

Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum

Suzanne Alice Ghislaine Leroy ^{1*}, Klaus Arpe ^{2*}, Uwe Mikolajewicz ³, and Jing Wu ⁴

1) Aix Marseille Univ, CNRS, Minist Culture, LAMPEA, UMR 7269, 5 rue du Château de l'Horloge, BP 647, 13094 Aix-en-Provence Cedex 2, France

2) Max-Planck-Institute for Meteorology, Hamburg, Germany, retired

3) Max-Planck-Institute for Meteorology, Hamburg, Germany

4) Institute of Geology and Geophysics, Chinese Academy of Science (IGGCAS)

Beijing, 100029, P. R. China

* corresponding author

klaus.arpe@mpimet.mpg.de leroy@mmsh.univ-aix.fr,

ABSTRACT

15 Publications on temperate deciduous tree refugia in Europe are abundant, but little is known about
16 the patterns of temperate tree refugia in eastern Asia, an area where biodiversity survived
17 Quaternary glaciations and which has the world's most diverse temperate flora. Our goal is to
18 compare climate model simulations with pollen data in order to establish the location of glacial
19 refugia during the Last Glacial Maximum (LGM) period. Limits in which temperate deciduous
20 trees can survive are taken from the literature. The model outputs are first tested for the present by
21 comparing climate models with published modern pollen data. As this method turned out to be
22 satisfactory for the present, the same approach was used for the LGM. Climate model simulations
23 (ECHAM5 T106), statistically further down-scaled, are used to infer the temperate deciduous trees
24 distribution during the LGM. These were compared with available fossil temperate tree pollen
25 occurrences.

26

27 The impact of the LGM on the eastern Asia climate was much weaker than on the European
28 climate. The area of possible tree growth shifts only by about 2° to the south between the present
29 and the LGM. This contributes to explain the greater biodiversity of forests in eastern Asia
30 compared to Europe. Climate simulations and the available, although fractional, fossil pollen data
31 agree. **Therefore**, climate estimations can safely be used to fill areas without pollen data by
32 mapping potential refugia distributions. The results show two important areas with population
33 connectivity: The Yellow Sea emerged shelf and the southern Himalayas. These two areas were
34 suitable for temperate deciduous tree growth, providing corridors for population migration and
35 connectivity (i.e. less population fragmentation) in **glacial periods**. Many tree populations live in
36 interglacial refugia; not glacial ones. The fact that the model simulation for the LGM fits so well
37 with observed pollen distribution is another indication that the used model is good to simulate also
38 the LGM period.

39 **Key words**

40 Eastern Asia, ECHAM5 model, Last Glacial Maximum, pollen, temperate deciduous trees,
41 population connectivity

42 **Supplementary information** is added, discussing **Appendix S1: Monsoon progression in the model**
43 **compared to observation**
44 and
45 **Appendix S2: Uncertainty of precipitation analysis**

46

47 **Introduction** Eastern Asia temperate deciduous forests boast the world's most diverse temperate
48 deciduous forest flora (Donoghue and Smith, 2004; Qiu et al., 2011). They also contain the highest
49 numbers of Tertiary relict taxa that have disappeared from Europe (Milne and Abbott, 2002;
50 Svenning, 2003), such as *Carya* and *Parrotia* (Li and Del Tredici, 2008; Orain et al., 2013). The
51 reason for this situation should be sought in the history of these forests through Quaternary
52 glaciations and earlier. The last time when these forests had a considerable reduction of their

53 population or underwent a shift of their distribution was during the Last Glacial Maximum (LGM),
54 i.e. 21,000 years ago. On different continents, this happened in different ways due to the climate of
55 the area, the topography (including the orientation of the main mountain ranges that may act as
56 geographical corridors or barriers), the location and extent of icecaps and the extent of emerged
57 coastal shelves. In Europe, during the LGM, the temperate deciduous forests, especially the warm-
58 temperate tree species, died out in much of northern and central Europe and survived in refugia in
59 the mountainous areas of the three southern peninsulas: Iberia, Italy and the Balkans, as well as in
60 some smaller areas around the Black Sea and the southern Caspian Sea (Leroy and Arpe, 2007;
61 Arpe et al., 2011).

62 Various methods have been used to establish the locations of glacial refugia of temperate
63 deciduous trees during the LGM in Eastern Asia. For example, population distributions have been
64 published based on phylogenetic data in Eastern Asia (Qian and Ricklefs, 2000) and based on
65 biomisation using palaeo-data for the Japanese archipelago (Takahara et al., 2000; Gotanda and
66 Yasuda, 2008) and for China (Harrison et al., 2001). A disagreement regarding the location of
67 temperate tree refugia in China, especially at its northern limit, has appeared: Harrison et al. (2001)
68 proposed the northern limit of the temperate deciduous forest biome to have retreated far south
69 (south of 35° N) versus Qian and Ricklefs (2000) who suggested an extension of the temperate
70 forest over the emerged continental shelf. Qian and Ricklefs (2000) highlighted the important role
71 played by physiography heterogeneity, climatic change and sea-level changes in allopatric
72 speciation. According to the results of their ecological analysis, a temperate tree population
73 extended across the emerged shelf and linked populations in China, Korea and Japan during glacial
74 times. This led to the concept of interglacial fragmentation and refugia.

75 Additional information from phylogenetics of temperate deciduous trees should also be considered
76 for phylogeography purposes. But few trees/bushes belonging to the deciduous forest have been
77 analysed so far. A temperate deciduous bush, *Ostryopsis davidiana*, indicates multiple LGM
78 refugia both south and north of the Qin Mountains (Tian et al., 2009).

79 To be complete, it should be mentioned that the distribution of key temperate tree biomes (discrete
80 points) for the LGM can be found in Ni et al. (2014).

81 Our aim is to contribute to this debate on the northern limit of temperate deciduous trees by using
82 another approach to ecology, to biomisation and to phylogeography: i.e one based on climate
83 model simulations. The results from this approach are validated by pollen data, whose amount has
84 increased spectacularly since 2010. Distribution maps are then produced.

85 **2 MATERIAL AND METHODS**

86 The climatic data, model and methods used in this study are described by Leroy and Arpe (2007)
87 and Arpe *et al.* (2011) in more detail. Coupled ECHAM5-MPIOM atmosphere ocean model
88 simulations were carried out, though with a very low horizontal resolution of T31 (i.e. a spectral
89 representation which resolves waves down to 31 on any great circle on the earth
90 corresponding to approx. 3.75°). In such a coupled model, the atmosphere as well as the ocean
91 and the vegetation were simulated and interact with each other and generated their own Sea
92 Surface Temperature (SST) and vegetation parameters. These SSTs and vegetation parameters
93 were then used for uncoupled ECHAM5 T106 atmospheric simulations. The ECHAM models
94 including the coupled ocean model were developed at the Max-Planck Institute for Meteorology in
95 Hamburg (MPI).

96 The models were run on one hand with the present-day conditions concerning the orography, solar
97 radiation, ice cover and CO₂ and on the other hand under LGM conditions concerning the same
98 parameters (e.g. atmospheric CO₂ concentration at 185 ppm). The simulations for the present and
99 the LGM with a T106 resolution (approx. 1.125° horizontal resolution) model with 39 atmospheric
100 vertical levels were carried out with the ECHAM5 atmospheric model (Roeckner et al., 2003). The
101 boundary data, e.g. the SST and vegetation parameters, were taken from the coupled ECHAM5-
102 MPIOM atmosphere ocean dynamic vegetation model (Mikolajewicz et al., 2007) simulations,
103 which have been made for the present and the LGM with a spectral resolution of T31 and 19

104 vertical levels. The experimental setup is largely consistent with the Paleoclimate Modelling
105 Intercomparison Project phase 2 PMIP2 (Braconnot et al., 2007). These SSTs were corrected for
106 systematic errors of the coupled run by adding the SST differences between observed SSTs and
107 simulated ones for the present, the corrections are generally below 3°C.

108 In Arpe et al. (2011), comparisons of the model generated SSTs with other reconstructions, e.g.
109 from the MARGO project (Kucera et al., 2005), were performed and good agreement was found.
110 Differences to the CLIMAP (1981) reconstruction agree with findings by PMIP2 (Braconnot et al.,
111 2007). Also, other information from the LGM gave further confidence in the performance of the
112 model. In Arpe et al. (2011), the importance of a high resolution is stressed. Therefore, we use here
113 again the T106 model. Intuitively one assumes that the model that provides good estimations for
114 the present climate would also be best for simulating a climate with a different external forcing
115 such as during the LGM. Indeed Arpe et al. (2011) found good correspondence between pollen
116 findings for the LGM and the estimation of possible tree growth for Europe, which increased
117 confidence in that model. As the climate of Eastern Asia is quite different to that of Europe, we try
118 to find further evidence for the high performance of the model in Eastern Asia.

119 It is generally assumed that results from model simulations become more robust when using an
120 ensemble of different model simulations; but we did not do that. As the ECHAM models have been
121 shown by Reichler and Kim (2008) to belong to the best ones and by including other ones, we
122 would only dilute our results because of very different results in different simulations (Tian and
123 Jiang, 2016). Further, most of the available simulations are of much lower resolution than T106,
124 that used here, and which we believe is essential for a region of diverse topography such as Eastern
125 Asia. When combining the results of different models, an interpolation to a common grid is
126 inevitable and that creates some smoothing with a further loss of resolution.

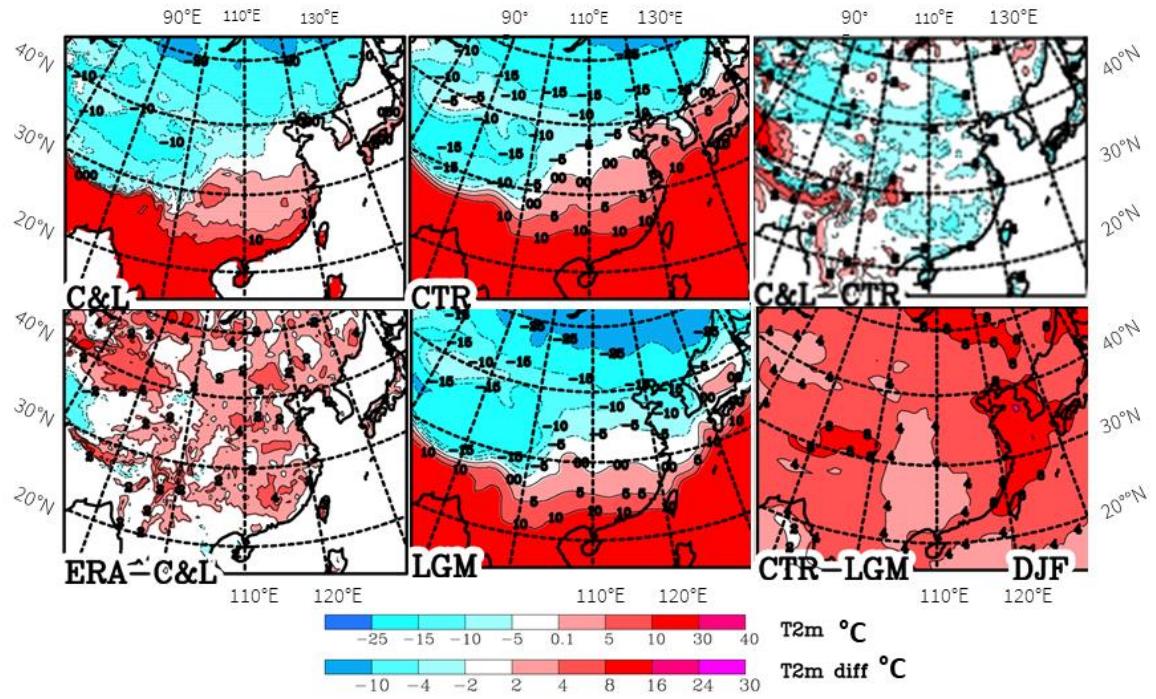
127 Nevertheless, even a T106 model resolution might not be sufficient for our investigation. Kim et al.
128 (2008) demonstrate the importance of a high resolution with their model, among others, for the
129 response of the Eastern Asian summer monsoon under LGM conditions. Therefore, we did a down-

130 scaling to a 0.5° resolution. For that, the differences between the model simulations for the LGM
131 and the present are added to a high-resolution present-day climatology. The climatology that
132 seemed best for our investigation is that of Cramer and Leemans (Leemans, R. and Cramer (1991) ;
133 Cramer, 1996), below abbreviated as “C&L”. With this method, the impact of possible systematic
134 errors of the model is reduced. This method works only if the simulations are already reasonable;
135 otherwise it might happen that e.g. negative precipitation amounts may occur. We could use this
136 method only for the precipitation and 2m air temperature (T2m) while the winds had to be taken
137 directly from the model simulations.

