and climate at this time (cf. Maher and Chamberlain, 2014; Caves et al., 2016).

The results of our GEOCLIM modeling, for a Himalayan-type mountain range (an analog for the CPM) and parameterized such that 30% of the alkalinity generated by silicate weathering originates from the weathering of mafic rocks (referred to as the ‘reference continental silicate mineral assemblage’ or GEOCLIM_REG), indicates steady-state CO$_2$ concentrations (blue symbols and lines on Fig. 5A and B) that are well below the middle to late Carboniferous (340 to 300 Ma) threshold for initiation of continental ice sheets (840 ppm; Lowry et al., 2014). A hypothesized primary influence of the CPM on CO$_2$ consumption through increased weatherability is further supported by the coincidence of modeled seawater and marine proxy 87Sr/86Sr values that define a plateau of peak radiogenic values that is sustained for 15-Myr of the late Carboniferous (318 to 303 Ma; Fig. 5b). The proxy-based seawater 87Sr/86Sr plateau has been long interpreted to record
exposure and weathering of uplifted and metamorphosed crustal rocks of the CPM that had radiogenic Sr isotope compositions (Chen et al., 2018; and references within). Additionally, the burial of substantial organic matter as peat in swamp environments prone to preservation (ultimately as coal) during the Pennsylvanian would have partitioned global CO₂ consumption between silicate weathering and organic carbon burial, further driving a lower steady-state CO₂ lower (D’Antonio et al., 2019; Ibarra et al., 2019). Our modeling, however, assumes a constant pre-Hercynian solid Earth degassing through the study interval and does not account for increased magmatic CO₂ during Hercynian arc-continent collision and potential widespread eruptive volcanism in the late Carboniferous (Soreghan et al., 2019), both of which could have increased steady-state CO₂.

Short-term fluctuations in CO₂ arc superimposed on the 40 Myr record and long-term decline through the latter portion of the Carboniferous. These short-term fluctuations have been confirmed as statistically significant (99.9 to 100% of estimates; Fig. 4b-d,) and coincide with major environmental and biotic events. The brief interval of minimum CO₂ (an average of ~300 ppm, but as low as 180 ppm) in the late Carboniferous (Kasimovian Stage, 307 to 304.5 Ma; Fig. 3b) coincides with a short-lived but acute glaciation (306.5 to 305 Ma) recorded by prominent valley incision and large-scale regression recorded by cyclothemic successions in the U.S. US Appalachian Basin and Midcontinent, as well as the Donets Basin, Ukraine (Belt et al., 2011; Eros et al., 2012; Montañéz et al., 2016). Significant and repeated restructuring of wetland forests throughout tropical Euramerica, involving quantitative changes in floral composition and dominance, occurred during this 2.5 Myr CO₂ minimum (and O₂:CO₂ maximum; Fig. 3a–c). Before the short-term CO₂ low, Euramerican tropical forests had expanded to their maximum aerial extent (≥ 2 x 10⁶ km²) under CO₂ concentrations of ~500 ppm (Moscovian Stage, Fig. 3b). The aerial extent of these forests dropped by half (green X in Fig. 3c; Cleal and Thomas, 2005) coincident with the decline in CO₂ and near doubling of O₂:CO₂ (Fig. 3a–b). Moreover, within this CO₂ low (Fig. 3b), arborescent lycopsids of the wetland forests went extinct throughout Euramerica (white X in Fig. 3c) and seasonally dry tropical flora’s shifted from cordaitalean- to walchian-dominance (~307–306.8 Ma; Fig. 3c; DiMichele et al., 2009; Falcon-Lang et al., 2018). These restructuring events occurred at or proximal to CO₂ falling below 400 ppm, supporting a previously hypothesized but untested CO₂ threshold for the Pennsylvanian ecologic turnovers (Fig. 3b–c; Beerling et al., 1998; Beerling and Berner, 2000; Montañéz et al., 2016).

In the oceans, foraminiferal diversity decreased substantially during the Kasimovian CO₂ low with the loss of ~200 species
(≈58% of all taxa; 1st gray bar in Fig. 3d; Groves and Yue, 2009) presumably due to decreasing seawater temperatures.

The interval of CO$_2$ minima was terminated by a rapid rise across the Kasimovian-Gzhelian boundary (303.7 Ma) to CO$_2$ concentrations above 600 ppm (Fig. 2b; S1b). The short-term interval of elevated pCO$_2$ (304 to 302.5 Ma) is coincident with a ∼1.5‰ decline in seawater δ13C (Grossman et al., 2008; Chen et al., in press), compatible with a decline in the CO$_2$ sink provided by terrestrial organic C (peats) burial (gray bar on Fig. 2b) and/or a peak in pyroclastic volcanism between ~310 and 301 Ma (Soreghan et al., 2019). This period of increased pCO$_2$ overlaps with the Alykaevo Climatic Optimum (orange bar on Fig. 3c), defined by the invasion of tropical Euramerican vegetation into the Raflesia-dominated, mid-latitude Angaran floral province (Cleal and Thomas, 2005). Terminal deglaciation in south-central Gondwana (Parana Basin, Brazil), U-Pb dated to between ~302 and 298 Ma (Cagliari et al., 2016; Griffis et al., 2018), may have been linked to the Late Pennsylvanian interval of elevated CO$_2$, although this requires further testing (Figs. 2b, 3b). Conversely to the Kasimovian CO$_2$ low, a significant change in global diversity of foraminifera involving a doubling of species occurred during this subsequent period of elevated CO$_2$ and presumed increase in seawater temperatures (black bar on Fig. 3d; Groves and Yue, 2009).

