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Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 
1900 in the United States; US) is largely dependent on tree-ring-based reconstructions. Large-scale soil 
moisture reconstructions from a network of tree-ring chronologies have greatly improved our 
understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of 20 
both drought and pluvial (wet) events. However, certain regions within these large-scale, network 
reconstructions in the US are modeled by few tree-ring chronologies. Further, many of the chronologies 
currently publicly available on the International Tree-Ring Data Bank (ITRDB) were collected in the 
1980s and 1990s, thus our understanding of the sensitivity of radial growth to soil moisture in the US is 
based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, 25 
rapid global change. In this study, we expanded the tree-ring network of the Ohio River Valley in the US, 
a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how 
increasing the density of the tree-ring network influences the representation of reconstructing the Palmer 
Meteorological Drought Index (PMDI). Further, we tested how the sampling date and therefore the 
calibration period influenced the reconstruction models by creating reconstructions that ended in the year 30 
1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that 
increasing the density of the tree-ring network resulted in reconstructed values that better matched the 
spatial variability of instrumentally-recorded droughts, and to a lesser extent, pluvials. By extending the 
calibration period to 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the 
southern portion of our region where severe drought conditions have been absent over recent decades. 35 
We emphasize the need of building a high-density tree-ring network to better represent the spatial 
variability of past droughts and pluvials. Further, chronologies on the ITRDB need updating regularly to 
better understand how the sensitivity of tree rings to climate may vary through time.  
 
Keywords: Drought, Pluvial, Midwest United States, Dendrochronology, Palmer Meteorological Drought 40 
Index 
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1 Introduction 

Understanding the mechanisms that drive climate variability, particularly before the modern instrumental 

record (ca. 1900 in the United States; US), depends on proxy-based reconstructions of climate. Precisely-

dated tree-ring chronologies are one of the primary proxies that can reconstruct inter-annual climate 45 

variability over recent centuries to millennia (Fritts, 1976). Tree rings provide robust historical and 

prehistorical context for droughts and pluvials (wet periods) captured in the instrumental record 

throughout the mid-latitudes (e.g., Stahle and Cleaveland 1994; Woodhouse and Overpeck, 1998; Cook 

et al., 2010; Fang et al. 2010; Chen et al. 2013; Pederson et al., 2013; Güner et al., 2017; Oliver et al. 

2019; Morales et al. 2020). Most of our understanding of past drought severity and variability in North 50 

America is the result of the North American Drought Atlas (NADA; Cook et al., 1999). The NADA 

comprises a network of tree-ring chronologies across North America from the International Tree-Ring 

Data Bank (ITRDB; https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring), 

creating a 2° x 3° reconstruction of summer (average of June, July, and August; JJA) Palmer Drought 

Severity Index values (Palmer, 1965). The NADA produced multiple centuries of spatial drought 55 

variability, providing essential context for extreme soil-moisture conditions witnessed in the most recent 

centuries. More recently, the Living Blended Drought Atlas (LBDA; Cook et al., 2010) updated the 

NADA using additional tree-ring chronologies from the ITRDB and higher spatial-resolution climate data 

to calibrate models, creating a 0.5° x 0.5° reconstruction of the Palmer Meteorological Drought Index 

(PMDI; Palmer, 1965). 60 

While the NADA and LBDA have provided invaluable information of past droughts and pluvials in North 

America, they were generated to compare large, sub-continental events. The reconstruction at each grid 

cell uses tree-ring data that are within a 450-km radius of that grid point. By pulling from such a wide 

range of predictors, the NADA and LBDA models excel at representing large-scale hydroclimate 

variablity as they tend to average out smaller scale features. However, these drought atlases may not 65 

represent local conditions in areas with sparse coverage of tree-ring chronologies, such as certain regions 

of the midwestern US (Maxwell and Harley, 2017; Strange et al., 2019). The tree-ring chronologies from 

the ITRDB can have biases related to tree species used and the spatial density of the tree-ring network 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
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(Zhao et al., 2019; Coulthard et al., 2020). When collecting tree-ring data for the purpose of reconstructing 

climate, the general goal is to target long-lived species that are sensitive to the climate variable to be 70 

reconstructed while also maximizing the length of the reconstruction. However, inclusion of multiple 

species in a reconstruction can improve model performance and skill (Pederson et al., 2001; Frank and 

Esper, 2005; Cook and Pederson, 2011; Maxwell et al., 2011; Pederson et al., 2012; Maxwell et al., 2015). 