138 To improve the understanding of limitations in the climate data, estimates of the present
139 climatology with data from the Global Precipitation Climate Center (GPCC) (Schneider et al.,
140 2011; Becker et al., 2013; GPCC, 2013) and with data from the ECMWF interim reanalyses (ERA)
141 (Dee et al., 2011; ECMWF, 2014) are used.

142 Lower CO₂ concentration in the atmosphere during the LGM has caused a decline of pollen
143 production. Therefore, low pollen concentrations or influxes may already be indicative of the
144 presence of trees (Ziska and Caulfield, 2000; Leroy, 2007). It should be noted that we are here not
145 working at the level of forests, nor of biomes. Hence it is considered that pollen sites will reliably
146 indicate the survival of temperate deciduous trees (summer-green and broadleaf), if records have a
147 sub-continuous curve of at least one temperate taxon such as deciduous *Quercus*, *Ulmus*, *Carpinus*
148 or *Tilia*. The study focuses on the period of the LGM, hence on an age of 21 ± 2 cal ka BP (Mix et
149 al., 2001). The geographical areas of China, Japan, SE Russia, Korea and the Himalayas are
150 explored. The dataset includes terrestrial and marine sites. A literature review of pollen data was
151 made. It was first based on the large compilations of Cao et al. (2013) mainly for China and of
152 Gotanda and Yasuda (2008) for Japan. Then this was enlarged geographically and with an update
153 including more recent publications.

154 Modern pollen assemblages were used to check the validity of the tree growth limits chosen. The
155 following databases were used: Zheng et al. (2014) for China and Gotanda et al. (2002) for Japan.


156 This was complemented by local studies such as by Park (2011) and Park and Park (2015) for
157 Korea and the Himalayas (Fuji and Sakai, 2002; Chung et al., 2010; Kotlia et al., 2010; Yi and
158 Kim, 2010). It was not aimed to be exhaustive. From these databases, the occurrences of temperate
159 deciduous trees (mainly deciduous *Quercus*, and *Ulmus*, but also others such as *Carya*, *Tilia*,
160 *Carpinus*) of at least 0.5% were selected.

161 **3 CLIMATE OF EASTERN ASIA**

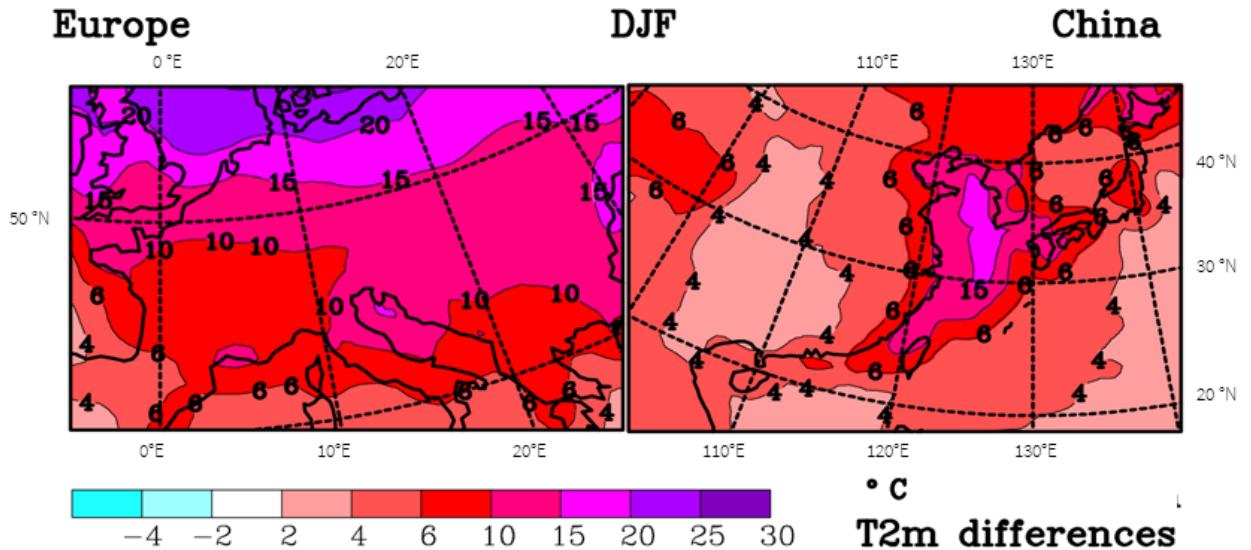
162 In our earlier investigations on glacial refugia of trees over Europe (Leroy and Arpe 2007; Arpe et
163 al., 2011), limiting factors for possible tree growth were the precipitation during summer, the mean
164 temperature of the coldest months and the growing degree days (number of days with temperatures
165 >5°C) (GDD5), the latter is related to the summer temperatures. The climate of Eastern Asia is
166 different to that of Europe and a short review of its climate is therefore needed in order to adapt the
167 limits.

168 The climate of Eastern Asia is dominated by the monsoon (more information in Appendix S1 of
169 Supporting Information) as well as by its very strong topographic variability. The latter makes it
170 difficult to create a reliable climatology on a regular grid. This is demonstrated for air temperature
171 T2m) during December to February (DJF) by comparing the C&L climatology with a long-term
172 mean from the ECMWF interim reanalysis (Dee et al. 2011; ECMWF-ERA. 2019) (ERA), a
173 simulation for the present (CTR) and LGM simulations (Fig. 1).

174

177 Fig. 1: Climatological mean distribution of T2m over Eastern Asia for December to February

178 (DJF)


179 Values by Leemans, R. and Cramer (1991) (C&L), the ECMWF reanalysis (ERA) and model
180 simulations (CTR and LGM), as well as some differences between them.

181 Much stronger structures in the C&L climatology compared to the other climatologies can be seen
182 (Fig. 1). Moreover substantial differences are observed, e.g. the white band (-5 to 0 °C) is
183 positioned about 5° further north in eastern Asia in ERA compared to C&L with up to 4 °C warmer
184 temperatures over a large part of Eastern Asia (Fig. 1, panel ERA - C&L). For the Caspian region,
185 Molavi-Arabshahi et al. (2015) showed how biases of several °C in ERA can occur in mountainous
186 areas when the topographic height in the ECMWF model and the real topography are different. So
187 it is assumed that the warmer temperatures in ERA compared to C&L are due to this analysis
188 system. The climate simulation for the present (Fig. 1, CTR) agrees similarly well with ERA and
189 C&L, a little warmer than C&L and cooler than ERA (not shown).

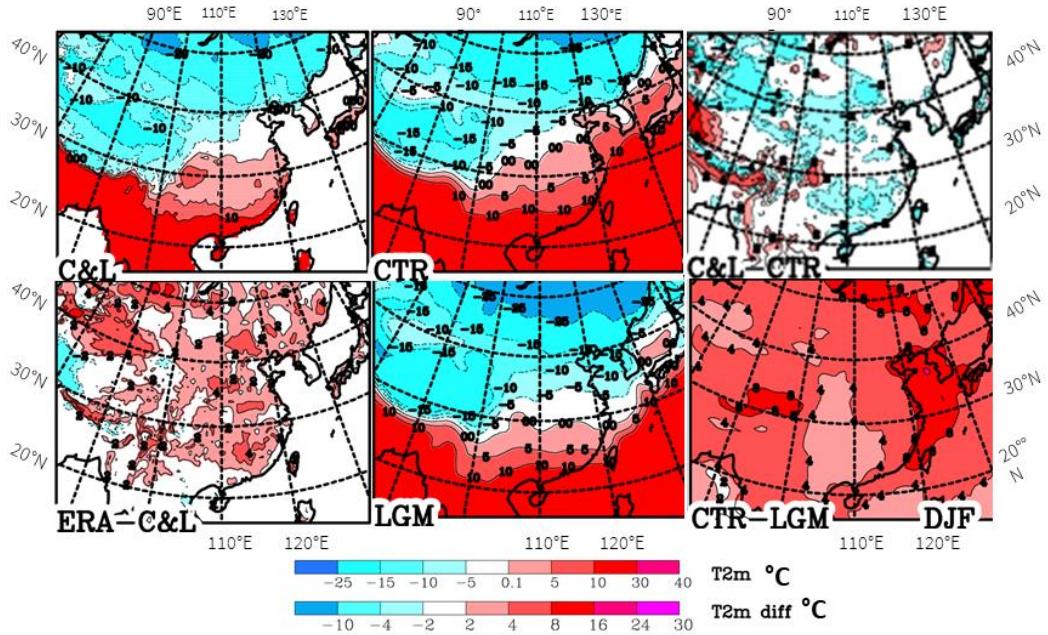
190 A main purpose of different simulation periods (Fig. 1) is the display of changes from the LGM to
191 the present (Fig. 1 lower right). Over the Yellow Sea, temperatures differ by up to 16 °C, as a large
192 area of the ocean shelf emerged during the LGM, while the differences are much smaller for
193 continental China, mainly 4 to 5 °C. These changes between the present and the LGM are overall
194 much weaker than for Europe in winter (Fig. 2). Typical differences for continental central Europe
195 are 8-15 °C while they are only around 4-5 °C for the Eastern Asian continent. One has to take into
196 account that China is further south than central Europe, the central latitudes in the European map
197 are 45 to 50 °N while for China they are 32 to 37 °N, which contributes to explain the large
198 differences in the temperature change. Also, the proximity of the Fennoscandian ice sheet is of
199 importance for the colder temperatures in Europe, as well the weakening of the Gulfstream, which
200 presently supplies Europe with warmer temperature. The strong temperature change over the
201 Yellow Sea is a consequence of the larger heat capacity of the ocean, which limits the winter-time
202 cooling under present-day conditions. At the LGM, this area was emerged due to the lower sea
203 level, which leads to much stronger winter-time cooling.

204

205

206

207 Fig. 2: Difference maps between simulated CTR and LGM T2m during winter (DJF) for Europe
208 and Eastern Asia.


209

210 The summer temperatures are shown in Fig. 3. ERA temperatures are often warmer by around 2 °C
211 than the ones in the C&L climatology (Fig. 3 lower left panel) the arguments for this difference
212 given above for DJF apply here as well. The differences between the present and the LGM in the
213 simulations increase from China's east coast of 2-3 °C to up to 6 °C over Tibet. This is similar to
214 what Tian and Jiang (2016) found in PMIP3 simulations; they state that the temperature drop in the
215 LGM is too low compared to proxy data. The summer temperatures are being used to calculate the
216 GDD5. For the small changes shown here, we do not expect that GDD5 does impose much more
217 limitation for the LGM than for the present for tree growth.

218

219

220

221

222 Fig. 3: Climatological mean distribution of temperature T2m (in °C) over Eastern Asia for June,
 223 July August (JJA)
 224 Values by Leemans, R. and Cramer (1991) (C&L), the ECMWF reanalysis (ERA) and model
 225 simulations (CTR and LGM), as well as some differences between them.

226

227 The difference maps for CTR-LGM temperatures show values over the ocean (Figs. 1 to 3).
 228 These differences may have an important impact on continental temperatures. Therefore, it is
 229 interesting to compare these data with other estimates of the SST. For example, Annan and
 230 Hargreaves (2013) show annual means of SST differences of around 2°C for the South China
 231 Sea while our simulations have slightly larger values of 2.5 to 3°C, though this falls within the
 232 uncertainty range given by Annan and Hargreaves (2013). A main difference is less cooling
 233 during the LGM in our estimates at the Gulf and Kuroshio currents off the USA or Japan coast
 234 (not shown as they are too far outside the area of interest).

235 Summer precipitation is an important limiting factor for possible tree growth (Fig. 4). The sharp
 236 gradient of precipitation along the southern slopes of the Himalayas in the three sets of analyses (the


237 climatology by C & L and the long-term means from ERA and GPCC) is clearly marked. The general
238 patterns agree in the three sets, though with some biases. C&L and GPCC agree best, probably;
239 because they are both based on precipitation observations at gauges. On the contrary, ERA is a model
240 product forced by a very large range and more evenly distributed observations; moreover ERA does
241 not use observed gauge precipitation. Differences between C&L and GPCC are mostly below 50
242 mm, especially in the northern areas where the precipitation is moderate. The differences between
243 C&L and ERA are also small in northern areas; but can become quite large where the amounts of
244 precipitation are large, mostly with ERA having larger precipitation amounts. The lower
245 precipitation rates in ERA for Korea and southern Japan in contrast to C&L and GPCC are
246 remarkable. Here the latter data are probably more accurate because this area is well-covered by
247 observations (Fig. S2.3) and the ERA model may not be able to resolve the strong topographic
248 structures. Many of the large uncertainties are probably due to the strong topographic structures over
249 Eastern Asia, which makes an analysis difficult and which is enhanced by a low density of
250 observational sites over western China (more information on precipitation accuracy in Appendix S2
251 of Supporting Information).