4.2 An Early Permian CO$_2$ Nadir

Atmospheric pCO$_2$ dropped substantially across the Carboniferous-Permian Boundary (i.e., 298.9 Ma) to a 10-Myr interval (300–290 Ma) of the lowest concentrations (160–175 to <400 ppm) of the 40-Myr record (Fig. 2b). The CO$_2$ nadir, which spans the Asselian and Sakmarian stages, coincides with renewed glaciation and maximum ice sheet extent, marking the apex of LPIA glaciation (Fig. 2b; Fielding et al., 2008; Isbell et al., 2012; Montañez and Poulsen, 2013; Soreghan et al., 2019), as well as with a large magnitude eustatic fall archived in paleotropical successions worldwide (Koch and Frank, 2011; Eros et al., 2012). Widespread glacial expansion temporally linked to this interval of lowest overall pCO$_2$ argues for CO$_2$ as the primary driver of glaciation rather than recently proposed mechanisms, such as the influence of the closing of the Precaspian Isthmus (Davydov, 2018) or a decrease in the radiative forcing resulting from increased atmospheric aerosols by explosion volcanism at this time (Soreghan et al., 2019). The very low greenhouse radiative forcing associated with this low CO$_2$ interval would have been amplified by 2.5% lower solar luminosity (Crowley and Baum, 1992), reduced transmission of short-wave radiation (Poulsen et al., 2015) by the high pO$_2$ atmosphere of the early Permian (Krause et al., 2018; Lenton et al., 2018), and by increased atmospheric aerosols at this time (Soreghan et al., 2019).
Notably, the 10-Myr \(p\text{CO}_2 \) nadir raises a paradox as to what was the primary \(\text{CO}_2 \) sink(s) at the time given that the \(\text{CO}_2 \) sinks of the Pennsylvanian were no longer prevalent. This paradox reflects the waning denudation rates of the CPM by the early Permian (Goddéris et al., 2017), intensifying pantropical aridification, possibly driven by increasing continentality (yellow to red bar in Fig. 3c; DiMichele et al., 2009; Tabor et al., 2013), and the demise of the wetland tropical forests and associated loss of peats before the close of the Carboniferous (black-to-gray bar in Fig. 2b; Hibbett et al., 2016). In turn, surface runoff would have been inhibited and the supply of fresh silicate minerals dampened, thus lowering overall weatherability. Atmospheric \(\text{CO}_2 \) under the influence of these environmental factors should have equilibrated in the earliest Permian at a new higher steady-state level, even if solid Earth degassing did not increase (cf. Gibbs et al., 1999), thus raising a paradox. If volcanism was increasing by this time (Fig. 2b and associated references; Soreghan et al., 2019), then this paradox is even greater.

The paradox, however, can be resolved if a switch in the ratio of mafic-to-granite rocks available for weathering occurred with the turnover from the Carboniferous to the early Permian, in particular in the warm tropics. Two mechanisms have the potential to resolve this paradox. The first, referred to as a delayed climate-controlled capacitor (Joshi et al., 2019), leads to a multi-million-year delay between the timing of peak orogenic uplift and maximum chemical weathering potential and \(\text{CO}_2 \) drawdown due to substantial differences in chemical weathering rates during the different phases of an orogenic cycle. In their study, the highest intensity of chemical weathering and capacity for \(\text{CO}_2 \) consumption occurs when mountains have been somewhat denuded rather than during peak uplift, reflecting the disproportionate influence of runoff temperature over hydrology and erosion on weathering potential. Notably, Joshi et al.’s (2019) coupled climate and geochemical modeling of the Late Paleozoic Ice Age yield an evolution of simulated \(p\text{CO}_2 \) over the period of uplift and denudation of the CPM that corresponds both in absolute \(\text{CO}_2 \) concentrations and magnitude of change over this period (~320 to 290 Ma). That said, in Joshi et al. (2019), the physical erosion parameter is not dependent on climate, but, rather, is defined by the prescribed altitude. Thus, physical erosion is an external forcing in their model. The absence of runoff dependence for physical erosion (as is the case for GEOCLIM) and the strong dependence of weathering on temperature may be the trigger for their simulated delay between maximum uplift and the highest intensity of \(\text{CO}_2 \) consumption by silicate weathering. In GEOCLIM, the dependence of the physical erosion on runoff does not allow for millions of years delay between maximum uplift of the CPM and lowest
simulated pCO₂. Further study is needed to interrogate the influence of this approach on the results.

