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Abstract 15 

In the densely forested Warmia and Masuria region (northern Poland) there are many endorheic 16 

small lakes characterized by their low sedimentation rate, which makes them excellent archives of 17 

Holocene environmental and palaeoclimatic change. Lake Młynek, located near the village of 18 

Janiki Wielkie, was selected for multi-faceted palaeoenvironmental research supported with 19 

radiocarbon dates. Sediments from this lake also contain unique information about human impact 20 

on the environment, because a stronghold has been operating on its northern shore since the early 21 

Iron Age to the early Medieval period, giving the opportunity to correlate palaeoenvironmental 22 

data with phases of the human activity over the last 2,400 years. During the 3rd and 2nd centuries 23 

BC the lake was surrounded by a dense deciduous forest. From the 1 st century BC to 2nd century 24 

AD the forest around the lake was much reduced, which can be associated with the first pre-Roman 25 

(La Tene) and Roman occupation phase evidenced by the construction of the stronghold located 26 

close to the lake. From the 2 nd up to 9 th century AD gradual restoration of the forest and a decline 27 

in human activity took place, along with lake deepening and the onset of a colder and humid 28 

climatic phase which corresponded to the global cooling episode known as the Bond 1 Event (1.5 29 

ka BP). The next intensive phase of forest clearing around the lake occurred between the 9 th – 13 30 

th century AD as result of human activity (Middle Age settlement phase of the stronghold). Whilst 31 

this period is marked by a warming, the human impact which has transformed the landscape likely 32 

overprints any signals of climate-driven environmental changes. 33 
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1. Introduction 39 

Lake sediments are a useful source of proxies of past environmental and climate changes 40 

in the Holocene (see Brauer, 2004; Zolitschka, 2007; Wanner et al., 2008; Francus et al., 2013; 41 

Ojala et al., 2013; Welc, 2017). The main advantage of lakes for environmental reconstruction is 42 

the continuous and uninterrupted accumulation of their sediments. Well-dated lake sedimentary 43 

records allow for tracing of both long- and short-term climate changes in the Holocene (Smol et 44 

al., 2001; Tiljander et al., 2002; Valpola and Ojala, 2006; Czymzik et al., 2010; Elbert et al., 2012; 45 

Tylmann et al., 2012; Welc, 2017). Particularly valuable for palaeoclimate reconstructions are 46 

sequences from lakes without river inflow and outflow (Wetzel, 2001; Stankevica et al., 2015). As 47 

in most of Europe, many lakes in Poland have been heavily impacted by human activities within 48 

their catchments, resulting in many of them becoming eutrophic in terms of their nutrient status 49 

(Cooke et al., 2005). Such intensive bio-productivity arising from nutrient enrichment results in 50 

the deposition of thick organic sedimentary sequences, mostly of organic gyttja composed of 51 

remains of aquatic plants, plankton and benthic organisms transformed by bacteria and mixed with 52 

mineral components supplied from the lake basin (Kurzo et al., 2004; Stankevica et al., 2015). 53 

There are ca. 1000 freshwater lakes of different sizes in the Warmia and Mazury Region in northern 54 

Poland (Fig. 1). Most of them are located within past glacial tunnel valleys formed by meltwater 55 

erosion at the termination of the Vistulian (Weichselian) Glaciation (ca. 115-12 ka BP). After 56 

deglaciation at the end of the Pleistocene these glacial tunnel valleys were partly filled with 57 

deposits and water, which persisted the Holocene. Such lake basins have steep slopes and their 58 

bottom deposits are underlain by glaciofluvial sand, gravel and silt or glacial till (Kondracki, 2002; 59 

Gałązka, 2009). Many of these lakes are small (<1 ha), with stable sedimentation rates and without 60 

river inflow or outflow making them excellent sites for palaeoclimate reconstructions. Indeed, most 61 

of the climate reconstruction studies based mainly on pollen analysis are undertaken in this area 62 

(e.g., Kupryjanowicz, 2008; Kołaczek et al., 2013). 63 

Lake Młynek is located near the village of Janiki Wielkie and it was selected for multi-64 

faceted palaeoenvironmental research (pollen analysis, diatom, chrysophyte cysts, and 65 



 3 

geochemistry). It is hypothesized that the bottom sediments of this lake contain a unique record of 66 

human impact on the surrounding environment, as a result of the location of an Iron Age stronghold 67 

on the northern shore, which was active (though not continuously) up until the early Middle Ages 68 

(Fig. 1). Due to archaeological research, stratigraphic units distinguished on this site were divided 69 

into seven main settlement phases: early Iron Age (I), stronghold abandoned after the early Iron 70 

Age (II), early Middle Ages (III), stronghold abandoned in the early Middle Ages (IV), settlement 71 

activity in the 11th – 13th centuries (V), stronghold definitely abandoned in the 14th century (VI) 72 

(Nitychoruk and Welc, 2017; Rabiega et al., 2017). 73 

This study provides an opportunity to reconstruct the transformation of the vegetation 74 

around the lake that occurred under the influence of the climate (regional significance) and as a 75 

result of human activity. Our results were correlated with geoarchaeological data to determine 76 

mutual relations between environmental and climatic changes with development of human 77 

settlement phases in the Warmia and Mazury (northern Poland) region during the last 2,400 years. 78 

 79 

2. Study area 80 

Lake Młynek is a small water body that occupies a glacial tunnel valley since the Holocene. 81 

The lake is located in the Iława Lakeland in northern Poland, it is about 720 m long and 165 m 82 

wide. The lake has an area of 7.5 ha, with its water level at ~101 m a.s.l. and the maximum depth 83 

is just over 2 m. Lake Młynek is surrounded by a morainic plateau at 120-130 m a.s.l and its 84 

catchment consist is occupied by a dense forest (Fig. 1). In general, most of the Ilawa Lakeland is 85 

covered with forest (41.5%), whereas meadows and synanthropic communities have a smaller 86 

share. Among the habitats, a highly-productive mixed forest prevails. The basic components of the 87 

Iława forest are pine (Pinus), oak (Quercus), beech (Fagus), alder (Alnus), birch (Betula), in 88 

smaller amounts there are spruce (Picea), larch (Larix), ash (Fraxinus), hornbeam (Carpinus), 89 

maple (Acer) and linden (Tilia). Currently, the lake sits in a catchment that is characterized by a 90 

transitional climate with influence of continental and maritime circulation. The growing season 91 

lasts about 206 days, and the snow cover remains for 70-90 days. Average temperature values range 92 

from approximately -4.0°C in February to above 17.0°C in July. Due to significant influence of the 93 

polar air masses and a large number of natural water reservoirs, air humidity is relatively high, 94 

ranging from 72% to 89%. Total annual precipitation ranges from 500 to 550 mm a year. 95 