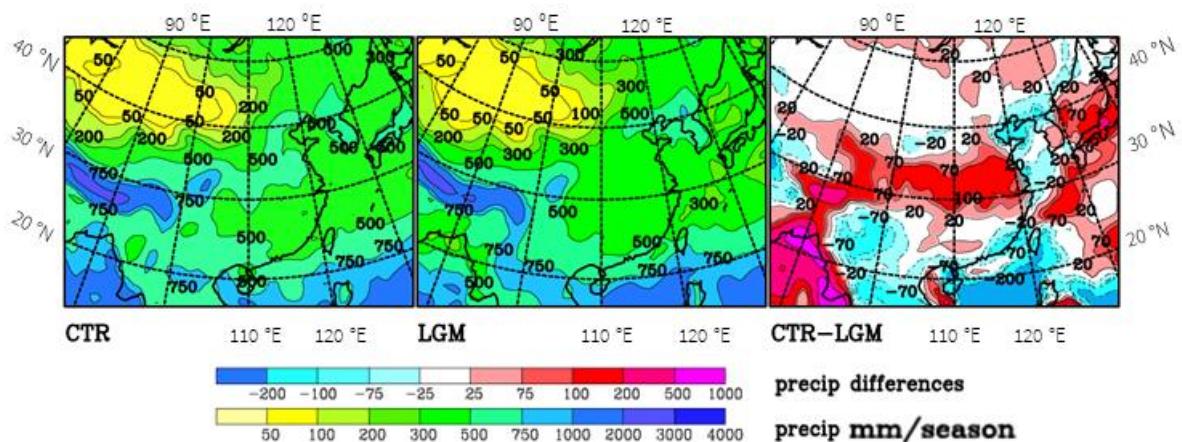
252 The systematic error of the model concerning China consists of the monsoon front being too far north
253 by 2° of latitude (Fig. S1.2) and with a too early northward propagation in the season (Appendix S1
254 of Supporting Information). As we only use the differences between the present and LGM this
255 systematic error is assumed to have only a minor impact on our results. Tian and Jiang (2016) found
256 a general weakening of the summer monsoon in PMIP3 simulations, especially a decrease of
257 precipitation in most of the simulations but they do not go into the details shown in Appendix S1 of
258 Supporting Information, which makes a comparison difficult. However, they noticed a large
259 variability within the models. For the area used in Fig. S1.2, they show a decrease of 10-20% of
260 summer precipitation in the LGM compared to the Control which agrees with our simulation,
261 strongest in June south of 32° N, though both CTR and LGM are too strong compared to ERA. In
262 our simulation, the strengthening north of 32° N for March to August for precipitation and 850 hPa
263 wind in the CTR and LGM simulations is stronger compared to ERA. This systematic error is

264 assumed to have only a minor impact on our results. Indeed, most of the differences turn out to be
265 less important for the further use in this study, except larger precipitation over western China at 37°N
266 on the northern slope of the Kunlun Shan in the C&L data set, which is investigated in more detail
267 in Appendix S2 of Supporting Information. **Also in the area 105°-110°E / 35°-40°N, the drop of**
268 **precipitation during LGM may be important, as discussed below in section 6.**

269

270

271


272 Fig. 4: Summer (JJA) precipitation over Eastern Asia as analyzed by Leemans, R. and Cramer
273 (1991) (C&L), ERA and GPCC and as simulated for the present (CTR). Differences between the
274 various fields are shown. Units: mm/season

275

276 Below we will concentrate on summer precipitation because that is the time when plants need water
277 most. Other scientists use the annual mean precipitation as a limiting factor (e.g. Tian et al., 2016).
278 When comparing the analyses with the model simulations for the present (CTR), one finds that the
279 model fits better to GPCC and least to ERA (Fig. 4) away from the high mountain ranges where the

agreements between the different precipitation climatologies is very low. The amounts of precipitation in ERA is on a large scale higher than the other ones. For most of China south of 35°N the precipitation in ERA is much lower than in the other climatologies. The belt with stronger precipitation at 25 to 35°N in CTR is assigned in Appendix S1 of Supporting Information to an earlier northward propagation of the monsoon front in CTR compared to ERA, that is weakened from the CTR to LGM, which results in a belt of largest differences between the present and the LGM of up to 150 mm (Fig. 5). Kim et al. (2008) found similar differences in their higher resolution simulation, though spreading further north. In Appendix S1 of Supporting Information, it is shown that the monsoon, as represented by the wind direction, does not change much over the continent between the present and the LGM, and with the monsoon front propagating northward already in June the wind speeds increase. This is somewhat in contrast to results by Jiang and Lang (2010) who showed for the ensemble mean of model simulations (all with a much lower horizontal resolution than the one used here) a reduction of the JJA wind speeds. The lower JJA precipitation during LGM may also result from lower temperatures during LGM, when the atmosphere can carry only a lower amount of water vapour.

While Tian and Jiang (2016) found in PMIP3 simulations a general decrease of precipitation, we find it only for a belt at 29-36° N where the model shows already too large values for the present (CTR-C&L in Fig. 4).

298

299 Fig. 5: Summer (JJA) precipitation simulated for Eastern Asia and differences. Between CTR and
300 LGM. Units: mm/season.

301

302 **4 COMPARING POLLEN INFORMATION WITH CLIMATIC DATA**

303 In Leroy and Arpe (2007) and Arpe et al. (2011), climatic data were combined to find the areas
304 where temperate deciduous trees could survive due to limiting criteria and then compared that with
305 palaeo-data of such trees for Europe. The same method is now applied for **Eastern Asia**. Europe is
306 limited to the south by steppe and by the Mediterranean Sea. However, in E. Asia, a vast
307 subtropical area with deciduous temperate trees mixed with conifers and broadleaved evergreens
308 (i.e. between biomes TEDE and WTEM of Ni et al., 2010) lies south of the temperate deciduous
309 forest (Qiu et al., 2011). It was therefore essential to add a climatic limit to separate these two main
310 vegetation **types**. In addition to the limits used for Europe, we add also a maximal winter
311 temperature (Tmax) which the climatological temperature must fall below to allow deciduous tree
312 to grow but not the evergreens tree, suggested by Sitch et al. (2003) and Roche et al. (2007) (**Table**
313 **1**). Sitch et al. (2003) require a less strong limit of -17 °C minimum temperature and +15.5 °C
314 maximum temperature of coldest month for temperate deciduous trees but only for very few sites
315 such a relaxation of limits would decrease the number of sites that fail the comparison with the
316 climatological estimate. Roche et al. (2007) used for temperate broadleaf forest Tmin=-2 °C and
317 Tmax of +5 °C. We regard a Tmin limit of -2 °C only valid for warm-loving deciduous trees.

318

319

320

321

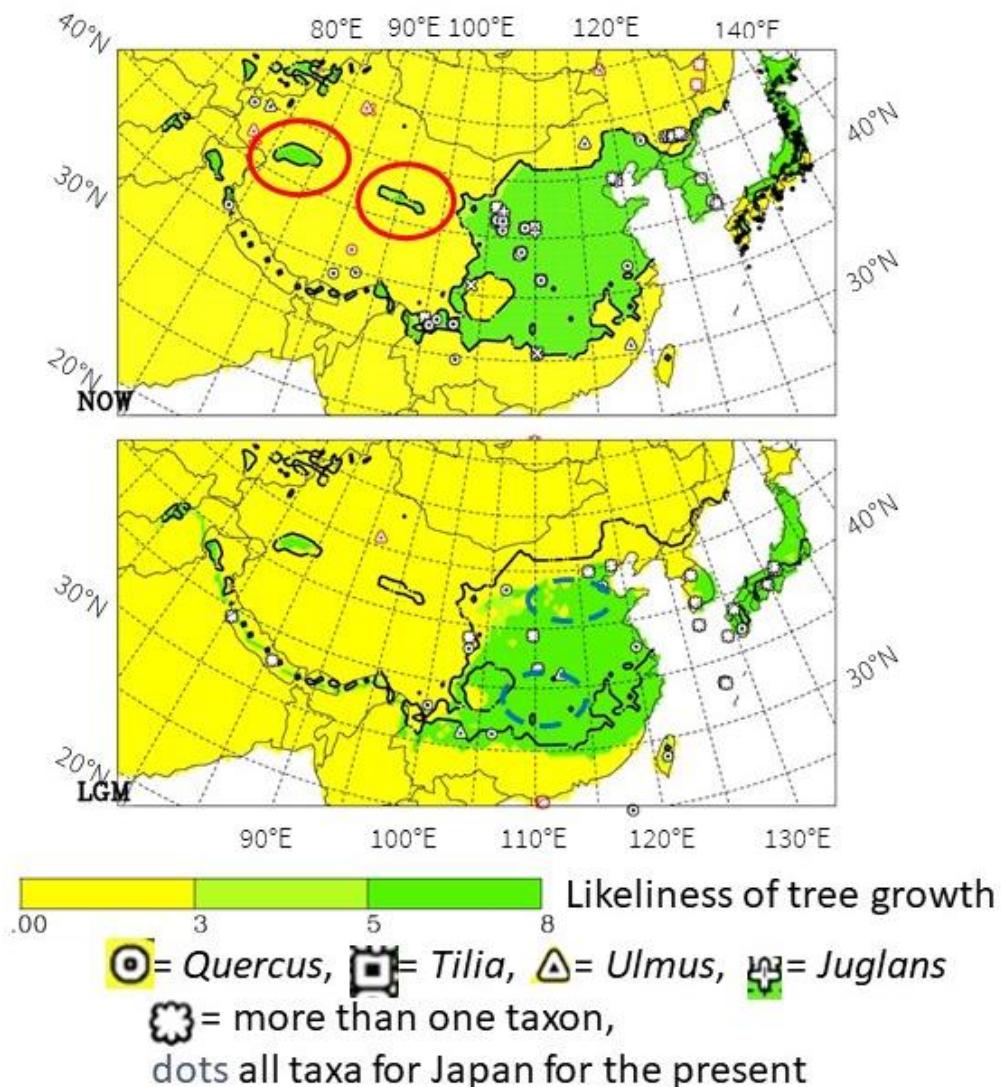
322

323

324

325

326 Table 1: Limiting factors for temperate deciduous tree growth used in this study.
327 T_{min} = minimum temperature of the coldest month, T_{max} = maximum temperature of the coldest month,
328 GDD5 = growing degree days for which the excess over 5°C is accumulated for each day,
329 JJA precipitation = accumulated summer precipitation.


330

T_{min}	T_{max} in winter	GDD5	JJA precipitation
-15°C	$+5^{\circ}\text{C}$	800	50 mm/summer

331

332

333 When combining these limits with the climate data we arrive at the distribution shown in Fig. 6.

334

335 Fig. 6: Possible tree growth according to our limitations given in Table 1. Darker colours (green)
 336 mean that the climate data suggest possible tree growth. For easier comparison between the present
 337 (upper panel) and the LGM (lower panel), the limits for the present are copied as a solid line into
 338 the LGM panel. Markers indicate where and which tree pollen of deciduous trees are found.
 339 Markers: circles = *Quercus*, squares = *Tilia*, triangles = *Ulmus*, plus = *Juglans* and stars = more
 340 than one taxon. For modern-day sites in Japan only dots are used for clarity of the plot. Open
 341 markers = at least within a distance of ± 3 grid points (~ 150 km radius) the climate data suggest

342 possible tree growth; otherwise filled (red) markers. Red and blue (dashed) ovals show areas of
343 interest mentioned in the text.

