Last 2400 yrs. of environmental changes and human activity recorded in the gytta-type bottom sediments of the Lake Młynek (Warmia and Masuria Region, northern Poland)

Fabian Welc (1), Jerzy Nitychoruk (2), Leszek Marks (3), Krzysztof Bińka (3), Anna Rogóż-Matyszczak (2), Milena Obremska (4), Abdelfattah Zalat (5)

1. Institute of Archaeology, Cardinal Stefan Wyszynski University in Warsaw, e-mail: f.welc@uksw.edu.pl.
2. Faculty of Economic and Technical Sciences, Pope John Paul II State Higher School of Education, e-mail: jerzy.nitychoruk@pswbp.pl, annarogoz@interia.pl
3. Faculty of Geology, University of Warsaw, e-mail: k.binka@uw.edu.pl, leszek.marks@uw.edu.pl
4. Polish Academy of Sciences, Institute of Geological Sciences, e-mail: mobremska@twarda.pan.pl
5. Tanta University, Faculty of Science, Tanta University, e-mail: abzalat@science.tanta.edu.eg

Abstract

In the densely forested Warmia and Masuria region (north Poland) there are many endorreic lakes characterized by small size and slow sedimentation, which makes them excellent Holocene environmental and palaeoclimatic archives. One of them - the Lake Młynek, located near the village of Janiki Wielkie, has been selected for multi-faceted palaeoenvironmental research based on a precise radiocarbon scale. Sediments of this lake also contain unique information about human impact on the environment, because a stronghold has been operating on its northern shore since the early Iron Age to the early Medieval period, which gives opportunity to correlate palaeoenvironmental data with phases of the human activity in the last 2400 years. During 3rd and 2nd century BC in the lake was surrounded by a dense deciduous forest. From the 1 century BC to 2nd century AD the forest around the lake was much reduced, what can be associated with the first pre roman (La Tene) and Roman occupation phase attested on the stronghold located close to the lake. From the 2nd up to 9th century AD gradual restoration of the forest and decline of human activity is attested, along with lake deepening and onset of colder and humid climatic phase which corresponded to global cooling episode known as the Bond 1 Event (1.5 ka BP). The next intensive forest clearing around the lake occurred in the 9th – 13th century AD as result of human activity (Middle Age settlement phase on the stronghold). This period is marked by a climate change towards warming, which is confirmed by a gradual shallowing of the lake (Middle Age Warm
Period). In latter time, the strong human activity which transformed the landscape caused that possible climate-induced natural environmental changes are not so clear. Only cooling during the Little Ice Age is indicated by the changing sedimentation rate in the lake.

Keywords: late Holocene, lake sediments, Lake Młynek, environmental change, human impact, Late Holocene, Iron Age, Middle Ages, north Poland.

1. Introduction

Lake sediments are a useful source of proxies of past environmental and climate changes in the Holocene (see Brauer, 2004; Zolitschka, 2007; Wanner et al., 2008; Francus et al., 2013; Ojala et al., 2013; Welc, 2017). The main advantage of lake sediment archives is usually continuous and uninterrupted accumulation. Well-dated lake sediment columns let to trace both long- and short-term Holocene palaeoclimate changes (Smol et al., 2001; Tiljander et al., 2002; Valpola and Ojala, 2006; Czymzik et al., 2010; Elbert et al., 2012; Tylmann et al., 2012; Welc, 2017). Particularly valuable for palaeoclimate reconstructions are sequences from lakes, without river spring inflow and outflow (Wetzel, 2001; Stankevica et al., 2015). In northeastern Poland eutrophic lakes are common, similarly as in northeastern Europe. They are typical for their substantial primary production (algae and aquatic macrophytes), because of the predominance of nutrient input over mineralization processes (Cooke et al., 2005). Such intensive bio-productivity results in a deposition of thick organic sedimentary sequences, mostly of organic gyttja composed of remains of aquatic plants, plankton and benthic organisms transformed by activity of bacteria and mixed with mineral components supplied from the lake basin (Kurzo et al., 2004; Stankevica et al., 2015). There are ca. 1000 freshwater lakes of different size in the Warmia and Mazury Region in north Poland (Fig. 1). Most of them are located within past glacial tunnel valleys formed by meltwater erosion at the termination of the Vistulian (Weichselian) Glaciation (ca. 115-12 ka BP). After deglaciation at the end of the Pleistocene these tunnel valleys were partly filled with deposits and water, and persisted in the Holocene. Such lake basins have steep slopes and their bottom deposits are underlain by glaciofluvial sand, gravel and silt or glacial till (Kondracki, 2002; Gałązka, 2009). Many lakes in the Warmia and Mazury Region are small (<1 ha), with stable sedimentation rate and without river inflow and outflow. It is among the reasons that palaeoclimatic investigations, based mainly on pollen analysis are undertaken in this area (e.g., Kupryjanowicz, 2008; Kołaczek et al., 2013).
Lake Młynek is located near the village of Janiki Wielkie and it was selected for multifaceted palaeoenvironmental research (pollen analysis, diatom, chrysophyte cysts, geochemistry, and other) based on a precise radiocarbon scale, as it is hypothesized that the bottom sediments of this lake contain a unique record of human impact on environment, as a result of the location of an Iron Age stronghold on the northern shore, which was active (though not continuously) up until the early Middle Ages (Fig. 1). Performed analysis provided an opportunity to reconstruct the transformation of the vegetation around the lake and the changes in the reservoir that occurred under the influence of the climate (regional significance) and as a result of human activity. Our results were correlated with geoarchaeological data to determine mutual relations between environmental and climatic changes with development of human settlement phases in the Warmia and Mazury Region during the last 2000 years.