The second mechanism, proposed here, is a substantial shift in the ratio of mafic-to-granite rocks available for weathering from the latest Carboniferous to the early Permian. This reflects the doubling or greater increase in weatherability of mafic mineral assemblages over granitic assemblages (Gaillardet et al., 1999; Dessert et al., 2003; Ibarra et al., 2016), thus enhancing weathering efficiency and CO₂ drawdown, and creating a tighter coupling between CO₂ and climate. In turn, with tighter coupling between CO₂ and climate, the global silicate weathering flux needed to maintain homeostatic balance in the carbon cycle for a given scenario can be maintained at a lower pCO₂ level.

Macdonald and others (2019) hypothesized that increased weatherability provided by the exhumation of ophiolites along the ~10,000 km long Hercynian arc-continent suture zone, mainly situated in the paleotropics, was capable of lowering pCO₂ below the ice initiation threshold in the Carboniferous, (i.e., Pennsylvanian), thus instigating the Late Paleozoic Ice Age. We, here, used the GEOCLIM model to, first, interrogate this Carboniferous hypothesis further and, second, to evaluate the potential of increased weatherability, provided by increasing the ratio of outcropping mafic rocks to granite rocks available for weathering, as the predominant driver of the early Permian CO₂ nadir. Figure 5 illustrates the influence of a successive increase in the surface area of outcropping mafic rocks beginning with the reference continental silicate mineral assemblage (GEOCLIM-REG), which was used to evaluate the influence of Pennsylvanian uplift of the CPM, to an up to 4-fold increase in the outcropping of mafic rocks. In the GEOCLIM context, the weathering of mafic rocks is dependent on the surface of each grid cell, and on the associated local runoff and air temperature, multiplied by a calibration constant. Increasing the exposure area of mafic rocks is mathematically equivalent to multiplying the calibration constant.

Between 300 and 290 Ma, when predominant Pennsylvanian CO₂ sinks were lost (terrestrial organic C burial) or waning (decreased precipitation and denudation rates of the CPM), modeled steady-state atmospheric CO₂ is maintained at or below the CO₂ threshold for initiation of continental ice sheets (560 ppm; Lowry et al., 2014)) when the surface area of outcropping mafic rocks is greater than 2-fold that of GEOCLIM-REG (Fig. 5a). Conversely, steady-state CO₂ rises well above the glacial threshold (to 3500 ppm) for the ‘reference’ continental silicate rock assemblage (Fig. 5a). Although volcanism remained geographically extensive through the 10-Myr CO₂ nadir (Soreghan et al., 2019), the impact on atmospheric CO₂ would have been short-lived (<10⁵ kyr; Lee and Dee, 2019) and eclipsed on the longer term by the increased weatherability provided
by increased exposure of mafic rocks along the Hercynian arc-continent suture zone, lowering steady-state CO$_2$ to potentially pre-volcanism levels (cf. Dessert et al., 2001).

Independent evidence for a substantial shift in the partitioning of silicate weathering to more mafic mineral assemblages in the earliest Permian exists in the late Paleozoic proxy-based seawater Sr isotope record, which documents a rapid (0.00004/Myr) and near-linear decrease in seawater 87Sr/86Sr beginning in the latest Carboniferous (~303 Ma) and continuing through into the middle Permian (Fig. 5b; Chen et al. (2018)). The simulated trends in seawater 87Sr/86Sr for GEOCLIM-REG (blue line on Fig. 5b) through a 2- to 4-fold increase in the area of exposed mafic rocks capture the rapid rise through the upper Carboniferous to peak values in the latter half of the Pennsylvanian and subsequent decline through the early Permian. The rapid rate of decline in proxy 87Sr/86Sr values post-300 Ma, however, is best bracketed by simulated 87Sr/86Sr for a 2- to 4-fold increase in mafic rock exposure. Moreover, the best fit of the simulated trends to the geochronologically well-constrained bioapatite data (blue and green crosses on Fig. 5b) suggests a progressive increase in mafic-to-granite ratio through the 10-Myr CO$_2$ nadir. This finding, together with the hypothesized need (the aforementioned mechanism two) for minimally a 4-fold increase in mafic-rock outcropping in order to maintain CO$_2$ concentrations below the ice initiation threshold for a sustained period longer than that of hysteresis (i.e., throughout the interval of minimum CO$_2$ and apex of glaciation; Fig. 5), argues for a substantial increase in weatherability from the Carboniferous to early Permian driven by a compositional shift in outcropping rocks available for weathering to a higher mafic-to-granite ratio.