344

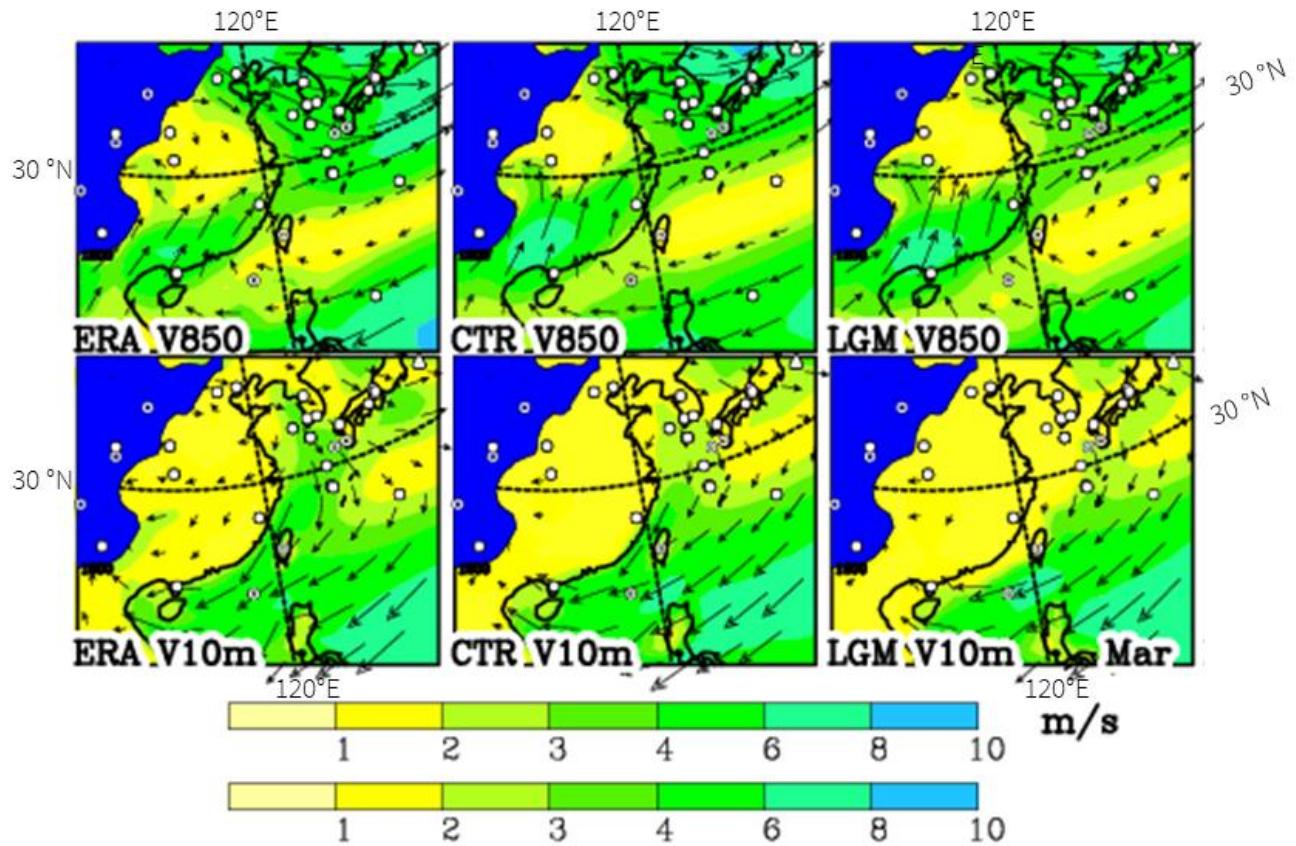
345 Only very few stations with observed pollen are outside (not within a distance of ± 3 grid points,
346 i.e. about ~ 150 km radius) the area of possible tree growth according to our criteria (filled markers
347 see also Tables 2 a and b for the LGM). For the present, 13 out of 380 stations with observed
348 deciduous tree pollen do not fit to the climate data of the present, most of them because of too cold
349 winter temperatures (-20 to -23 $^{\circ}\text{C}$), one at 91 $^{\circ}\text{E}$, 31 $^{\circ}\text{N}$ because of a too short summer (GDD5 <
350 600), two (both at 109 $^{\circ}\text{E}$, 18 $^{\circ}\text{N}$) because of too warm winter temperatures (>17 $^{\circ}\text{C}$) and one (77
351 $^{\circ}\text{E}$, 37 $^{\circ}\text{N}$) because of lack of summer precipitation and too cold winter temperatures, though these
352 are both near given limits. South-eastern Japan is often too warm in winter for deciduous trees
353 though there are many observations in that area. These stations are, however, within 3 grid points
354 to areas that are marked as suitable for their growth.

355 In Fig. 6 for the present, two areas marked by red ovals in western China at latitude 37 $^{\circ}\text{N}$ indicate
356 possible tree growth according to the climatic data where the precipitation in the C&L climatology
357 (Fig. 4) exceeds the ones of ERA and GPCC considerably. Also ERA and GPCC show relative
358 maxima at 37 $^{\circ}\text{N}$ in that area but shifted by 5 $^{\circ}$ to the east. We believe that the precipitation by
359 C&L is deficient here, as explained in Appendix S2 of Supporting Information.

360 In the southern China Sea around 120 $^{\circ}\text{E}$, 28 $^{\circ}\text{N}$ only one marker with observed tree pollen for the
361 LGM is shown in fig. 6 although around that position four cores are available (see Table 2 for
362 details). All four observations agree with the possibility of trees according to the climate estimate.
363 Because of the use of marine sediment, pollen must have been transported from the land, which is
364 further discussed in the next section.

365 In Eastern Asia, some species might have evolved which are hardier than those of the same genus
366 present in Europe. Fang et al. (2009) show *Ulmus pumila* over large areas of northern China and
367 SE Siberia, a species that can withstand extremely cold temperatures in winter and drought (Solla

368 *et al.*, 2005). *Ulmus* has the most failures in our comparison with model data. Fang et al. (2009)
369 show a wide spread of *Tilia amurensis* in NE China, SE Siberia and N Korea, which is also absent
370 from Europe. This tree, like the elm, is extremely frost hardy (Piggott, 2012).


371

372 **5 POSSIBLE TREE GROWTH DURING THE LGM**

373 Thirty-five pollen sites for the LGM were used (Table 2). A good overall fit occurs between the
374 climate data and the LGM pollen data. In Fig. 6 lower panel, only two filled markers, not agreeing
375 with climate data, are found on the continent. The site of Huguangyan in the south has winter
376 temperatures higher than 10° C, which are too high for deciduous trees. In the north-west China in
377 the Tarim basin is another filled marker. The observation consists of only 1% pollen for *Ulmus*.
378 There the winter temperatures are -17 °C, just outside the limit used here (Table 1) but within the
379 limits suggested by Sitch et al. (2003). On Hokaido a filled marker indicates a disagreement between
380 climate and pollen observation but it is only slightly too cold in winter (-15.7 °C).

381 Four cores in the deep ocean in the S. China Sea are marked in Table 2 and Fig. 6 as not agreeing
382 with our given limits when using the down-scaled climate data, but because of the deep sea the pollen
383 must have been transported there. From Fig. 7, it can be concluded that the pollen could only have
384 come with the north-easterly 10m wind from Taiwan where also *Quercus* was found during the LGM
385 (Table 2). As the present blooming period for *Quercus variabilis*, a widespread species of the
386 deciduous forest, is January to March in Taiwan (Liao, 1996), the winds during March are shown in
387 Fig. 7, assuming a little later blooming period during the cooler LGM than presently, though the
388 wind fields for March and February are hardly different. When taking the wind at a higher level (850
389 hPa or around 1500m), the wind is blowing more from the east in accordance with the Ekman spiral
390 in the atmospheric boundary layer. **Therefore**, pollen must have travelled near the surface when
391 coming from Taiwan or if it arrived at higher levels it may have come from the Philippines (Luzon)
392 that however seems to be too far south for deciduous oak and, moreover, this area is not suggested
393 in our estimate of having possible deciduous tree growth (Fig. 6).

394 Thus, the area boundaries for the present and for the LGM are only slightly different with a shift
 395 for the LGM by 2 to 3° to the south of both the northern and southern limits, and an eastwards shift
 396 of the western boundary. In northern China, Korea and north Japan (Hokkaido), differences result
 397 mainly from the winter minimum temperatures, as can be seen from Fig. 1 in which winter
 398 temperatures drop by more than 6°C from the present to the LGM.

399

400 Fig. 7: Winds at 10m (V10m) and at 850hPa (V850) for March as analysed (ERA) and simulated
 401 for the present (CTR) and LGM. All panels are showing the prevailing north easterlies. Areas with
 402 topography above the 850hPa level are erased and blue coloured. Observational sites for the LGM
 403 are indicated by markers

404

405

406 Table 2: Selected sites with observed pollen during the LGM. "*Quercus*" include deciduous
 407 *Quercus* and *Lepidobalanus*, "*Ulmus*" includes *Ulmus-Zelkova*, and "others" include: *Carya*, *Tilia*,
 408 *Carpinus*.

409 "Agree" means that the observations agree with our estimates of possible tree growth as shown in
 410 Fig. 6 or 8 respectively.

411

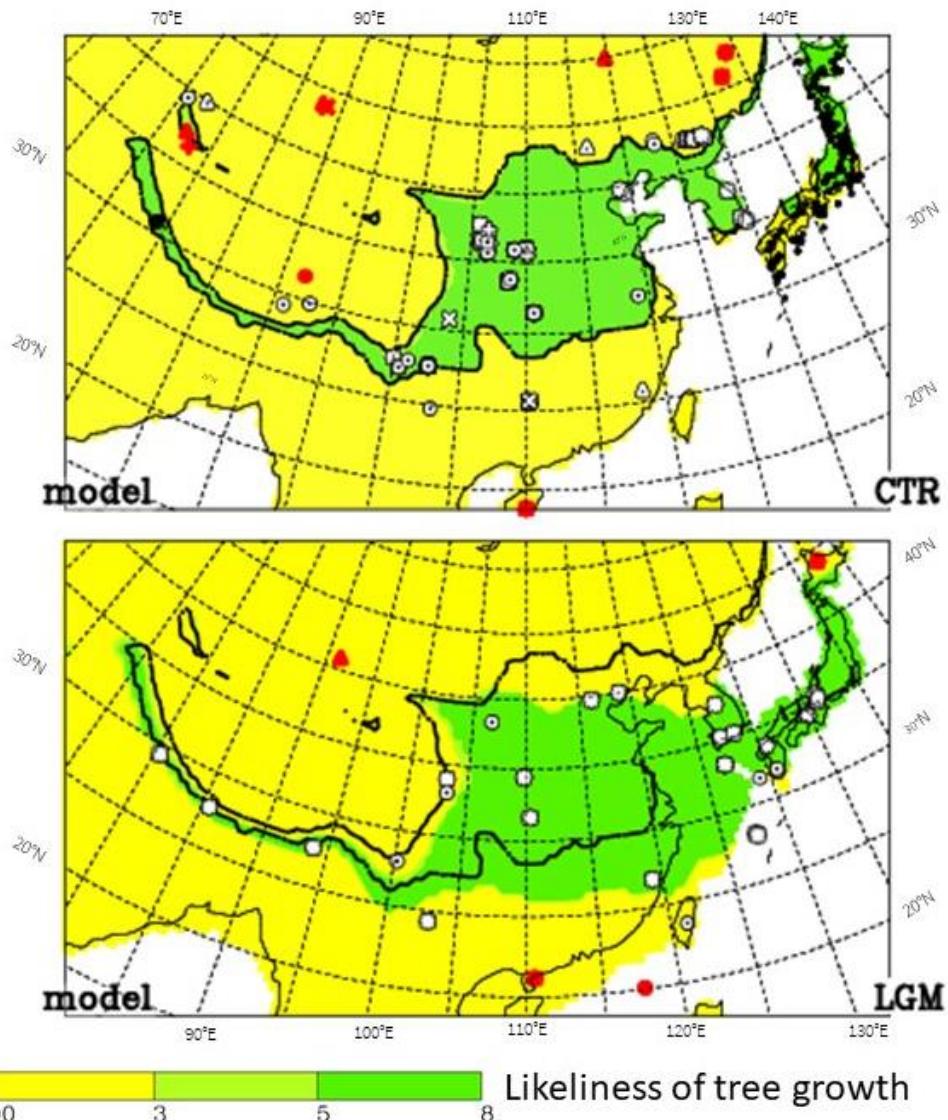
412 Table 2a: east of 120°E

Lon E	Lat N	Site	Region	Alt/ depth in m	<i>Quercus</i>	<i>Ulmus</i>	Other	Agree	Author
126°32'	33°14'	HN-1, Hanon maar	Jeju Island	53			Y	Y	4
126°33'	33°15'	BH-4B	Jeju Island	53	Y	Y	Y	Y	5
126°52'	35°12'	Yeonjaedong Trench	Gwangju	20?	Y	Y		Y	6
127°13'	33°15'	UD-2	Hanam	19	Y	Y		Y	7
128°04'	35°10'	Pyonggeodong	Jinju	30			Y	Y	8
128°57'	38°33'	MD982195	N of E. China Sea	-746	Y			Y	9
130°23'	31°49'	Imutaike Pond	Southern Kyushu	330	Y			Y	10
130°23'	33°36'	Tenjin	Tenjin Fukuoka city, N Kyushu	0		Y	Y	Y	11
134°36'	34°24'	Ohnuma	Chugoku Mts	610	Y		Y	Y	12
135°48'	35°12'	Hatchodaira	Kyoto	810	Y	Y	Y	Y	13
135°53'	35°32'	Iwaya	Fukui	20		Y	Y	Y	14
135°53'	35°33'	Lake Mikata	C Japan	0		Y	Y	Y	15
138°53'	36°49'	Lake Nojiri	C Japan	250	Y	Y	Y	Y	16
140°10'	36°03'	Hanamuro River HS1	C Japan	5	Y	Y	Y	Y	17
139°40'	36°41'	Nakazato	C Japan	183	Y	Y	Y	Y	18
141°47'	36°04'	MD01-2421	off Kashima	-2224	Y	Y	Y	Y	21c
130° 42'	35°56'	KCES-1	Sea of Japan	-1464	Y	Y		Y	19
142 12.08	41 10.64	C9001C	NE Japan	-1180	Y	Y	Y	?	20
136°03	35°15'	BIW 95-4	Lake Biwa	85	Y	Y		Y	21a
142°28'	44°03'	Kenbuchi	Hokaido	137	Y	Y	Y	N	21b