In the US, the ITRDB has excellent spatial replication in certain regions, such as the American Southwest, 

but other regions are poorly represented, such as the Ohio River Valley (ORV; Zhao et al., 2019). Due to 75 

changes in the density of the tree-ring network of the ITRDB and the use of a large radius (450 km) to 

reconstruct drought for the LBDA, soil moisture variability at local scales is potentially absent in areas 

that are underrepresented in the tree-ring network. Further, many of the chronologies that are available 

on the ITRDB were collected in the 1980s and have not been updated, limiting the range of climatic 

conditions to calibrate reconstruction models (Larson et al. 2013; Zhao et al., 2019).  80 

The wealth of climate information derived from tree rings is based on the key assertion that their 

physiological development is related to specific climatic conditions. An explicit relationship between 

climate and tree growth can be estimated during the instrumental period. Yet, developing a reconstruction 

assumes that this climate-tree-growth relationship is stationary over time. This assumption was generally 

true in the early development of the field of dendrochronology (Fritts, 1976). However, as human 85 

activities drive the Earth’s climate system into historically unprecedented, and potentially non-stationary 

and non-analogous conditions (Milly et al., 2008), exceptions to this assumption have emerged. Changes 

in the drought signal recorded by tree rings have been established only recently in the eastern US (Larson 

et al., 2013; Maxwell et al., 2015, 2016, 2019; Helcoski et al., 2019), making an investigation of its causes 

essential to ensuring the interpretability of tree-ring-based hydroclimate reconstructions. Of these recent 90 

studies, Maxwell et al. (2016) provided the first documentation of an apparent deteriorating relationship 

between radial tree growth and summer soil moisture that is not accompanied by an increase in signal 

strength during another season. The declining relationship—referred to as the “Fading Drought Signal”—

was consistent across multiple species and sites within the Central Hardwoods Forest region of the 

midwestern US. However, Maxwell et al. (2019) found that Acer (maple) species had a stable relationship, 95 

implying that including species from this genus in reconstructions could improve model performance. In 
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this paper, we test the hypothesis that increasing the spatial density of the tree-ring network results in 

reconstructions that better replicate the local variation of the instrumental data despite a fading drought 

signal. We also examine if the period in which the tree-ring data is calibrated with climate data influences 

the climate reconstruction. Using the new, dense tree-ring network of the ORV, we calibrate the 100 

reconstruction with recent (post-1980) radial growth and climate data and compare to reconstructions 

generated using data only from pre-1980. We test the hypothesis that including recent data could reduce 

the amount of variance explained in tree-ring reconstruction of soil moisture in the ORV.  

2 Methods 

2.1 Living Blended Drought Atlas 105 

For the LBDA, Cook et al. (2010) created a gridded instrumental dataset of PMDI to calibrate tree-ring 

reconstruction models. The instrumental data were created using observations for temperature and 

precipitation from over 5,000 and 7,000 weather stations, respectively, which were spatially interpolated 

with a trivariate thin-plate spline in the ANUSPLIN program (Hutchinson, 1995). Cook et al. (2010) 

derived the reconstructions by gathering standardized tree-ring chronologies within 450 km of each 110 

instrumental grid point center. However, because the LBDA was developed across North America, Cook 

et al. (2010) used a dynamic search radius, with the requirement of having a minimum of five 

chronologies as possible predictors; so in certain regions, the radius was larger than 450 km. Therefore, 

in sparsely covered areas such as the ORV, the actual search radius for the LBDA could be larger than 

450 km. Chronologies that were significantly (p < 0.05)correlated with PMDI were retained and used in 115 

a principal component analysis (PCA). The resulting principal components (PCs) that had eigenvalues 

greater than one were then used as predictors in the reconstruction model. For the LBDA, we gathered 

both the instrumental and reconstructed 0.5° x 0.5° gridded PMDI data for the ORV region (Figure 1) 
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from the National Oceanic and Atmospheric Administration, National Center for Environmental 

Information (https://www.ncdc.noaa.gov/paleo-search/study/19119; Cook et al., 2010).  120 

2.2 Ohio River Valley Tree-Ring Network 

To examine how the density of the tree-ring network could impact the reconstruction, we gathered 

recently published chronologies and collected new chronologies across the ORV to fill the spatial gaps of 

the ITRDB (Figure 1; Supplemental Table 1). For the new chronologies, we either 1) updated existing 

chronologies from the ITRDB; 2) sampled new co-occurring species at an ITRDB site; or 3) created new 125 

chronologies from previously unsampled sites. For this study, we used a total of 72 chronologies across 

