

1 **Atmospheric CO₂ estimates for the Miocene to Pleistocene based on foraminiferal $\delta^{11}\text{B}$ at Ocean**
2 **Drilling Program Sites 806 and 807 in the Western Equatorial Pacific**

4 Maxence Guillermic^{1,2}, Sambuddha Misra^{3,4}, Robert Eagle^{1,2}, Aradhna Tripati^{1,2}

8 ¹Department of Atmospheric and Oceanic Sciences, Department of Earth, Planetary, and Space
9 Sciences, Center for Diverse Leadership in Science, Institute of the Environment and Sustainability,
10 University of California – Los Angeles, Los Angeles, CA 90095 USA

11 ²Laboratoire Géosciences Océan UMR6538, UBO, Institut Universitaire Européen de la Mer, Rue
12 Dumont d'Urville, 29280, Plouzané, France

13 ³ Indian Institute of Science, Centre for Earth Sciences, Bengaluru, Karnataka 560012, India

14 ⁴ The Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of
15 Cambridge, UK

17 *Correspondence to:* Maxence Guillermic (maxence.guillermic@gmail.com) and Aradhna Tripati
18 (atripati@g.ucla.edu)

19 **ABSTRACT**

20 Constraints on the evolution of atmospheric CO₂ levels throughout Earth's history are foundational to
21 our understanding of past variations in climate. Despite considerable effort, records vary in their
22 temporal and spatial coverage and estimates of past CO₂ levels do not always converge, and therefore
23 new records and proxies are valuable. Here we reconstruct atmospheric CO₂ values across major
24 climate transitions over the past 16 million years using the boron isotopic composition ($\delta^{11}\text{B}$) of
25 planktic foraminifera from 89 samples obtained from two sites in the West Pacific Warm Pool, Ocean
26 Drilling Program (ODP) Sites 806 and 807 measured using high-precision multi-collector inductively-
27 coupled plasma mass spectrometry. We compare our results to published data from ODP Site 872,
28 also in the Western Equatorial Pacific, that goes back to 22 million years ago. These sites are in a
29 region that today is near equilibrium with the atmosphere and are thought to have been in equilibrium
30 with the atmosphere for the interval studied. We show that $\delta^{11}\text{B}$ data from this region are consistent
31 with other boron-based studies. The data show evidence for elevated pCO₂ during the Middle
32 Miocene and Early to Middle Pliocene, and reductions in pCO₂ of ~200 ppm during the Middle
33 Miocene Climate Transition, ~250 ppm during Pliocene Glacial Intensification, and ~50 ppm during
34 the Mid-Pleistocene Climate Transition. During the Mid-Pleistocene Transition there is a minimum
35 pCO₂ at MIS 30. Our results are consistent with a coupling between pCO₂, temperature and ice sheet
36 expansion from the Miocene to Recent.

37
38 **Highlights**

39 In this study, we reconstruct atmospheric pCO₂ using $\delta^{11}\text{B}$ data from ODP Sites 806 and 807 and
40 compare them with ice core data. We therefore apply the same framework to older samples to create a
41 long-term pH and pCO₂ reconstruction for the past 16 million years, and recalculate pCO₂ for ODP
42 Site 872 from 17 to 22 million years ago. We find major increases in surface water pH and decreases
43 in atmospheric pCO₂ were associated with decreased temperature in the Western Equatorial Pacific,
44 including associated with major episodes of ice sheet expansion in the high latitudes, providing more
45 robust quantitative constraints on the past coupling between pCO₂, temperature, and cryosphere
46 stability.

47
48 **Keywords**

49 Boron isotopes, CO₂, ODP Site 806, ODP Site 807, Miocene, climate

50 **1. Introduction**

51 Due to concerns about the long-term consequences of anthropogenic emissions and associated
52 climate change (IPCC, 2014, 2018), efforts have been made to quantify past atmospheric CO₂ and
53 examine past relationships between CO₂ and temperature. Such data are not only critical for
54 constraining Earth-system sensitivity (Lea, 2004; Lunt et al., 2010; Pagani et al., 2010; Hansen et al.,
55 2012, 2013, Foster and Rohling, 2013; Schmittner et al., 2011; Tierney et al., 2020), but are also of
56 broad interest to contextualize the evolution of climate and geological systems through Earth's history
57 (Tripati et al., 2011; Foster et al., 2017; Tripati and Darby, 2018). However, discrepancies between
58 proxy reconstructions still exist, including for major climate transitions of the Cenozoic. In particular,
59 there remains a pressing need for robust and higher-resolution atmospheric CO₂ records from regions
60 that are in equilibrium with the atmosphere.

61 High-resolution and direct determinations of atmospheric CO₂ are available for the last 800
62 kyr through analysis of air bubbles extracted from ice-cores, but these records are limited to the
63 availability of cores (Petit et al., 1999; Siegenthaler et al., 2005; Lüthi et al., 2008; Bereiter et al.,
64 2015). A window into atmospheric CO₂ levels comes from 1 million-year-old blue ice (Higgins et al.,
65 2015) and from a second snapshot from 1.5 Ma (Yan et al., 2019). Most reconstructions of CO₂ for
66 prior to 800 ka are based on indirect terrestrial and marine proxies. Stomata indices for fossil leaves
67 (Van der Burgh, 1993; Royer, 2001), carbon isotope ratios ($\delta^{13}\text{C}$) of paleosols (Retallak et al., 2009),
68 $\delta^{13}\text{C}$ of alkenones (Pagani et al., 2005; Zhang et al., 2013), B/Ca ratios of surface-dwelling
69 foraminifera (Yu and Hönisch, 2007; Foster, 2008; Tripati et al., 2009, 2011), and boron isotope ratios
70 ($\delta^{11}\text{B}$) of surface-dwelling foraminifera (e.g. Pearson and Palmer., 2000; Hönisch and Hemming,
71 2009; Seki et al., 2010; Bartoli et al., 2011; Foster, 2008, 2012; Badger et al., 2013; Foster and
72 Sexton, 2014; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Sosdian et al.,
73 2018; Dyez et al., 2018; deLaVega et al., 2020; Greenop et al., 2021; Rae et al., 2021; Raitzsch et al.,
74 2021; Shuttleworth et al., 2021) have been used to estimate atmospheric CO₂.

