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Abstract. Closed basins, mainly located in subtropic and temperate drylands, have experienced alarming declines in water 

storage in recent years. An assessment of long-term hydroclimate change in those regions remains unquantified at a global 

scale yet. By integrating lake records, PMIP3/CMIP5 simulations and modern observations, we assess the wet/dry status of 

global closed basins during the Last Glacial Maximum, mid-Holocene, pre-industrial, 20th and 21st century periods. Results 

show comparable patterns of general wetter climate during the mid-Holocene and near-future warm period, mainly attributed 25 

to the boreal summer and winter precipitation increasing, respectively. The long-term pattern of moisture change is highly 

related to the high-latitude ice sheets and low-latitude solar radiation, which leads to the poleward moving of westerlies and 

strengthening of monsoons during the interglacial period. However, modern moisture changes show correlations with El 

Niño/Southern Oscillation in most closed basins, such as the opposite significant correlations between North America and 
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Southern Africa and between Central Eurasia and Australia, indicating strong connection with ocean oscillation. The strategy 30 

for combating future climate change should be more resilient to diversified hydroclimate responses in different closed basins. 

1 Introduction 

A great number of observations in the last 100 years show that the Earth's climate is now experiencing significant change 

characterized by global warming (Hansen et al., 2010; Trenberth et al., 2013; Dai et al., 2015; Huang et al., 2016; Li et al., 

2018), which is unequivocally induced by the increase in concentrations of greenhouse gases according to the Fifth Assessment 35 

Report of the Intergovernmental Panel on Climate Change (IPCC, 2013). Recent studies have indicated increasing drought 

and accelerated dryland expansion under modern global warming resulting from a higher vapour pressure deficit and 

evaporative demand (Dai, 2013; Feng and Fu, 2013; Huang et al., 2017). Assessing the impacts of global warming especially 

on the terrestrial moisture balance is not only one of the most important social and environmental issues but also the basis of 

future climate projections.  40 

According to Held’s hypothesis, rising atmospheric humidity will cause the existing patterns of atmospheric moisture 

divergence and convergence to intensify, thereby making effective precipitation more negative in the drylands and more 

positive in the tropics, now referred to as the “dry gets drier, wet gets wetter” (DGDWGW) paradigm (Held and Soden, 2006; 

Hu et al., 2019). However, this mechanism may be more complex regionally, especially over terrestrial environments, where 

wet/dry pattern changes over the past decades and in future projections do not follow the proposed intensification trend (Greve 45 

et al. 2014; Roderick et al. 2014). To accurately project future terrestrial hydroclimatic changes, past climates may aid in 

understanding the regional nuances of the DGDWGW effect (Lowry and Morrill, 2019). Quade and Broecker (2009) have 

verified Held’s hypothesis by taking the Last Glacial Maximum (LGM) as a reverse analog for modern global warming, and 

point out that the hydroclimate changes in subtropical regions are more complicated. Besides, the African Humid Period and 

a following mid-Holocene (MH) thermal maximum are also the focused key periods (Lézine et al., 2011), and related 50 

researches prove that gradual climate forcing can result in rapid climate responses and a remarkable transformation of the 

hydrologic cycle (deMenocal and Tierney, 2012). Furthermore, Burke et al. (2018) compared the six warm periods in the past 

including the early Eocene, mid-Pliocene, Last Interglacial, mid-Holocene, pre-Industrial (PI) and 20th century with the 

simulated future scenario to find the best analog for near-future climate. A long-term and large-scale evaluation on global 

hydroclimate change is of vital significance for a comprehensive understanding of the impact of global warming and for 55 

future climate projections. 