Southwestern winds dominate throughout a year, with westerly winds stronger in winter and the 96 
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highest wind speeds recorded during the winter months (Jutrzenka-Trzebiatowski and Polakowski, 97 

1997; Stopa-Boryczka at al., 2013). It is important to note, that from the north, a small stream flows 98 

into the lake Młynek, which is active in winter and dries up almost completely in summer (Fig. 1: 99 

D). The stream is a result of irrigation related to the construction of a mill in the 15th century, 100 

somewhere in the vicinity of the medieval stronghold located on the northern shore of the lake 101 

(Semrau, 1935, Bińka et al., 2020).  102 

 103 

3. Material and methods 104 

3.1. Bathymetry 105 

Determination of lake bathymetry and thickness of bottom sediments is extremely 106 

important in palaeolimnological research to help locate appropriate coring sites. This can be 107 

achieved through the use of GPR sounding (Lin et al., 2009; Sambuelli et al., 2009; Sambuelli and 108 

Silvia, 2012). In Poland winter is a particularly convenient season when the lake is covered with 109 

ice, making GPR profiling much easier and improving access and speed of data collection (Hunter 110 

et al., 2003). Measurements along and across the lake were carried out in 2017, directly on the lake 111 

ice (Fig. 2). We used the radar system ProEx of the Malå Geoscience (www.malagpr.com.au/mala-112 

professional-explorer.html). A radar pulse was generated at a regular distance interval of 0.02 m 113 

(900 samples were recorded from a single pulse). The time window of recording was between 250 114 

and 300 ns. Prospection was done with use of a shielded monostatic antenna with 250 MHz nominal 115 

frequency of the electromagnetic wave. 116 

 117 

3.2. Coring and sampling 118 

Based on the results of the GPR sounding, 4 drillings were undertaken a ca. 2 m water depth 119 

(Fig. 3) following the Givelet et al. (2004) collecting protocol. A piston sampler was used during 120 

drilling, which is very suitable for sampling in moderately cohesive sediments to a depth of 5 m. 121 

The sampler set consists of a 200-cm long sonde, which is constructed from a thin-walled, 40-mm 122 

diameter, stainless steel tube (https://en.eijkelkamp.com/products/sediment-samplers/Piston-123 

Sampler-set.html). Sediment cores were film-wrapped in 1 m plastic tubes and transported to the 124 

laboratory. The cores (M1-4) were then subjected to magnetic susceptibility measurements which 125 

enabled the selection of the core M-1, the longest and most continuous, to carry out detailed 126 

https://en.eijkelkamp.com/products/sediment-samplers/Piston-Sampler-set.html
https://en.eijkelkamp.com/products/sediment-samplers/Piston-Sampler-set.html
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analysis. The 3.5 m long core M-1 (geographic coordinates: 53.82486 N, 19.72419 E) was sub-127 

sampled at 5 cm intervals and used for multi-proxy laboratory analyses. 128 

 129 

3.3.Magnetic susceptibility (MS) 130 

The cores from Lake Młynek were subjected to MS measurements using SM-30 magnetic 131 

susceptibility meter (ZH Instruments). Due to very high sensitivity (1 x 10-7 SI units) this device 132 

was provided with 8 kHz LC oscillator and its pick-up coil sensor was large enough to measure 133 

sufficiently high volume of sediments with very low MS. The measurements were done at every 5 134 

cm along each core (M1-4). 135 

 136 

3.4. Radiocarbon dating and age depth model 137 

Radiocarbon dating was performed on 4 bulk samples from the core M-1, collected either 138 

from organic-rich gyttja or gyttja with dispersed organic matter (Table 1). The organic matter 139 

seems to have been derived both from aquatic and terrestrial sources. AMS dating was carried out 140 

by the Poznań Radiocarbon Laboratory in Poland (for methodology see Goslar et al., 2004). The 141 

construction of age-depth models required an assessment of several factors that could disturb 142 

constant accumulation of bottom deposits of Lake Młynek, such as those from sedimentary and 143 

post-sedimentary processes (including a varied rate of deposition and compaction, and the impact 144 

of bioturbation). The varied influx of material delivered to the lake from the adjacent area is a very 145 

important factor of disturbance. Therefore, a Bayesian age-depth model was chosen as it takes into 146 

account the sedimentation rate and its variability (Blaauw and Christen, 2005, 2011; Blaauw et al., 147 

2007) (Fig. 4). The model was based on default settings, except for section thickness which was 148 

set at 0.05 cm given the length of this core. The Bacon model uses the IntCal3 curve (Reimer et 149 

al., 2013) to calibrate the radiocarbon data. 150 

 151 

Table 1. List of radiocarbon determinations. 152 

No. Depth in m Lab. reference 14C yr. BP Age calibrated 

95% probability 

Material dated 

1 0.95-1.00 S/JW 1/2015/A 435 ± 30 1418 – 1494 AD Bulk of gyttja 

2 1.65-1.70 S/JW 1/2015/B 1015 ± 30 971 – 1048 AD Bulk of gyttja 

3 2.40-2.45 S/JW 1/2015/C 1730 ± 30 236 – 386 AD Bulk of gyttja 

4 3.45-3.50 S/JW 1/2015/D 2275 ± 30 401 – 351 BC Bulk of gyttja 

 153 
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3.5. Palaeobotanical analysis 154 

3.5.1 Pollen 155 

The core M-1 was sampled every 5 cm for pollen analysis. 70 samples (ca. 10 g each) were 156 

treated with 5% HCl, boiled in 5% KOH and hot 30% HF. They were washed with 15% HCl and 157 

treated by the standard Erdtman’s acetolysis. In each sample about 1000 pollen grains were counted 158 

using an optical microscope at 400x magnification.  159 

 160 

3.5.2 Diatom and Chrysophyte cysts analysis 161 

70 samples were prepared for the analysis of diatoms and chrysophyte cysts. They were 162 

extracted from 1 g of dry sediment of using the disintegration method in HCl and H2O2, according 163 

to the technique proposed by Zalat and Servant-Vildary (2007). For slide preparation, 0.1 ml of the 164 

final suspension was dried on coverslips and then mounted onto slides using Naphrax. Diatoms 165 

were identified to species level using a Leica photomicroscope with a digital camera and equipped 166 

with differential interference contrast (DIC) optics at 1000x magnification with oil immersion. 167 