75 Each of the above proxy methods has sources of systematic errors that we do not attempt to
76 exhaustively document as they have been discussed in-depth elsewhere (e.g., Pagani et al., 2005;
77 Tripati et al., 2011; Guillermic et al., 2020). However, we note that significant developments in the
78 boron-based proxies include improvements to the accuracy and precision of measurements using
79 multi-collector inductively coupled mass spectrometry (MC-ICP-MS) compared to early work with
80 negative thermal ionization mass spectrometry (N-TIMS), where there were large instrumental mass
81 fractionations and challenges with laboratory intercomparison (Foster et al., 2013; Farmer et al., 2016;
82 Aggarwal and You, 2017). There was also the realization that temperature-dependent K_D to
83 interpreting B/Ca sensitivities observed from the field of sediment trap, core-top, and downcore
84 studies (Yu and Hönisch, 2007; Foster et al., 2008; Tripati et al., 2009, 2011; Babila et al., 2010;
85 Osborne et al., 2020) differ from foraminiferal culture experiments (Allen et al., 2011, 2012) and

86 inorganic calcite (Mavromatis et al., 2015); this type of discrepancy has also been observed with other
87 elemental proxies (e.g., Mg/Ca). Such differences may be due to differences in growth rates (Sadkov
88 et al., 2014), ontogenetic changes, a correlation in the field between temperature and other
89 hydrographic variables that obscure robust statistical determination of parameter relationships, culture
90 conditions resulting in organisms being stressed, and/or other factors.

91 The marine CO₂ proxy that appears to be subject to the fewest systematic uncertainties, based
92 on our current understanding, is the boron isotopic composition ($\delta^{11}\text{B}$) of planktic foraminifera as
93 measured using MC-ICP-MS and N-TIMS (Hain et al., 2018). This proxy provides constraints on
94 seawater pH, if temperature, salinity, seawater $\delta^{11}\text{B}$, and the appropriate mono-specific calibration
95 between $\delta^{11}\text{B}_{\text{carbonate}}$ and $\delta^{11}\text{B}_{\text{borate}}$ are constrained (Pearson and Palmer, 2000; Foster et al., 2008;
96 Sosdian et al., 2018; Raitzsch et al., 2018; Guillermic et al., 2020). Seawater pH can be used to
97 calculate seawater pCO₂ if there are constraints on a second parameter of the carbonate system (e.g.
98 alkalinity, DIC). Atmospheric pCO₂ can then be constrained if the site being examined is in air-sea
99 CO₂ equilibrium or if the disequilibrium is known and stable through time.

100 However, there are relatively few studies generating high-precision boron-based records over
101 major climate transitions in the Cenozoic using recent analytical methods and that incorporate our
102 current understanding of the proxy (e.g., Greenop et al., 2014; Martinez-Boti et al., 2015b; Chalk et
103 al., 2017; Dyez et al., 2018; Sosdian et al., 2018; de la Vega et al., 2020; Rae et al., 2021; Raitzsch et
104 al., 2021). Furthermore, of the existing studies using boron-based proxies, an additional uncertainty
105 frequently exists, namely the short time interval of study (e.g., emphasizing on a climate transition)
106 (Martinez-Boti et al., 2015b; Chalk et al., 2017) and whether the study sites remain in air-sea CO₂
107 equilibrium with the atmosphere (Martinez et al., 2015a). And although estimation of atmospheric
108 pCO₂ from seawater pH using this proxy is relatively straightforward, reconstructions are still
109 impacted by uncertainties including the lack of robust constraints on a second parameter of the
110 carbonate system, and our limited understanding of secular variations in the $\delta^{11}\text{B}$ of seawater (Tripathi
111 et al., 2011; Greenop et al., 2017; Sosdian et al., 2018; Rae et al., 2021).

112 Therefore, to provide additional constraints on the evolution of atmospheric pCO₂ from the
113 Miocene through Pleistocene, we developed new records from the western tropical Pacific. We use
114 foraminiferal $\delta^{11}\text{B}$ and trace elements in the planktic foraminiferal species *Trilobus sacculifer* and
115 *Globigerinoides ruber* to reconstruct past seawater pH and atmospheric CO₂ at Ocean Drilling
116 Program (ODP) Sites 806 and 807 in the Western Equatorial Pacific (WEP) over the last 16 million
117 years (Myr). The sites are located on the western border of the tropical Pacific Ocean, the largest
118 open-oceanic region on the globe, and the warmest open ocean region at present.

119 These two sites have been examined in other boron-based studies (Wara et al., 2003; Tripathi et
120 al., 2009, 2011; Shankle et al., 2020), as has the region more broadly (Pearson and Palmer, 2000;
121 Sosdian et al., 2018), because it is understood to be in equilibrium with the atmosphere and have

122 relative stable hydrography. The region experiences equatorial divergence but is not strongly affected
123 by upwelling and has a current estimated annual air-sea CO₂ difference of +28 ppmv (Takahashi et
124 al., 2014). The pre-industrial air-sea CO₂ difference is calculated to be +16 ppm, (GLODAP database
125 corrected from anthropogenic inputs), with a value of 298 ppm, compared to the ice core value of 282
126 ppm at 1.08 ka. This pCO₂ difference is similar to our pCO₂ uncertainty (an average of ~17 ppm (2
127 SD) for the youngest samples). If trade winds were much stronger, and equatorial divergence greater,
128 than this could drive some disequilibrium in the past. However, a few lines of evidence suggest the
129 region was in quasi-equilibrium in the past: 1) zonal temperatures are at a maximum in pre-industrial
130 times and during the Pleistocene, and we are able to reconstruct atmospheric pCO₂ values from the ice
131 cores, 2) temperature proxies indicate the region is relatively stable with respect to temperature
132 compared to other parts of the ocean, and also indicate a weak and stable zonal temperature gradient
133 during the Miocene and Pliocene which would support air-sea stable conditions and air-sea
134 equilibrium (e.g., Nathan and Leckie, 2009; Zhang et al. 2014; Liu et al., 2019).