15 species. Of these chronologies, 37 were published, three were newly updated ITRDB records, and 32 

were new collections (Figure 1; Supplemental Table 1). For the new (n = 32) and updated (n = 3) 

chronologies, we used standard field methods to target at least ten old growth trees for each species using 

morphological characteristics (Pederson, 2010). We used a hand-held 4.3-mm-diameter increment borer 130 

to extract two samples from each tree at breast height, from opposite sides of the tree (Stokes and Smiley, 

1968). All newly collected samples were mounted and sanded with progressively finer sandpaper to reveal 

ring structure. We used the list method to visually crossdate all samples (Yamaguchi, 1991), and then the 

program COFECHA (Holmes, 1983) to statistically verify the crossdating. For the three updated 

chronologies, we crossdated the new sampled series with those previously sampled and available through 135 

the ITRDB. 

2.3 Detrending Tree-Ring Series 

For all chronologies, we removed both age-related growth trends and non-climatic influences of tree 

growth (e.g., forest dynamics or insect outbreaks) by using signal-free standardization (Melvin and Briffa, 

2008) with a two-thirds smoothing spline applied to each measured series (Cook and Peters, 1981). To 140 

ensure we achieved the desired spline flexibility of the two-thirds spline in the standardization, we used 

the approximation suggested by Bussberg et al. (2020) and used an 83% spline to account for endpoint 

adjustments. We stabilized the variance of the standardized chronologies using the data-adaptive power 

transformation (Cook and Peters, 1997). Signal-free standardization can reduce “trend distortion” 
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problems near the ends of the record (Melvin and Briffa, 2008). We trimmed each chronology to remove 145 

the portion of the record where low sample depth inflated the variance in standardized growth using an 

expressed population signal (EPS) value of 0.80 (Wigley et al., 1984). 

2.4 Point-by-Point Regression 

We replicated the point-by-point regression procedure for the LBDA in Cook et al. (2010) and described 

in Cook et al. (1999) for the ORV tree-ring network. We developed a network of 0.5° x 0.5° grid points 150 

reconstructions (n = 181) across the ORV region, defined as 37.75–42.25° N, 82.25–90.75° W (Figure 

1). Similar to the LBDA, we produced PMDI reconstructions at each grid point by first screening 

standardized tree-ring chronologies through correlation analysis with PMDI from 1895 to 2010, where 

only the chronologies with significant (p < 0.05) correlations were retained. Both the tree-ring 

chronologies and the climate data were prewhitened during this screening procedure to remove the 155 

influence of short-term autocorrelation.  

 

To examine how increasing the density of the tree-ring network influences the reconstruction, we gathered 

tree-ring chronologies within a 250-km radius from the center of each grid point instead of the 450-km 

minimum radius used for LBDA. For the ORV gridded reconstructions, the use of a 250-km radius 160 

ensured that each gridded reconstruction could have at least five chronologies as possible predictors 

(Supplemental Figure 1). For each grid point, we built a reconstruction model by taking the screened 

standardized chronologies and using both the current year (t) and the following year (t+1) as possible 

predictors due to current year climate conditions impacting growth both during the current and the 

proceeding year, which doubled the number of predictors. We then took all the t and the t+1 chronologies 165 

that passed the screening and conducted a PCA. Per the Kaiser-Guttman rule (Guttman, 1954, Kaiser, 

1960), we then used the PCs with eigenvalues greater than one as predictors in a regression model to 

predict mean JJA PMDI. To ensure that our ORV reconstruction was comparable to the LBDA, we added 

the autocorrelation of the instrumental data back into the final tree-ring reconstructions of PMDI as done 

for the NADA and LBDA.  170 
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We used Pearson’s correlation to compare the reconstructed PMDI values from the LBDA to the ORV 

reconstruction at each grid point. We further chose well-known drought and pluvial years in the 

instrumental period to examine how the ORV and LBDA compared spatially. Specifically, we examined 

the droughts of 1988, 1954, 1936, 1816, and 1774 and the pluvials of 1945–1951, 1882–1883, and 1811 175 

(Trenberth et al. 1988; Stambaugh et al. 2011; Heim 2017) .  To compare the reconstructions with the 

instrumental data, we calculated the mean absolute error for each extreme event. We also correlated the 

instrumental PMDI at each grid-point to every other grid-point and then examined those correlations as a 

function of distance. Similarly, the reconstructed PMDI values were correlated for each grid-point for the 

ORV and LBDA and compared across distance. To examine the species contribution to the overall ORV 180 

reconstruction, we gathered the correlation of each species chronology to the PMDI for each grid 

reconstruction that the given species were included. 