Identification and ecological information of the diatom species were based primarily upon the 168 

published literature (e.g. Kilham et al., 1986; Douglas and Smol, 1999; Witkowski et al., 2000; 169 

Hofmann et al., 2011). Recent taxonomic advances split many diatom taxa of the former genus 170 

Fragilaria sensu lato into several new genera, including Fragilaria, Pseudostaurosira, Staurosira 171 

and Staurosirella spp. (Williams and Round, 1987); these new names herein collectively referred 172 

to as Fragilaria sensu lato. Chrysophyte cysts were described and enumerated following Duff et 173 

al. (1995, 1997), Pla (2001) and Wilkinson et al. (2002). Preliminary results of the diatom studies 174 

based on the core M-1 were already published by Zalat et al. (2018). 175 

 176 

3.6. Geochemical analysis 177 

ICP-OES spectrometer was used for determination of basic (Al, Ca, Mg, Na, K, Fe, P) and 178 

trace elements (As, Cd, Mn, Th, Ti, U, V, Zn). Powdered samples were mineralized in a closed 179 

microwave Anton Paar Multiwave PRO reaction system. Mineralization procedure was based on 180 

the procedure of Lacort & Camarero. Characteristics of lake sediments were determined by the 181 

extraction method of elements that are soluble in aquaregia (according to European Standard 182 

CEN/TC 308/WG 1/TG 1, slightly modified). Dry samples of about 0.2 g weight were transferred 183 

to the PTFE vessel and HNO3, and HCL Merck Tracepur® was added. The vessels were placed in 184 
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a rotor and loaded to a microwave. Finally, the samples were analysed in the Spectro Blue ICP 185 

OES spectrometer at Regional Research Centre for Environment, Agricultural and Innovative 186 

Technologies, Pope John II State School of Higher Education in Biała Podlaska. Berndt Kraft 187 

Spectro Genesis ICAL solution and VHG SM68-1-500 Element Multi Standard 1 in 5% HNO3 188 

were used. 189 

Total organic carbon (TOC) analysis was done after sample acidification to remove 190 

carbonates in the SHIMADZU SSM 5000A analyser with a solid sample combustion unit. The 191 

method was the catalytically aided combustion oxidation at 900°C with pre-acidification and oven 192 

temperature 200°C. A measuring range TC was 0.1 mg to 30 mg carbon. Sample amount was 1 g 193 

and aqueous content <0.5 g. Repeatability: S.D. ±1% of full-scale range 194 

(www.ssi.shimadzu.com/products/toc-analyzers/ssm-5000a). 195 

All selected samples were analysed using a scanning electron microscope (SEM) HITACHI 196 

TM3000 with an energy dispersive spectrometer (EDS) SWIFT ED 3000 Oxford Instruments. The 197 

samples were not covered with any conductive material. Magnification range was used 20x to 30 198 

000x. This method was used to perform basic microscopic observations of samples of the core M-199 

1 with point determination of their chemical composition of major elements. 200 

 201 

4. Results 202 

4.1 Bathymetry 203 

A georadar transect across the lake reflects both its bathymetry and composition of its 204 

bottom (Figs 2 - 3). The superficial layer of the transect is represented by lake ice, ca 25 cm thick 205 

and although it is almost not visible on radar images due to its thickness being smaller than a 206 

vertical resolution of measurements, beneath there are abundant horizontal multiple reflections of 207 

energy from the bottom of the ice. Two narrow and vertical zones with small diffraction hyperboles 208 

at 23 and 29 m of the transect indicate upward deformation of bottom sediments at the location 209 

sites of the sounding core and the core M-1 (Fig. 2a). The top of the underlying mineral deposits 210 

(so-called hard bottom) is indicated as a distinct downward-deflected reflection surface (Fig. 2b). 211 

In the central part of the lake, it occurs at 2.6 m depth (two-way travel time 290 ns) and indicates 212 

the top of the Holocene organic sediments. Unfortunately, beneath there is a signal-absorption zone 213 

(Fig. 2d), resulting from the fact that most sediments are composed of fine-grained organic material 214 

(gyttja). However, thickness of this layer was determined by drillings to about 5 m. A relief of the 215 

http://www.ssi.shimadzu.com/products/toc-analyzers/ssm-5000a
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lake bottom in the GPR image reflects a cross-section of a buried glacial tunnel valley that was 216 

eroded mainly in sandy and sandy-gravel deposits. Close to the lake shore (0 to 20 m in the 217 

northwest and 110 to 140 m in the southeast), there are numerous oblique and chaotically parallel 218 

reflection surfaces dipping towards the channel axis. They reflect bedding of the Pleistocene sandy-219 

gravel series that partly filled a subglacial channel (Fig. 2c). 220 

 221 

4.2. Magnetic susceptibility  222 

MS is highly dependent on lithology and grain size of deposits (Dearing, 1994; Sandgren 223 

and Snowball, 2001). It reflects presence and size of ferromagnetic particles in a sample (Verosub 224 

and Roberts, 1995). Increased content of ferromagnetic minerals such as magnetite, Fe-Ti oxides 225 

or pyrrhotite generates higher MS whereas biotite, pyrite, carbonates and organics result in its lower 226 

values. Total volume of magnetic minerals in lake sediments reflects mostly climatic changes in a 227 

catchment (Bloemdal and deMenocal, 1989; Snowball, 1993; Peck et al., 1994). MS in the core M-228 

1 is varied but due to organic character of the sediments, its values are relatively low, from 0.002 229 

to 0.034×10-7 units SI. In grey-brown gyttja with organic matter at 3.50 – 2.58 m depth, MS rises 230 

and drops in turn from 0.01 to 0.02×10-7 SI. MS drops from 2.60 m depth, reaching a minimum at 231 

1.63 m. Higher up, MS rises again, with the highest value at 1.35 m, then there is a minimum at 232 

1.05 m and the next maximum at 0.69 m depth (Fig. 6).  233 

 234 

4.3. Chronology, lithology and sedimentation rate 235 

The age-depth model of the core M-1 from Lake Młynek indicates (Fig. 4) that the M-1 236 

core chronologically covers the last 2400 years. Bottom deposits of Młynek Lake are organic-rich. 237 

The core M-1 is composed of grey-brown gyttja at 1.8 – 3.6 m depth (Fig. 5). At 1.45 – 1.80 m 238 

depth there is grey-brown gyttja-detritus and at 1.10 – 1.45 m depth algal gyttja is recorded. The 239 

uppermost part of the core is composed of grey-brown (depth 0.4 – 1.1 m) and detritus gyttja (0.0 240 