2. Study area

The Lake Młynek is a small water body that has occupied a glacial tunnel valley in the Holocene. The lake is located in the Iława Lakeland in northern Poland, maintains the NNE-SSW course and it is about 720 m long and 165 m wide. The lake occupies 7.5 ha in area, its water surface rises to about 101 m a.s.l. and the maximum depth is just over 2 m. The lake Młynek is surrounded by a morainic plateau at 120-130 m a.s.l and is surrounded by dense forest (Fig. 1). A large part of the Iława Lake District is covered with forest, whereas meadows and synanthropic communities which have a smaller share. The forest covers 41.5% of the area. Among the habitats, a highly-productive mixed coniferous forest prevails. The basic components of the Iława forest are pine, oak, beech, alder, birch, in smaller amounts there are spruce, larch, ash, hornbeam, maple and linden. Currently, the Lakeland is characterized by a transitional climate that shapes the influence of the continental and maritime climate circulation. The vegetation period lasts about 206 days, and the snow cover remains for 70-90 days. Average temperature values range from approximately -4.0°C in February to above 17.0°C in July, maximum from -1.0° to 22.0°C, minimum from approximately -7.0° to 12.0°C. Due to the greater proportion of the polar air masses and a large number of natural water reservoirs, air humidity is relatively high, ranging from 72% to 89%. The precipitation sums from 500 to 550 mm a year. Throughout the year, SW winds predominate. The westerly winds are stronger in winter. The highest wind speeds are recorded in the winter months (from 2 to 4 m/s) and the lowest in the summer (from 2.0 to 3.0 m/s) (Jutrzenka-Trzebiatowski and Polakowski,
1997; Stopa-Boryczka et al., 2013). It is important to note, that from the north, a small stream flows into the Lake Młynek, which is active in winter and dries up almost completely in summer (Fig. 1: D). Most probably it is an effect of irrigation works related to the construction of the mill in the 15th century, somewhere in the vicinity of the medieval stronghold located on the shore of the lake (Semrau, 1935, Bińka et al., 2020).

3. **Material and methods**

3.1. **Bathymetry**

Determination of lake bathymetry and thickness of bottom sediments are extremely important in palaeolimnological research to help locate coring sites. This can be achieved through the use of GPR sounding (Lin et al., 2009; Sambuelli et al., 2009; Sambuelli and Silvia, 2012). In Poland winter is a particularly convenient season when ice cover of a lake makes GPR profiling much easier and improves access and speed of data collection (Hunter et al., 2003). Measurements along and across the lake were carried out in 2017, directly on a lake ice and a snow cover (Fig. 3). We used the radar system ProEx of the Malá Geoscience. A radar pulse was generated at a regular distance interval of 0.02 m (900 samples were recorded from a single pulse). The time window of recording was between 250 and 300 ns. Prospection was done with use of a shielded monostatic antenna with 250 MHz nominal frequency of the electromagnetic wave.

3.2. **Coring and sampling**

Based on the results of the GPR 4 drillings were done at ca 2 m water depth (Fig. 2) to collect cores according to Givelet et al. (2004) collecting protocol. Sediment cores were film-wrapped in 1 m plastic tubes and transported to the laboratory. These cores (M1-4) were then subjected to magnetic susceptibility measurements which enabled to select M1, the longest and most continuous core, to carry out detailed analysis. Samples from the 3.5 m long core M-1 (geographic coordinates: 53.82486 N, 19.72419 E) were sub-sampled at 5 cm interval and used for multi-proxy laboratory analyses.

3.3. **Age-depth model**

Radiocarbon dating was performed on 4 bulk samples from the core M-1, collected either from organic-rich gyttja or gyttja with dispersed organic matter (Table 1). The organic matter
seems to have been derived both from aquatic and terrestrial sources. AMS dating was done in the Poznań Radiocarbon Laboratory in Poland, where 14C measurements were performed in graphite targets (Goslar et al., 2004). Construction of proper and correct age-depth model required an assessment of several agents that could disturb constant accumulation of bottom deposits of the Lake Młynek. Disturbances could result both from sedimentary and post-sedimentary processes (varied rate of deposition and compaction, impact of bioturbation). The varied influx of material delivered to the lake from the adjacent area is a very important factor of disturbance. Therefore, a Bayesian age-depth routine mode was chosen as it takes into account the sedimentation rate and its variability (Blaauw and Christen, 2005, 2011; Blaauw et al., 2007) (Fig. 4). The model was based on default settings, except for section thickness which was set at 0.05 cm given the length of this core. The Bacon model uses the IntCal3 curve (Reimer et al., 2013) to calibrate the radiocarbon data.

Table 1. List of radiocarbon determinations.

<table>
<thead>
<tr>
<th>No.</th>
<th>Depth in m</th>
<th>Lab. reference</th>
<th>14C yr. BP</th>
<th>Age calibrated 95% probability</th>
<th>Material dated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95-1.00</td>
<td>S/JW 1/2015/A</td>
<td>435 ± 30</td>
<td>1418 – 1494 AD</td>
<td>Bulk of gyttja</td>
</tr>
<tr>
<td>2</td>
<td>1.65-1.70</td>
<td>S/JW 1/2015/B</td>
<td>1015 ± 30</td>
<td>971 – 1048 AD</td>
<td>Bulk of gyttja</td>
</tr>
<tr>
<td>3</td>
<td>2.40-2.45</td>
<td>S/JW 1/2015/C</td>
<td>1730 ± 30</td>
<td>236 – 386 AD</td>
<td>Bulk of gyttja</td>
</tr>
<tr>
<td>4</td>
<td>3.45-3.50</td>
<td>S/JW 1/2015/D</td>
<td>2275 ± 30</td>
<td>401 – 351 BC</td>
<td>Bulk of gyttja</td>
</tr>
</tbody>
</table>

3.4. Palaeobotanical analysis

3.4.1 Pollen

The core M-1 was sampled every 5 cm for pollen analysis. 70 samples (ca. 10 g each) were treated with 5% HCl, boiled in 5% KOH and hot 30% HF. They were washed with 15% HCl and treated by the standard Erdtmann’s acetolysis. In each sample about 1000 pollen grains were counted using an optical microscope at 400x magnification.