2.5 Droughts and Pluvials 

To determine if the ORV and LBDA reconstructions had differences in the amount of extreme 

hydroclimatic conditions, we calculated the number of years in each gridded reconstruction that had a 185 

JJA PMDI value of ≥ 2.0 or ≤ -2.0 to represent at least moderately wet and dry conditions, respectively. 

We further examined how the volatility in extreme conditions compared between the two reconstructions 

by calculating “flips” from one extreme to the other in consecutive years (Loecke et al. 2017; Oliver et 

al., 2019; Harley et al., 2020). We specifically used an index developed by Loecke et al. (2017) to quantify 

large “whiplashes” (termed flips here) interannually. The flip index is defined as: 190 

i = PMDI (t + 1) – t / PMDI (t + (t + 1)) 

where the index (i) equals the PMDI value of a given year (t) subtracted from the PMDI value of the 

following year (t +1), divided by the sum of the PMDI values over the two-year period (t+(t+1)). 

Positive index values indicate that conditions shifted from dry to wet over the two-year period. 

Similarly, negative values represent a shift from wet to dry conditions. We used an index value > 75th 195 

percentile to define an abnormally wet period and < 25th percentile an extremely dry period. We then 

calculated wet flip events as years that were abnormally dry followed directly by extreme wet years. 

Dry flips were calculated as abnormally wet years followed by extreme drought years. Lastly, we 
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summed the wet and dry flips to calculate the total flips. These flips were calculated for each grid point 

in the ORV reconstruction where sample depth was determined by an EPS value of 0.80 to reproduce 200 

the variance in the instrumental data (Wigley et al., 1984). We limited the calculation of flips to the 

period 1658–2005, which was the common period of overlap between the longest gridded ORV 

reconstruction and the LBDA.  

2.6 Model Validation Comparisons 

To examine the temporal stability of the relationship between tree growth and PMDI, we followed the 205 

same validation procedures used for the LBDA (Cook et al., 2010). We used the early half of the common 

period (1901–1955) to calibrate a model between tree growth and PMDI to validate the late half (1956–

2010). We used two tests of fit, the reduction of error statistic (RE) and the coefficient of efficiency (CE; 

Fritts, 1976; Cook et al., 1999), to validate our calibration models. RE and CE both range from –∞ to +1, 

with positive values indicating robust predictive skill. However, RE is compared to the mean of the 210 

instrumental data, while CE relies on the verification period mean and therefore is a more conservative 

verification metric. We then compared the variance explained (R2), RE, and CE values between the LBDA 

and the ORV PMDI reconstructions for each grid point. We also mapped the gridded reconstructed PMDI 

values from extreme years in the observation period and well-known years in the historical record for 

both the LBDA and the ORV reconstructions to provide examples of the spatial differences between the 215 

two reconstructions. 

 

To examine how validation statistics may change based on when the trees were sampled, we created a 

second ORV reconstruction where the most recent year was 1980. This year was chosen because several 

chronologies available on the ITRDB were sampled in the 1980s, and this marked the beginning of a 220 

weakening relationship between radial growth and soil moisture in this region (Maxwell et al., 2016). We 

used the same validation process described above except the early period was from 1901 to 1940 and the 

late period was from 1941 to 1980. We then calculated the difference between the 1980 and the 2010 

reconstruction for R2, RE, and CE values for each grid point.  
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3 Results 225 

3.1 ORV vs. LBDA  

Our first comparisons of chronologies distributed for the LBDA and ORV networks revealed broad spatial 

discrepancies. PMDI point-by-point regressions for the LBDA included 20 chronologies from six species 

over the study region, whereas the ORV network included 72 chronologies from 15 tree species. Not only 

is the spatial density of sites sparser for the LBDA network, but it mostly only included single-chronology 230 

sites, whereas 18 of the sites included in the ORV are multiple-species sites (2–6 co-occurring species) 

(Figure 1A, B). Although site coverage is sparse for both networks along the west-central, northwest, and 

southeast sectors, the ORV network included major spatial coverage improvements in other sectors 

(Figure 1). Particularly, the ORV increased spatial coverage in south-central Indiana where many of the 

sites included four to six co-occurring species chronologies (n = 27 total chronologies). The PMDI 235 

reconstructions from the ORV network and the LBDA demonstrated strong and positive correlations, 

with r-values ranging from 0.50 to 0.90 (Figure 2). These correlations were calculated for the period of 

overlap between the two gridded reconstructions, 1830–2005 C.E. The highest correlations were found 

along the western portion of the gridded region, while the lowest agreement was found in the southeast 