– 0.4 m). The sedimentation rate was calculated based on the age-depth model. Results reflect quite 241 

a stable sedimentary environment with a general rate of 1.5 mm a year. The rate is stable at 3.40 – 242 

1.77 m depth and equal ca 1.5 mm a year. It drops to 1 mm, then rises to 1.3 – 1.8 mm a year at 243 

1.77 – 0.30 m. At 0.0 – 0.3 m the sedimentary rate is the highest and equal ca 3 mm a year (Fig. 244 

5). 245 

 246 
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4.4. Pollen 247 

Based on percentage contents of main trees and terrestrial herbs five local pollen 248 

assemblage zones (LPAZ M1-M5) were established in the pollen sequence of the Lake Młynek. 249 

The pollen contents were determined based on changes in the percentage of individual taxa, 250 

confirmed by a cluster analysis (Fig. 9): 251 

 252 

Zone Depth [m] Main features of pollen spectra 

LPAZ 

M-1 

345÷315 cm Pollen grains of Carpinus reached 33.5% and Alnus 25%, Pinus and Betula are <20%. A top 

border of this zone is indicated by decline of Carpinus. 

LPAZ 

M-2 

315÷265 cm The share of Carpinus drops significantly (<10%), contents of Betula, Quercus and Corylus are 

slightly raised. The percentages of Gramineae significantly increased up to 7.5%. There are 

continuous curves of Cannabis/Humulus, Chenopodiaceae, Plantago lanceolate, Rumex 

acetosella and Secale cereale and a top boundary is indicated by decline of Gramineae. 

LPAZ 

M-3 

195÷265 cm At the beginning the curve of Betula raises to 24% but then drops <10%. The share of Carpinus 

and Fagus rises to 19% and 27%, respectively. Content of Gramineae decreased <2% and the 

curves of Secale cereale, Plantago lanceolate and Rumex acetosella disappear. There are only 

single pollen grains of Chenopodiaceae and Cannabis/Humulus. A top boundary is indicated by 

a rise of Gramineae. 

LPAZ 

M-4 

195÷145 cm Content of Fagus pollen began gradually decrease. The share of pollen grains of Betula increases 

and becomes stable at 22-27%. Content of the Gramineae pollen grains increases again to 7%. 

Curves of Cannabis/Humulus, Plantago lanceolate, Rumex acetosella and Secale raise and a top 

boundary is marked by a rapid rise of Cannabis/Humulus. 

LPAZ 

M-5 

145÷15 cm Curves of main deciduous trees decline: Carpinus <9%, Fagus <5%, Quercus <5%, Alnus 

<15%, Betula <14% and content of Pinus increases to 40%.  There is significant rise of 

Gramineae up to 15%. Percentages of Cannabis/Humulus reached absolute maxima (25%) but 

close to middle part of this zone their strong decline is observed (below 2-3%). The continuous 

curves of Cerealia undiff., Centaurea cyanus, Plantago lanceolate, Rumex acetosella, Rumex 

acetosella appeared, and single pollen grains of Polygonum dumetorum, Polygonum aviculare 

and Urtica were present. 

 253 

4.5. Diatoms  254 

Studies of the Lake Młynek bottom sediments revealed presence of more than 200 diatom 255 

taxa belonging to 54 genera (Zalat et al., 2018) (Fig. 8). Diatoms were generally abundant and well 256 

to moderately preserved in most samples, although with mixture of mechanically broken valves, 257 

especially in the topmost part of the core. Results of the diatom analysis and relative abundance of 258 

the most dominant taxa enabled subdivision of the M-1 core section into 11 diatom assemblage 259 

zones (Fig. 8) that reflected six phases of lake development (Zalat et al., 2018). Moreover, changes 260 
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in chrysophyte cysts distributions along with variation in diatom composition could be related to 261 

changes in pH, climate and trophic status. Stomatocysts can be used as the index of lake-level 262 

changes, habitat availability, metal concentrations and salinity.  263 

 264 

4.6. Geochemistry 265 

Various factors influence distribution and accumulation of geochemical elements in lake 266 

sediments. Most important are texture, mineral composition, oxidation/reduction state, 267 

absorption/desorption and physical transportation processes (Ma et al., 2016). Curves of 268 

representative elements are generally used to characterize sedimentary environments. Most 269 

analysed elements do not indicate any clear trend with depth in the Lake Młynek. The curves of S 270 

and TOC show significant rises at 2.0 – 1.4 m depth that are slightly correlated with decreased 271 

contents of Al, Fe, K, Ca, Mg and MS (Fig. 6). Sulphur content is correlated with existence of iron 272 

sulphides. In the studied core, Fe is positively correlated with Al and Ti (Fig. 7). Fe-Ti oxides are 273 

noted in SEM EDS analysis. They are resistant to surface weathering and carry trace elements 274 

(Bauer and Velde, 2014). At ca. 3 m, high frequency peaks of Al, K, Ca, Na, Mg, Fe and S occur 275 

(Fig. 6).   276 

 277 

5. Discussion 278 

 Magnetic susceptibility is generally low in biogenic sediments as gyttja, which is composed 279 

mainly of microfossil skeletons e.g., diatoms and radiolarians (Thompson and Oldfield, 1986). In 280 

Lake Młynek there is an apparent negative relationship between TOC and MS. Several intervals 281 

show both higher percentages of TOC and lower MS values. Changes in MS in Lake Młynek 282 

sediments most probably record an input of clay into the lake and diagenetic conditions in bottom 283 

sediments. Iron oxides are presumably of detrital origin and were delivered to the basin through 284 

deep valleys incised at the north-western shore. Concentration of ferromagnetic minerals is 285 

connected with periodical intensive soil erosion around the lake. Their higher content depends also 286 

on diagenetic processes in bottom sediments. Oxidation of organic matter in anoxic conditions (by 287 

iron-oxide-reducing bacteria) results usually in increased content of ferromagnetic particles (small 288 

particles are removed first). Conversely, oxygenation by heavy floods stops this process and small 289 

magnetic particles are preserved (Jelinowska et al., 1997). At 1.40 m depth, TOC suddenly drops, 290 

probably due to deforestation and then, MS significantly rises due to increasing input of terrestrial 291 
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(non-organic) material to the lake. Such coincidence clearly indicates that TOC is both of 292 

autochthonous and allochthonous derivation (Fig. 6). 293 

The highest contents of detrital elements like Al, K, Ca and Mg are to be associated with 294 

sudden delivery of clastic material to the lake e.g. during increasing flood or rainfall (Wirth, et al., 295 