3.4.2 Diatom and Chrysophyte cysts analysis

70 samples were prepared for the analysis of diatoms and chrysophyte cysts. They were extracted from 1 g of dry sediment of each sample using the disintegration method in HCl and H$_2$O$_2$, according to the technique proposed by Zalat and Servant-Vildary (2007). For slide
preparation, 0.1 ml of the final suspension was dried on coverslips and then mounted onto slides using Naphrax. Diatoms were identified to species level using a Leica photomicroscope with a digital camera and equipped with differential interference contrast (DIC) optics at 1000x magnification with oil immersion. Identification and ecological information of the diatom species were based primarily upon the published literature (e.g. Kilham et al., 1986; Douglas and Smol, 1999; Witkowski et al., 2000; Hofmann et al., 2011). Recent taxonomic advances split many diatom taxa of the former genus *Fragilaria sensu lato* into several new genera, including *Fragilaria, Pseudostaurosira, Staurosira* and *Staurosirella* spp. (Williams and Round, 1987); these new names herein collectively referred to as *Fragilaria sensu lato*. Chrysophyte cysts were described and enumerated following Duff et al. (1995, 1997), Pla (2001) and Wilkinson et al. (2002). Preliminary results of the diatom studies based on the core M-1 were already published by Zalat et al. (2018).

3.5. *Geochemical analysis*

ICP-OES spectrometer was used for determination of basic (Al, Ca, Mg, Na, K, Fe, P) and trace elements (As, Cd, Mn, Th, Ti, U, V, Zn) in the analysed samples. Powdered samples were mineralized in a closed microwave Anton Paar Multiwave PRO reaction system. Mineralization procedure was based on the procedure of Lacort & Camarero. Characteristics of lake sediments was done with the extraction method of elements soluble in aquaregia (according to European Standard CEN/TC 308/WG 1/TG 1, slightly modified). Dry samples of about 0.2 g weight were transferred to the PTFE vessel and HNO₃, and HCL Merck Tracepur® was added. The vessels were placed in a rotor and loaded to a microwave. Finally, the samples were analysed in the Spectro Blue ICP OES spectrometer at Regional Research Centre for Environment, Agricultural and Innovative Technologies, Pope John II State School of Higher Education in Biała Podlaska. Berndt Kraft Spectro Genesis ICAL solution and VHG SM68-1-500 Element Multi Standard 1 in 5% HNO₃ were used.

3.6. *Total organic carbon (TOC)*

Analyses were done after sample acidification to remove carbonates in the SHIMADZU SSM 5000A analyser with a solid sample combustion unit. The method was the catalytically aided combustion oxidation at 900°C with pre-acidification and oven temperature 200°C. A measuring
range TC was 0.1 mg to 30 mg carbon. Sample amount was 1 g and aqueous content <0.5 g. Repeatability: S.D. ±1% of full scale range (www.ssi.shimadzu.com/products/toc-analyzers/ssm-5000a).

3.7. Magnetic susceptibility (MS)

The cores from the Lake Młynek were subjected to MS measurements using SM-30 magnetic susceptibility meter (ZH Instruments). Due to very high sensitivity (1 x 10^{-7} SI units) this device was provided with 8 kHz LC oscillator and its pick-up coil sensor was large enough to measure sufficiently high volume of sediments with very low MS. The measurements were done at every 5 cm along each core (M1-4).

3.8. SEM microscopic analysis

All selected samples were analysed using a scanning electron microscope (SEM) HITACHI TM3000 with an energy dispersive spectrometer (EDS) SWIFT ED 3000 Oxford Instruments. The samples were not covered with any conductive material. Magnification range was x 20 to x 30000. This method was used to perform basic microscopic observations of samples of the core M-1 with point determination of their chemical composition of major elements.

4. Results

4.1. Archaeological records

Archaeological data were collected from the stronghold Janiki Wielkie, located on a hill at the north-eastern shore of the Młynek Lake. During the archaeological research carried out in 2013 and 2016, a total of 143 stratigraphic units were distinguished on this site, which were divided into seven main settlement phases: phase I – early Iron Age, phase II – stronghold abandoned after the early Iron Age, phase III – early Middle Ages, phase IV – stronghold abandoned in the early Middle Ages, phase V – settlement activity on the stronghold in the 11th-13th century, phase VI – stronghold definitely abandoned in the 14th century (Rabiega et al., 2017, Nitychoruk and Welc, 2017).

4.2 Bathymetry

A georadar transect across the lake reflects both its bathymetry and lithologic variety of its bottom (Figs 2 - 3). The superficial layer of the transect is represented by lake ice, ca 25 cm thick
and although it is almost not visible on radar images due to its thickness being smaller than a vertical resolution of measurements, beneath there are abundant horizontal multiple reflections of energy from the bottom of the ice. Two narrow and vertical zones with small diffraction hyperboles at 23 and 29 m of the transect indicate upward deformation of bottom sediments at the location sites of the sounding core and the core M-1 (Fig. 3a). The top of the underlying mineral deposits (so-called hard bottom) is indicated as a distinct downward-deflected reflection surface (Fig. 3b). In a central part of the lake it occurs at 2.6 m depth (two-way travel time 290 ns) and indicates the top of the Holocene organic sediments. Unfortunately, beneath there is a signal-absorption zone (Fig. 3d), resulting from the fact that most sediments are composed of fine-grained organic material (gyttja). However, thickness of this layer was determined by drillings to about 5 m. A relief of the lake bottom in the GPR image reflects a cross-section of a buried glacial tunnel valley that was eroded mainly in sandy and sandy-gravel deposits. Close to the lake shore (0 to 20 m in the northwest and 110 to 140 m in the southeast), there are numerous oblique and chaotically parallel reflection surfaces dipping towards the channel axis. They reflect bedding of the Pleistocene sandy-gravel series that partly filled a subglacial channel (Fig. 3c).

4.3. Age-depth model

The age-depth model of the core M-1 from the Lake Młynek is shown in Fig. 4. Grey stippled lines show 95% confidence intervals and the red curve shows the ‘best’ model based on the weighted mean age for each depth. Good runs of a stationary distribution are shown in the upper left panel, green curves and grey histograms in the upper middle panel present distributions for the sediment accumulation rate. The main bottom panel shows the calibrated 14C dates (transparent blue) and the age-depth model (darker grey areas) which are indicating calendar ages.