135 Thus, this study builds on low-resolution prior reconstructions for these sites (Wara et al.,
136 2003; Tripati et al., 2009, 2011; Shankle et al., 2020), Site 872 in the tropical Pacific (Sosdian et al.,
137 2018), and other published boron isotope work, to provide additional data to constrain past seawater
138 pH and pCO₂ for the WEP using MC-ICP-MS, thereby providing a new perspective on reconstructing
139 past atmospheric CO₂ via marine sediment archives. We explore various constraints on the second
140 carbonate system parameter using a number of different scenarios, following on the systematic work
141 done by Tripati et al. (2009) and (2011) for B/Ca. We interpret these data using recent constraints on
142 seawater $\delta^{11}\text{B}$ (Lemarchand et al., 2000; Raitzsch and Hönnisch, 2013; Greenop et al., 2017). For
143 temperature estimation, we utilize a multi-variable model for Mg/Ca correcting from salinity, pH and
144 seawater Mg/Ca (Gray and Evans, 2019), that builds on prior work with clumped isotopes in planktic
145 foraminifera for Site 806 and other WEP sites demonstrating that for the Last Glacial Maximum to
146 recent, salinity-corrected Mg/Ca values are needed to yield convergent estimates of mixed-layer
147 temperatures (Tripati et al., 2014).

148

149 **2. Materials and Methods**

150 Below we describe site locations, analytical methods used, and principal figures. The
151 supplemental methods section describes screening for potential contamination, equations used for
152 calculations, and error propagation.

153

154 **2.1 Site locations**

155 Samples are from three ODP holes recovered during Leg 130 in the WEP (Fig. 1, Table 1):
156 Hole 806A (0°19.140'N, 159°21.660'E, 2520.7 m water depth), Hole 806B (0°19.110'N,
157 159°21.660'E, 2519.9 m water depth), and Hole 807A (3°36.420'N, 156°37.500'E, 2803.8 m water

158 depth) (Berger et al., 1993). Sites 806 and 807 are not likely to have experienced major tectonic
159 changes over the last 20 million years.

160

161 **2.2 Preservation**

162 Microfossils in sediments at these sites, as with any sedimentary sequences, have the potential
163 to be influenced by diagenesis. Despite evidence of authigenic carbonate formation, recent modeling
164 work concluded the influence of dissolution and reprecipitation at Sites 806 and 807 was relatively
165 minor (Mitnik et al., 2018). Prior work has also found minimal impacts on the B/Ca ratio of Pliocene
166 foraminifera from Site 806 (White and Ravelo, 2020), and on the Mg/Ca ratio of Miocene *D. altispera*
167 shells at Site 806 (Sosdian et al., 2020). The weight/shell ratio is commonly used to monitor
168 dissolution, and the only published record at Site 806 for the Pliocene does not show a trend
169 consistent with dissolution of *T. sacculifer* (Wara et al., 2005). We do note that while the “coccolith
170 size-free dissolution” index reported in Si and Rosenthal (2019) indicates higher dissolution rates in
171 the Miocene, their records were thought to be biased from changes in foraminifera assemblages as
172 discussed in White and Ravelo (2020).

173 To further assess the potential impact of dissolution in our geochemical data, the weight/shell
174 ratio was examined in our samples. The weight/shell data used to monitor dissolution does not exhibit
175 any trend within the interval studied consistent with dissolution. Absolute weights/shell are increasing
176 in the Miocene, which is not consistent with dissolution influencing the record (Fig. 2E).
177 Additionally, reconstructed pH and pCO₂ values also exhibit reasonable correspondence with the ice
178 core data. Downcore δ¹¹B values from Sites 806 and 807 are similar, despite evidence for higher
179 authigenic carbonate at Site 807 relative to Site 806 (Mitnik et al., 2018). Further, despite different
180 sedimentation rates, our δ¹¹B and Mg/Ca results are consistent between Sites 806 and 807, and with
181 data from Site 872 (Sosdian et al., 2018), which implies that diagenesis is not a primary driver of the
182 reconstructed trends. Comparison of raw data, and derived parameters, is shown in Figs. 2 and 7.

183

184 **2.3 Age models**

185 The age model for Site 806 from 0-1.35 Ma is based on Medina-Elizalde and Lea (2005);
186 calculated ages correspond well with ages from the Lisiecki and Raymo LR04 stack (Fig. 2A). The
187 fourth polynomial regression-based biostratigraphy from Lear et al. (2015) was used for the rest of the
188 record, following other work (Sosdian et al., 2020). Ages for Site 807 are based on published
189 biostratigraphy (Berger et al., 1993) with additional constraints placed by Zhang et al. (2007) for the
190 interval from 0-0.55 Ma. Benthic δ¹⁸O values from Sites 806 and 807 show good correspondence for
191 the last 0.55 Myr, and the low-resolution benthic δ¹⁸O record for Site 806 (Lear et al., 2003; 2015) is
192 consistent with the stack from Lisiecki and Raymo, (2005) for the period studied (Fig. 3).