2013). Aluminium is extremely immobile, that is why it should be regarded as a typical lithogenic 296 

element (Price et al., 1999). Additionally, Al is a major constituent of soils and other sediments as 297 

a structural element of clays. It has a strong positive correlation with many major elements (Fig. 298 

7). The association between Al and other elements can be therefore used as the basis to compare 299 

natural elemental contents in sediments and soils. Calcium is well correlated with Al and likely 300 

originated from terrigenous bicarbonate inputs and deposited in a lake as a solid carbonate (Miko 301 

et al., 2003). Calcium is evidently more easily removed in solution from a mineral material and it 302 

is highly concentrated in highly erosional periods (Mackereth, 1965).  303 

The Fe/Ca ratio is considered as a eutrophication proxy. The highest values to low 304 

oxygenation, eutrophic or dystrophic reservoirs (i.e. Kraska and Piotrowicz, 2000; Holmes and De 305 

Decker, 2012), whereas the low Fe/Ca ratio in bottom sediments indicates oligotrophic character 306 

of a lake. In the studied core sediments, Fe/Ca ratio varies from 0.80 (depth 3.05 m) to 3.67 (1.2 307 

m). The ratio is low, indicating oligotrophic conditions in bottom sediments which gives conflicting 308 

results with other data. The Fe/Ca ratio can be disturbed by detrital input to the lake (Fig. 6). The 309 

dysaerobic conditions in the lake are confirmed by Th/U ratios (0.03 – 0.41) which are lower than 310 

the critical value of 2 as indicated by Myers and Wignall (1987) and Wignall (1994). The ratio of 311 

total Fe to total P ranges from 13.91 (1.6 m depth) to 30.82 (0.55 m). The values are typical for 312 

other lakes in northern Poland, which vary from 3 to 180 according to Bojakowska (2016). The 313 

release of P follows in reducing conditions. According to Ahlgren et al. (2011) it can be up to ten 314 

times greater than in aerobic conditions. However, there is a poor correlation with other redox 315 

proxies i.e. Th/U (R=0.08), which may be caused by the presence of Al which forms Al(OH)3. In 316 

such systems even though the redox state favours release of P from iron minerals, the P is 317 

immobilized by binding with hydroxides. Thus, the presence of Al(OH)3 can stop release of P even 318 

in an anoxic hypolimnion (Hupfer and Lewandowski, 2008). This could be the case in the studied 319 

sediments as Al shows positive correlation with P content (R=0.49). Except for Fe/Ca, all counted 320 

ratios point out to anoxic conditions in all studied samples which is typical in eutrophic lakes. 321 

Nevertheless, as all proxies are characterized by extreme values at the 3.05 m depth, they seem to 322 
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depend on external load of terrigenous material. It is confirmed with very good positive correlation 323 

between Fe and Al (0.95), Fe and Ti (0.64) Mn and Al (0.46) or Mn and Ti (0.78). 324 

The periphytic diatom species dominate throughout the core. A high proportion of 325 

periphyton to plankton assemblages was reported as indicative for a long-lasting ice-cover (Karst-326 

Riddoch et al., 2005) whereas a shift from benthic to planktonic diatom taxa is considered an 327 

ecological indicator, that is interpreted in high-altitude lakes as record of shorter winters and 328 

increased in temperatures. Common occurrence of benthic forms represented by Staurosira 329 

venter/Staurosirella pinnata diatom assemblage indicates circumneutral to slightly alkaline 330 

shallow water with lowering lake levels and prolonged ice cover. However, Aulacoseira is the most 331 

dominant planktonic genus followed by Cyclotella and low frequency of Cyclostephanos. Diatom 332 

preservation in the upper part of the core (depth 1.40 – 0.15 m) is moderate to relatively poor and 333 

the recognized assemblage was represented by the occurrence of some dissolved and teratological 334 

diatoms valves, in particular the topmost part of the core section (0.30 - 0.15 m) (Zalat et al., 2018). 335 

 336 

6. Phases of the Lake Młynek development  337 

Based mostly on results of palynological studies five main phases of the Lake Młynek 338 

development in relation to the climate and human-induced environmental change were 339 

distinguished (Fig. 10):  340 

5.1. Phase 1: 2300 – 2100 cal. yrs. BP (ca. 4 – 2/1 c. BC), depth: 3.45 – 3.15 m 341 

This phase is recorded in LPAZ M-1 which represents closed forest communities dominated 342 

by hornbeam and alder, which colonized marshlands near lake shores. Plants of open stands are 343 

only rarely noted as well as indicators of anthropogenic activity (e.g. Plantago lanceolata). 344 

Vegetation at that time was relatively natural and not disturbed. The diatom assemblage at the start 345 

of this record (3.45 – 3.40 m depth) was distinguished by diatom subzone DZ1a (Fig. 8) dominated 346 

by the periphytic taxa such as Staurosira construens, Staurosira venter, Staurosirella pinnata, 347 

Gyrosigma acuminata associated with the planktonic Aulacoseira granulata, A. ambigua and 348 

Puncticulata radiosa which indicates a shallow and slightly alkaline lake. This interval was 349 

followed by a great abundance of the planktonic alkaliphilous diatoms of subzone DZ 1b (3.35 – 350 

3.15 m, fig. 8) dominated by Aulacoseira granulata, Cyclotella sensu lato species, Cyclostephanos 351 

dubius and Stephanodiscus species.  The diatom assemblage suggests a rising lake level with 352 

increasing nutrients (Douglas & Smol 1999, Zalat 2015). The predominance of A. granulata 353 
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suggests a high trophic status and slightly alkaline freshwater environment with high silica 354 

concentration (Kilham et al. 1986; Zalat et al., 2018). Magnetic susceptibility is high and 355 

corresponds to high contents of Fe, Ti and Al, indicating increasing influx of terrigenous material, 356 

presumably activated by intensive rainfall. 357 

 358 

5.2. Phase 2: 2100 – 1830 cal. yrs. BP (ca. 1 c. BC – 2 c. AD), depth: 3.15 – 2.65 m 359 

During this phase changes in the environment around the lake were caused by significant 360 

human impact. This phase corresponds with the LPAZ M2, characterized by the reduction and 361 

fragmentation of the hornbeam-dominated forest. Birch, pine and hazel expanded under better 362 

lighting conditions in a partly open forest. Mid-forest pastures occupied rather small-scale open 363 

areas, as can be inferred from higher percentages of Plantago lanceolata and other herbaceous 364 

plants, e.g. Gramineae, Artemisia and Rumex acetosa/acetosella. Cultivated plants such as 365 