4.4. Lithology

Bottom deposits of the Młynek Lake are organic-rich. The core M-1 is composed of grey-brown gyttja at 1.8 – 3.6 m depth (Fig. 5). At 1.45 – 1.80 m depth there is grey-brown gyttja-detritus and at 1.10 – 1.45 m depth algal gyttja is recorded. The uppermost part of the core is composed of grey-brown (depth 0.4 – 1.1 m) and detritus gyttja (0.0 – 0.4 m).

4.5 Sedimentation rate

The sedimentation rate was calculated based on the age-depth model. Results reflect quite a stable sedimentary environment with a general rate of 1.5 mm a year. The rate is stable at 3.40 – 1.77 m depth and equal ca 1.5 mm a year. It drops to 1 mm, then rises to 1.3 – 1.8 mm a year at
1.77 – 0.30 m. At 0.0 – 0.30 m the sedimentary rate is the highest and equal ca 3 mm a year (Fig. 5).

4.6. Magnetic susceptibility and total organic carbon

MS is highly dependent on lithology and grain size of deposits (Dearing, 1994; Sandgren and Snowball, 2001). It reflects presence and size of ferromagnetic particles in a sample (Verosub and Roberts, 1995). Increased content of ferromagnetic minerals such as magnetite, Fe-Ti oxides or pyrrhotite generates higher MS whereas biotite, pyrite, carbonates and organics result in its lower values. Total volume of magnetic minerals in lake sediments reflects mostly climatic changes in a catchment (Bloemdal and deMenocal, 1989; Snowball, 1993; Peck et al., 1994).

MS in the core M-1 is varied but due to organic character of the sediments, its values are relatively low, from 0.002 to 0.034×10^{-7} units SI. In grey-brown gyttja with organic matter at 3.50 – 2.58 m depth, MS rises and drops in turn from 0.01 to 0.02×10^{-7} SI. MS drops from 2.60 m depth, reaching a minimum at 1.63 m. Higher up, MS rises again, with the highest value at 1.35 m, then there is a minimum at 1.05 m and the next maximum at 0.69 m depth (Fig. 6).

MS is generally low in biogenic sediments as gyttja, which is composed mainly of microfossil skeletons e.g. diatoms and radiolarians (Thompson and Oldfield, 1986). In the Lake Młynek there is an apparent negative relationship between TOC and MS. Several intervals show both higher percentages of TOC and lower MS values. At 1.40 m depth, TOC suddenly drops, probably due to deforestation and then, MS significantly rises due to increasing input of terrestrial (non-organic) material to the lake. Such coincidence clearly indicates that TOC is both of autochthonous and allochthonous derivation (Fig. 6).

Changes of MS in the Lake Młynek sediments record most probably an input of clay into the lake and diagenetic conditions in bottom sediments. Iron oxides are presumably of detrital origin and were delivered to the basin through deep valleys incised at the north-western shore. Concentration of ferromagnetic minerals is connected with periodical intensive soil erosion around the lake. Their higher content depends also on diagenetic processes in bottom sediments. Oxidation of organic matter in anoxic conditions (by iron-oxide-reducing bacteria) results usually in increased content of ferromagnetic particles (small particles are removed first). In opposite, oxygenation by heavy floods stops this process and small magnetic particles are preserved (Jelinowska et al., 1997).

4.7. Water-soluble ions
Various factors influence distribution and accumulation of geochemical elements in lake sediments. Most important are texture, mineral composition, oxidation/reduction state, absorption/desorption and physical transportation processes (Ma et al., 2016). Curves of representative elements are generally used to characterize sedimentary environments. Most analysed elements do not indicate any clear trend with depth in the Lake Młynek. The curves of S and TOC show significant rises at 2.0 – 1.4 m depth that are slightly correlated with decreased contents of Al, Fe, K, Ca, Mg and MS (Fig. 6).

Sulphur content is correlated with existence of iron sulphides. In the studied core, Fe is positively correlated with Al and Ti (Fig. 7). Fe-Ti oxides are noted in SEM EDS analysis. They are resistant to surface weathering and carry trace elements (Bauer and Velde, 2014). At ca. 3 m, high frequency peaks of Al, K, Ca, Na, Mg, Fe and S occur (Fig. 6). Such occasional high intensity events leave a stronger geochemical imprint, because of sedimentation in shallow water (Ivanić et al., 2018). The highest contents of detrital elements like Al, K, Ca and Mg are to be associated with sudden delivery of clastic material to the lake e.g. during increasing flood or rainfall (Wirth, et al., 2013). Especially Al is extremely immobile, that is why it should be regarded as a typical lithogenic element (Price et al., 1999). Additionally, Al is a major constituent of soils and other sediments as a structural element of clays. It has a strong positive correlation with many major elements (Fig. 7). The association between Al and other elements can be therefore used as the basis to compare natural elemental contents in sediments and soils. Ca is well correlated with Al, originated mainly from terrigenous bicarbonate inputs and was deposited in a lake as a solid carbonate (Miko et al., 2003). Calcium is evidently more easily removed in solution from a mineral material and it is highly concentrated in highly erosional periods (Mackereth, 1965).

The Fe/Ca ratio is considered as a eutrophication proxy. The highest ratio points out to low oxygenation, eutrophic or dystrophic reservoirs (i.e. Kraska and Piotrowicz, 2000; Holmes and De Decker, 2012), whereas the low Fe/Ca ratio in bottom sediments indicates oligotrophic character of a lake. In the studied core sediments, Fe/Ca ratio varies from 0.808 (depth 3.05 m) to 3.677 (1.2 m). The ratio is low, indicating oligotrophic conditions in bottom sediments which gives conflicting results with other data. The Fe/Ca ratio can be disturbed by detrital input to the lake (Fig. 6). The dysaerobic conditions in the lake are confirmed with Th/U ratios (0.03 – 0.41) which are lower than the critical value of 2 as indicated by Myers and Wignall (1987) and Wignall (1994). The ratio of total Fe to total P ranges from 13.91 (1.6 m) to 30.82 (0.55 m). The values are typical for other
lakes in northern Poland, which vary from 3 to 180 according to Bojakowska (2016). The release of P follows in reducing conditions. According to Ahlgren et al. (2011) is even up to ten times greater than in aerobic conditions. However, there is a poor correlation with other redox proxies i.e. Th/U (R=0.08). It can be caused by presence of Al which forms Al(OH)₃. In such systems even though the redox state favours release of P from iron minerals, the P is immobilized by binding with hydroxides. Thus, the presence of Al(OH)₃ can stop release of P even in an anoxic hypolimnion (Hupfer and Lewandowski, 2008). It can be a case in the studied sediments as Al shows positive correlation with P content (R=0.49). Except for Fe/Ca, all counted ratios point out to anoxic conditions in all studied samples which is typical to eutrophic lakes. Nevertheless, as all proxies are characterized by extreme values at the 3.05 m depth, they seem to depend on external load of terrigenous material. It is confirmed with very good positive correlation between Fe and Al (0.95), Fe and Ti (0.64) Mn and Al (0.46) or Mn and Ti (0.78).