193

194 **2.4 Species and trace element cleaning**

195 Samples were picked and cleaned to remove clays at UCLA (Los Angeles, CA) and the
196 University of Western Brittany (Plouzané, France). 50-100 foraminifera shells were picked from the
197 300-400µm fraction size for *T. sacculifer* (w/o sacc) and from the 250-300 µm for *G. ruber* (white
198 sensu stricto). Picked foraminifera were gently crushed, clays removed, and checked for coarse-
199 grained silicates. Samples were then cleaned using a full reductive and oxidative cleaning protocol
200 following Barker et al. (2003). A final leach step with 0.001N HCl was done prior dissolution in 1N
201 HCl. Boron purification used a published microdistillation protocol (see Misra et al., 2014b,
202 Guillermic et al., 2020 for more detailed methods).

203

204 **2.5 Chemical purification and geochemical analysis**

205 Chemical separation was performed in a boron-free clean lab at the University of Cambridge
206 (Cambridge, UK). Calcium concentrations were measured on an ICP-AES ®Ultima 2 HORIBA at the
207 Pôle Spectrometrie Océan (PSO), UMR6538 (Plouzané, France). Elemental ratios (e.g. X/Ca ratios)
208 were analyzed on a Thermo Scientific ®Element XR HR-ICP-MS at the PSO, Ifremer (Plouzané,
209 France). Boron isotopic measurements were carried out on a Thermo Scientific ®Neptune+ MC-ICP-
210 MS equipped with 10¹³ Ohm resistor amplifiers (Lloyd et al., 2018) at the University of Cambridge
211 (Cambridge, UK).

212

213 **2.6 Standards**

214 Variations in B isotope ratios are expressed in conventional delta (δ) notation with δ¹¹B values
215 reported against the reference standard NIST SRM 951 (NIST, Gaithersburg, MD, USA):

$$216 \delta^{11}\text{B} (\text{\textperthousand}) = 1000 \times \left(\frac{^{11}\text{B}/^{10}\text{B}_{\text{Sample}}}{^{11}\text{B}/^{10}\text{B}_{\text{NIST SRM 951}}} - 1 \right) \quad \text{eq. 1}$$

217 Multiple analyses of external standards were performed to ensure data quality. For boron
218 isotopic measurements, JC_P.1 (Geological Survey of Japan, Tsukuba, Japan, Gutjahr et al., 2020) was
219 used as a carbonate standard, and NEP, a *Porites* sp coral from University of Western Australia and
220 Australian National University was also used (McCulloch et al., 2014). A boron isotope liquid
221 standard, ERM[®] AE121 (certified δ¹¹B = 19.9 ± 0.6 ‰, SD), was used to monitor reproducibility and
222 drift during each session (Vogl and Rosner, 2012; Foster et al., 2013; Misra et al., 2014b). For trace
223 elements, external reproducibility was determined using the consistency standard Cam-Wuellerstorfi
224 (University of Cambridge) (Misra et al., 2014b).

225

226 **2.7 Figures of Merit**

227 **2.7.1 $\delta^{11}\text{B}$ analyses**

228 Samples measured for boron isotopes typically ranged in concentration from 10 ppb B (~5ng
229 B) to 20 ppb B samples (~10ng B). Sensitivity was 10mV/ppb B (eg. 100mV for 10ppb B) in wet
230 plasma at 50 $\mu\text{l}/\text{min}$ sample aspiration rate. The intensity of ^{11}B for a sample at 10 ppb B was typically
231 104 ± 15 mV (2 SD, typical session) and closely matched the 98 ± 6 mV (2 SD, typical session) of the
232 standard. Procedural boron blanks ranged from 15 pg B to 65 pg B (contributed to less than 1 % of the
233 sample signal). The acid blank during analyses was measured at ≤ 1 mV on the ^{11}B (which also is < 1
234 % of the sample intensity), and no memory effect was seen within and across sessions.

235 External reproducibility was determined by analyzing the international standard JC_P-1
236 (Gutjahr et al., 2020) and a *Porites sp.* coral (NEP). The boron isotopic composition of JC_P-1 was
237 measured at 24.06 ± 0.20 ‰ (2 SD, n=6) within error of published values of 24.37 ± 0.32 ‰, $24.11 \pm$
238 0.43 ‰ and 24.42 ± 0.28 ‰ from Holcomb et al. (2015), Farmer et al. (2016) and Sutton et al. (2018),
239 respectively. Average values are $\delta^{11}\text{B}_{\text{NEP}} = 25.72 \pm 0.79$ ‰ (2 SD, n=31) determined over 13 different
240 analytical sessions, with each number representing a separately processed sample from this study.
241 These results are within error of published values of 26.20 ± 0.88 ‰ (2 SD, n = 27) and 25.80 ± 0.89
242 ‰ (2 SD, n = 6), from Holcomb et al. (2015) and Sutton et al. (2018), respectively. Data are reported
243 in Supplementary Table B.

244

245 **2.7.2 X/Ca analyses**

246 Trace element (TE) analyses were conducted at a Ca concentration of either 10 or 30 ppm.
247 Typical blanks for a 30 ppm Ca session were: $^7\text{Li} < 2$ %, $^{11}\text{B} < 7$ %, $^{25}\text{Mg} < 0.2$ % and $^{43}\text{Ca} < 0.02$ %.
248 Additionally, blanks for a 10 ppm Ca session were: $^7\text{Li} < 2.5$ %, $^{11}\text{B} < 10$ %, $^{25}\text{Mg} < 0.4$ % and $^{43}\text{Ca} <$
249 0.05 %. Analytical uncertainty of a single measurement was calculated from the reproducibility of the
250 CamWuelstorff standard: 0.6 $\mu\text{mol/mol}$ for Li/Ca, 8 $\mu\text{mol/mol}$ for B/Ca and 0.02 mmol/mol for
251 Mg/Ca (2 SD, n=48). Data are reported in Supplementary Table B.