Closed basins account for about one fifth of the global land areas and are mainly located in the arid and semi-arid climate 

zones. As there is no outlet or hydrological connection to the oceans, the terminal lakes function as the ocean for closed basins 

and concentrate the sedimentary information of the whole basin (Li et al., 2015), which makes them ideal candidates for 

studying the hydroclimate change of the past. Besides, they play an important role in mitigating global changes by influencing 60 

the trend and interannual variability of the terrestrial carbon sink (Ahlström et al., 2015; Li et al., 2017), though the hydrological 
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cycle of the closed basins is fragile and sensitive to climate change. In the most recent IPCC sea level budgets, changes in 

terrestrial water storage driven by the climate have been assumed to be too small to be included (IPCC, 2013; Zhan et al., 

2019). However, recent advances in gravity satellite measurement enabled a quantification that water storages in closed basin 

are declining at alarming rates, which not only exacerbate local water stress, but also impose excess water on exorheic basins, 65 

leading to a potential sea level rise that matches the contribution of nearly half of the land glacier retreat (excluding Greenland 

and Antarctica) (Wurtsbaugh et al., 2017; Wang et al., 2018). The influence of global warming on water availability in closed 

basins is far more serious than that in other regions, and understanding the pattern and mechanism of hydroclimate change in 

the past and modern warm periods will be the key to assess the impact of future climate change. 

In this paper, we focus on the wet/dry status change between the LGM, MH and modern warm period in global closed basins 70 

to improve our knowledge of regional responses to climate change. Based on the lake records, modern observations and 

simulations of the key periods from the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3) and Coupled Model 

Intercomparison Project Phase 5 (CMIP5), an assessment of hydroclimate change at different timescales from the LGM to MH 

and from the PI to late 21st century is conducted. The possible linkages of these moisture change patterns and their underlying 

physical mechanisms are also discussed. This assessment is essential for future climate projection and regional water 75 

management, especially in the dry hinterland. 

2 Data and methods 

2.1 Water level and moisture change inferred from lake records 

The following criteria were used for the selection of the proxy records in this study (Chen et al., 2015): (1) The proxies should 

be indicative of moisture changes. (2) The records should cover both the LGM and MH time slices. (3) The dominant driving 80 

mechanism of the variation in proxy records should be climatic changes. (4) The records should have a dating control level of 

6 or better for 21 ka and 6 ka time slices according to the Cooperative Holocene Mapping (COHMAP) project dating scheme. 

A dating control level of 6 for continuous sequences was based on the following criteria: Bracketting dates, one within 6000 

years and the other within 8000 years or one within 4000 years and the other within 10000 years of the selected date (21 ka 

and 6 ka). The same control level applied to discontinuous sequences requires at least one date within 2000 years of the time 85 

being assessed (Street-Perrott et al., 1989; COHMAP Members, 1994; Lowry and Morrill, 2019).  

We then compared our new compilation of proxy records (Supplement Table S1) to 50 water level records from the Global 

Lake Status Data Base (Street-Perrott et al., 1989; COHMAP Members, 1994; Kohfeld and Harrison, 2000; Harrison et al., 

2003) and Chinese lake-status database (Yu et al., 2001; Xue et al., 2017) in global closed basins and surrounding areas (Fig. 

1). To capture the general spatial pattern, the differences of lake status between the LGM and MH in individual records were 90 

classified into 3 grades (higher/wetter, moderate, lower/drier). Similarly, the differences of simulated effective precipitation 

between the LGM and MH from PMIP3/CMIP5 multi-models in certain grid of the lake site were classified into positive, no 

change and negative and compared with the records. 
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2.2 Modern data sources and analyses 

Closed basin extents were acquired from HydroBASINS product, a series of polygon layers that depict watershed boundaries 95 

and sub-basin delineations at a global scale by using the HydroSHEDS (Hydrological data and maps based on SHuttle 

Elevation Derivatives at multiple Scales) database at 15 arc-second resolution (Lehner et al., 2013). There were some 

exceptions we did not take them into account in this study: (1) Ten landlocked watersheds in the Inner Tibetan Plateau, 

Northeast China, Siberia and western United States were captured only in Global Drainage Basin Database (Masutomi et al., 

2009; Wang et al., 2018); (2) Sporadic landlocked watersheds smaller than 100 km2 Embedded in the exorheic regions were 100 

not considered as independent units; (3) Some of the contemporary endorheic watersheds were exorheic in the past, such as 

the Wuyuer river basin in Northeast China. 