(Figure 2).  240 

The ORV reconstructions were shorter in length (maximum of 343 years) compared to the LBDA 

reconstructions (maximum of 1,645 years) due to needing numerous old chronologies to load into each 

grid reconstruction. While this is true for the LBDA, having a larger search radius allows a longer 

chronology to be included in many gridded reconstructions. A smaller search radius for chronology 

inclusion requires a denser network of longer chronologies to reach a similar length as the LBDA. 245 

Secondly, we focused on increasing the spatial density of the network, which resulted in sampling younger 

sites (e.g., the earliest years are in the early to late 19th century). While the ORV reconstructions were 
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shorter, comparing certain well-known extreme climatic years during the period of the overlap between 

the LBDA show some important differences. 

3.2 ORV and LBDA Extreme Year Comparisons 250 

We chose a series of well-known drought and pluvial years (events) to compare the reconstructions 

between ORV and LBDA. In general, the increased spatial density of tree-ring chronologies used in the 

ORV reconstruction displayed more local variation in the reconstructions of extreme climatic events 

(Figure 3). However, in a few examples, such as 1774 and 1816, the spatial pattern of where extreme 

drought was located changed between the two reconstructions (Figure 3). Using extreme events in the 255 

observed record (three droughts and one pluvial), both the ORV and LBDA underestimated wet and dry 

extremes. However, the ORV reconstruction better matched the distribution of soil moisture values and 

the spatial patterns of the instrumental data, particularly for the extreme values, compared to the LBDA 

reconstruction (Figure 4; Supplemental Figures 2–4). For droughts, the ORV consistently had lower mean 

absolute errors (differences ranging from 0.21 to 0.41) compared to the LBDA (Figure 4; Supplemental 260 

Figures 2–4). However, for the pluvial event, the two reconstructions had similar mean absolute errors 

(difference of 0.03) with the LBDA being slightly smaller (Supplemental Figure 4). When examining the 

correlation in PMDI (instrumental or reconstructed) between all grid points as a function of distance, the 

ORV better matched the instrumental PMDI with a steeper decline in correlation across distance 

compared to the LBDA (Figure 5). The LBDA showed the most spatial autocorrelation with a gradual 265 

decrease in correlation across distance, while the instrumental had the least spatial autocorrelation with a 

lower correlation between close grid-points and more variability (Figure 5). The ORV better matched the 

overall pattern and variability of the instrumental PMDI across distance but had more spatial 

autocorrelation (Figure 5). 

In general, the probability distribution function (PDF) of the ORV reconstruction had a lower occurrence 270 

(densities of 0.17 compared to 0.23) of near-average years but higher densities (differences ranging from 

0.01 to 0.05) for extremes, particularly drought, compared to the LBDA (Figure 6). The ORV distribution 

was nearly identical to the instrumental while the LBDA had lower densities of extremes (Figure 6). 

Similarly, the ORV had a larger number of reconstructed drought (median difference of 9 years) 
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conditions that better matched the instrumental record. The pluvial conditions were closer between the 275 

three datasets with the LBDA having the highest median and the instrumental the lowest median (Figure 

6). Due to the larger number of extreme drought years, the ORV reconstructions had more frequent flips 

according to the flip index values compared to the LBDA (Figure 7). The central and southeastern portions 

of the region, in particular, showed a greater number of wet, dry, and total flips, resulting in ~30 more 

wet and dry flips and ~60 more total flips (Figure 7). 280 

3.3 Species Contributions 

With the highest average correlation values, Quercus spp. chronologies were consistently the strongest 

contributors to reconstruction models (Figure 8). The white oak (Q. alba) chronology from Lincoln’s 

New Salem in Illinois had the highest JJA correlation value of 0.749, and as a species, Q. alba was the 

strongest species contributor (Figure 8). In addition to Quercus spp., black walnut (Juglans nigra) had an 285 

exceptionally high average correlation value, ranking the third highest. White ash (Fraxinus nigra), 

tuliptree (Liriodendron tulipifera), and sugar maple (Acer saccharum) were also strong contributors to 

drought models, with median correlation values greater than 0.38 (Figure 8). 

3.2 ORV and LBDA Validation Statistics 

Comparing how well each reconstruction model represented the instrumental data, we find that the 290 

variance explained (R2-values) in the calibration and verification periods match well for the northern 

portion of the network, with values ranging from 40 to 60 percent variance explained (Figure 8). However, 

the ORV models for the southern half of the region generally explain less variance compared to the LBDA 

(Figure 9). Interestingly, the RE- and CE-values between the two reconstructions are generally more 

similar, with the ORV having poorer validation statistics in the southernmost portion of the region and 295 

the LBDA having weaker statistics in the central portion of the region (Figure 9). 