413

414 Authors: 4: Park and Park 2015; 5: Chung 2007; 6 :Chung et al. 2010; 7 Yi and Kim 2010; 8: Chung et al. 2006; 9: Kawahata and
 415 Ohshima 2004; 10: Shimada et al. 2014; 11: Kuroda and Ota, 1978; 12: Miyoshi and Yano, 1986; 13: Takahara and Takeoka, 1986; 14:
 416 Takahara and Takeoka, 1992; 15: Nakagawa et al. 2002; 16: Kumon et al. 2003; 17: Momohara et al. 2016; 18: Nishiuchi et al. 2017;
 417 19:: Chen et al. 2016; 20: Sugaya et al. 2016; 21a: Hayashi et al. 2010; 21b: Igaraachi and Zarov 2011; 21c Igaraachi 2009

418 Table 2b: west of 120°E


Lon E	Lat N	Site	Region	Alt/ depth in m	<i>Quercus</i>	<i>Ulmus</i>	Other	Agree	Author
80°08'	29°20'	Phulara palaeolake	Kumaun Himalaya	1500?	Y	Y	Y	Y	1
85°18'	27°14'	JW-3	Kathmandu valley	1300	Y		Y	Y	2
93°49'	27°32'	Ziro valley	Arunachal Pradesh	1570	Y		Y	Y	3
91°03'	40°47'	CK2	Tarim basin	780	Y			N	22
99°57'	27°55'	06SD, lake Shudu	Yunnan	3630	Y			N	23
102°47'	24°20'	XY08A, Xingyun Lake	C Yunnan	1772	Y		Y	Y	24
102°57'	33°57'	RM Ruoergai	Zoige basin	3400	Y	Y		Y	26
103°30'	32°55'	Wasong	NE Tibetan Plateau	3490	Y			Y	27
106°30'	38°17'	Shuidonggou locality 2	Yinchuan, Ningxia	1200	Y	Y		Y	28
109°30'	34°24'	Weinan	Loess Plateau	650	Y	Y	Y	Y	29
110°00'	31°29'	DJH1, Dajiuwu	Shennongjia Mountains	1751	Y	Y	Y	Y	30
110°17'	21°09'	Huguangyan maar	southern China	23	Y	Y	Y	Y	31
115°57'	39°45'	East part	Yan Shan	150?	Y	Y	Y	Y	32
117°23'	20°07'	17940	S China Sea	-1727	Y			N	33
117°25'	20°03'	ODP 1144	S China Sea	-2037	Y			N	34
117°21'	20°08'	MD05-2906	S China Sea	-1636	Y	Y	Y	N	35
119°02'	26°46'	SZY peat bog	Fujian	1007	Y			Y	36
120°53'	23°49'	Toushe Basin	Taiwan	650	Y		Y	Y	37
127°16'	28°09'	DG9603	China Sea	-1100	Y			Y	38
127°22'	28°07'	MD982194	Okinawa Trough	-989	Y	Y		Y	39
118°16'	20°20'	STD235	S China Sea	-2630	Y	Y	Y	N	40

419

420 Authors: 1: Kotlia et al. 2010; 2: Fuji and Sakai 2002; 3: Bhattacharyya et al., 2014; 22: Yang et al., 2013; 23: Cook et al. 2011; 24:
 421 Chen et al. 2014 and Chen XM et al. 2015 IPS abstract; 26: Shen et al. 2005; 27: Yan et al. 1999; 28: Liu et al. 2011; 29: Sun et al.
 422 1996; 30: Li et al. 2013; 31: Wang et al., 2012, Lu et al., 2003; 32: Xu et al. 2002; 33: Sun & Li 1999; Sun et al. 2000; 34: Sun et al.
 423 2003; 35: Dai et al. 2015; 36: Yue et al. 2012; 37: Liew et al. 2006;
 424 38: Xu et al. 2010; 39: Zheng et al. 2013; 40: Yu et al. 2017.

425 The down-scaling method used here does not allow us to present values over the emerged shelf of
426 the Yellow Sea during the LGM, when the mean sea level was 120 m below the present one
427 (Lambeck et al., 2014). **Therefore**, in Fig. 8, the possible tree distribution is shown using model
428 data without down-scaling, when the high spatial resolution is lost and more impacts from
429 systematic errors of the model may be expected. However, fortunately, such impacts can hardly be
430 seen when comparing Fig. 6 with Fig. 8, except for the present along the southern slopes of the
431 Himalayas and the southern border of possible tree growth, where T2m by C&L is lower than that
432 of CTR (also than that by ERA), leading to a better fit with pollen data when using T2m by C&L.

433

434

435 Fig. 8: same as Fig. 6 using model data without down-scaling. The Yellow Sea is shown as land in
 436 the LGM.

437

438 **6 LGM CONNECTIVITY AND DISTRIBUTION MAPPING**

439 The results show two worth-discussing areas with population connectivity: one is over the Yellow
 440 Sea emerged shelf and one along the south of the Himalayan Range.

441 The northern limit of the temperate deciduous trees assumed by previous research (Harrison et al.,
442 2001, their figure 1) is much further south (30 - 35 °N) than what is found here. Therefore,
443 population connectivity over the shelf was rejected by Harrison et al. (2001). It should be
444 mentioned that the results by Harrison et al. (2001) were based on the model available at that time
445 which had a lower resolution and also was based on observational data available at that time,
446 which have improved considerably since then. Indeed 80% of the sites used in the current
447 investigation were published post-2001. Moreover, the Harrison et al. (2001) study is based on
448 biomes, not tree occurrences. Three arguments can be presented now to support this connectivity.

449 Firstly, the model results clearly show the connectivity of tree populations between China, Korea
450 and Japan during the LGM over the emerged shelf. This connectivity takes place because the limit
451 of the possible tree growth of our investigation (darker areas in Fig. 8 as well as in Fig. 6) reaches
452 still quite far north (40 °N), which is in accordance with pollen data.

453 A second argument is the presence of deciduous trees in sites located around the shelf in amounts
454 suggesting larger than simple tree presence, even perhaps woodlands or forests. In several places
455 around the emerged shelf the percentages of temperate deciduous trees indeed exceed 10%, e.g. in
456 the Yeonjaedong swamp in Korea with 20-30% of deciduous *Quercus*, 7-20 % of *Ulmus-Zelkova*
457 (Chung et al., 2010), the two sites on the Jeju island maar lake (Chung, 2007; Park and Park,
458 2015), Tenjin peatland in Japan with 12% deciduous *Quercus*, 8% *Carpinus*, 2.5% *Tilia* (Kuroda
459 and Ota, 1978), and the marine cores DG9603 and MD982194 with 15% of deciduous *Quercus*
460 (Xu et al., 2010).

461 Thirdly, information derived from recent phylogenetic investigations is supportive of the
462 occurrence of deciduous trees on the emerged shelf. For example, the phylogeography of one of
463 the most widely distributed deciduous species in eastern Asia, the oak, *Quercus variabilis*, clearly
464 suggests the occurrence of land bridges over the East China Sea (Chen et al., 2012). Around the E.
465 China Sea, other phylogenetic data indicate both mixing and absence of mixing between
466 populations depending on plant type (Qi et al., 2014). The occurrence of mixing indicates that

467 contacts were possible across the emerged shelf (e.g. Tian et al., 2016); while the absence of
468 mixing for other species indicate that not all species mixed, but certainly does not suggest total
469 absence of migration for other species. It appears therefore that the E. China Sea acted as a filter,
470 letting some through, others not (Qi et al., 2014).

471 The eastern Asian case is very different from Europe, where fragmentation is the rule in the LGM.

472 In Europe (Fig. 2), the temperatures were much lower than presently (8 to 15 °C) compared to
473 Eastern Asia (3 to 5 °C) and therefore the shift of possible temperate deciduous tree growth is
474 much smaller in E. Asia than in Europe. Phylogenetic results in E. Asia are indeed in favour of the
475 hypothesis of species surviving both in the north and the south of China (Qian and Ricklefs, 2000)
476 and not of species surviving only in the south (Harrison et al., 2001). The basic expansion-
477 contraction model of vegetation belts in Europe was much less important in Eastern Asia (Qiu et
478 al., 2011), due to the smaller Asian ice cap and a different topography (López-Pujol et al., 2011).

479 Eastern Asia biodiversity was therefore preserved across the Ice Ages, owing to not only the more
480 moderate lowering of temperatures but also to the better connectivity between populations

481 One question, was if the pollen, found in the emerged shelf of the Yellow Sea is produced locally
482 or remotely. According to the Harrison et al. (2001) study, these pollen grains must have come
483 from the southern part of China. Yu et al. (2004) have tried to calculate such long-distance
484 transports. For *Quercus* and *Ulmus* they found transports of up to 6 ° latitude/longitude in any
485 direction. This would be too short for a transport from China south of 30 °S. Also the high pollen
486 percentages at the observed sites speak against such a long-distance transport.

487 We are not convinced that Yu et al. (2004) calculations are robust enough for using their results in
488 our investigation, especially as their figure 3 does not agree with plant distributions by Fang et al.
489 (2009). Therefore, the wind fields for the present as analysed by ECMWF (ERA) and as simulated
490 by our model for the LGM were investigated. In Appendix S1 of Supporting Information as well as
491 in Fig. 7, it is shown that ERA and the simulation for the present agree quite well, at least for the

492 wind directions, which makes us confident that we can use the model simulations for the LGM
493 straight away.

494 The winds at 10m and 850 hPa for March, a central month for the blooming of *Quercus variabilis*,
495 are shown in Fig. 7 for the present (ERA), the CTR and the LGM. Over the emerged shelf of the
496 Yellow Sea, the 10m winds are very light from the north-west during the LGM (much stronger in
497 ERA because of the lower surface friction over the sea). For the higher level of 850 hPa, all data
498 sets show very similar distributions all with north-westerlies. Long-distance transport of deciduous
499 tree pollen would have come from NE China, an area that Harrison et al. (2001) assume to be void
500 of deciduous trees, though some recent studies (including the present one) indicate the opposite
501 (Yu et al., 2004). Further on in the year, the 850 hPa winds are blowing from the south-west,
502 starting in April and fully crossing the 30 °N latitude in May (similar to CTR in Fig. S1.1), i.e. a
503 transport from mainland China would have been possible, though a little late for the main
504 blooming of the deciduous oak. In Appendix S1 of Supporting Information, it is shown for the
505 present that the simulations suffer from a too early progression of the monsoon front, which
506 suggests that the turn of the wind to south-westerlies may have occurred also later for the LGM,
507 thus leading to a less likely transport from mainland China.

508 The source for the pollen found in the emerged Yellow Sea is not completely clear but May is late
509 for the blooming season in central China (for Taiwan it is January to March). Therefore, a local
510 production or transport from northern China is more likely, supporting our argument that the
511 emerged Yellow Sea was occupied by deciduous trees during the LGM, as indicated by Fig. 8.
512 Another important population connectivity result is that the Himalayas were more favourable to
513 temperate deciduous trees in the LGM and provided the possibility of a quasi-continuous band of
514 temperate forest at its southern slope, beneficial for the spreading and diffusion of genes (e.g. for
515 Chinese mole shrew, He et al., 2016), more so than in the present (Fig. 6). Three observational
516 sites, that are currently available, support this chain of possible tree growth during the LGM. For
517 the present, this link does not exist because of too warm winter temperatures (warmer than 5 °C in

518 the C&L climatology). Along the slopes of the high Himalayas it is most likely that there would be
519 a level at which the temperature will be below 5 °C (an issue which needs further investigation).

520 Two significant cases occur where population connectivity was higher, indicating less population
521 fragmentation, in glacial than in interglacial periods. So, it appears that many tree populations live
522 nowadays in interglacial refugia.

523 During LGM the precipitation and the temperature were lower than at the present. Which of both
524 was more important for the tree growth cannot be said with certainty. Tian et al. (2016) stated:
525 “annual precipitation is considered as the most important determinant”, and in our study we have
526 some indication to agree with that. In Fig. 6 and 8, there is a cluster of pollen findings over central
527 China (105-110°E/35-40°N) for the present but not for LGM. In this area the temperature does not
528 change much (Fig. 2 and 3) but the summer precipitation decreases substantially (Fig. 5). This
529 change is only slightly reflected by the boundaries of possible tree growth in Fig. 6 (north of 40°N).
530 The lack of observational sites with pollen of tree pollen is not a proof, because it could be due to
531 many reasons, but the massive change in occurrence is suggestive that we should have perhaps
532 increased summer precipitation requirements for tree growth (Table 1). This can, however, also
533 indicate the reduced water use efficiency of the trees at LGM due to lower atmospheric CO₂.
534 Finally, this investigation shows that the model simulations suggest possible tree growth where
535 pollen grains of such trees are found. This leads to the possibility of using the model data to fill
536 gaps between observational sites by way of maps. Such gaps especially occur around 30-37 °N /
537 105-120 °E and 25-30 °N / 110-115 °E, i.e. the provinces Hupeh to Kiangsu and Hunan (ovals in
538 Fig. 6 lower panel).