Although it has been suggested that peak ophiolite exhumation and maximum CO$_2$ consumption by their weathering occurred in the late Carboniferous, thus initiating the LPIA (~330 to 300 Ma) as has been suggested (Table S1 of Macdonald et al., 2019), then our modeling results suggest that a substantial increase in solid Earth degassing rate at this time is not compatible with proxy-inferred moderate surface conditions of the late Carboniferous (Montañez and Poulsen, 2013) and the radiation of forest ecosystems throughout the tropics (DiMichele, 2014). Increasing time would have been necessary. In our simulation, increasing the surface area of outcropping mafic rocks (2- to 4-fold) during the Pennsylvanian results in steady-state atmospheric CO$_2$ levels approaching Snowball Earth conditions given other operating influences on weatherability and CO$_2$ sequestration at the time and no change in degassing rate (Fig. S6). For such conditions to be compatible with proxy inferred moderate surface conditions of the paleontological record requires invoking a substantial increase in solid Earth.
Analogous use efficiency (WUE) of the seasonally dry plants would have made them water stress began in the first 10 Myr of the Permian record a major reorganization of the predominant factors influencing weatherability in the tropics across the Carboniferous-Permian transition, in particular, a substantial shift in the ratio of mafic-to-granitic rocks available for weathering,

Similar to the short-term fluctuations superimposed on the later Carboniferous long-term decline in CO₂, two statistically significant (94 to 100% on Fig. 4e–h) short-term increases in pCO₂ are superimposed on the early Permian nadir (Fig. 3b). The first (298 to 296 Ma) coincides, within age uncertainty, with a major deglaciation event in the Karoo (southern Africa) and Kalahari (Namibia) basins of south-central Gondwana (296.41 Ma ±0.27/0.35 Ma: Griffis et al., 2019). The second short-term rise in pCO₂ (294.5 to 292.5 Ma) overlaps with the onset of widespread ice loss in several southern Gondwanan ice centers (Fig. 2b; Soreghan et al., 2019). This CO₂-deglaciation link suggests that continental ice stability in the early Permian dropped substantially when pCO₂ rose above ~ 300 to 400 ppm and thus raises the question as to whether the ice sheet CO₂ threshold was even lower than modeled (560 ppm; Lowry et al. 2014) during the earliest Permian.

4.3 Impact on Tropical Ecosystems

The geologically rapid and large-magnitude drop in pCO₂ to a protracted Notably, the early Permian pCO₂ minimum (Fig. 4b, S1b) and period of associated anomalously high O₂:CO₂ (700 to 960; Fig. 3a) would have impacted earliest Permian terrestrial ecosystems given that modeling studies indicate a decrease in photosynthetic rate and net primary productivity when plants are exposed to low (<400 ppm) CO₂ concentrations under elevated pO₂ (Beerling et al., 1998; Beerling and Berner, 2000). Euramerican tropical forests underwent a permanent shift in plant dominance is an interval of major ecosystem changes. The geologically rapid and large-magnitude drop in pCO₂ prior to and across the Carboniferous-Permian boundary interval (Fig. 2b, S1b) coincides with a permanent shift in plant dominance from swamp-community florals to seasonally dry vegetation (Black X on Fig. 3a-c). That shift in plant dominance has been long attributed to intensification of an aridification trend that began in the mid-Pennsylvanian (yellow to red bar in Fig. 3c; DiMichele et al., 2009; Tabor et al., 2013). The high water-use efficiency (WUE) of the seasonally dry plants would have made them water stress tolerant. Furthermore, and analogous, Analogous to the vegetation turnover and extinction during the Pennsylvanian CO₂ minimum, this permanent shift in the
tropical to seasonally dry vegetation is coincident with the earliest Permian drop in pCO$_2$ to concentrations below 400 ppm, suggesting a possible ecophysiological advantage of these plants over the wetland floral dominants that they replaced (Fig. 3a–c; c.f., Wilson et al., 2017). Moreover, this shift in vegetation dominance to seasonally dry plants of significantly higher WUE would have made them water stress-tolerant and, in turn, would have amplified the aridification through a modeled ~50% decrease in canopy-scale transpiration (Wilson et al., 2017; Wilson et al., 2020). The extreme habitat restriction of wetland floras was particularly consequential for tetrapods, leading to the acquisition of terrestrial adaptations in crown tetrapods and the radiation and eventual dominance of dryland-adapted amniotes, possibly shaping the phylogeny of modern terrestrial vertebrates (Fig. 3c; Pardo et al., 2019).

Notably, the CO$_2$ decline across the Carboniferous-Permian boundary into the 10-Myr nadir and early Permian associated peak in O$_2$:CO$_2$ also corresponds to the evolution and radiation of glossopterids and gigantopterids (McLoughlin, 2011; Zhou et al., 2017), with increasing vein density in the former (Fig. 3a–c; Srivastava, 1991). These plant groups had complex, angiosperm-like venation (Melville, 1983; Srivastava, 1991), with gigantopterids having the only known pre-Cretaceous vessels in their stems, which would have increased their stem conductance of water (Li et al., 1996).