Primary variables of mean precipitation (P) and potential evapotranspiration (PET) from Climatic Research Unit Time-

Series version 4.01(CRU TS4.01), a gridded time-series dataset of month-by-month variation in climate covering all land areas 

(excluding Antarctica) at 0.5° resolution over the period 1901-2016 (Harris et al., 2014), were used for modern climate analysis. 105 

Aridity index (AI) defined as the ratio of annual precipitation to annual potential evapotranspiration by the United Nations 

Environment Programme (UNEP, 1992) was applied. Furthermore, to explore the possible relationship between the ocean and 

closed basins in modern times, we carried out the pearson correlation analysis between monthly AI and multivariate El 

Niño/Southern Oscillation (ENSO) index (MEI) (Kobayashi et al., 2015) and other indexes such as the North Atlantic 

Oscillation (NAO), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO) and Tripole Index for the 110 

Interdecadal Pacific Oscillation (TPI) (Supplement Table S2) for different endorheic regions. Linear trend of AI change in 

global closed basins during 1979-2016 was provided, and a trend was considered statistically significant at a significance level 

of 5%. 

2.3 Debiasing and downscaling of PMIP3/CMIP5 multi‑model ensemble 

Experiments of the LGM, MH and PI from the PMIP3 and projection experiment of 21st century under Representative 115 

Concentration Pathway 8.5 (RCP8.5) from the CMIP5 were used in this study (Braconnot et al., 2012; Taylor et al., 2012). To 

ensure the consistency and precision of simulations as much as possible, we used the outputs from 5 global climate models 

(Table 1) which have all completed the above key period experiments at a spatial resolution of less than 3 degrees. The periods 

of 2006-2015 and 2091-2100 were defined as the representatives of early and late 21 century (E21 and L21), respectively. 

Statistical downscaling and debiasing followed a multi-step approach described by Tabor and Williams (2010). The primary 120 

climate variables were first debiased by differencing each paleoclimate (LGM, MH, PI) or future climate (2017-2100) 

simulation from a present climate simulation (2006-2015). These anomalies are then downscaled through spline interpolation 

to a 0.5° resolution grid corresponding to the modern observational CRU dataset. The anomalies are then added to the 

observational data (2006-2015) to produce the debiased and downscaled primary variables for the paleoclimate or future 

climate simulation. This differencing removes any systematic difference as long as that bias is constant through time (Lorenz 125 
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et al., 2016). The effective precipitation calculated by precipitation minus evaporation was introduced to compare with the 

lake status during the LGM and MH, and predict future changes in moisture balance. 

 

Table 1. PMIP3/CMIP5 models used in this study. 

Model name Resolutions Modelling centre References 

CCSM4 288×192 National Center for Atmospheric Research, USA (Gent et al., 2011) 

CNRM-CM5 256×128 Centre National de Recherches Meteorologiques, France (Voldoire et al., 2013) 

GISS-E2-R 144×90 NASA Goddard Institute for Space Studies, USA (Schmidt et al., 2014) 

MIROC-ESM 128×64 Japan Agency for Marine-Earth Science and Technology, Japan (Watanabe et al., 2011) 

MRI-CGCM3 320×160 Meteorological Research Institute, Japan (Yukimoto et al., 2012) 
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3 Results 130 

3.1 Wet/dry status changes from lake records 

 

Figure 1. Wet/dry status changes between the LGM and MH from lake records (a) and comparison with the simulated 

effective precipitation from PMIP3/CMIP5 multi-models (b). The green and yellow cross sites are from lake status databases; 

the green and yellow point sites are from recently published literatures; the hollow points indicate that there is no significant 135 

change in lake level or climate condition between the LGM and MH. 

 

Generally, lake level changes match climate changes from the proxy records well except for Central Asia (Fig. 1). In the North 

and South American continents, almost all closed basins experience a wetter LGM compared to the MH status, and the same 

situations exist in some closed basins of Eastern Mediterranean, Tibetan Plateau and Australia. On the contrary, Eastern 140 

African highlands and the Sahel region show a prevailing wetter MH, which may be highly attributed to the African Humid 
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Period. Changes in Central Eurasia are more complicated. The monsoonal Eastern Asia and arid Central Asia both record 

wetter MH, while in the middle area between them, there are some contradictory records synchronously showing lower lake 

level and wetter climate. Though evidence from Southern Africa and Australia are insufficiency, several records tend to support 

a wetter LGM. Hereto, it is worth noting that there are two belt regions around latitude 30 degrees at both Hemisphere where 145 

substantial high lake levels during the LGM have disappeared or subsided during the MH. And the low-latitude Africa and 

mid-latitude Asia basically experience an opposite pattern of a wetter MH. 