539

540

541 Fig. 9: same as Fig. 6 for the whole of Eurasia. Pollen data for Europe have been described by
 542 Arpe et al. (2011). Darker colours (green) are areas in which trees are able to grow according to
 543 model data. Lighter green are areas where not all criteria are completely fulfilled
 544 By extending the view of our investigation for the whole of Eurasia (Fig. 9), a stronger link
 545 between China and Europe is shown during the LGM than presently. Along the foot of the
 546 Himalayas, a continuum existed; but westwards of it, still a gap north of Afghanistan (probably
 547 going back to the Tertiary) is maintained, inhibiting a total link across Eurasia. This continuum is
 548 broken for the present climate by model results because winter temperatures exceed 7 °C, hence
 549 being too warm for temperate deciduous trees.

550 **7 CONCLUSIONS**

551 Generally, the estimates of possible temperate deciduous tree growth in the LGM in eastern Asia
552 **by model simulation** agree with fossil pollen observations. **Therefore**, the model estimates can fill
553 the areas without observations. The results in the form of LGM distribution maps are considered
554 robust enough as model simulations for the present are within the range of climate estimates.
555 Nevertheless, we are aware of some uncertainties in the climate of Eastern Asia and we can safely
556 say they are not a limitation of this **study**.

557 **During** the LGM, major connectivities between populations are found, which is in agreement with
558 observation, i.e. less tree population fragmentation. This is especially visible in two places. Firstly,
559 the link between China, Korea and Japan is clear. Sufficient new pollen studies around and on the
560 emerged Yellow Sea shelf are now available, confirming the results of the model. They suggest the
561 presence of temperate deciduous trees, perhaps even woodlands, in the area.
562 Secondly, connectivity during the glacial period occurred at the southern slope of the Himalayan
563 chain favouring genetic flow in interglacial refugia. Currently this link does not exist because of
564 too warm winter temperatures there. Our simulations cannot be taken as a proof of this hypothesis,
565 as one cannot imagine that along the Himalayan chain there would not be a level at which the
566 winter temperatures do not exceed 5 °C also for the present day, a higher resolution data set would
567 be able to show how wide and continuous such a corridor of possible tree growth would be at the
568 **present**.

569

570 **Another** outcome of this research is the contribution to the conservation agenda (López-Pujol et al.,
571 2001). The areas of LGM refugia often match areas of present hotspots of biodiversity. Hence the
572 distribution of temperate forest obtained in our investigation can serve as a guide to establish
573 nature parks for plants and animals. Moreover the difference between LGM and present
574 distribution contribute to the understanding of rate of distribution change (as well genetic flow),
575 which is important to monitor in light of **possible climatic change**.

576

577 **ACKNOWLEDGMENTS**

578 Jing Zheng (Fujian Agriculture and Forestry University) started collecting the LGM data during a
579 post-doctoral stay with Suzanne Leroy at Brunel University London. Uwe Mikolajewicz
580 acknowledges funding from the German Federal Ministry of Education and Research in its
581 research framework for sustainable development (FONA3, FKZ 01LP1502A).

582

583

584 **AUTHORS CONTRIBUTION**

585 S.A.G. Leroy

586 Looking after conceptual issues, collecting the data, writing the manuscript

587

588 K. Arpe

589 Writing most of the manuscript, preparing the figures and responsible for meteorological
590 and climatological issues

591

592 U. Mikolajewicz

593 Providing the model simulations

594

595 J. Wu

596 providing observational tree pollen data

597

598

599 **The authors declare that they have no conflict of interest**

600 **Code availability**

601 The model version is already widely known and available. We have clearly described what has
602 been done and the follow up programs are written in FORTRAN. This can be requested from Klaus
603 Arpe if wanted

604 **Data availability**

605 Table 2 provides a list of all observational sites and observational tree pollen data. Most of the
606 other data are referred to by giving the website .Tt does not seem feasable to provide the model
607 simulation data in a simple way. They can be obtained from Klaus Arpe in GRIB format.

608

609

610

611

612

613

614 **REFERENCES**

615 Annan, J. D. and Hargreaves J. C.: A new global reconstruction of temperature changes at the Last
616 Glacial Maximum. *Clim. Past*, **9**, 367–376, 2013.

617

618 Arpe K., Leroy S.A.G. and Mikolajewicz U.: A comparison of climate simulations for the last
619 glacial maximum with three different versions of the ECHAM model and implications for
620 summer-green tree refugia. *Clim. Past*, **7**, 1–24, 2011.

621

622 Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M : A
623 description of the global land-surface precipitation data products of the Global Precipitation
624 Climatology Centre with sample applications including centennial (trend) analysis from 1901
625 present. *Earth Syst. Sci. Data* 5: 71-99, DOI: 10.5194/essd-5-71-2013, 2013.

626

627 Bhattacharyya A., Mehrotra N., Shah S. K., Basavaiah N., Chaudhary V., Singh IB, and Singh I.B.:
628 Analysis of vegetation and climate change during Late Pleistocene from Ziro Valley, Arunachal
629 Pradesh, Eastern Himalaya region. *Quatern Sci Rev* 101, 111-123, 2014.

630

631 Braconnot P., B. Otto-Bliesner, Harrison S., Joussaume S., Peterchmitt J-Y. Abe-Ouchi M.,
632 Crucifix M., Driesschaert E, Fichefet Th., Hewitt C. D., Kageyama M., Kitoh A., **Laîné** A.,

633 Loutre M.-F., Marti O., Merkel U., Ramstein G., Valdes P., Weber S. L., Yu Y., and Zhao Y. :
634 Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part
635 1: experiments and large-scale features. *Clim. Past*, 3, 261–277, 2007.

636

637 Cao, X., Ni, J., Herzschuh, U., Wang, Y. and Zhao Y.: A late Quaternary pollen dataset from
638 eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation.
639 *Palaeobot Palyno* 194, 21–37, 2013.

640

641 Chen D., Zhang X., Kang H., Sun X., Yin S., Du H., Yamanaka N., Gapare W., Wu H. X. and Li
642 C. : Phylogeography of *Quercus variabilis* Based on Chloroplast DNA Sequence in East Asia:
643 Multiple Glacial Refugia and Mainland-Migrated Island Populations. *PloS One*, 7,10: e47268.
644 doi:10.1371/journal.pone.0047268, 2012.

645

646 Chen W.-Y., Su T., Adams J.M., Jacques F.M.B., Ferguson D.K. and Zhou Z.-K: Large-scale
647 dataset from China gives new insights into leaf margin–temperature relationships. *Palaeogeogr,*
648 *Palaeocl* 402, 73–80, 2014.

649

650 Chen J., Liu Y., Shi X., Bong-Chool S., Zou J. and Yao Z.: Climate and environmental changes for
651 the past 44 ka clarified in the Ulleung Basin, East Sea (Japan Sea). *Quat Int*, 1-12, 2016,

652

653 Chen X.M., Chen F., Zhou A., Wu D., Chen J. and Huang X.: Vegetation history, climatic changes
654 and Indian summer monsoon evolution during the last 36400 years documented from sediments
655 of Xingyun Lake, south-west China. 13th International Paleolimnological Symposium,
656 Lanzhou, China, volume of abstracts, pages 162-163, 2015.

657

658 Chung C.-H, Lim HS and Yoon HI: Vegetation and climate changes during the Late Pleistocene to
659 Holocene inferred from pollen record in Jinju area, South Korea. Geosci J 10, 4, 423 – 431,
660 2006.

661

662 Chung C.-H. : Vegetation response to climate change on Jeju Island, South Korea, during the last
663 deglaciation based on pollen record. Geosci J 11, 2, 147 – 155, 2007.

664 Chung C.-H., Lim H. S. and Lee H. J.: Vegetation and climate history during the late Pleistocene
665 and early Holocene inferred from pollen record in Gwangju area, South Korea. Quatern Int 227,
666 61-67, 2010.

667

668 CLIMAP: Seasonal reconstructions of the Earth's surface at the last glacial maximum, Geological
669 Society of America, Map Chart Ser., MC-36, 1981.

670

671 Cook C. G., Jones R. T., Langdon P. G., Leng M.G. and Zhang E: New insights on Late
672 Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in
673 southwestern China. Quatern Sci Rev 30, 808-820, 2011

674

675 Cramer W. : www.pik-potsdam.de/~cramer/climate.html, last accessed 2007, 1996.

676

677 CRU: wwwcrudata.uea.ac.uk/cru/data/hrg last accessed January 2016.

678

679 Dai L., Weng C. and Limi M: Patterns of vegetation and climate change in the South China Sea
680 during the last glaciation inferred from marine palynological records. Paleogeography,
681 Paleoclimatology, Paleoecology, 440, 249-258, 2015.

682

683 Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U.,
684 Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot
685 J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B.,
686 Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P.,
687 Monge-Sanz B. M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut
688 J.-N. and Vitart F: The ERA -Interim reanalysis: configuration and performance of the data
689 assimilation system. *Q J. Ro Meteor Soc* 137(656): 553–597, Part A. doi: 10.1002/qj.828, 2011.
690
691 Donoghue M. J. and Smith S. A.: Patterns in the assembly of temperate forests around the Northern
692 Hemisphere. *Phil. Trans. R. Soc. Lond. B* 359, 1633–1644, 2004.
693
694 ECMWF: http://data-portal.ecmwf.int/data/d/interim_daily/. Last accessed May 2014. Present
695 address: <https://apps.ecmwf.int/datasets/data/interim-full-mnths/levtype=sfc/>
696
697 Fang J, Wang Z and Tang Z: *Atlas of woody plants in China*. Higher Education Press, Beijing, pp
698 2020, 2009
699
700 Fuji R. and Sakai H. : Paleoclimatic changes during the last 2.5 myr recorded in the Kathmandu
701 Basin, central Nepal Himalayas. *J of Asian Earth Sci* 20: 255-266, 2002.
702
703 Gotanda K., Nakagawa T., Tarasov P., Kitagawa J., Inoue Y. and Yasuda Y.: Biome classification
704 from Japanese pollen data: application to modern-day and Late Quaternary samples. *Quatern
705 Sci Rev* 21, 647–657, 2002.
706
707 Gotanda K. and Yasuda Y. :Spatial biome changes in southwestern Japan since the Last Glacial
708 Maximum. *Quatern Int* 184, 84–93, 2008.
709

710 GPCC: ftp://ftp-anon.dwd.de/pub/data/gpcc/html/download_gate.html. Last accessed January 2014,
711 2013.

712

713 Harrison S. P., Yu G., Takahara H. and Prentice I. C. : Diversity of temperate plants in east Asia.
714 *Nature* 413, 129-130, 2001.

715

716 Hayashi R., Takahara H., Hayashida A. and Takemura K.: Millennial-scale vegetation changes
717 during the last 40,000 yr based on a pollen record from Lake Biwa, Japan. *Quaternary Res.* 74,
718 91-99, 2010.

719

720 He K., Hu N.-Q., Chen X., Li J.-T. and Jiang X.-L. : Interglacial refugia preserved high genetic
721 diversity of the Chinese mole shrew in the mountains of southwest China. *Heredity* 116: 23-32.
722 2016.

723 Igarachi Y.: Pollen record in core MD01-2421 off Kashima, North Pacific: correlation with the
724 terrestrial polen record since MIS 6. *Jour. Geol. Soc. Japan*, 115,7, 357-366, 2009.

725 Igarachi Y. and Zharov A. E.: Climate and vegetation change during the late Pleistocene and early
726 Holocene in Sakhalin and Hokkaido, northeast Asia. *Quatern Int* 237, 24-31, 2011.

727

728 Jiang D. and Lang X.: Last Glacial Maximum East Asian Monsoon: Results of PMIP Simulations.
729 *Jour. of Clim*, 23, 5030 - 5038. DOI: 10.1175/2010JCLI3526.1, 2010.

730

731 Kawahata H. and Ohshima H: Vegetation and environmental record in the northern East China Sea
732 during the late Pleistocene. *Global Plane Change* 41,251–273, 2004.

733

734 Kim S.-J., Crowley T. J., Erickson D. J., Govindasamy B., Duffy P. B. and Lee B. Y.: High-
735 resolution climate simulation of the last glacial maximum. *Clim Dyn* 31:1–16 DOI
736 10.1007/s00382-007-0332-z, 2008.

737

738 Kotlia B. S., Sanwal J., Phartiyal B., Joshi L., Trivedi A. and Sharma C.: Late Quaternary climatic
739 changes in the eastern Kumaun Himalaya, India, as deduced from multi-proxy studies. *Quatern*
740 *Int* 213, 44–55, 2010.