Cannabis t. and Secale are rare, however their occurrence is entirely consistent with other human 366 

indicators present during this phase. This phase is commonly noted and similarly expressed in 367 

numerous palynological sequences in neighbouring areas (see for example Noryśkiewicz, 1982, 368 

1987, 2013; Bińka et al., 1991; Ralska-Jasiewiczowa et al., 1998). Pollen data indicate that societies 369 

of that time cultivated rye and probably hemp. It is the oldest settlement phase at Janiki Wielkie 370 

stronghold and corresponds to the termination of the La Tène and the time of the early Roman 371 

period. Human communities in the vicinity of the lake can be connected with settlements of the 372 

East-Baltic Kurgan Culture (Rabiega et al., 2017). During this phase, planktonic diatoms were 373 

replaced by benthic taxa, (DZ2) such as Staurosira construens, S. venter, and Staurosirella pinnata 374 

accompanied by a significant abundance of Gyrosigma acuminatum indicating a lower lake level 375 

and dominance of mesotrophic alkaline freshwater environment. The lower stands were interrupted 376 

by a short rise of water level at 2.90 – 2.85 m (ca. 1930 – 1896 cal. yrs. BP) where the abundance 377 

of planktonic eutrophic indicator Aulacoseira spp. increased suddenly on expense of the benthic 378 

taxa. During this phase climatic conditions were still similar to ones in the previous phase, but it 379 

was drier than is reflected by shallowing of the lake. This phase can be correlated with the so-called 380 

Roman Climatic Optimum (see McCormick et al., 2012). 381 

 382 

5.3. Phase 3: 1830 – 1150 cal. yrs. BP (ca. 2 – 9 c. AD), depth: 2.65 – 1.95 m 383 
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This phase corresponds to LPAZ M3 when a forest restoration occurred. Absence of human 384 

indicator plants suggest that the settlement in the catchment was abandoned. There are also no traces 385 

of human activity nearby (Rabiega et al., 2017). Reduction of human impact and human-generated 386 

semi-open habitats, allowed for a short-term expansion of birch into empty, open areas, and later 387 

replaced by hornbeam that rebuilt its position to the level as in the LPAZ M1. Elm also expanded 388 

again in a riparian forest. This restoration of the natural forest was followed by abrupt expansion of 389 

beech in the second half of the LPAZ M3. The area of open herbaceous plants communities, 390 

previously widespread, was limited.  391 

Abundant planktonic diatoms including Aulacoseira spp., Puncticulata radiosa, and common 392 

occurrence of small Cyclotella spp. occurred in the lake (Fig. 8) which indicates its deepening, 393 

enhanced thermal stratification, reduced mixing and increased thermal stability (Zalat et al., 2018). 394 

Intensified development of a vegetation cover and higher lake levels are indicated by geochemical 395 

indices. A gradual drop of MS corresponds with decreased content of detrital elements such us Fe, 396 

Ti, Al and K, accompanied by gradual increase of TOC and the Fe/Ca ratio. Lower MS and content 397 

of Al (acting as a major constituent of soils) accompanied by the higher TOC suggest limited 398 

erosion, in spite of gradually higher precipitation in the lake catchment and therefore, a rise of its 399 

water level (Fig. 6). The climate in this phase has become more humid. Increased rainfall and 400 

decreased evaporation are reflected in lake sedimentation as the lake got deeper, resulting in reduced 401 

deposition and greater stability. This phase could be associated with a global cooling of the Bond 402 

Event 1 (1.5 ka BP) (Bond et al., 1997; Welc, 2019). 403 

5.4 Phase 4: 1150 – 780 cal. yrs. BP (ca. 9 – 13 c. AD), depth: 1.95-1.45 m. 404 

This phase is correlated with the LPAZ M4 and is divided into two sub-phases 4a and 4b (Fig. 405 

10). The sub-phase 4a marks the onset of another settlement phase, resulting in forest clearing. 406 

Disturbances took place firstly in a beech forest and less in a hornbeam-dominated one. The 407 

anthropogenic activity is reflected by presence of Gramineae, Artemisia, Cannabis/Humulus, 408 

Plantago lanceolata, Rumex acetosella, Secale and cerealia undiff. Diatom assemblages suggest a 409 

deepening of the lake (Zalat et al., 2018) as indicated by abundance of Aulacoseira associated with 410 

Puncticulata radiosa in the upper part of the diatom zone 5 at 1.85 – 1.70 m depth (ca. 1070 – 941 411 

cal. yrs. BP). The diatom assemblage suggests a rising lake level, higher trophy and stronger 412 

turbulent mixing conditions (Rühland et al., 2008; Zalat et al. 2018). Moreover, the greatest 413 

reduction of abundant Fragilaria sensu lato accompanied by abundant A. granulata, could resulted 414 
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from forest clearing around the lake. Higher TOC corresponds with lower content of detrital 415 

material (Fe, Ti, Al and K) and lower MS, and it can reflect a progressing humidity (Fig. 6). This 416 

phase can be correlated with the Migration Period and the early Middle Ages. A wooden-loamy 417 

defence rampart was raised at the end of the phase in a settlement close to the lake (archaeological 418 

phase III), after removal of a natural soil developed during abandonment of the site in the early 419 

Roman Period. After a short period, this stronghold was destroyed. Charcoal from a fired wall that 420 

represents destruction at the end of the archaeological phase IIIA, was dated at 1245 ± 25 cal. yrs. 421 

BP i.e. 682-870 AD (95.4% probability) and 1090 ± 30 cal. yrs. BP i.e. 892-1014 AD (95.4% 422 

probability) (Rabiega et al., 2017).  423 

Human impact declines during the subphase 4b (1.70 – 1.45 m depth, ca. 940 – 782 cal. yrs. 424 

BP. At this time birch and less intensively poplar occupied temporarily abandoned open areas, 425 

especially toward the end of the zone, when a human activity was less intensive. Alder became 426 

more abundant, probably expanding into exposed marginal areas of the lake. The sub-phase 4b, 427 

corresponds to the diatom zone 6 (Fig. 8) which is characterized by abundant benthic Fragilaria 428 

sensu lato with sporadic occurrence of planktonic taxa. A high proportion of benthic to plankton 429 

assemblages was reported as indicative for a long-lasting ice-cover (Karst-Riddoch et al., 2005). 430 

As well as, a great abundance of the benthic Staurosira venter and Staurosira construens with 431 

marked decline in the planktonic diatoms such as Aulacoseira spp. and Puncticulata radiosa 432 

reflects lowering water level and slight alkaline freshwater, lower nutrient concentrations and low 433 

silica content (Kilham et al. 1986; Stevens et al., 2006; Zalat et al., 2018).  434 