252

253 **2.8 Calculations**

254 Detailed calculations can be found in the supplemental materials. Briefly, Mg/Ca was used to
255 reconstruct sea surface temperature (SST) using the framework from Gray and Evans. (2019)
256 correcting for influences of pH, salinity, and secular variation in seawater Mg/Ca. $\delta^{11}\text{B}_{\text{carbonate}}$ was
257 corrected using an empirical $\delta^{11}\text{B}_{\text{carbonate}}$ -weight/shell ratio relationship. $\delta^{11}\text{B}_{\text{borate}}$ was determined using
258 species dependent sensitivities of $\delta^{11}\text{B}_{\text{carbonate}}$ to $\delta^{11}\text{B}_{\text{borate}}$ (Guillermic et al., 2020). pH was calculated
259 using the $\delta^{11}\text{B}_{\text{borate}}$ with different scenarios of secular seawater $\delta^{11}\text{B}$ changes (Lemarchand et al., 2002;
260 Raitzsch and Hönisch, 2013; Greenop et al., 2017). pCO₂ was reconstructed using pH based

261 $\delta^{11}\text{B}_{\text{carbonate}}$ and different scenarios of alkalinity (Tyrell and Zeebe, 2004; Ridgwell and Zeebe, 2005;
262 Caves et al. 2016 and Rae et al. 2021). Further details including equations are in the Supplement.

263

264 **3. Results and discussion**

265 **3.1 Geochemical results**

266 Geochemical data used in this study are presented in Figure 2. Mg/Ca data (Fig. 2C) are
267 consistent with previously published Mg/Ca values for Site 806 on *T. sacculifer* (Wara et al., 2005;
268 Tripathi et al., 2009; Nathan and Leckie, 2009). Although the record we generated does not overlap
269 with Site 872, they are 1 myr apart (15.7 and 16.7 Ma); there is a good correspondence between our
270 Mg/Ca data and the published Mg/Ca record from *T. trilobus* at Site 872 (Sosdian et al., 2018). Mg/Ca
271 from a different species, *D. altispira* (Sosdian et al., 2020), is also plotted with an offset, for
272 comparison.

273 Comparison with Site 872 data that is part of the compilation from Sosdian et al. (2018)
274 shows that their $\delta^{11}\text{B}$ data are in line with our dataset (Figure 2B), and all sites examined in the WEP
275 (Sites 806, 807, and 872) are above the lysocline (Kroenke et al. 1991). The $\delta^{11}\text{B}$ data for *T. sacculifer*
276 exhibit a significant decrease (4.2 ‰) from the Miocene to present. Figure 2B also compares the $\delta^{11}\text{B}$
277 data used in this study with published data from other sites and shows that raw $\delta^{11}\text{B}$ data for the WEP
278 can be lower than values for other regions.

279

280 **3.2 Reproducing pCO₂ from ice cores**

281 We sought to assess if there is evidence for air-sea equilibrium or disequilibrium in the WEP
282 during the large amplitude late Pleistocene glacial/interglacial cycles, in order to validate our
283 approach. We reconstructed pCO₂ for the last 800 kyr (n=16, Fig. 3). For the last 800 kyr,
284 reconstructed pCO₂ values for Sites 806 and 807 are in the range from ice cores (Fig. 3, Petit et al.,
285 1999, Siegenthaler et al., 2005, Lüthi et al., 2008; compilation from Bereiter et al., 2015). The two
286 critical diagnostics we used for method validation are: 1) that the $\delta^{11}\text{B}$ -based reconstruction of pCO₂
287 is consistent with ice core atmospheric CO₂ and 2) the boron-based reconstruction empirically
288 reproduces interglacial-glacial amplitudes from ice cores. Fig. 3B shows that both of these criteria are
289 met. We also created a crossplot comparing these two independent constraints on pCO₂ (Fig. 3C).
290 Two regressions between ice core pCO₂ and boron-based pCO₂ are shown, with a simple linear
291 regression (grey line) and a Deming regression that factors in error in variables (blue line), and
292 bootstraps of outputs shown (n=1000, Figure 3C, Table S6). While slopes and intercepts are not
293 statistically different from a 1:1 line, the regressions do not reach a high significance level (p=0.25);
294 boosting the resolution of the record could help provide better constraints for this type of comparison.
295 The age models for the site do not provide an explanation for this variability based on comparison of
296 the benthic $\delta^{18}\text{O}$ records for both Sites 806 and 807 (Fig. 3A, Zhang et al., 2007; Lear et al., 2003;

297 Lear et al., 2015) to the published isotopic stack (Lisiecki and Raymo, 2004). No significant
298 difference in variability was observed at either site. We also note that reconstructed pCO₂
299 uncertainties (both accuracy and precision) could potentially arise from Mg/Ca-derived estimates of
300 temperature; these uncertainties could be reduced using independent temperature proxies for the WEP
301 such as clumped isotope thermometry (Tripati et al., 2010; 2014), a technique that is not sensitive to
302 the same sources of error as Mg/Ca thermometry, and therefore is an area planned for future work.
303 Other sources of uncertainty that have a larger effect on pCO₂ calculations are the weight/shell
304 correction, while the TA and seawater boron isotope composition have a minor effect over this time
305 interval.