4.8. Diatoms and chrysophyte cysts

Studies of the Lake Młynek bottom sediments revealed presence of more than 200 diatom taxa belonging to 54 genera (Zalat et al., 2018) (Fig. 8). Diatoms were generally abundant and well to moderately preserved in most samples, although with admixture of mechanically broken valves, especially in the topmost part of the core. Results of the diatom analysis and relative abundance of the most dominant taxa enabled subdivision of the M-1 core section into 11 diatom assemblage zones (Fig. 8) that reflected six phases of lake development (Zalat et al., 2018). Moreover, changes in chrysophyte cysts distributions along with variation in diatom composition could be related to changes in pH, climate and trophic status. Stomatocysts can be used as the index of lake-level changes, habitat availability, metal concentrations and salinity. The periphytic diatom species dominate the planktonic ones throughout the core. A high proportion of periphyton to plankton assemblages was reported as indicative for a long-lasting ice-cover (Karst-Riddoch et al., 2005) whereas a shift from benthic to planktonic diatom taxa is considered for an ecological indicator that is generally interpreted in high-altitude lakes as record of shorter winter and increased in temperatures. Common occurrence of benthic forms represented by Staurosira venter/Staurosirella pinnata diatom assemblage indicates circumneutral to slightly alkaline shallow water with lowering lake levels and prolonged ice cover. However, Aulacoseira is the most dominant planktonic genus followed by Cyclotella and low frequency of Cyclostephanos.
Diatom preservation in the upper part of the core (depth 1.40 – 0.15 m) is moderate to relatively poor and the recognized assemblage was represented by the occurrence of some dissolved and teratological diatoms valves, in particular the topmost part of the core section (0.30-0.15 m) (Zalat et al., 2018).

4.9. Pollen

Based on percentage contents of main trees and terrestrial herbs five local pollen assemblage zones (LPAZ M1-M5) were established in the pollen sequence of the Lake Młynek. The Pollen levels were determined on the basis of changes in the percentage of individual taxa, confirmed by a cluster analysis (Fig. 9):

<table>
<thead>
<tr>
<th>Zone</th>
<th>Depth [m]</th>
<th>Main features of pollen spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAZ M-1</td>
<td>345-315 cm</td>
<td>Pollen grains of Carpinus reached 33.5% and Alnus 25%, Pinus and Betula are <20%. A top border of this zone is indicated by decline of Carpinus.</td>
</tr>
<tr>
<td>LPAZ M-2</td>
<td>315-265 cm</td>
<td>The share of Carpinus drops significantly (<10%), contents of Betula, Quercus and Corylus are slightly raised. The percentages of Gramineae significantly increased up to 7.5%. There are continuous curves of Cannabis/Humulus, Chenopodiaceae, Plantago lanceolate, Rumex acetosella and Secale cereale and a top boundary is indicated by decline of Gramineae.</td>
</tr>
<tr>
<td>LPAZ M-3</td>
<td>195-265 cm</td>
<td>At the beginning the curve of Betula raises to 24% but then drops <10%. The share of Carpinus and Fagus rises to 19% and 27%, respectively. Content of Gramineae decreased <2% and the curves of Secale cereale, Plantago lanceolate and Rumex acetosella disappear. There are only single pollen grains of Chenopodiaceae and Cannabis/Humulus. A top boundary is indicated by a rise of Gramineae.</td>
</tr>
<tr>
<td>LPAZ M-4</td>
<td>195-145 cm</td>
<td>Content of Fagus pollen began gradually decrease. The share of pollen grains of Betula increases and becomes stable at 22-27%. Content of the Gramineae pollen grains increases again to 7%. Curves of Cannabis/Humulus, Plantago lanceolate, Rumex acetosella and Secale raise and a top boundary is marked by a rapid rise of Cannabis/Humulus.</td>
</tr>
<tr>
<td>LPAZ M-5</td>
<td>145-15 cm</td>
<td>Curves of main deciduous trees decline: Carpinus <9%, Fagus <5%, Quercus <5%, Alnus <15%, Betula <14% and content of Pinus increases to 40%. There is significant rise of Gramineae up to 15%. Percentages of Cannabis/Humulus reached absolute maxima (25%) but close to middle part of this zone their strong decline is observed (below 2-3%). The continuous curves of Cerealia undiff., Centaurea cyanus, Plantago lanceolate, Rumex acetosella, Rumex acetosella appeared, and single pollen grains of Polygonum dumetorum, Polygonum aviculare and Urtica were present.</td>
</tr>
</tbody>
</table>
5. Discussion

5.1. Phases of the lake Młynek development during last 2400 years

Based on results of performed analysis and archaeological data, five main environmental phases of the Lake Młynek development were distinguished (Fig. 10):

5.1. Phase 1: ~2300 – 2100 cal. BP (ca. 4 – 2/1 c. BC). Depth: 3.45 – 3.15 m

This phase is recorded in LPAZ M-1 which represents closed forest communities dominated by hornbeam and alder, which colonized marshland near lake shores. Plants of open spaces are only rarely noted as well as indicators of anthropogenic activity (e.g. Plantago lanceolata). There is therefore every reason to conclude that vegetation at that time was relatively natural and not disturbed. A diatom assemblage at the beginning of the diatom subzone DZ1 at 3.45 – 3.40 m depth (Fig. 8) indicates a shallow and slightly alkaline lake, followed (3.35 – 3.15 m) by a rising lake level. Common occurrence and domination of A. granulata suggests a high trophic status of slightly alkaline freshwater environment with high silica concentration (Zalat et al., 2018). MS is high and corresponds to high content of Fe, Ti and Al, indicating increased influx of terrigenous material, presumably activated by intensive rainfalls.