Previous work has shown that radial growth from trees in the south-central portion of the region are 

becoming less sensitive to soil moisture compared to earlier time periods (Maxwell et al., 2016). The 

comparison between a point-by-point reconstruction that ended in 1980 to a reconstruction that ended in 

2010 demonstrates that while the calibration R2-values are similar, the 2010 verification models explain 300 
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much less variance in the southern portion of the ORV (Figure 10). These are the same regions in the 

ORV reconstruction that explain less variance than the same gridded reconstructions of the LBDA. 

Importantly, the ORV 1980 and 2010 reconstructions used the same tree-ring chronologies (Figure 10). 

Therefore, our results indicate that tree rings in the southern portion of our study region have become less 

responsive to soil moisture.  305 

4 Discussion 

4.1 ORV and LBDA Extreme Year Comparisons 

Tree rings have long been used to provide an historical context to hydroclimatic extremes (Stahle and 

Cleaveland 1994; Woodhouse and Overpeck, 1998; Cook et al., 1999; Cook et al., 2010; Pederson et al., 

2013). However, in some regions in the US, the tree-ring sites are sparsely distributed, and it is unknown 310 

what kind of impact that has on the representation of past climate. Due to the higher density of tree-ring 

chronologies and the smaller search radius (250 km for the ORV compared to 450+ km for LBDA) of the 

PC regression models when determining the pool of predictors, the ORV better replicates the spatial 

variability of the instrumental data compared the LBDA (Figure 4–5; Supplemental Figures 2–3). By 

using a ≥450 km radius for potential tree-ring chronologies, the LBDA was successful at reconstructing 315 

soil moisture even in areas that have a limited number of tree-ring chronologies. However, this approach 

results in the use of the same tree-ring chronologies in multiple grid points, spatially smoothing the 

variability of the reconstructed PMDI compared to the instrumental data (Figure 5). The same is true of 

the ORV; however, the increase in the spatial density of the chronologies allows a smaller search radius 

and therefore, can increase the spatial variability in the ORV (Figure 5). The increase in spatial variability 320 

in PMDI values of the ORV better matches the instrumental data while still providing a statistically valid 

reconstruction model (Figure 4–5; Supplemental Figures 2–4). These findings have important 

implications, particularly in regions with a sparse tree-ring network where the LBDA or other drought 

atlases likely underestimate localized droughts and pluvials. Increasing the spatial density of the tree-ring 

network will allow a more accurate spatial representation of extreme events nearly anywhere where trees 325 

are sensitive to climate. 
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In addition to the increase in spatial variability of extremes that we find, previous work suggests 

increasing the density of the tree-ring network can uncover previously unknown droughts and pluvials at 

more local scales (Maxwell and Harley, 2017; Strange et al., 2019; Pearl et al. 2020). Here, we find the 330 

support of better-localized representations of extremes by increasing the density of the tree-ring network 

with the ORV having a larger number of droughts and pluvials compared to the LBDA (Figure 6). The 

increase in extremes has important implications on the long-term variability of past hydroclimate and to 

the interannual volatility of PMDI. Recent work has shown increases in interannual volatility has 

important impacts on agriculture (Locke et al., 2017), and social and ecological systems (Casson et al., 335 

2019). Our finding suggests that in areas with a sparse tree-ring network, such as in the ORV, tree-ring 

reconstructions underestimate extremes and therefore, volatility in extremes is also underestimated. By 

increasing the density of the network and better representing localized extremes, we find a higher number 

of flips (Figure 7). The better representation of localized extremes results in a more accurate 

representation of past climatic volatility and can be used to better place current and future projected 340 

changes into context. With gridded reconstructions of both soil moisture and temperature becoming more 

common with the increase in available tree-chronologies (e.g., Anchukaitis et al., 2017; Morales et al., 

2020; Pearl et al. 2020), we show the importance of valuing higher density from a larger range of species 

within the network in addition to the length of the chronologies.  