Comparison between the wet/dry status change from new compilation of proxy records and simulated effective precipitation 

from PMIP3/CMIP5 multi-models is shown in Fig. 1b. The model ensemble does particularly well in simulating the direction 

of hydroclimate change in most closed basins of Americas, Africa and Australia. The most mismatches exist in the Central 150 

Eurasia, since many lake records suggest wetter climate during MH whereas the model ensemble does not. Some minor 

mismatches occur in the East Africa and South America, where the altitude changes dramatically so that the models may 

appear to miss the details of climate change. 

3.2 Simulated climate changes under the past and future warming 

 155 
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Figure 2. Annual mean temperature (a,b), precipitation (c,d) and effective precipitation (e,f) differences for MH-LGM (left) 

and L21-PI (right) in global closed basins based on the PMIP3/CMIP5 multi‑model ensemble. 

 

Spatial patterns of hydroclimate change for MH-LGM and L21-PI are shown in Fig. 2. It’s apparent that the MH warming 

is characterized by strong latitudinal zonality, while future warming is more homogeneous over all closed basins.The 160 

temperature rise by the end of this century will exceed that during the period of LGM-MH in most closed basins under RCP8.5 

scenario (excluding the high latitudes of North America and Central Asia). On the contrary, precipitation increasing under 

future warming is lighter and keep the similar distribution pattern of MH. The dramatic shifts of precipitation change bettwen 

the two periods exist in the subtropics such as the dry-wet shifts in the Mediterranean coast, Mexican Plateau and Iranian 

Plateau. For the pattern of effective precipitation change, it’s substantially fragmented. The prevailing wetter climate in North 165 

Africa and Central Eurasia during the MH is weakened while Australia gets wetter in the future. As a consequence, the core 

area of drought is moved from Western America during the MH to Central Asia by the end of this century.  

 

Table 2. Percentage changes of monthly precipitation and evaporation between different periods from the multi-models.  

 
 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

MH-LGM P 8.3  2.0  -1.1  9.7  25.8  32.1  41.1  52.7  57.5  46.0  34.8  18.1  

 
E 17.1  11.0  10.9  16.0  27.4  36.1  40.2  43.7  42.4  35.9  30.7  24.9  

L21-PI P 10.8  12.1  12.6  14.4  8.3  -1.5  1.5  6.5  8.3  11.3  11.6  11.4  

 
E 9.5  10.2  11.6  14.5  12.8  9.5  6.5  7.9  6.8  4.9  6.5  9.5  

L21-E21 P 9.3  7.7  8.9  12.7  7.3  -1.0  4.6  8.2  6.2  8.0  6.5  7.9  

 
E 8.4  7.9  8.3  12.0  10.7  8.8  6.7  8.4  6.7  5.4  4.6  7.1  

 170 

To investigate the seasonal difference of hydroclimate change, we assess the percentage changes of monthly precipitation 

and evaporation during the MH, modern and future warm periods at a global scale (Table 2). It turns out that remarkable 

increases of precipitation and evaporation mainly occur in the boreal summer half-year during the MH, while in modern and 

future warm periods they are concentrated in the boreal winter half-year. The precipitation increases about 50% from the LGM 

to the MH in the wettest months of July-October, 13% from PI to L21 in the wettest months of February-April. Seasonal 175 

variation in evaporation is smaller than that in precipitation but keep the same pattern. In addition, precipitation and evaporation 

changes from E21 to L21 make significant contributions to the increasing of precipitation and evaporation from PI to L21, 

especially in the boreal summer half-year. 
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3.3 Moisture trends and connections of modern observations 

 180 

Figure 3. Linear trends of modern observational AI for the period of 1979-2016 in global closed basins. Gridding areas are 

where the trends are statistically significant at 5% level. 