5.2. Phase 2: 2100 – 1830 cal. BP (ca. 1 c. BC – 2 c. AD). Depth: 3.15 – 2.65 m

A vicinity of the lake began to change and major changes in the environment were caused by significant human impact. This phase corresponds with the LPAZ M2, characterized by reduction and fragmentation of the hornbeam-dominated forest. Birch, pine and hazel expanded under better lighting conditions in a partly open forest whereas higher oak values resulted from higher production of pollen. Mid-forest pastures occupied rather small-scale open areas, as can be notified from higher percentages of Plantago lanceolata and other herbaceous plants, e.g. Gramineae, Artemisia and Rumex acetosalacetosella. Cultivated plants as Cannabis t. and Secale are rare, however their occurrence is entirely consistent with other indicators present during this phase. Human occupation is attested by presence of Cannabis/Humulus, Plantago lanceolata, Rumex acetosella, Secale and cereals undiff. This phase is commonly noted and similarly expressed in numerous palynological sequences in neighbouring areas (see for example Noryśkiewicz, 1982, 1987, 2013; Bińka et al., 1991; Ralska-Jasiewiczowa et al., 1998). Pollen data indicate that societies of that time cultivated rye and probably hemp. It is the oldest settlement phase at Janiki Wielkie stronghold and corresponds to a termination of the La Tène and the early Roman period. Human communities in the vicinity of the lake can be connected with settlements
of the East-Baltic Kurgan Culture (Rabiega et al., 2017). During this phase, planktonic diatoms were replaced by benthic taxa, accompanied by *Gyrosigma acuminatum* indicating a lower lake level and dominance of mesotrophic alkaline freshwater environment. The lower stands were interrupted by a short rise of water level at 2.90 – 2.85 m (Zalat et al., 2018). During this phase climatic conditions were still similar to ones in the previous phase, but it was more dry what is reflected by shallowing of the lake. Described phase can be correlated with the so-called Roman Climatic Optimum (see McCormick et al., 2012).

5. **Phase 3: 1830 – 1150 cal. BP (ca. 2 – 9 c. AD). Depth: 2.65 – 1.95 m**

This phase is recorded by the LPAZ M3 when a forest restoration occurred. Absence of human indicator plants suggest that the settlement in the catchment was abandoned. There are also no traces of human activity nearby (Rabiega et al., 2017). Reduction of human impact and human-generated semi-open habitats, allowed for a short-term expansion of birch into empty, open areas, and then replaced by hornbeam that rebuilt its position to the level as in the LPAZ M1. Also elm expanded again in a riparian forest. This restoration of the natural forest was followed by abrupt expansion of beech in the second half of the LPAZ M3. The area of open herbaceous plants communities, previously widespread, was limited.

Abundant planktonic diatoms occurred in the lake (Fig. 8) what indicates its deepening, enhanced thermal stratification, reduced mixing and increased thermal stability (Zalat et al., 2018). Intensified development of a vegetation cover and higher lake water level are indicated by geochemical indices. A gradual drop of MS corresponds with decreased content of detrital elements as Fe, Ti, Al and K, accompanied by gradual increase of TOC and the proxy ratio Fe/Ca. Lower MS and content of Al (acting as a major constituent of soils) accompanied by the higher TOC suggest limited erosion, in spite of gradually higher precipitation in the lake catchment and therefore, a rise of its water level. The climate in this phase has become more humid. Increased rainfall and decreased evaporation are reflected in lake sedimentation as the lake got deeper, resulting in reduced deposition, lower productivity and greater stability. This phase could be associated with a global cooling of the Bond Event 1 (1.5 ka BP) (Bond et al., 1997; Welc, 2019).

5.4 **Phase 4: 1150 – 780 cal. BP (ca. 9 – 13 c. AD). Depth: 1.95-1.45 m.**

This phase is correlated with the LPAZ M4 and was divided into two subphases 4a and 4b (Fig. 11). The subphase 4a marks the onset of another settlement phase, resulting in forest clearing, similarly as in the LPAZ M2. Disturbances took place firstly in a beech forest and less in a...
hornbeam-dominated one. The anthropogenic activity was only slightly smaller than in the LPAZ M2 and is reflected by presence of Gramineae, *Artemisia, Cannabis/Humulus, Plantago lanceolata, Rumex acetosella, Secale* and cerealia undiff. Diatom assemblages prove deepening of the lake (Zalat et al., 2018) as indicated by abundance of *Aulacoseira* associated with *Puncticulata radiosa* in the upper part of the diatom zone 5 at 1.85 – 1.70 m depth. The diatom assemblage suggests a rising lake level, higher trophy and stronger turbulent mixing conditions. Moreover, the greatest reduction of abundant *Fragilaria sensu lato* accompanied by abundant *A. granulata*, could resulted from forest clearing around the lake. Higher TOC corresponds with lower content of detrital material (Fe, Ti, Al and K) and lower MS, and it can reflect a progressing humidity (Fig. 6). This phase can be correlated with the Migration Period and the early Middle Ages. A wooden-loamy defence rampart was raised at the end of the phase in a settlement close to the lake (archaeological phase III), after removal of a natural soil developed during abandonment of the site in the early Roman Period. After a short period, this stronghold was destroyed. A charcoal from a fired wall that represents destruction at the end of the archaeological phase IIIA, was dated at 1245 ± 25 cal. BP i.e. 682-870 AD (95.4% probability) and 1090 ± 30 cal. BP i.e. 892-1014 AD (95.4% probability) (Rabiega et al., 2017).