306 Between MIS 7 and 6, our reconstructions exhibit a decrease in temperature (ΔT) of 1.2 °C,
307 an increase in pH (ΔpH) of 0.08 and a decrease in pCO₂ (ΔpCO_2) of 58 ppm. Between stage 3 and 1,
308 we observed an increase of temperature of 2.0 °C, a decrease of pH of 0.13 and an increase in pCO₂ of
309 76 ppm. We also compare results with recent reconstructions in Figs. S1 and S2 (Sosdian et al., 2018;
310 Rae et al., 2021). These results highlight that we are able to reproduce the range of atmospheric pCO₂
311 in the ice core record, and reproduce the amplitude of changes between transitions, with uncertainties
312 typical for this type of work (Hönisch et al., 2019).

313

314 **3.3 Sea surface temperature in the WEP**

315 Mg/Ca data are consistent at Site 806 (Wara et al., 2005; Tripati et al., 2009, 2011; Nathan
316 and Leckie, 2009) and Site 872 (Sosdian et al., 2018) in the WEP. The Mg/Ca in *T. sacculifer* has to
317 date not shown a pH dependency (Gray and Evans, 2019) but Mg/Ca of *G. ruber* does and was
318 therefore corrected from this effect (see supplemental material). Data for both species were corrected
319 from salinity and seawater Mg/Ca changes. Mg/Ca-temperatures for Site 872 was reconstructed using
320 published data and the same framework we use here and are presented in Figure 4. Recalculated
321 values for Site 872 are from *D. altispera*, with an offset applied relative to *T. sacculifer*, and show
322 similar variations to our record for the MCO-MMCT periods (Sosdian et al., 2020). Temperatures
323 from Tex₈₆ and UK₃₇ are plotted for comparison but those records are limited to the last 12 and 5 Myrs
324 respectively (Zhang et al., 2014).

325 The Mg/Ca data support high temperatures of 35.2 ± 1.3 °C (2SD, n=11) for the early
326 Miocene until the MMCT, with relatively small (ca. 1°C) change from into the MCO, and larger
327 changes out of the MCO. Similarly warm SST for the MCO were reconstructed in the North Atlantic
328 at Site 608 from Tex₈₆ (Super et al., 2018). Despite a gap in our compilation from 11.5 to 9.5 Ma,
329 there is a SST decrease of ~6 °C from the MCO to ~7 Ma where temperatures similar to present day
330 values are observed. A decline in temperature during the MMCT is coincident with the timing of a
331 constriction of the Indonesian Seaway, the pre-closure of the trans-equatorial circulation and
332 subsequent formation of a proto-warm pool (Nathan and Leckie, 2009; Sosdian et al., 2020). From 12

333 to 7 Ma, the Mg/Ca-SST record diverges from Tex₈₆ and U^K₃₇-based reconstructions, with higher
334 temperatures. At the same time, a record for the North Atlantic showed a decrease of ~10 °C from the
335 MCO to ~9 Ma (Super et al., 2018). From 7 Ma to present, the record from multiple proxies – Mg/Ca,
336 Tex₈₆, and U^K₃₇, in the WEP agree.

337

338 **3.4 Scenarios of seawater $\delta^{11}\text{B}$ and alkalinity used for pCO_2 reconstructions**

339 Figures 5 and 6 show the different histories of seawater $\delta^{11}\text{B}$ and alkalinity used for
340 calculations, respectively. Details of calculations are in the Supplemental methods. Following the
341 approach of Tripati et al. (2009, 2014) and recent literature (Sosdian et al., 2018; Rae et al., 2021), we
342 explored multiple scenarios for the evolution of seawater boron geochemistry (Fig. 5) and alkalinity
343 for calculations of pCO_2 (Figs. 6, S1 and S2). During the interval overlapping with the ice core record,
344 we observe that the choice of model used does not make a significant difference in reconstructed
345 values. During earlier time intervals, we see there is a greater divergence, reflecting larger
346 uncertainties in seawater $\delta^{11}\text{B}$ and alkalinity further back in Earth history.

347 Prior to 10 Ma and during the early Pliocene (~4.5 to 3.5 Ma), calculations of pCO_2 diverge
348 from published values largely because of the different assumptions each study has used for past
349 seawater $\delta^{11}\text{B}$ (Fig. 5). However, we find that when the uncertainty in reconstructed pH is fully
350 propagated, the differences in reconstructed pH values calculated using each of the $\delta^{11}\text{B}_{\text{seawater}}$ histories
351 is not significantly different (Fig. 5 and 6; see also Hönisch et al., 2019). In contrast to the results
352 from Greenop et al. (2017), the record from Raitzsch and Hönisch, (2013) exhibits substantial
353 variations on shorter timescales. Such variability is a challenge to reconcile with the Li isotope record
354 of Misra and Froelich, (2012), given that Li has a shorter residence time than boron while having
355 similar sources and sinks. For the remainder of this study, we use the $\delta^{11}\text{B}_{\text{seawater}}$ history from Greenop
356 et al. (2017) because it is in good agreement with seawater $\delta^7\text{Li}$ (Misra and Froelich, 2012). The
357 recent calculations of seawater pH (Sosdian et al., 2018; Rae et al., 2021) agree with values from our
358 study when uncertainties are taking into account (Fig. 5).

359 The four alkalinity models used in this study diverge prior to 9 Ma, with a maximum
360 difference at ~13 Ma that is also reflected in reconstructed pCO_2 values (Fig. 6). However, all four
361 models yield pCO_2 estimates that are within error of each other when the full uncertainty is
362 considered. Uncertainty in the evolution of seawater alkalinity and seawater $\delta^{11}\text{B}$ leads to differences
363 in the absolute values of pCO_2 reconstructed (Fig. S2), and a divergence in pCO_2 values reconstructed
364 that is largest in the Miocene. The two scenarios that produce the highest divergence in values are
365 those calculated using constant alkalinity relative to those calculated using values from McCaves et al.
366 (2016), with a maximum difference at 15.06 Ma of up to 250 ppm CO_2 , and with the latter model
367 producing lower values (Figs. 6B and 6E). Thus, for the MCO, alkalinity is a critical parameter in
368 calculations of absolute pCO_2 values. For the Miocene and earlier intervals, improved constraints on

369 past secular variations of seawater $\delta^{11}\text{B}$ and alkalinity will yield more accurate reconstructions of
370 pCO_2 .