Increased hydraulic capacity provided by these morphological characteristics would have conferred a significant ecological advantage to these plants under the low CO$_2$, high O$_2$, and elevated aridity conditions in which they evolved (cf. Gerhart and Ward, 2010; de Boer et al., 2016). In the oceans, a marked collapse in foraminiferal diversity with a notable fall in species to a minimum from a Pennsylvanian zenith (425 to 110 species; Fig. 3d, e; Groves and Yue, 2009) spanned the 10-Myr pCO$_2$ nadir, analogous to the diversity drop during the Pennsylvanian low CO$_2$ interval.

Two statistically significant (94 to 100% on Fig. 4c–h) short-term increases in pCO$_2$ are superimposed on the early Permian nadir (Fig. 3b). The first (298 to 296 Ma) coincides within age uncertainty with a major deglaciation event in the Karoo (southern Africa) and Kalahari (Namibia) basins of south-central Gondwana (296.11 Ma ± 0.27/ 0.25 Ma; Griffin et al., 2019). The second short-term rise in pCO$_2$ (294.5 to 292.5 Ma) overlaps with the onset of widespread ice loss in several southern Gondwanan ice centers (Fig. 3b; Saraghat et al., 2019). This CO$_2$-deglaciation link suggests that continental ice stability in the early Permian dropped substantially when pCO$_2$ rose above ~200 to 400 ppm and thus raises the question as to whether the ice sheet CO$_2$ threshold was even lower than modeled (560 ppm; Lowry et al., 2011) during the earliest Permian.
4.4.2 CO$_2$-Forced Demise of the LPIA and Ecosystem Impact

The 10-Myr CO$_2$ nadir terminated at 290 Ma with the onset of a protracted CO$_2$ rise that persisted to the highest levels of the record (~740 ppm [-190/+258]) by the close of the early Permian (Fig. 2b). The onset of this protracted CO$_2$ rise overlaps with initiation of a period of large-magnitude magmatism (red bars in Fig. 2b). Widespread volcanism began around 297.4 Ma (± 3.8 Ma) in northern Europe (Skagerrak-centered Large Igneous Province), extending well into Germany (Rotliegend) (Torsvik et al., 2008; Käflner et al., 2019). The multi-stage Tarim magmatic episodes in China (292–272 Ma; with peaks at ~290 Ma and 280 Ma; Fig. 2b; Chen and Xu, 2019) was likely associated with large magnitude CO$_2$ emissions that the magma, which distributed basalt (400 m thick) over a 2.5 × 105 km2 region (Yang et al., 2013), intruded a thick succession of early Paleozoic marine carbonates (Gao et al., 2017). The Panjal Traps, NW–NW India (289 Ma ± 3 Ma; Shellnutt, 2018) and the compositionally similar Qiangtang Dykes (283 Ma ± 2 Ma; Fig. 2b; Zhai et al., 2013), albeit relatively small in extent, were an additional potential volcanic CO$_2$ source, along with contemporaneous volcanism in Oman. Furthermore, protracted Chotiyi volcanism, which began at 286.5 Ma ± 2.3 Ma (Sato et al., 2015) and continued over ~39 Myr in western Argentina, may have contributed substantial pulses of greenhouse gases in the early Permian (Spalletti and Limarino, 2017). Once each magmatic episode waned, however, the mafic-dominated magmatic deposits would have served as longer-term regional sinks leading to increased global CO$_2$ consumption (cf. Lee et al., 2015). Thus, for steady-state CO$_2$ to have increased through the remainder of the early Permian, the relative influence of CO$_2$ inputs must have outpaced that of these, and other, outputs (CO$_2$ sinks).

Our modeled (GEOCLIM) steady-state CO$_2$ for a 4-fold increase in outcropping of mafic rocks surpasses the ice-sheet initiation threshold at the termination of the CO$_2$ nadir (~290 Ma; red line and symbols on Fig. 5a), despite no change in solid Earth degassing. That low CO$_2$ concentrations could no longer be maintained, despite a 4-fold increase in mafic rock exposure, reflects overall intensifying aridification, denudation of the CPM, and a shift from dense forests to shubby-savanna-like vegetation in Euramerica at this time. However, given that the magmatic CO$_2$ flux likely increased through already by the earliest Permian, (summarized on Fig. 2b), our model results indicate that maintaining low steady-state CO$_2$ concentrations during the earliest Permian 10-Myr CO$_2$ nadir would have required an increasingly greater proportion of mafic
rock weathering over the reference continental silicate mineral assemblage of the Pennsylvanian, possibly well beyond a 4-fold increase.