4.2 Species Contributions 345 

Historically, soil moisture reconstructions from tree rings in the eastern US have been dominated by a 

few species, such as Q. alba, baldcypress (Taxodium distichum), eastern hemlock (Tsuga canadensis) 

(Zhao et al., 2019). In addition to increasing the spatial density of the network, the ORV reconstruction 

has increased the number of species used, many of which are co-occurring. The use of multiple species 

has been shown to increase model performance (Pederson et al., 2001; Frank and Esper, 2005; Cook and 350 

Pederson, 2011; Maxwell et al., 2011; Pederson et al., 2012, Maxwell et al. 2015). Examining the 

correlation values of the species used in the reconstructions models, Quercus (oak) species in general, 

contribute more to the models (Figure 8), which is part of the reason why they have been traditionally 

used so frequently. However, we find that several species, including J. nigra, L. tulipifera, and A. 
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saccharum among others, make strong contributions to the model as well (Figure 8), further supporting 355 

that these species are sensitive to hydroclimate variability (LeBlanc et al. 2020; Au et al., 2020). These 

findings agree with recent studies that suggest less commonly used species can increase the 

representativeness of tree-ring reconstructions of climate (Pederson et al., 2012; Maxwell, 2016; Maxwell 

and Harley, 2017; Alexander et al., 2019). 

4.3 ORV and LBDA Validation Statistics 360 

While increasing the spatial density of the tree-ring network allowed the reconstructions to more 

accurately capture the spatial variability of extreme conditions, the reconstruction models of the ORV 

have less predictive skill compared to those of the LBDA, especially during the verification period (Figure 

9). The two networks have some overlap in chronologies, but while the ORV has a higher density of 

chronologies within the Ohio River Valley region, the LBDA can draw from more chronologies across a 365 

larger region. While the larger radius increases the number of samples in the model and could lead to 

more explained variance for the LBDA, the ORV reconstruction better spatially replicates extremes in 

the instrumental period (Figures 4; Supplemental Figures 2–4). 

 

Interestingly, the decrease in variance explained in the southern portion of the region may not attribute 370 

from differences of sample depth in the tree-ring network. When using the same chronologies while 

ending the calibration period at 1980 instead of 2010 for the ORV reconstruction, the validation statistics 

compare very well with the LBDA. However, by updating the chronologies to 2010, the R2 and the 

validation statistics drop dramatically for the grid reconstructions in the southern portion of the region 

(Figure 10). These findings support Maxwell et al. (2016), where they found trees in this region to have 375 

a weakening signal to soil moisture, termed the “Fading Drought Signal.” The recent decrease in 

sensitivity of tree growth to soil moisture has also been documented outside of the ORV, in the Mid-

Atlantic US (Helcoski et al.,2019), indicating the impact of a changing climate could influence the 

representation of tree rings to climate in mid-latitude locations. Drought in the Midwest during the 

instrumental period (1901–2010) was temporally clustered in the 1930s and 1950s. The only recent 380 

droughts in the study period were in 1988 and 2002. In both cases, the northern portions of the region 
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experienced severe drought (in excess of -4.0 PMDI values for 1988), but the southern portion of the 

region only experienced moderate dryness (PMDI values of ~ -2.0). Maxwell et al. (2016) attributed the 

weakening signal to a recent period without severe drought; however, Helcoski et al. (2019) discussed 

the possibility of increases in carbon dioxide concentrations in addition to a long period of wetness 385 

interacting to weaken tree growth responses to soil moisture. However, recent works examining the 

simultaneous influence of water availability, carbon dioxide concentrations, and acidic deposition found 

that water availability was the leading influence on tree growth (Levesque et al., 2017; Maxwell et al., 

2019), suggesting a wet period is likely driving the weakening signal. The decreasing performance of the 

southern reconstructions support these findings as this region has been generally wet and absent of severe 390 

drought. While Maxwell et al. (2019) found that Acer species had a more stable relationship with soil 

moisture, and A. saccharum was a strong performing species in the reconstructions models, the inclusion 

of multiple, co-occurring A. saccharum records did not dramatically influence the validation statistics of 

the reconstruction models in the southern portion of the region.  Our findings demonstrate the complexity 

of tree species responses to rapidly changing climate regimes and stress the need to better understand 395 

species responses to changing climate and determine what impact those responses could have on 

reconstructions of soil moisture.  

5 Conclusions 

By increasing the density of the tree-ring network in a region that is poorly represented in the LBDA, we 

created a gridded PMDI reconstruction for the ORV region. We compared our gridded reconstruction 400 

with the LBDA and found that increasing the density of the tree-ring network resulted in an increase in 

localized hydroclimatic extremes that better match the spatial and temporal patterns of the instrumental 

data. However, calibrating our models with more recent data (up to the year 2010) resulted in a decrease 

in variance explained and validation statistics for the southern portion of the region. This region has not 

experienced extreme droughts recently, which is likely driving the decrease in model performance. 405 

Increasing spatial density of the tree-ring network is important to better represent localized extremes in 

the past, indicating that researchers should continue to target previously unsampled old-growth forests. 