371 For the remainder of this paper, we use the model of Caves et al. (2016) to estimate alkalinity
372 and $\delta^{11}\text{B}_{\text{seawater}}$ determined by Greenop et al. (2017) (e.g. Fig. 6E). We note that two recent syntheses
373 of boron isotope data have been published and compare our results to these findings (Figs. 8 and S2).
374 Sosdian et al. (2018) reports values that are in line with our results in the Miocene but their study does
375 not replicate results from ice cores. Rae et al. (2021) presents reconstructed values that are higher in
376 the Miocene, due to the utilization of different scenarios of seawater $\delta^{11}\text{B}$ and alkalinity compared to
377 this work.

378

379 **3.5 Time intervals**

380 **3.5.1 Miocene**

381 The study of Miocene climate is thought to provide a useful analog for changes associated
382 with global warming and melting of polar ice, in concert with ocean circulation (Holbourn et al.,
383 2013). The Miocene epoch (23-5.3 Ma) is characterized by a warm interval, the Miocene Climate
384 Optimum (~17-14.7 Ma - MCO), and an abrupt cooling during the Middle Miocene Climate
385 Transition (~14-13 Ma – MMCT) that led to the expansion of ice on Antarctica and Greenland.
386 Climate modeling supports a role for decreasing CO_2 in this transition (DeConto and Pollard, 2003).
387 However, reconstructions for the Miocene are still relatively limited (Sosdian et al., 2018; Rae et al.,
388 2021; Raitzsch et al., 2021). Boron isotope and alkenone-based pCO_2 reconstructions support higher
389 pCO_2 during the MCO and a decrease over the MMCT (Sosdian et al. 2018; Stoll et al., 2019),
390 consistent with what was previously inferred from B/Ca (Tripati et al., 2009, 2011; Sosdian et al.,
391 2020).

392 We applied the same framework we used for calculations at Sites 806 and 807 to published
393 boron isotope data from Site 872 (Sosdian et al., 2018) in order to extend the WEP record to the early
394 Miocene (Figs. 7, 8). The Miocene data between Sites 806 and 872 do not overlap as both are low in
395 resolution, but do show excellent correspondence in their trends in $\delta^{11}\text{B}$ and reconstructed pH. For
396 example, the closest datapoints in time at the two sites are at 15.6 Ma at Site 806 with a $\delta^{11}\text{B} = 14.47 \pm$
397 0.21 ‰, and at 16.7 Ma at Site 872, with a $\delta^{11}\text{B} = 15.12 \pm 0.25$ ‰. The pH values we reconstruct are
398 within error of published estimates from Site 872 (Sosdian et al. 2018, Figs. 7D and 8D). Collectively,
399 these data suggest the early Miocene WEP was characterized by a mixed-layer pH of 8.1 ± 0.1 (2 SD,
400 $n=4$) between 19.4 and 21.8 Ma, which decreased to reach a minimum during the MCO of $7.7 (\pm_{0.14}^{0.11})$.

401 Given the sensitivity in absolute pCO_2 to assumptions about the second carbonate system
402 parameter, a few scenarios were explored for the combined 806/807/872 reconstructed pH values. For
403 all alkalinity scenarios we used, reconstructed pCO_2 shows an increase from the Early Miocene to the
404 MCO, with the highest values in the MCO. Recalculated pCO_2 for Site 872 between 19.4 and 21.8 Ma

405 is 232 ± 92 ppm (2 SD, n=4), lower but within error of the ones presented in Sosdian et al. (2018) and
406 also within error of a constant alkalinity scenario (Fig. 8D). The main difference between our
407 calculations and published reconstructions occurs between 19.4 and 21.8 Ma, when the same $\delta^{11}\text{B}$
408 data for Site 872 from Sosdian et al. (2018) recalculated in Rae et al. (2021) yield higher pCO₂, with
409 an average value of 591 ± 238 ppm (2 SD, n=4) because of the different assumptions used in their
410 calculations. This difference is important because the assumptions from Rae et al. (2021) would imply
411 a relatively high and stable pCO₂ from the early Miocene to MCO (Fig. S2), which would imply a
412 decoupling between pCO₂ and temperature with no pCO₂ change during an interval of decreasing
413 benthic $\delta^{18}\text{O}$. However, our reconstructed pCO₂ increase towards the MCO is in line with the
414 observed benthic $\delta^{18}\text{O}$ decrease and $\delta^{13}\text{C}$ increase and suggest a coupling between temperature and
415 pCO₂ over this period. This highlights the critical need for the use of a common set of assumptions for
416 studies. Assumptions may vary between studies depending of the timescales studied, but a common
417 framework is needed. In addition, further constraints on the second carbonate system parameter and
418 on secular changes in seawater $\delta^{11}\text{B}$ will reduce uncertainties in reconstructed pCO₂, with improved
419 precision.

420 The highest pCO₂ values we reconstruct are during the MCO (Fig. 6E). For the MCO, our
421 estimates are 511 ± 201 ppm (2 SD, n=3, Table 2). The middle Miocene values we reconstruct are in
422 line with previous studies (Greenop et al., 2014; Sosdian et al., 2018). Published $\delta^{11}\text{B}$ -based
423 reconstructions also support higher pCO₂ for the MCO of ~350-400 ppm (Foster et al., 2012) or 300-
424 500 ppm (Greenop et al., 2014) that was recalculated by Sosdian et al. (2018) to be ~470-630 ppm
425 depending on the model of $\delta^{11}\text{B}_{\text{seawater}}$ chosen. During the MCO relative maxima in pCO₂, our data
426 support very warm sea surface temperatures in the WEP (35.6 ± 0.6 °C 2SD, n=3; Fig. 8C), that
427 merits further examination in future studies. In fact, the highest temperatures recorded in our samples
428 occur when there is a minimum in the global composite record of $\delta^{18}\text{O}$ of benthic foraminifera
429 (Zachos et al., 2001, 2008; Tripati and Darby, 2018).