 

Over the past four decades, as shown in Fig. 3, about 70% of the total areas of global closed basins are getting drier. The 

severe drying regions include the Great Basin and the Patagonia in Americas and the Upper Volga river basin and Iran Plateau 185 

in Central Eurasia. The wetting trends mainly occur in the low latitudes of Africa and the high altitudes of Asia including the 

Caucasus Mountains, the Tianshan Mountains, the Pamir and Tibetan Plateau. Besides, the marginal closed basins of East Asia 

and North Australia as well as the Mexican Plateau and the Altiplano in the Americas show lighter wetting trends. It’s worth 

noting that the future pattern of effective precipitation change (Fig. 2f) mainly continues the trends of modern moisture change, 

with the most significant mismatch in Southern Africa. That means the mechanism of future hydroclimate change likely keep 190 

the same as modern times in most closed basins. 

 

Table 3. Pearson correlation coefficients between annual AI and monthly MEI during 1979-2016. The bold numbers mean 

that correlation coefficients are statistically significant at 5% level. SAM-South America, NAM-North America, SAF-Southern 

Africa, EAF-Eastern Africa, NAF-Northern Africa and Arabian peninsula, CEA-Central Eurasia, AUS-Australia, ALL-global 195 

closed basins. 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

SAM -0.23  -0.26  -0.15  -0.05  -0.05  0.08  0.22  0.29  0.27  0.22  0.14  0.19  

NAM 0.47  0.52  0.55  0.50  0.47  0.30  0.06  -0.02  0.01  -0.01  -0.01  -0.02  

SAF -0.60  -0.57  -0.60  -0.64  -0.53  -0.37  -0.15  0.01  -0.07  -0.10  0.00  0.00  

EAF -0.02  -0.06  -0.12  -0.07  0.01  -0.01  -0.02  0.08  0.10  0.16  0.25  0.28  

NAF 0.03  0.01  -0.03  -0.09  -0.09  -0.05  0.00  0.01  0.05  0.10  0.14  0.11  
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CEA 0.19  0.16  0.13  0.19  0.31  0.45  0.50  0.47  0.47  0.45  0.43  0.41  

AUS 0.06  0.09  0.09  0.13  0.06  -0.13  -0.28  -0.28  -0.32  -0.34  -0.37  -0.36  

ALL -0.02  -0.05  -0.09  0.02  0.13  0.24  0.30  0.38  0.36  0.37  0.41  0.42  

 

By calculating the pearson correlation coefficients between annual AI and monthly MEI, NAO, SOI, PDO and TPI, we seek 

for the potential connections of moisture change in closed basins with ocean oscillation. As results, the performance of NAO, 

SOI and PDO are comparatively weak, and the MEI responds the best and shows the similar pattern as TPI does, both indicating 200 

the dominant role of the Pacific Ocean oscillation in controlling the moisture change of global closed basins (Table 3, 

Supplement Table S2). For the global closed basins as a whole, the AI change is significantly positive related to monthly MEI 

from August to December, and the correlation coefficient reaches its highest in December of boreal winter season. As the 

biggest part of global closed basins, Central Eurasia apparently contributed the most in this positive feedback. On the contrary, 

in the Australian closed basins it’s lightly negative correlated with monthly MEI during almost the same seasons. Among the 205 

seven separated endorheic regions, AI changes in South America, Eastern and Northern Africa show no significant correlation 

with MEI at all. For the other four regions, they are seemingly coupled between North America and Southern Africa and 

between Central Eurasia and Australia with the opposite significant AI-MEI relationships. During the first half year, North 

America responds positively whereas Southern Africa shows negative response to the MEI change. The same pattern turns to 

Central Eurasia and Australia in the second half year. This provides a potential perspective on the teleconnections in different 210 

closed basins globally. 

4 Discussion 

Closed basins are mainly located in subtropic and temperate drylands, where the hydroclimate changes deeply depend on the 

limited moisture transport via atmospheric circulation. Based on this, among the seven separated endorheic regions mentioned 

before, most of them can be divided into two parts: the westerlies-dominated area and the monsoon-influenced area, such as 215 

Central Asia and East Asia in Central Eurasia as well as the Western United States and the Mexican Plateau in North America. 