Human impact declines during the subphase 4b (1.70 – 1.45 m depth) onwards. At this time birch and less intensively poplar occupied temporarily abandoned open areas, especially toward the end of the zone, when a human activity was less intensive. Alder became more abundant, probably expanding into exposed marginal areas of the lake. The subphase 4b, corresponds to the diatom zone 6 which is characterized by abundant benthic *Fragilaria sensu lato* with sporadic occurrence of planktonic taxa. A diatom assemblage reflects lowering water level and slight alkaline freshwater, lower nutrient concentrations and low silica content (Zalat et al., 2018). In the stronghold at the lake shore, the next phase of human activity took place at the end of the 11th century AD when a new rampart was raised. Wooden constructions were also built, traces of which were excavated in the gate passage. The settlement was finally abandoned presumably in the first half of the 13th century and then, its ramparts were strongly eroded, with their material moving towards a yard and the moat (Rabiega et al., 2017). Previous climatic conditions continue in this phase. The subphase 4b is characterized by climate change towards warming, which confirms gradual shallowing of the lake and increased rate of sedimentation. Human impact on the environment in this subphase is already so great that reconstruction of a climate change is not
clear. There is no doubt, however, that this is a warm period, which should be correlated with the Medieval Warm Period (Mann et al., 2009).

5.5. Phase 5: 780 – 0 cal. BP (13 c. AD – present time). Depth: 1.45 - 0 m

This phase starts about 1200 AD and is connected with the early Modern Period of the Middle Ages. Cultivation and treatment of hemp has been terminated but cultivation of cereals and presence of synanthropic plants indicate human activity in near the lake. The water level is not high and slightly changes. There is a drop of TOC and rise of MS caused by increasing input of terrestrial material at 1.4 m depth, resulting presumably from human deforestation. The small watercourse which enters the Lake form the north – east appeared most probably during this phase and had the strong impact on the its water environment (see, Bińka et al, 2020). How it was mentioned, in 15 c. AD a mill was built near the lake using water from the newly created stream. Damming of the water in the mill reservoir probably contributed to periodical blooms of dinoflagellate populations in the Lake Młynek. Major blooms of *Tetraedron* which usually preceding blooms of the dinoflagellate, was most probably main factor that contributed to the decline of settlement on the stronghold near the shore of the lake (Bińka et al, 2020). Described zone is also characterized by increased precipitation which is reflected by significantly more intensive terrestrial inflow to the lake and is confirmed by quasi-linear correlation of MS with contents of Fe and Ti in sediments (Fig. 6). The modern lake is shallow (2-3 m) and gradually overgrowing. Summing up, the phase 5 is marked by intensive human activity around the lake and therefore, most environmental and climate changes are obliterated.

5.2 Development of the Lake Młynek on regional bedground

The above scenario seems to be confirmed by earlier palaeoenvironmental research carried out in the south-western part of the Warmia-Masuria Lake District (Kupryjanowicz, 2008; Kołaczek et al., 2013). Previous studies of the lake and paleolake sediments in this region were based mainly on pollen analysis and enables to compare the Lake Młynek record with other sequences. The closest site Woryty (Pawlikowski et al., 1982, Noryśkiewicz and Ralska-Jasiewiczowa, 1989, Ralska-Jasiewiczowa and Latałowa, 1996), just 35 km to the east, is a reference one. Palaeoenvironmental records delivered by the Lake Młynek core are very similar to the Woryty palynological succession with distinctive human impact during the Roman Period and the Medieval Ages. More detailed comparison is impossible, because of low resolution of the pollen spectrum obtained in Woryty. The second site is the Lake Drużno, located in the Vistula
Delta, 35 km to the north of Młynek Lake (Zachowicz et al., 1982; Zachowicz and Kępińska, 1987; Miotk-Szpiganowicz et al., 2008). Unfortunately, low resolution and lack of the age-depth model from this lake makes comparison also very difficult. Despite of this and habitat differences between the Lake Drużno and the Lake Młynek, a pollen records obtained in both sites are very similar and comprises human indicators during the Roman Period and human impact during the Medieval time. Differences in natural vegetation are local and especially exposed in higher share of alder in a pollen diagram from the Lake Drużno, most probably caused by wet habitats in the Vistula Delta. The pollen spectrum from the Lake Łańskie (Madeja, 2013), located 55 km to the south-east from the Lake Młynek, shows higher content of pine and lower share of beech than in the case of the Lake Młynek. Such divergences are probably not only due to different location and environmental conditions in the lake vicinity but also depend on different size of these lakes. The Lake Młynek is a very small (0.7 km²) mid-forest basin, whereas the Lake Łańskie is over 10 km² large and contains mostly a regional pollen record. Based on periodical appearances of human plant indicators and archaeological data between 300 BC and 800 AD, three human phases of West Baltic Barrow, Wielbark and Prussian cultures were distinguished (Madeja, 2013). In the pollen diagram from the Lake Młynek (phase 2), the first culture is indicated, including termination of the La Tene and the Roman Period. Significant growth of human indicators from the beginning of 11th century is visible in diagrams from both sites. A more local record from the Lake Młynek is marked especially by high content of Humulus/Cannabis (to 25%) in 13-15th centuries AD. In the sediments of the Lake Łańskie, hemp occurred discontinuously and was <1%.

Numerous pollen data are available from the area adjacent in the south-west in the Brodnica Lake District, including the Strażym Lake (Noryśkiewicz, 1987; Noryśkiewicz and Ralska-Jasiewiczowa, 1989), the Oleczno Lake (Filbrandt-Czaja, 1999; Filbrandt-Czaja et al., 2003) and the Chełmno Lakeland (Noryśkiewicz, 2013). Pollen record from this region suggests settlements during La Tene, Roman and Medieval periods. Pollen record from other sites located to the east of the Lake Młynek indicates differences in a beech content. The Fagus sylvatica content changes to the north-east and its significantly high content in the Lake Młynek sediments represents a very local record in a small lake. Decline of Fagus sylvatica depend on a continental climate and is noted in pollen diagrams from the lakes: Salęt (Szal et al., 2014a), Mikołajki (Ralska-Jasiewiczowa, 1989), Żabińskie (Wacnik et al., 2016) and Wigry (Kupryjanowicz, 2007). A decline of beech is accompanied by a rise of Picea abies. A record of human activity in pollen spectra from...
eastern Poland was noted at many sites. The pollen record from the Lake Młynek are similar to the ones from the Masurian Lakes: Wojnowo, Miłkowskie and Jędzelek, located over 100 km to the east (Wacnik et al., 2014). Recorded episodes of human impact on vegetation during the Roman Period and Medieval time are separated by 500-600 years long intervals without cultivation and with natural reforestation (indicated by strong share of birch which is a pioneer tree). Similar lasting of human withdrawal in the Lake Młynek section began and terminated earlier than recorded in the lakes Wojnowo and Miłkowskie. Another history of human activity is represented in a record from the Lake Salęt (Szal et al., 2014b). Pollen grains of cultivated and ruderal plants are noted continuously from the early Iron Age to the early Medieval time. In opposite to the pollen record from the lakes Młynek, Wojnowo and Miłkowskie, the suggested constant settlement in the neighbourhood of the Lake Salęt was interrupted by a single very short decline of human impact at 880-980 AD (Szal et al., 2014a).