In the stronghold at the lake shore, the next phase of human activity took place at the end of 435 

the 11 th century AD when a new rampart was raised. Wooden constructions were also built, traces 436 

of which were excavated in the gate passage. The settlement was finally abandoned presumably 437 

in the first half of the 13th century and then, its ramparts were strongly eroded, with their material 438 

moving towards a yard and the moat (Rabiega et al., 2017). The sub-phase 4b is characterized by 439 

a gradual warming, which corelates with a gradual shallowing of the lake and increased rate of 440 

sedimentation. Human impact on the environment in this sub-phase is already so great that 441 

reconstruction of a climate change is not clear. There is no doubt, however, that this is a warm 442 

period, which should be correlated with the Medieval Warm Period (MWP) (Mann et al., 2009). 443 

5.5. Phase 5: 780 – 0 cal. yrs. BP (13 c. AD – present time), depth: 1.45 - 0 m 444 
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This phase starts about 1200 AD and is connected with the early Modern Period. Cultivation 445 

and treatment of hemp has been terminated but cultivation of cereals and presence of synanthropic 446 

plants indicate human activity near the lake. The water level changes only slightly is not high and 447 

slightly changes, which is evidenced by a great abundance of benthic diatom taxa over the 448 

planktonic forms (DZ 8-10, fig. 8). There is a drop TOC and rise MS caused by increasing input 449 

of terrestrial material at 1.4 m depth (ca. 751 cal. yrs. BP), resulting presumably from human 450 

deforestation. The small watercourse which enters the lake from the north–east appeared most 451 

probably during this phase and had a strong impact on the its water environment (see, Bińka et al, 452 

2020). As previously mentioned, in 15 century AD a mill was built near the lake and damming of 453 

the water in the mill reservoir probably contributed to periodical blooms of dinoflagellate 454 

populations in Lake Młynek. Major blooms of Tetraedron which usually precede blooms of the 455 

dinoflagellate, were most probably the main factor that contributed to the decline of settlement at 456 

the stronghold (Bińka et al, 2020). This zone is also characterized by increased precipitation which 457 

is reflected by more intensive terrestrial inflow to the lake and is confirmed by quasi-linear 458 

correlation of MS with contents of Fe and Ti in sediments (Fig. 6). The modern lake is shallow (2-459 

3 m) and gradually overgrowing.  Summing up, the phase 5 is marked by intensive human activity 460 

around the lake and therefore, most “natural” environmental and climate changes are obliterated.  461 

 462 

7. Development of Lake Młynek – a regional background 463 

The above scenario seems to be confirmed by earlier palaeoenvironmental research carried 464 

out in the south-western part of the Warmia-Masuria Lakeland (Kupryjanowicz, 2008; Kołaczek 465 

et al., 2013). Previous studies of the lakes sediments in this region were based mainly on pollen 466 

analysis and enable to the comparison if the Lake Młynek record with other sequences.  467 

The closest records from Lake Woryty (Pawlikowski et al,.1982, Noryśkiewicz and Ralska-468 

Jasiewiczowa, 1989, Ralska-Jasiewiczowa and Latałowa, 1996), just 35 km to the east, is a 469 

reference one. Palaeoenvironmental records inferred from the Lake Młynek core are very similar 470 

to the Woryty palynological succession with distinctive human impact during the Roman Period 471 

and the Medieval Ages, however, a detailed comparison is difficult, because of the low resolution 472 

of the pollen spectrum obtained at Woryty.  473 

The second site is Lake Drużno, located in the Vistula Delta, 35 km to the north of Młynek 474 

Lake (Zachowicz et al., 1982; Zachowicz and Kępińska, 1987; Miotk-Szpiganowicz et al., 2008). 475 
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Unfortunately, the low resolution and the lack of reliable age-depth model of the lake make 476 

comparison comparison difficult. Despite habitat differences between Lake Drużno and Lake 477 

Młynek, pollen records obtained at both sites are very similar and comprise human indicators 478 

during the Roman Period and human impact during the Medieval time.  479 

The pollen spectrum from Lake Łańskie (Madeja, 2013), located 55 km to the south-east 480 

from Lake Młynek, shows higher content of pine and lower share of beech than in the case of Lake 481 

Młynek. Such divergences are probably not only due to different location and environmental 482 

conditions in the lake vicinity but also depend on different size of these lakes. Lake Młynek is a 483 

very small (0.7 km2) mid-forest basin, whereas Lake Łańskie is over 10 km2 large and contains 484 

mostly a regional pollen record. Based on periodical appearances of human plant indicators and 485 

archaeological data between 300 BC and 800 AD, three human phases of West Baltic Barrow, 486 

Wielbark and Prussian cultures were distinguished (Madeja, 2013). In the pollen diagram from 487 

Lake Młynek (phase 2), the first culture is indicated, including termination of the La Tene and the 488 

Roman Period. Significant growth of human indicators from the beginning of 11th century are 489 

visible in diagrams from both sites. A more local record from Lake Młynek is marked especially 490 

by high content of Humulus/Cannabis (to 25%) in 13-15 th centuries AD. In the sediments of Lake 491 

Łańskie, hemp occurred discontinuously and was <1%. 492 

The pollen records from Lake Młynek are similar to the ones from the Masurian Lakes: 493 

Wojnowo, Miłkowskie and Jędzelek, located over 100 km to the east (Wacnik et al., 2014). 494 

Recorded episodes of human impact on vegetation during the Roman Period and Medieval time 495 

are separated by 500-600 years long intervals without cultivation and with natural reforestation 496 

(indicated by strong presence of birch which is a pioneer species). A similar period of human 497 

withdrawal in the Lake Młynek section began and terminated earlier than recorded in the lakes 498 

Wojnowo and Miłkowskie. Another history of human activity is represented in a record from Lake 499 

Salęt (Szal et al., 2014b). Pollen grains of cultivated and ruderal plants are noted continuously from 500 

the early Iron Age to the early Medieval time. In contrast to the pollen record from lakes Młynek, 501 

Wojnowo and Miłkowskie, the suggested continuous settlement in the neighbourhood of the Lake 502 

Salęt was interrupted by a single very short decline of human impact between 880-980 AD (Szal 503 

et al., 2014a). Numerous pollen data are available from the area adjacent in the south-west in the 504 

Brodnica Lake District, including Strażym Lake (Noryśkiewicz, 1987; Noryśkiewicz and Ralska-505 