Thus, their climate changes are strongly influenced by the interactions of mid-latitude westerlies and low-latitude monsoon 

especially on a long-term timescale (Li et al., 2013; Li et al., 2017; Chen et al., 2019; Li et al., 2020). On a shorter timescale 

of modern times, internal variability of climate system like the ocean oscillations rather than the external forcing plays more 

important roles in controlling the regional moisture change (Wang et al., 2018). Though the driving mechanism may be 220 

extensively changed, our results show that hydroclimate changes in some closed basins respond in the same pattern to the past 

and future warming, indicating deeper connections at different timescales. More importantly, the long-term hydroclimate 

change patterns provide the baseline for modern and future climate change assessment (IPCC, 2013). 

javascript:;
javascript:;
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Figure 4. Changes of insolation, ice sheet and typical lake records since the LGM. (a) Summer and winter insolation variations 225 

at 35°N (Laskar et al., 2004); (b) Percent area change of ice sheets in North America (Dyke, 2004); (c) Lake-level variation 

from Owens Lake, Western USA (Bacon et al., 2020); (d) Pollen-based annual mean precipitation record for Lakes Dalianhai 

and Qinghai on the northeastern Qinghai-Tibet Plateau, Western China (Li et al., 2017); (e) Pollen-based annual precipitation 

change (modern analogues technique) at Lake Barombi Mbo, Northern Africa (Lebamba et al., 2012). 

 230 

Previous studies have indicated that the hydroclimate change patterns in different latitudes at the millennial, centurial and 

decadal timescales show considerable connection with the general atmospheric circulation, which is mainly forced by the 

external forcing at a long-term timescale and by the internal factors of climate system at a shorter timescale (Kohfeld et al., 

2013; Tierney et al., 2013; Ljungqvist et al., 2016; Zhang et al., 2017). From the perspective of paleoclimatology, the MH was 

extremely different from the LGM in the strengths and positions of monsoons and westerlies induced by the primary drivers 235 

such as solar insolation, Arctic warming and continental ice sheets (Sime et al., 2016; Wang et al., 2017; Bhattacharya et al., 

2018; Routson et al., 2019; Jansen et al., 2020). Besides, it was also considered that the increase of atmospheric CO2 

concentration and early human activities are important driving forces for the changes of climate and lake level since the LGM 

(Shakun et al., 2010; Li et al., 2013; Miebach et al., 2016; Jenny et al., 2019). From the LGM to the early Holocene, it was 

characterized with retreat of continental ice sheets and increasing of summer insolation in the North Hemisphere (Fig. 4). 240 

During the LGM, the westerlies in the Northern Hemisphere moved south reaching the southwest of the United States, the 

eastern Mediterranean region and southern Tibetan Plateau, because of the development of continental ice sheets in the North 



12 

 

Hemisphere such as the Laurentian Ice Sheet in North America (Claire et al., 2010; Lachniet et al., 2014; Lowry and Morrill, 

2019; Batchelor et al., 2019). Also, the high winter insolation enhanced evaporation and moisture transport, resulting in higher 

winter precipitation compared to the MH. Thus, many lakes in westerlies North America such as Owens Lake maintain high 245 

lake level during the whole deglaciation period (Fig. 4c). On the contrary, summer insolation in the North Hemisphere reached 

its highest status during the early Holocene, leading to strengthening and expansion of monsoon by amplifying regional sea-

land thermal contrast (An et al., 2000; Li and Harrison, 2008; Wang et al., 2017). 

Evidences from paleoclimatic records and simulations in Northern Africa had shown that the world’s largest desert in 

modern times experienced a humid period and was covered by forests and lakes due to the strengthening of the African 250 

monsoon during the early and middle Holocene (Lézine et al., 2011; Lebamba et al., 2012; Contoux et al., 2013; Hély et al., 