741

742 Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Chen, M. T., Mix, A. C., Barrows,
743 T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of Sea-Surface
744 Temperatures from Assemblages of Planktonic Foraminifera: Multi-Technique Approach Based
745 on Geographically Constrained Calibration Data Sets and Its Application to Glacial Atlantic and
746 Pacific Oceans, *Quaternary Sci. Rev.*, 24, 951–998, 2005.

747

748 Kumon F, Kawai S. and Inouchi Y.: Climate Changes between 25000 and 6000 yrs BP Deduced
749 from TOC, TN, and Fossil Pollen Analyses of a Sediment Core from Lake Nojiri, Central
750 Japan. *_The Quaternary Res* 42, 1: 13-26, 2003.

751

752 Kuroda T. and Ota T.: Palynological study of the late Pleistocene and Holocene deposits of the
753 Tenjin area, Fukuoka City, northern Kyushu, part 1. *The Quaternary Res* 17, 1, 1-14. (In
754 Japanese with English summary), 1978.

755

756 Lambeck K., Rouby H., Purcell A., Sun Y., and Sambridge M.: Sea level and global ice volumes
757 from the Last Glacial Maximum to the Holocene. *PNAS* 111, 43, 15296–15303, 2014.

758

759 Leemans R. and Cramer W.: The IIASA database for mean monthly values of temperature,
760 precipitation and cloudiness of a global terrestrial grid, International Institute (IIASA). RR-91-
761 18, 1991.

762

763 Leroy S. A. G.: Progress in palynology of the Gelasian-Calabrian Stages in Europe: ten messages,
764 Revue de Micropaléontologie, 50, 293–308, 2007.

765

766 Leroy S. and Arpe K.: Glacial refugia for summer-green trees in Europe and S-W Asia as proposed
767 by ECHAM3 time slice atmospheric model simulations. J Biogeogr, 34, 2115-2128. doi:
768 10.1111/j.1365-2699.2007.01754x, 2007.

769 Li J. and Del Tredici P.: The Chinese *Parrotia*: A Sibling Species of the Persian *Parrotia*. Arnoldia
770 66,1: 2-9, 2008.

771

772 Li J., Zheng Z., Huang K., Yang S., Chase B., Valsecchi V., Carré M. and Cheddadi R.: Vegetation
773 changes during the past 40,000 years in Central China from a long fossil record. Quatern Int
774 310, 221-226, 2013.

775 .

776 Liao J. C.: Fagaceae. In Flora of Taiwan. Volume 2. 2nd edition. Edited by: Boufford D. E., Hsieh
777 C. F., Huang T. C. , Ohashi H., Yang Y. P and Lu S. Y.. Taipei, Taiwan: Editorial Committee of
778 Flora of Taiwan; 114–115, 122, 1996.

779

780 Liew P.-M., Huang S.-Y. and Kuo C.-M.: Pollen stratigraphy, vegetation and environment of the
781 last glacial and Holocene—A record from Toushe Basin, central Taiwan. Quatern Int 147, 16–
782 33, 2006.

783

784 Liu D., Gao X., Wang X., Zhang S., Pei S. and Chen F.: Palaeoenvironmental changes from
785 sporopollen record during the later Late Pleistocene at Shuidonggou locality 2 in Yinchuan,
786 Ningxia. Journal of Palaeogeography, 13, 4, 467-472 (in Chinese with English abstract), 2011.

787

788 López-Pujol J., Zhang F.-M., Sun H.-Q., Ying T.-S. and Ge S.: Mountains of southern China as
789 “Plant Museums” and “Plant Craddles”: evolutionary and conservation insights. Mountain
790 Research and Development 31, 3: 261-269, 2011.

791

792 Lu H.-Y., Liu J.-Q., Chu G.-Q., Gu Z.-Y., Negendank J., Schettler G. and Mingram J.: A study of
793 pollen and environment in the Huguangyan maar lake since the last glaciation. Acta
794 Palaeontologica Sinica 42, 2, 284-291, 2003.

795

796 Mikolajewicz, U., Vizcaino, M., Jungclaus, J., and Schurgers, G.: Effect of ice sheet interactions in
797 anthropogenic climate change simulations, Geophys. Res. Lett., 34, L18706,
798 doi:10.1029/2007GL031173, 2007.

799

800 Milne R. I. and Abbott R. J.: The Origin and Evolution of Tertiary Relict Floras. Advances in
801 Botanical Research Vol. 38: 281-314, 2002.

802

803 Mix A. C., Bard E. and Schneider, R.: Environmental processes of the ice age: land, oceans,
804 glaciers (EPILOG), Quaternary Sci. Rev., 20, 627–657, 2001.

805

806 Molavi-Arabshahi M., Arpe K. and Leroy S. A. G.: Precipitation and temperature of the south-west
807 Caspian Sea region during the last 55 years, their trends and teleconnections with large-scale
808 atmospheric phenomena. International Journal of Climatology. DOI: 10.1002/joc.4483, 2015.

809

810 Momohara A., Yoshida A., Kudo Y. and Nishiuchi, Okitsu S.: Paleovegetation and climatic
811 conditions in a refugium of temperate plants in central Japan in the Last Glacial Maximum.
812 Quatern Int 425, 38-48, 2016.

813

814 Miyoshi N. and Yano N.: Late Pleistocene and Holocene vegetation history of Ohnuma moor in
815 the Chugoku Mountains, western Japan. *Rev Palaeobot Palyno* 46, 355-376, 1986.

816

817 Nakagawa T., Tarasov P.E., Nishida K., Gotanda K. and Yasuda Y.: Quantitative pollen-based
818 climate reconstruction in central Japan: application to surface and Late Quaternary spectra.
819 *Quaternary Science Reviews* 21, 2099–2113, 2002.

820

821 Ni J., Yu G., Harrison S.P. and Prentice I.C.: Palaeovegetation in China during the late Quaternary:
822 biome reconstructions based on a global scheme of plant functional types. *Palaeogeogr.*
823 *Palaeoclimatol. Palaeoecol.* 289, 44–61, 2010.

824

825 Ni J., Cao X., Jeltsch F, and Herzschuh U.: Biome distribution over the last 22,000 yr in China.
826 *Palaeogeogr, Palaeocl* 409, 33–47, 2014.

827

828 Nishiuchi R., Momohara A., Osato S. and Endo K: Temperate deciduous broadleaf forest dynamics
829 around the last glacial maximum in a hilly area in the northern Kanto district, central Japan.
830 *Quatern Int* 455: 113-125, 2017.

831

832 Orain R., Lebreton V., Russo Ermolli E., Combouieu-Nebout N. and Sémah A.-M.: *Carya* as
833 marker for tree refuges in southern Italy (Boiano basin) at the Middle Pleistocene. *Palaeogeogr,*
834 *Palaeoecol* 369, 295–302, 2013.

835

836 Park J.: A modern pollen–temperature calibration data set from Korea and quantitative temperature
837 reconstructions for the Holocene. *The Holocene*, 21 (7) 1125–1135, 2011.

838

839 Park J. and Park J.: Pollen-based temperature reconstructions from Jeju island, South Korea and its
840 implication for coastal climate of East Asia during the late Pleistocene and early Holocene.
841 *Palaeogeogr, Palaeocl* 417, 445–457, 2015.

842

843 Piggott D.: Lime-trees and Basswoods: A Biological Monograph of the Genus *Tilia*. 395pp.
844 Cambridge University Press, Cambridge, UK, 2012.

845

846 Qi XS, Yuan N, Comes HP, Sakaguchi S, and Qiu YX: A strong ‘filter’ effect of the East China
847 Sea land bridge for East Asia’s temperate plant species: inferences from molecular
848 phylogeography and ecological niche modelling of *Platycrater arguta* (Hydrangeaceae). *BMC*
849 *Evolutionary Biology*, 14:41, 2014.

850

851 Qian H. and Ricklefs RE: Large-scale processes and the Asian bias in species diversity of
852 temperate plants. *Nature* 407: 180-182, 2000.

853

854 Qiu Y.X., Fu C.X. and Comes HP.: Plant molecular phylogeography in China and adjacent
855 regions: Tracing the genetic imprints of Quaternary climate and environmental change in the
856 world’s most diverse temperate flora. *Molecular Phylogenetics and Evolution* 59, 225–244,
857 2011.

858

859 Reichler, T., and J. Kim: How Well do Coupled Models Simulate Today's Climate?
860 *Bull. Amer. Meteor. Soc.*, 89, 303-311, 2008.

861

862 Roche D. M., Dokken T. M., Goosse H., Renssen H., and Weber S. L.: Climate of the last glacial
863 maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model.
864 *Clim. Past*, 3, 205-224, 2007.

865

866 Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S.,

867 Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and

868 Tompkins, A.: The atmospheric general circulation model ECHAM5, Part I: Model description,

869 Max Planck Institute for Meteorology, Hamburg, Report no. 349, 2003.

870

871 Schneider U., Becker A., Finger P., Meyer-Christoffer A., Rudolf B. and Ziese M.: GPCC Full

872 Data Reanalysis Version 6.0 at 0.5: Monthly Land-Surface Precipitation from Rain-Gauges

873 built on GTS-based and Historic Data. DOI: 10.5676/DWD_GPCC/FD_M_V6_050, 2011.

874

875 Shen C., Tang L., Wang S., Li C. and Liu K.: The Pollen Records and time scale from the RM of

876 the Zoige Basin, northeastern Qinghai-Tibetan Plateau. Chinese Science Bulletin, 50, 6, 553-

877 562, 2005.

878

879 Sitch S., Smith B., Prentice I. C., Arneth A., Bondeau A., Cramer W., Kaplan J.O., Levis S., Lucht

880 W., Sykes M. T., Thonicke K. and Venevsky S.: Evaluation of ecosystem dynamics, plant

881 geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. *Global*

882 *Change Biology* 9, 161-185, 2003.

883

884 Shimada M., Takahara H., Imura R., Haraguchi T., Yonenobu H. I. Hayashida A. and Yamada K.:

885 Vegetation history based on pollen and charcoal analyses since the Last Glacial Maximum in

886 southern Kyushu, Japan. EPPC Padua Italy 26-21 August 2014, abstract book p. 253, 2014.

887

888 Solla A., Martin JA and Corral P, Gil L.: Seasonal changes in wood formation of *Ulmus pumila*

889 and *U. minor* and its relation with Dutch elm disease. *New Phytologist* 166, 1025-1034, 2005.

890

891 Sugaya M., Okuda M. and Okada M.: Quantitative paleoclimate reconstruction based on a 130 ka
892 pollen record from teC9001C core off NE Japan. *Quatern Int* 397, 404-416, 2016.

893

894 Sun X. J., Song C. Q. and Wang F. Y.: Vegetation history of the Southern Loess Plateau of China
895 during the last 100,000 years based on pollen data. *Acta Botanica Sinica*, 38, 12, 982-988. (in
896 Chinese with English summary), 1996.

897

898 Sun X.J. and Li X.: A pollen record of the last 37 ka in deep sea core 17940 from the northern
899 slope of the South China Sea. *Marine Geology*, 156, 227-244. 1999.

900

901 Sun X., Li X., Luo Y. and Chen X.: The vegetation and climate at the last glaciation on the
902 emerged continental shelf of the South China Sea. *Palaeogeogr, Palaeocl* 160, 301–316, 2000.

903

904 Sun X., Luo Y, Huang F., Tian J. and Wang P.: Deep-sea pollen from the South China Sea:
905 Pleistocene indicators of East Asian monsoon. *Marine Geology* 201, 97-118, 2003.

906

907 Svenning J.-C.: Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree
908 flora. *Ecology Letters*, 6: 646–653, 2003.

909

910 Takahara H. and Takeoka M.: Vegetational changes since the last Glacial maximum around the
911 Hatchodaira Moor, Kyoto, Japan. *Japan Journal Ecology* 36, 105-116, 1986.

912

913 Takahara H. and Takeoka M.: Vegetation history since the last glacial period in the Mikata
914 lowland, the Sea of Japan area, western Japan. *Ecological Research* 7, 371-386, 1992.

915 Takahara Hi, Sugita S., Harrison S.P., Miyoshi N., Morita Y. and Uchiyama T.: Pollen-based
916 reconstructions of Japanese biomes at 0, 6000 and 18,000 14C yr BP. *J Biogeogr*, 27, 665–683,
917 2000.

918 Tian Z. and Jiang D.: Revisiting last glacial maximum climate over China and East Asian monsoon
919 using PMIP3 simulations. *Palaeogeography, Palaeoclimatology, Palaeoecology* 453 115–126,
920 2016.

921 Tian B, Liu R., Wang L., Qiu Q., Chen K. and Liu J.: Phylogeographic analyses suggest that a
922 deciduous species (*Ostryopsis davidiana* Decne., Betulaceae) survived in northern China during
923 the Last Glacial Maximum. *J Biogeogr* 36, 2148–2155., 2009.