Jasiewiczowa, 1989), Oleczno Lake (Filbrandt-Czaja, 1999; Filbrandt-Czaja et al., 2003) and the 506 
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Chełmno Lakeland (Noryśkiewicz, 2013). Pollen records from this region also suggest intensive 507 

settlements during La Tene, Roman and Medieval periods.  508 

Pollen records from other sites located to the east of Lake Młynek indicate differences in 509 

the representation of beech content. The Fagus silvatica content changes to the north-east and its 510 

significantly high content in Lake Młynek sediments represents a very local record in a small lake. 511 

Decline of Fagus sylvatica depend on a continental climate and is noted in pollen diagrams from 512 

the lakes: Salęt (Szal et al., 2014a), Mikołajki (Ralska-Jasiewiczowa, 1989), Żabińskie (Wacnik et 513 

al., 2016) and Wigry (Kupryjanowicz, 2007). A decline of beech is accompanied by a rise of Picea 514 

abies. A record of human activity in pollen spectra from eastern Poland was noted at many sites.  515 

 516 

8. Conclusions 517 

Based on results of performed laboratory analysis, supplemented with archaeological data, 518 

five main environmental phases of the Lake Młynek development were distinguished (Fig. 10). 519 

Radiocarbon ages enabled detailed chronology whereas pollen data and stratigraphy of the 520 

stronghold to the north-east of the lake made correlation of human activity with environmental data 521 

possible for the last 2300 years. From the 1st century BC to 2nd century AD the forest around the 522 

lake was much reduced, what can be associated with pre-Roman and Roman occupation phase 523 

(attested also on the stronghold located close to the lake). From the 2nd to 9th century AD there is a 524 

gradual restoration of the forest and decline in human activity along with a deepening of the lake 525 

as a result of wetter climatic conditions. This colder and humid phase corresponded to the Bond 1 526 

Event (1.5 ka BP) cooling episode. Intensive forest clearing around the lake occurred in the 9th – 527 

13th century AD as result of another phase human activity. This period is marked by warming 528 

confirmed by a gradual shallowing of the lake (Middle Age Warm Period). Since 14th century AD 529 

strong human impact transformed the local landscape, especially through the construction and 530 

activity associated with the mill and the creation of a small artificial lake in 15th century AD.  This 531 

results in potential climate-driven environmental changes being obscured by the direct impact of 532 

humans on the lake and its catchment. It is important to add here that transformations of Lake 533 

Młynek, reconstructed based on diatom analysis, not only indicate changes of the lake water level 534 

and correspond with a human impact but also determine episodes of more humid climate during 535 

coolings.  536 
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We can conclude that environmental transformations recorded in bottom lake sediments of 537 

Lake Młynek were highly dependent on human activity and were especially intensive in the Roman 538 

and Middle Age periods due to favourable climatic conditions 539 
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ILUSTRATIONS 781 
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 786 

 787 

Fig. 1. A - location of Lake Młynek in the Warmia and Mazury Region (north-eastern Poland) (Drawing; Fabian Welc). 788 

B – view of the Młynek Lake from the north-west (Photo: Fabian Welc), C – satellite image of the lake (open source: 789 
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©Google Earth: www.google.com/intl/pl/earth). D – LIDAR image of the lake: a – lake basin, b – Janiki Wielkie 790 

archaeological site established in early Iron Age (open source: ©Geoportal Poland:www.geoportal.gov.pl). 791 

 792 

 793 

Fig. 2. GPR reflection profile across Lake Młynek (cf. Fig. 2), a – drilling M-1, b – upper boundary of the so-called 794 

hard bottom, c –stratified glaciofluvial sandy-gravel beds beneath the lake sediments, d – attenuation zone of 795 

electromagnetic waves connected with occurrence of organic sediment (gyttja) (measurements, processing and 796 

interpretation: Fabian Welc). 797 
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 800 

 801 
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Fig. 3. Młynek Lake: A – location of drillings M 1-4 and transect of GPR sounding (open source: Google Earth©: 802 

www.google.com/intl/pl/earth/).  803 

 804 

 805 

 806 

 807 

 808 

 809 

Fig. 4. Age-depth model of the core M-1 from the Lake Młynek sediments. Good runs of a stationary distribution are 810 

shown in the upper left panel, green curves and grey histograms in the upper right panel present distributions for the 811 

sediment accumulation rate. The main bottom panel shows the calibrated 14C dates (transparent blue) and the age-812 

depth model (darker gray areas) which are indicating calendar ages. Grey stippled lines show 95% confidence intervals 813 

and the red curve shows the ‘best’ model based on the weighted mean age for each depth. The model was created by 814 

F. Welc using the open Bacon software (Blaauw and Christen, 2011). 815 
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 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

Fig. 5. Lithology of the M-1 borehole with radiocarbon determinations with 95% confidence, close up - photo of the 834 

log at 2.6 - 3.0 m depth and sedimentary rate (mm/year) estimated based on the age/depth model. Description of LOG: 835 

1 - hydrated – detritus type gyttja, 2 - very plastic - algal gyttja, 3 - gray-brown peaty - detritus gyttja, 4 - gray-brown 836 

gyttja (Photo and drawing: Fabian Welc).   837 
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 32 

Fig. 6. Concentration depth curves for selected elements and TOC in the core M-1 of Lake Młynek sediments. 849 

Description of LOG: 1 - hydrated – detritus type gyttja, 2 - very plastic - algal gyttja, 3 - gray-brown peaty - detritus 850 

gyttja, 4 - gray-brown gyttja (Drawing: Fabian Welc).   851 

 852 

Fig. 7. Scatter plot showing the correlation in the core M-1 between S and TOC, Al and TOC, Ti and Fe, and Ti and 853 

Fe. (Drawing: Anna Rogóż-Matyszczak) 854 

 855 

Fig. 8. Diatom stratigraphy of the core M-1, showing diatom zones and lake phases and relative water level changes 856 

estimated on relation between planktonic and benthonic diatom taxa (Interpretation and drawing: Abdelfattah Zalat). 857 
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Fig. 9. Percentage pollen diagram from core M-1 – selected taxa. 862 

 863 

 864 

Fig. 10. Diagram with selected palaeoenvironmental proxies including lithology (1 - hydrated – detritus type gyttja, 2 865 

- very plastic - algal gyttja, 3 - gray-brown peaty - detritus gyttja, 4 - gray-brown gyttja) with phases of human activity 866 

in the vicinity of Lake Młynek, supplemented by archaeological chronology for Poland (Drawing: Fabian Welc). 867 