A CO₂-forced demise of the Late Paleozoic ice age after 290 Ma is supported by the loss of continental ice from the main ice depocenters in south-central Gondwana by \(281.8 \text{ Ma} \pm 282.17 \pm 0.94 \pm 0.44 \text{ Ma}\) (Griffis et al., 2018; 2019) and a 6-fold drop in documented glacial deposits overall between the Sakmarian and Artinskian stages (Fig. 2b; Soreghan et al., 2019). The long-term CO₂ rise through the remainder of the early Permian coincided with substantial marine and terrestrial ecosystem perturbation (Fig. 3b-d; Chen and Xu, 2019). In the marine biosphere, the uniformly low rates of global macroevolution in marine organisms (brown bar on Fig. 3d) were reversed and broadly adapted and distributed genera reappeared, thus restoring marine ecosystems to their pre-LPIA rates (Stanley and Powell, 2003). Pennsylvanian rugose corals (pink bar on Fig. 3d) underwent a major turnover in composition to those that dominated until the End-Permian extinction and cold-adapted marine bivalves and brachiopods turned over to warm-adapted forms across the Sakmarian-Artinskian boundary (290.1 Ma; blue to red bar in Fig. 3d) - synchronous with the onset of the long-term increase in \(\rho\text{CO}_2\) (290.1 Ma; blue to red bar across the Sakmarian-Artinskian boundary on Fig. 3d; Wang et al., 2006; Clapham and James, 2008). On land, the loss of pelycosaur families (three in the late Artinskian and four in the early Kungurian (Kemp, 2006)) coincided with CO₂ sustained at >500 ppm. By the close of the Kungurian and the time of highest CO₂ (740 ppm), basal synapsids largely disappeared and were replaced by more derived therapsids, tetrapod diversity decreased significantly (Benton, 2012; McGhee, 2018), plant extinction rates reached a level comparable to that associated with the extinction of arborescent lycopsids in the early Kasimovian (Cascales-Miñana et al., 2016), and extinction/origination rates increased in fishes (Friedman and Sallan, 2012).

5 Conclusions

Glacial-interglacial climate cycles and large-scale glacioeustasy, as well as repeated ecosystem change, analogous to that of the Pleistocene, characterized Earth’s penultimate icehouse in the late Paleozoic. The dynamic glaciation history of this icehouse (the Late Paleozoic Ice Age (LPIA)) came to a close by the end of the early Permian with turnover to permanent greenhouse conditions. Thus, improved constraints on how atmospheric \(\rho\text{CO}_2\) evolved during the LPIA and its subsequent demise is crucial for better understanding the role of greenhouse-gas forcing on Earth System processes during this
time. The new and age-recalibrated pCO_2 reconstruction presented here for a 40-Myr interval (~313 to 273 Ma) of the late Paleozoic substantially refines existing Permian CO_2 estimates and provides perhaps the highest temporal resolution extended protracted pCO_2 record prior to the Cenozoic. The multiproxy record confirms the previously hypothesized CO_2-glaciation linkage, including documenting the coincidence of a protracted 10-Myr period of minimum pCO_2 with inferred maximum ice extent during the earliest Permian. A long-term decline in pCO_2 through the late Carboniferous period of glaciation, culminating in the earliest Permian CO_2 nadir, lends support for a previously modeled progressive decrease in the CO_2 threshold for continental ice sheets through the LPIA.

Our new pCO_2 record provides the first stomatal-based evidence for elevated (up to 700 ppm) atmospheric CO_2 concentrations during short-term (10^4-yr) interglacials. Together with new O_2/CO_2 estimates of similar temporal resolution to pCO_2, the new atmospheric trends indicate a close temporal relationship to repeated ecosystem restructuring in the terrestrial and marine realms. In terrestrial ecosystems, the appearance and/or rise to dominance of plants with physiological and anatomical mechanisms for coping with CO_2 starvation and marked aridity correspond to drops in CO_2 below 400 ppm (as low as ~180 ppm) and O_2/CO_2 ratios nearly double those of late Paleozoic background values. Similarly, decreasing rates of macroevolution and diversity in the low-latitude oceans correspond to falling CO_2 to below 400 ppm. These CO_2-ecosystem relationships lead us to hypothesize that 400 ppm was an important threshold for ecosystem resilience during the late Paleozoic.