2014; Shanahan et al., 2015). And this kind of shifts were recorded in many monsoonal regions globally, including closed 

basins in Americas, Asia and Australia (Magee et al., 2004; Zhang et al., 2011; Kuhnt et al., 2015; Metcalfe et al., 2015; Bernal 

et al., 2016). As the most typical monsoon system, Asian summer monsoon even reached as far as the Tianshan Mountains 

and Kunlun Mountains of Central Asia during the Holocene (Wang et al., 2014; Ramisch et al., 2016), bringing monsoon 255 

precipitation and reforming the hydroclimate pattern in the eastern closed basins of Central Eurasia. Even in modern times, 

the monsoon moisture could invade western Qilian Mountains and impact on precipitation especially the heavy precipitation 

events (Du et al., 2020). However, from the LGM to MH, hydroclimate changes in Central Euraisa were more complicated 

than that in other regions, due to the strong interactions of westerlies and monsoon in the middle region between the arid 

Central Asia and monsoonal Eastern Asia. As a consequence of moving of westerlies, the effective precipitation in arid Central 260 

Asia didn’t increase until the middle and late Holocene, leading to a large number of low lake levels and showing different 

climate response pattern compared with that in monsoonal Eastern Asia corresponding to the summer insolation change (Chen 

et al., 2008; Ran et al., 2013; Huang et al., 2014; Chen et al., 2019). 

The difference in moisture change  between the arid Central Asia and monsoonal Asia still exists in modern times and near-

future warm period, and it is more apparent between the high altitudes and lower basins from the modern observations (Fig. 265 

3). On a shorter timescale of modern times, strengthening or moving of monsoons and westerlies are largely limited compared 

to that from the LGM to MH. As results shown before, ocean oscillation especially the Pacific Ocean oscillation emphasize its 

impact on controlling the moisture change of global closed basins, with two couples of the opposite significant AI-MEI 

relationships between the North America and the Southern Africa and between the Central Eurasia and the Australia (Table 

3). The ENSO-based composite analyses have shown that the water vapor fluxes of seasonal precipitation in Central Eurasia 270 

are mainly generated in Indian and North Atlantic Oceans and transported by enhanced westerlies during EI Nino events 

(Mariotti, 2007; Rana et al., 2017; Xi et al., 2018; Rana et al., 2019). Based on the simulation of future climate change, evidence 

shows that the winter precipitation play a dominant role in determining the wet/dry pattern change in global closed basins, 

implying the significance of westerlies instead of monsoon. These patterns provide some new perspectives to understand the 

differences and connections over global closed basins and remind us that we should focus more on the ocean oscillations in 275 

order to address the challenges of future climate change. 
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5 Conclusion 

This study presents a new compilation of lake records and analyses of hydroclimate change at different timescales in global 

closed basins. Though it’s well known that the forcing mechanisms between mid-Holocene and future warming are different, 

the patterns of hydroclimate changes of them show comparable spatial consistency in closed basins. From the LGM to the MH, 280 

the westerlies-dominated areas usually experience wet to dry shift whereas the monsoon-influenced areas shift from drier to 

wetter climate. The hydroclimate changes from the PI to the Late 21st century show the similar patterns in most closed basins, 

except for Central Asia where it is wetter during the MH but drier during the future warm period. For the global closed basins 

as a whole, it’s wetter both in the MH and L21 than that during the LGM and PI. However, they are mainly attributed to the 

boreal summer and winter precipitation increasing, respectively. The seasonal difference of precipitation increasing indicates 285 

the different dominant roles of westerly winds and monsoons during the two periods. That is, the long-term regional differences 

of hydroclimate change are mainly controlled by the high-latitude ice sheets and low-latitude solar radiation, which leads to 

equatorward moving of the westerlies during the glacial period and the strengthening of monsoons during the interglacial 

period. An analynis of modern moisture change matching with the timescale of future warming suggests that it’s related to 

ocean oscillations especially the Pacific Ocean oscillation, such as the two coupled opposite significant AI-MEI relationships 290 

between the North America and the Southern Africa and between the Central Eurasia and the Australia. Though the dryland 

expansion may be accelerated under the near future warming in the hinterland globally, we can’t ignore the hydroclimate 

response differences within these regions, which largely affect the local strategies of economic development and environmental 

protection. We must be more resilient to tackle the future climate change corresponding to diversified hydroclimate changes 

in different closed basins. 295 
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Values of MEI, NAO, SOI, PDO and TPI are available from https://psl.noaa.gov/data/climateindices/list/. Details about the 

new compilation of proxy records are available in Supplement. 
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