924

925 Tian F., Cao X., Dallmeyer A., Ni J., Zhao Y., Wang Y. and Herzschuh U.: Quantitative woody
926 cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional
927 peculiarities. *Quatern Sci Rev*, 137, 33-44, 2016.

928

929 Tian Z. and Jiang D.: Revisiting last glacial maximum climate over China and east Asian monsoon
930 using PMIP3 simulations. *Palaeogeogr, Palaeocl, Palaeocol* 453, 115-126, 2016.

931

932 Wang S., Lu H., Han J., Chu G., Liu J. and Negendank J. F. W.: Palaeovegetation and
933 palaeoclimate in low-latitude southern China during the Last Glacial Maximum. *Quatern Int*
934 248, 79-85, 2012.

935

936 Willis KJ. and Niklas KJ.: The role of Quaternary environmental change in plant macroevolution:
937 the exception or the rule? *Phil. Trans. R. Soc. Lond. B* 359, 159–172. 2004.

938

939 Wu G., Qin J., Deng B. and Li C.: Palynomorphs in the first paleosol layer in the Yangtze Delta
940 and their paleoenvironmental implication. *Chinese Science Bulletin*. 47, 21, 1837-1842, 2002.

941

942 Xu D., Lu H, Wu N and Liu Z.: 30 000-Year vegetation and climate change around the East China
943 Sea shelf inferred from a high-resolution pollen record. *Quatern Int* 227, 53-60, 2010.

944

945 Xu G., Yang X., Ke Z., Li Nag W. and Yang Z.: Environment Changes in Yanshan Mountain
946 Area during the Latest Pleistocene. *Geography and Territorial Research*, 18, 2, 4 pages, 2002.

947

948 Yan G., Wang F.B., Shi G.R. and Li S.F.: Palynological and stable isotopic study of
949 palaeoenvironmental changes on the northeastern Tibetan plateau in the last 30,000 years.
950 *Palaeogeogr, Palaeoclim, Palaeocl* 153, 147–159, 1999.

951

952 Yang D., Peng Z., Luo C., Liu Y., Zhang Z., Liu W. and Zhang P.: High-resolution pollen
953 sequence from Lop Nur, Xinjiang, China: Implications on environmental changes during the
954 late Pleistocene to the early Holocene. *Palaeobot Palyno* 192, 32–41, 2013.

955

956 Yi S. and Kim S.-J.: Vegetation changes in western central region of Korean Peninsula during the
957 last glacial (ca. 21.1–26.1 cal kyr BP). *Geosci J* 14, 1, 1 – 10, 2010.

958

959 Yu S, Zheng Z., Chen Z, Jing X, Kershaw P., Moss P., Peng X., Zhang X., Chen C., Zhou Y.,
960 Huang K. and Gan H.: A last glacial and deglacial pollen record from the northern South China
961 Sea: New insight into coastal-shelf paleoenvironment. *Quatern Sci Rev* 157, 114-128, 2017.

962

963 Yu G., Ke X., Xue B. and Ni J.: The relationships between the surface arboreal pollen and the
964 plants of the vegetation in China. *Palaeobot Palyno* 129, 187– 198, 2004.

965

966 Yue Y., Zheng Z., Huang K., Chevalier M., Chase B. M., Carré M., Ledru M.-P. and Cheddadi R.:
967 A continuous record of vegetation and climate change over the past 50,000 years in the Fujian

968 Province of eastern subtropical China. *Palaeogeogr, Palaeocl* 365–366:115–123, DOI:
969 10.1016/j.palaeo.2012.09.018, 2012.

970

971 Zheng Z., Huang K., Deng Y., Cao L., Yu S., and Suc J.-P.: A 200 ka pollen record from Okinawa
972 Trough: Paleoenvironment reconstruction of glacial-interglacial cycles. *Science China Earth
973 Sciences* 56 (10), 1731–1747, 2013.

974

975 Zheng Z., Wei J., Huang K., Xu Q., Lu H., Tarasov P., Luo C., Beaudouin C., Deng Y., Pan A.,
976 Zheng Y., Luo Y., Nakagawa T., Li C., Yang S., Peng H. and Cheddadi R.: East Asian pollen
977 database: modern pollen distribution and its quantitative relationship with vegetation and
978 climate. *J Biogeogr.* doi:10.1111/jbi.12361, 2014.

979

980 Ziska, L. H. and Caulfield, F. A.: Rising CO₂ and pollen production of common ragweed
981 (*Ambrosia artemisiifolia*), a known allergy inducing species: implications for public health,
982 *Aust. J. Plant Physiol.*, 27, 893–898, 2000,

983

984

985 **BIOSKETCH**

986 Suzanne Leroy is a physical geographer, specialised in palynology. She works at various time scales and
987 resolutions from the Pliocene to the present in the Mediterranean basin, NW Africa and SW Asia as well as
988 further to the east (Kyrgyzstan and NE China), always in a multidisciplinary way, mostly in cooperation with
989 geologists and archaeologists for understanding past environments and climates, the origin of sediments, and
990 the interactions between nature and humans. Although the analysed sediments were mostly lacustrine,
991 additional experiences are in marine and deltaic environments. Recently she developed an interest in
992 phylogeography and environmental catastrophes.

993 Author contributions: S.L. is responsible for the overall research and collected the pollen data with help by
994 J.W., K.A. is responsible for the meteorology and climatology aspects as well as did most of the

995 programming and writing of the manuscript, U.M. provided the climate model simulations and J.W.

996 contributed to the data search and typical Chinese aspects.

997

Manuscript: Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum

Author(s): Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu. MS No.: cp-2020-02 MS Type: Research article

Reviewer 2

This paper focuses on the past climate estimation for Eurasia for the Last Glacial Maximum (LGM) using climate modeling, and then simulates the potential distribution for the deciduous-boreadleaved trees by combining these estimated climatic limits. Finally, the potential refugia of the deciduous-boreadleaved trees are concluded and assessed by the pollen data. Generally, the manuscript is well organized, I would recommend this manuscript for publication in Climate of The Past. However, it needs to be improved before it can be accepted, and I do have comments and suggestions hereafter.

There are many literatures at least few of them published in English about the glacier refugia in East Asia, including that based on modeling, pollen mapping, and phylogenetic data, for instance, biome modeling by Anne Dallmeyer, Jian Ni. In this manuscript, authors cited too few literatures about the previous studies in East Asia. Authors should add and discuss them in this manuscript.

In lines 76-79 we explain our aim, not to repeat using BIOMEs, as we want to use mainly variables which can be validated. The coupled models, at least those from the Max-Planck Institute for Meteorology are based for BIOMEs on the program JSBach, the code of which we investigated for finding ideas regarding limitations for tree growth had similarities with our choices but need quantities which can hardly be validated, e.g. soil parameters

We cannot find a paper Dallmeyer and Ni perhaps the nearest article from these authors is

Dallmeyer, A., Claussen, M., Ni, J., Cao, X., Wang, Y., Fischer, N., Pfeiffer, M., Jin, L., Khon, V., Wagner, S., Haberkorn, K., and Herzschuh, U.: Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations, *Clim. Past*, 13, 107–134, <https://doi.org/10.5194/cp-13107-2017>, 2017
However this does not cover the LGM

We have already referred to

Tian F., Cao X., Dallmeyer A., Ni J., Zhao Y., Wang Y. and Herzschuh U.: Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities. *Quatern Sci Rev*, 137, 33-44, 2016

2) The weaker impact of LGM climate on vegetation in East Asia than European should be caused partly by the absence of continental ice sheet. Authors should add discussion about that.

We have mentioned the larger Eurasian ice sheet (line 51). And in other places of the manuscript we mentioned the smaller ice cap in Asia, eg. Lines 89 and 540.

3) Why the authors excluded Betula, Alnus and Fagus? They are quite important summer-green and broadleaf pollen taxa in pollen spectra from East Asia. Authors should explain that. In addition, in the list of pollen names, what is represented by “others”?

We worked exclusively on warm temperate broad-leaf trees, in order to focus the work and also to make the comparison to our previous work on Europe more straightforward.

Others are for example Carpinus (see table 2, line 377). To make it clearer we add this information to line 152 too.

4) In this manuscript, there are a lot of results are marked as "(not show)", why not present them as an appendix?

It is not really worth it because most of the information in the not shown figures can be deducted from the available figures.

The one on line 178 we preferred to show C&L and their difference with ERA because together one can recognize the argument and the difference map gives more information than an ERA panel. The same applies to the one in line 180 it is said that we do not expect any impact on our result

The one on line 222 because those areas are too far outside our area of interest.

For the one in line 483 we refer already to Fig.S1.1 as an alternative and we have referred as well to Fig.S1.2, which contains also information for March. We replaced this by referring to appendix S1 which is dealing with the progression of the monsoon

5) There are some sites from the South China behave pollen data during the LGM in the dataset of Cao et al. (2013), why authors presented only few of them?

We kept the deciduous temperate trees which make the comparison to our previous work on Europe more straightforward

6) The conclusion is quite long, and some content should belong to the results or discussions parts.

We have moved lines 509 to 520 to Section6 line now 523-533 and

Line 533-542 . to Section6 line now 471-480

Manuscript: Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum

Author(s): Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu. MS No.: cp-2020-02 MS Type: Research article

Reviewer 1

Minor comments: Line 83: ...a very low resolution of T31. Comment: what is T31? The readers know that they can find the details in the mentioned papers, but I suggest you specify what exactly this acronym means, especially for nonmodellers. Please, explain briefly. Maybe you can already specify also the model resolution. (see next comment).

Done

i.e. a spectral representation which resolves waves down to 31 on any great circle on the earth corresponding to approx. 3.75°. now line84-87

Line 97: (corresponding to approx. 3.75°)

Comment: this is the T31 model resolution? you can move this above. (see previous comment).

Removed because it has been said above

Lines 135-136: Lower CO₂ concentration in the atmosphere during the LGM has caused a decline of pollen production. Comment: Can you add some references?

Done already in the original text line 137

Line 164: CTR. Comment: please, specify what CTR is and its meaning. It is the first time you introduce it.

done

Line 164: (Dee et al. 2011; ECMWF-ERA. 2019) (ERA). Remove the space before (ERA)

done

. Line 258: delete "." before away.

done

Line 261: delete "." the second dot after "in the other climatologies".

done

Line 283: Asia is missing after Eastern.

Done

Line 288: I think a full stop is missing after "vegetation types".

done

Lines 288-290: we add also a maximal winter temperature (Tmax) which the climatological temperature must fall below to allow deciduous tree will grow, suggested by Sitch et al. (2003) and Roche et al. (2007). Comment: please, rephrase the sentence.

done

Line 290: remove the space before (Table 1) and add a space before Sitch et al.

done

Line 484: after 5°C, a "(" is missing.

done

Line 496: By extending the view of our investigation for the whole of Eurasia (Fig. 9).
Comment: Where do the European pollen info come from? Maybe, it is better to specify.

done

Line 503: Generally, the estimates of possible temperate deciduous tree growth in the LGM in eastern Asia. Maybe in this sentence, it is missing "by model results?".

done

Line 504: Therefor "e" is missing.

Done also done in 417 and 507

Line 548: future climate change. Maybe it is better to delete "future" and write "on-going".

Done perhaps better “possible”

Comments to Figures and captions: Fig. 1: if it is possible, make thinner the dashed grids and numbers not bold

Not possible at the moment and in a foreseeable time

and a little bigger, would help for a better reading.

Done a little bigger numbers also for other plots

Add °C close to the colour scale bands. Fig. 3: add °C close to the scale.

Done also for Fig.1

Fig. 4: upper right panel and lower right panel: move 40°N a bit up, it is not aligned.

Done corrected as well for other plots

Fig. 6: 1) Please, correct the position of the latitudinal degrees at the left side of both panels.
2) Is there missing an explanation/colour scale? It does seem so, also considering the scale in Fig. 9.

Done corrected as well for other plots

Fig. 6 Caption. Instead of "Darker colours" maybe it is better to write green. I suggest you use a contour black line for each red marker to make them more visible. Instead of "otherwise filled markers" maybe it is better to write red markers.

done

Fig. 7: Please, make the markers of pollen sites a little bigger, especially the marker in Taiwan.

It is the balance between large markers and not obscuring the land-sea contours especially for Taiwan . Therefore we haq already chosen for the present over Japan only dots. We did not do anything in this respect

Caption of Fig. 7: 1- Areas with topography above the 850hPa level are erased. Erased or blue coloured? 2- Maybe it is better to specify also in the caption that the V10m are the north-easterly 10 m winds.

done

Fig. 9: please, add which is the unit of the colour scale.

done

Table 2a. It is better to enlarge the column with the Alt/depth in m. Tables 2a and 2b: Check the double spaces in the author's list.

done

Fig. 8: is inserted twice with a slightly different caption. General: Eastern and eastern before Asia are used both ways. Please, be consistent. The style of the references should be checked.

Done removed