Modeling of steady-state pCO_2 during the late Paleozoic using an intermediate complexity climate-CO_2 cycle model (GEOCLIM) and comparison to the new multi-proxy CO_2 record provides new insight into the relative influences of the uplift of the Central Pangean Mountains, intensifying aridification, and increasing mafic-rock to-granite rock ratio of outcropping rocks on the global efficiency of CO_2 consumption and secular change in steady-state pCO_2 through the late Paleozoic. The simulations confirm that, for the Carboniferous and a continental silicate mineral assemblage for which 20% of the alkalinity generated by silicate weathering originates from the weathering of mafic rocks, enhanced weatherability and CO_2 consumption provided by the influence of the CPM uplift on surface runoff/hydrology and fresh mineral supply/erosion could have lowered atmospheric pCO_2 well below the threshold for ice sheet initiation. Increasing the availability of mafic rocks for weathering drives CO_2 levels toward snowball Earth conditions in the Carboniferous. Conversely, a substantial increase (up to 4-fold) in the surface outcropping of mafic rocks over those modeled for the Carboniferous is needed to maintain
the 10-Myr CO₂ nadir in the earliest Permian and is compatible with maximum exhumation of the Hercynian orogenic belt at this time as well as with a rapid decline in proxy-based seawater ⁸⁷Sr/⁸⁶Sr inferred from biologic proxies. Although these findings support the hypothesis of atmospheric pCO₂ response to uplift of the CPM as the primary driver for Carboniferous initiation of the LPIA (Goddéris et al., 2017), they argue for a major reorganization of the predominant surface factors influencing weatherability in the tropics occurred across the Carboniferous-Permian transition leading to decreased pCO₂ values to have fallen to well below 200 ppm. The demise of the LPIA was greenhouse gas-forced, reflecting the increasing importance of magmatic degassing and likely decreased weathering efficiency driven by intensifying aridification, denudation of the CPM, and the loss of the wetland forests throughout tropical Euramerica.

Figures
Figure 1: Sampling localities in present-day and late Paleozoic geographic context. (a) Sampling locations of pedogenic carbonates and plant fossils and their position relative to the Late Pennsylvanian (310 & 300 Ma) and early Permian (290 to 270 Ma) equator (the colors of the flora localities correspond to that of the paleo-equator at that time). White band traversing NM and CO is the area of inferred shortening during the Laramide and Sevier orogenies. Map modified from Montañez et al., 2007. (b) Earliest Permian (290 Ma) paleogeography (Scotese, 2016); shading corresponds to paleo-topographic/bathymetric scale on the right. Inset box is the location of panel (a).
Figure 2: Late Paleozoic CO₂ estimates. (a) New and revised (Montañéz et al., 2007) pCO₂ estimates, bootstrapped LOESS trend, and 75% confidence interval (CI). Revised pedogenic carbonate-based estimates were made using δ¹³C_CRM (blue filled circles; n = 28; Fig. S1) and δ¹³C_POM (open black circles; n = 16; Fig. S1). Trendline is the median of 1000 bootstrapped LOESS analyses; dashed intervals indicate low data density and higher uncertainty. See Material and Methods for details, Fig. S1 for error bars on individual CO₂ estimates and the 95% CI, and Richey et al. (2020); https://doi.org/10.25338/B8S9Q for the full dataset. (b) Multiproxy CO₂ record and individual estimates (this study and age-recalibrated values of Montañéz et al., 2016; n = 165), documented glacial deposits (Soreghan et al., 2019), and best estimate of timing (and uncertainties) of magmatic
episodes: 1a = Tarim 1, China (~300 Ma); 1b = Tarim 2 (292–287, peak ~290 Ma); 1c = Tarim 3 (284–272, peak ~280 Ma; Chen and Xu, (2019)); 2 = Skagerrak-centered, NW Europe (297.5 ± 3.8 Ma; Torsvik et al., (2008)); 3a = Panjal Traps, NW India (289 ± 3 Ma; Shellnutt, (2018)); 3b = Qiangtang Traps, Tibet (283 ± 2 Ma; Zhai et al., (2013)); 4 = Choiyoi, W Argentina (beginning 286.5 Ma ± 2.3 Ma, continuing for up to 39 Myr; Sato et al., (2015)). Trendlines as in (A); dashed intervals across the Carboniferous-Permian boundary (298.9 Ma) indicates overlap of the two LOESS trendlines.
Figure 3: Late Paleozoic O_2:CO$_2$ and pCO$_2$, and comparison to environmental and biotic events. (a) O_2:CO$_2$ estimates using CO$_2$ values of this study and averaged time-equivalent modeled O_2 (Krause et al., 2018; Lenton et al., 2018). Trendline is the median of 1000 bootstrapped LOESS analyses; gray horizontal line is present-day O_2:CO$_2$. (b) Bootstrapped Pennsylvanian and Permian LOESS analyses (From Fig. 2A), with significant overlap across the Pennsylvanian-Permian boundary interval, shaded to indicate CO$_2$ ranges. The shading indicates CO$_2$ above (orange) and below (shades of blue) the mean value for the 16-million-year record through the late Pennsylvanian reported in Montañez et al. (2016). Temporal changes in terrestrial (c) and marine (d) ecosystems. Plant biomes from Montañez (2016): Wetland Biome (WB) 1 (i.e., lycopsid-dominated), WB 2 (i.e., cordaitalean/lycopsid co-dominance), WB 3 (i.e., tree fern-dominated), Dryland Biome (DB) 1 (i.e., cordaitalean-dominated), DB 2 (i.e., walchian-dominated). Diagonal arrows indicate 105-yr glacial-interglacial shifts between wet- and dry-adapted floras.
Figure 4: Analysis of the statistical significance of short-term CO₂ fluctuations. (a) White intervals (A—K) delineate short-term highs/lows in the CO₂ LOESS trend used for binning (n=11; bins ±0.5 to 1 Myr resolution). Raw stomatal- and pedogenic carbonate-based CO₂ estimates generated by Monte Carlo analysis (10,000 model runs per CO₂ estimate; data in shaded intervals were not used). CO₂ between bins was compared by calculating the mean of the lowest through 10,000th
Monte Carlo values for all CO₂ points in each bin and comparing the means of the two bins sequentially. (b)–(h) Histograms of the percent change between each of the 10,000 Monte Carlo means of the adjacent bins. Negative values indicate a decrease in value between bins, positive values, an increase. The number above each histogram bar is of the 'percent change' values represented in each bar. The percent of the 10,000 model runs that confirm a given increase or decrease in the LOESS trend is indicated by the % value shown on the right side of each panel. See Materials and Methods for further details.
Figure 5: Carboniferous through early Permian modeled (GEOCLIM) steady-state atmospheric CO$_2$ and seawater 87Sr/86Sr for different surface areas of mafic rocks available for silicate weathering. In the model, maximum geographic extent and altitude (5000 m) of the CPM is reached in the Moscovian (320 Ma), with altitude decreasing to 3000 m at 290 Ma and 2000 m at 270 Ma. (a) Simulated (color symbols and lines) and proxy pCO$_2$ estimates (purple crosses, this study). Horizontal error bars on the colored lines represent the temporal uncertainty for simulated pCO$_2$ estimates. CO$_2$ thresholds for continental ice sheet initiation (360–340 Ma = 1120 ppm; 340–300 Ma = 840 ppm; 300–260 Ma = 560 ppm from Lowry et al., 2014) decrease in response to equatorward drift of Gondwana, favoring an overall reduction in ice-sheet size through time. The ‘reference’ surface area of outcropping mafic rocks (GEOCLIM REG) maintains steady-state atmospheric CO$_2$ below the ice initiation threshold from 350 to ~304 Ma. Steady-state atmospheric CO$_2$ for a 2-fold, 3-fold, and 4-fold increase in outcropping area of mafic rocks remains below the ice initiation threshold (560 ppm) up to ~300 Ma, crossing over at progressively later times in the early Permian. Threshold cross-over of steady-state CO$_2$ at ~290 Ma for a 4-fold increase in mafic rock exposure coincides with the termination of the 10-Myr CO$_2$ nadir (gray vertical bar; both panels). (b) Seawater
$^{87}\text{Sr}/^{86}\text{Sr}$ modeled for the same set of varying surface areas of outcropping mafic rocks and $^{87}\text{Sr}/^{86}\text{Sr}$ values of well-preserved biogenic calcites (gray filled squares) and conodont bioapatites (green and blue filled squares). Horizontal error bars on the colored lines represent the temporal uncertainty for modeled Seawater $^{87}\text{Sr}/^{86}\text{Sr}$.