6. Conclusions

6.1. Based on results of lithological, geochemical, palynological and diatomological analysis, supplemented with archaeological data, five main environmental phases of the Lake Młynek development were distinguished (Fig. 10). Radiocarbon ages enabled detailed chronology whereas pollen data and stratigraphy of the stronghold to the north-east of the lake made correlation of human activity with environmental data possible for the last 2300 years. From the 1 century BC to 2nd century AD the forest around the lake was much reduced, what can be associated with pre roman and Roman occupation phase (attested also on the stronghold located close to the lake). From the 2nd to 9th century AD is attested gradual restoration of the forest and decline of human activity along with lake which is deepening due to the advent of more wet climatic conditions. This colder and humid phase corresponded to the Bond 1 Event (1.5 ka BP) cooling episode. Intensive forest clearing around the lake occurred in the 9th – 13th century AD as result of next phase human activity. This period is marked by warming confirmed by a gradual shallowing of the lake (Middle Age Warm Period). In next 5 strong human impact transformed the local landscape, especially construction and activity small mill since 15 c. AD. This caused that possible climate-induced natural environmental changes are not so clear.

6.2. Environmental transformations recorded in bottom lake sediments of the Lake Młynek were highly dependent on human activity and were especially intensive in the Roman and Middle Age periods due to favourable climatic conditions.
6.3. Human colonisation deduced from a pollen record of the Lake Młynek is coincident with archaeological data, including existence of a stronghold and in spite of a local character, it correlates well with data from other, more regionally significant palynological sites.

4. Transformations of the Młynek lake reconstructed based on diatom analysis, not only indicate changes of the lake water level and correspond with a human impact but also determine episodes of more humid climate during coolings.

Acknowledgments

The research was funded by the National Science Centre in Poland in the project UMO-2016/21/B/ST10/03059: Correlation of prehistoric and early medieval settlement phases in north-east Poland with the changes of the natural environment in the light of lacustrine sediments study.

References

Wacnik A., Kupryjanowicz M., Mueller-Bieniek A., Karczewski M., Cywa K.: The environmental and cultural contexts of the late Iron Age and medieval settlement in the Mazurian Lake District,

Welc, F.: Geoarchaeological evidence of late and post-Antiquity (5th–9th c. AD) climate changes recorded at the Roman site in Plemići Bay (Zadar region, Croatia), Studia Quaternaria 36 (1), 3–17, 2019.

ILUSTRATIONS

Fig. 2. Młynek Lake: A – location of drillings M 1-4 and transect of GPR sounding (open source: Google Earth©: www.google.com/intl/pl/earth/).

Fig. 3. GPR reflection profile across the Młynek Lake (cf. Fig. 2), a – drilling M-1, b – upper boundary of the so-called hard bottom, c – stratified glaciofluvial sandy-gravel beds beneath the lake sediments, d – attenuation zone of electromagnetic waves connected with occurrence of organic sediment (gyttja) (measurements, processing and interpretation: Fabian Welc).
Fig. 4. Age-depth model of the core M-1 from the Młynek Lake. Good runs of a stationary distribution are shown in the upper left panel, green curves and grey histograms in the upper right panel present distributions for the sediment accumulation rate. The main bottom panel shows the calibrated 14C dates (transparent blue) and the age-depth model (darker gray areas) which are indicating calendar ages. Grey stippled lines show 95% confidence intervals and the red curve shows the ‘best’ model based on the weighted mean age for each depth. The model was created by F. Welc using the open Bacon software (Blaauw and Christen, 2011).
Fig. 5. Lithology of the M-1 borehole with radiocarbon determinations with 95% confidence, close up - photo of the log at 2.6 - 3.0 m depth and sedimentary rate (mm/year) estimated based on the age/depth model. Description of LOG:
1 - hydrated – detritus type gyttja, 2 - very plastic - algal gyttja, 3 - gray-brown peaty - detritus gyttja, 4 - gray-brown gyttja (Photo and drawing: Fabian Welc).
Fig. 6. Concentration depth curves for selected elements and TOC in the core M-1 of the Młynek Lake sediments.

Description of LOG: 1 - hydrated – detritus type gyttja, 2 - very plastic - algal gyttja, 3 - gray-brown peaty - detritus gyttja, 4 - gray-brown gyttja (Drawing: Fabian Welc).
Fig. 8. Scatter plot showing the correlation in the core M-1 between S and TOC, Al and TOC, Ti and Fe, and Ti and Fe. (Drawing: Anna Rogóź-Matyszczak)

Fig. 9. Diatom stratigraphy of the core M-1, showing diatom zones and lake phases and relative water level changes estimated on relation between planktonic and benthonic diatom taxa (Interpretation and drawing: Abdelfattah Zalat).
Fig. 10. Percentage pollen diagram from core M-1 – selected taxa.
Fig. 11. Diagram with selected palaeoenvironmental proxies including lithology (1 - hydrated – detritus type gyttja, 2 - very plastic - algal gyttja, 3 - gray-brown peaty - detritus gyttja, 4 - gray-brown gyttja) with phases of human activity in the vicinity of the Młynek Lake, supplemented by archaeological chronology for Poland (Drawing: Fabian Welc).