Similarly, the time in which the trees are sampled is also important to model performance. Long periods 
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without extreme hydroclimate variability can result in reconstruction models that are less representative 

of climatic conditions. We stress the need to update previously-sampled chronologies to the current period 410 

so that longer calibration models can have the chance to better represent the range of sensitivity of trees 

rings to climate. Further, more work is needed to extend more of the ORV chronologies to better represent 

climate further in the past. Targeting wood from historical structures and combining with surrounding 

living chronologies of the same species could be one way of achieving longer chronologies in this region 

(Harley et al. 2011; Matheus et al. 2017). Overall, we find that a higher spatial density of the tree-ring 415 

network will improve the local representation of reconstructed climate. However, more work is needed 

to better quantify how the strength of the relationship between tree growth and climate varies through 

time. 

 

Data Availability: All reconstructions will be uploaded onto the NOAA paleoclimate page. All tree-ring 420 

chronologies used in this manuscript will be uploaded to the International Tree-Ring Databank.  
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Figures: 

 

Figure 1: Map of 0.5° x 0.5° PMDI grid points (n = 181) across the Ohio River Valley (ORV) region, 

Midwest US—defined as 37.75–42.25° N, 90.75–82.25° W—plotted with tree-ring chronology sites 

included from the (A) ITRDB and (B) ORV networks. Sites with single-species and multiple-species are 625 

denoted by symbol shape and color (see Supplemental Table 1). Note: most ITRDB sites consist of single 

species in the LBDA but multiple species are represented in the ORV.  
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Figure 2: Map of correlation values between the LBDA and ORV reconstruction during the period of 630 

1830–2005. The correlations of each grid shown in the map are all significant at the 0.05-level. The black 

cells represent locations over the Great Lakes and therefore, no data is available for correlation analysis.  

 

 

 635 
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Figure 3: Spatial comparison of the ORV (left column) and the LBDA (right column) of reconstructed 

PMDI during years that experienced hydroclimatic extremes. Red cells represent below average PMDI 

and blue cells represent above-average PMDI. Black cells represent no data either due to being over water 

or from not having at least five chronologies to create a reconstruction. 640 
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Figure 4: Maps showing PMDI values for the instrumental data, ORV, and LBDA reconstructions for the 

year 1954. The histogram represents the frequency of PMDI values for the instrumental, ORV, and LBDA 

PMDI values. The mean absolute error values show that the ORV reconstruction more accurately matches 

the instrumental data compared to the LBDA reconstruction. Black grids represent areas over water and 645 

therefore, no data. 
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 650 

 

 

Figure 5: Average correlation coefficients between PMDI values across all grid-points as a function of 

distance. LBDA and ORV are reconstructed PMDI values.  
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 655 

Figure 6: A) Probability distribution functions for all gridded reconstructed PMDI values for the ORV 

and LBDA networks. B) Boxplot of the number of droughts (PMDI ≤ -2.0) years between LBDA and 

ORV. C) Boxplot of the number of pluvials (PMDI ≥ 2.0) years between LBDA and ORV.   
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Figure 7: Maps of the number of wet flips (top row), dry flips (middle row), and total flips (bottom row), 660 

for the ORV (left column) and the LBDA (right column). Black cells represent values over water and 

therefore, no data. 
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 665 

 

Figure 8: Correlation values between species chronologies and PMDI for the gridded reconstruction 

models. The “x” represents the mean beta weight for the species. QUAL=Q. alba, QUMO=Quercus 

montana, JUNI=Juglans nigra, QUVE=Q. velutina, QURU=Q. rubra, FRNI=Fraxinus nigra,  

LITU=Liriodendron tulipifera, ACSA=Acer saccharum, QUMA=Q. macrocarpa, TSCA=Tsuga 670 

canadensis, FAGR=Fagus grandifolia, CAOV=Carya ovata, and PIST=Pinus strobus. The species are 

ranked by their mean correlation values from highest to lowest. 
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Figure 9: Comparison of the calibration (1901–1955) and validation (1956–2010) statistics between the 675 

ORV (left column) and LBDA (right column) reconstructions. Difference represents LBDA values 

subtracted from ORV. Black cells represent values over water and therefore, no data. 

s 
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Figure 10: Maps of the difference between the ORV reconstruction when ending the calibration period in 680 

2010 compared to 1980 (i.e., ORV2010 – ORV1980) for calibration R2, verification R2, RE, and CE. Black 

cells represent values over water and therefore, no data. 
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