Data Availability

Underlying primary data is deposited in the Dryad Digital Repository (Richey et al., 2020) and can be accessed at https://doi.org/10.25338/B8S90Q.

Author contribution

JDR and IPM designed the study. JDR collected the data, wrote the manuscript, and drafted the figures; IPM and YG carried out the GEOCLIM modeling, wrote relevant parts of the manuscript, and drafted Fig. 5. All co-authors provided comments on the manuscript.

Competing interests

The authors declare no competing financial interests.

Funding

This work was funded by NSF award EAR-1338281 to IPM and a National Science Foundation Graduate Research Fellowship under University of California, Davis Grant #1148897 and a University of California, Davis Graduate Research Mentorship Fellowship to JDR.

Acknowledgments

We thank C. Hotton (National Museum of Natural History Smithsonian Institute) and T. Taylor (R.I.P.), E. Taylor, and R. Serbert (University of Kansas) for access to plant cuticle used in this study. We also thank B. Mills (University of Leeds) and D. Temple-Lang and co-workers at the U.C. Davis Data Science Initiative for guidance with statistical analyses. Finally,
we thank J. White (Baylor University) for useful comments on the manuscript.

References

Clapham, M. E., and James, N. P.: Paleoecology Of Early–Middle Permian Marine Communities In Eastern Australia: Response To Global Climate Change In the Aftermath Of the Late Paleozoic Ice Age, Palaios, 23, 738–750, https://doi.org/10.2110/palo.2008.p08-022r, 2008.

Käßner, A., Tichomirowa, M., Lützner, H., and Gaupp, R.: New high precision CA-ID-TIMS U-Pb zircon ages from the
Thuringian Forest Rotliegend section, in: Geophysical Research Abstracts, European Geophysical Union, Vienna, Austria, 2019.

McGhee, G. R.: Carboniferous Giants and Mass Extinction: The Late Paleozoic Ice Age World, Columbia University Press,

Srivastava, A. K.: Evolutionary tendency in the venation pattern of Glossopteridales, Geobios, 24, 383–386,

