

Figure S1: Monthly total precipitation and mean, minimum and maximum temperature at (a) Chuguevka (1936-2004), (b) Melnichnoe (1941-2009), and (c) Krasniy Yar (1940-2013) meteorological stations; (d) annual precipitation distribution in percent for all three meteorological stations.

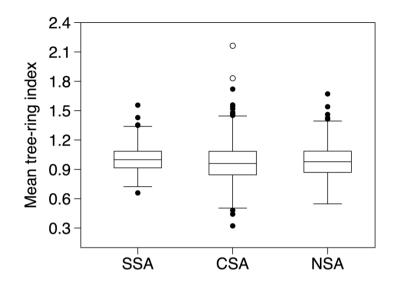


Figure S2: Mean tree-ring index for SSA, CSA and NSA chronologies. Boxes represent the interquartile range, and the horizontal line within the box shows the median. Whiskers extend to the 10^{th} and 90^{th} percentiles; the points show outliers and the circles show extremes beyond the 90^{th} percentile.

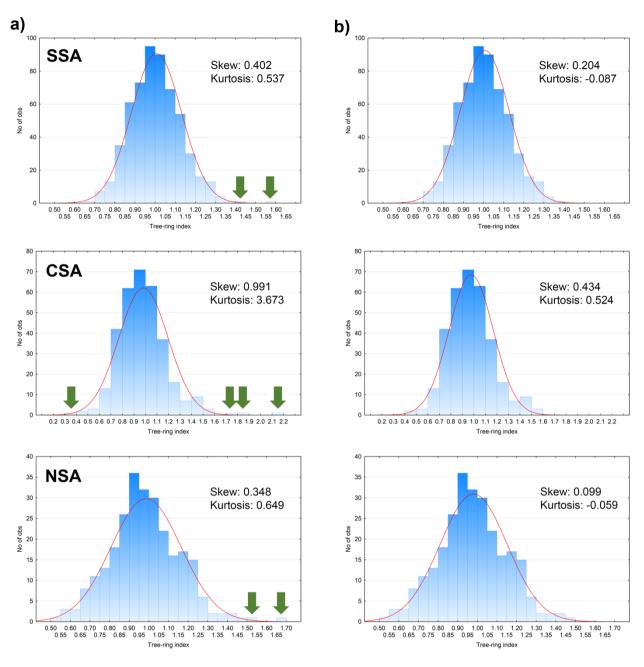


Figure S3: Distribution of the tree-ring indexes for SSA, CSA and NSA chronologies: before (a) and after (b) filtering outliers (using Z-score, with -3 and 3 as threshold values) in the beginning of the chronologies (where EPS < 0.85). Green arrows indicate outliers (the values are caused by the low sample depth); red lines are the fit with a normal curve.

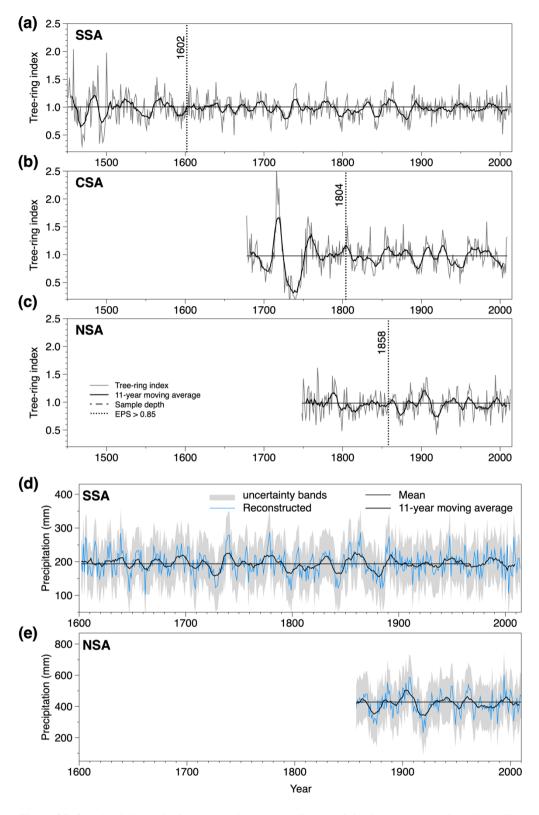


Figure S5: Standard chronologies (a-c) and corresponding precipitation reconstructions (d, e). Uncertainty bands estimated as twice the standard error of prediction ($\pm 2\sigma$) (Wilks, 1995). CSA chronology was not used for reconstruction because as a result of evaluation the relationships between the ring-width index and observed monthly climate records in treeclim for RE and CE we obtained values 0.322 and -0.348, respectively. For SSA and NSA values of RE and CE were 0.298 and 0.297, 0.218 and 0.124, respectively.



Figure S5: The correlation between the meteorological data (total precipitation and mean temperature) from Chuguevka meteorological station and SSA tree-ring width index (a, b), Melnichnoe meteorological station and CSA tree-ring width index (c, d), Krasniy Yar meteorological station and NSA tree-ring width index (e, f). Black bars denote significant values ($\alpha = 0.01$).

Table S1. Correlation between instrumental precipitation data and monthly climate indexes. April-June and July-September are the durations of the first and second stages of the summer monsoon, respectively; April-September is entire summer monsoon period. Significant correlations (p < 0.05) are marked in bold.

	Chuguevka			Melnichoye			Krasny Yar		
Index	Apr-Jun	Jul-Sep	Apr-Sep	Apr-Jun	Jul-Sep	Apr-Sep	Apr-Jun	Jul-Sep	Apr-Sep
SOI	0.151	0.199	0.351	0.037	0.107	0.140	-0.035	-0.072	-0.02
NINO3	0.021	-0.195	-0.194	0.080	0.033	0.030	0.130	-0.034	-0.012
NINO4	-0.055	-0.137	-0.185	-0.004	-0.013	-0.113	0.121	0.026	0.062
NINO3.4	-0.046	-0.184	-0.399	0.076	0.037	-0.034	0.130	0.030	0.043
PDO	-0.075	-0.158	-0.331	-0.037	-0.211	-0.419	-0.011	-0.188	-0.123
AO	0.188	-0.108	0.099	-0.009	0.002	0.062	0.175	0.114	0.267