430 At the end of the MMCT, we find evidence for changes in pCO₂ and temperature in the WEP
431 (Fig. 8). From 13.5 to 12.7 Ma, we reconstruct an increase of pH ~0.21 and a major decrease of pCO₂
432 of ~215 ppm during an interval highlighted by Flower and Kennett, (1996), who observed changes in
433 $\delta^{18}\text{O}$ indicative of rapid East Antarctic Ice Sheet growth and enhanced organic carbon burial with a
434 maximum $\delta^{13}\text{C}$ reached at ~13.6 Ma (Shevenell et al., 2004; Holbourn et al., 2007). As discussed in
435 section 3.4 the alkalinity model used for the calculations have an important impact during the
436 Miocene which is likely responsible for the different absolute pCO₂ values over the MCO. In
437 comparison, a scenario of constant alkalinity would lead to a pCO₂ during the MCO of 714 ± 313 ppm
438 (2 SD, n=3) and a decrease of ~540 ppm during the MMCT. Both those reconstructions could
439 simulate the large-scale advance and retreat of Antarctic ice with such low pCO₂ values (Gasson et al.,
440 2016). At the same time, we find evidence for a decline in SST of 3.4 °C to minimum values of 33.3

441 °C. The synchronous shifts in the $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ of benthic foraminifera are consistent with increased
442 carbon burial during colder periods, thus feeding back into decreasing atmospheric CO_2 , and
443 supporting the hypothesis that the drawdown of atmospheric CO_2 can in part, be explained by
444 enhanced export of organic carbon (Flower and Kennett, 1993, 1996). However, given the limited
445 sampling of this study, we are only able to resolve a pCO_2 decrease toward the end of the MMCT
446 (~13.5 Ma). The higher resolution $\delta^{11}\text{B}$ - pCO_2 from Site 1092 for the MMCT (Raitzsch et al. 2021)
447 reports eccentricity-scale pCO_2 variability; the authors reported that low pCO_2 during eccentricity
448 maxima was consistent with an increase in weathering due to strengthened monsoonal circulation,
449 which would increase nutrient delivery and supporting higher productivity that in turn would impact
450 carbon drawdown and burial, in line with modeling from Ma et al. (2011).

451 The resolution of our data during the late Miocene is low, with a data gap from 12.5 to 9.2
452 Ma, and another gap between 6.5 and 5 Ma. We note the pCO_2 peak at ~9 Ma observed by Sosdian et
453 al. (2018) is not seen in our record although this is likely due to the low resolution of our dataset.
454 Between 9.5 and 7.1 Ma we find evidence for a decrease in atmospheric CO_2 of 100 ppm associated
455 with a decrease in temperature of 1.3 °C. pCO_2 estimates derived from alkenones for Site 1088
456 (Tanner et al., 2020) do not show the same trend as boron-based reconstructions from the WEP or
457 other regions (Figure 6), which might be due to other controls on the alkenone proxy (Badger et al.,
458 2019). A recent publication from Raitzsch et al. (2021) reports a $\delta^{11}\text{B}$ reconstruction of pCO_2 that is
459 within error of other $\delta^{11}\text{B}$ isotope data from the Southern Ocean (Sosdian et al., 2018), although not
460 for the same period as Tanner et al. (2020). pCO_2 differences between our reconstruction and that of
461 Sosdian et al. (2018) and Raitzsch et al. (2021) (Fig. 8) likely reflect assumptions made for
462 calculations (of $\delta^{11}\text{B}$, TA) and the specific mono-specific calibrations used for each study, as well as
463 potential geographic differences in air-sea pCO_2 . These differences do not invalidate the boron isotope
464 proxy but illustrate the impact that specific seawater parameters and calibrations can have on
465 reconstructed pCO_2 values, as well as potential inferences of air-sea disequilibrium.

466

467 **3.5.2 Pliocene**

468 Oxygen isotope data from a global benthic foraminiferal stack show that the Pliocene epoch
469 (5.3-2.6 Ma) was initially characterized by warm conditions followed by the intensification of
470 glaciation that occurred in several steps, including during MIS M2 (3.312-3.264 Ma), followed by the
471 Middle Pliocene Warm Period (Lisiecki and Raymo, 2005). The Middle Pliocene Warm Period
472 (mPWP – 3.29-2.97 Ma) is considered a relevant geological analogue for future climate change given
473 ~3°C warmer global temperatures and sea levels that were ~20 m higher than today (Dutton et al.,
474 2015; Haywood et al., 2016), and is a target for model intercomparison projects, for which accurate
475 paleo-atmospheric pCO_2 estimates are critical (Haywood et al., 2016).

476 We calculate high pCO_2 values of 419 ± 119 ppm (2 SD, n=3, Table 2) between 4.7 to 4.5 Ma

477 during the Early Pliocene warm interval (Figure 9). The pCO₂ data we report provide a higher data
478 density for the Early Pliocene, and exhibit a trend that is in line with the reconstruction from Rae et al.
479 (2021). Our data support values of 530 ± 110 ppm over the mPWP (2 SD, n = 4), higher than
480 previously published data (Figs. 9, S2 and Table 2), although we acknowledge our low data density
481 may not fully sample variability over this period. The similarity between our reconstructed values and
482 those published for Site 871 in the Indian Ocean (Sosdian et al., 2018) suggests that changes in
483 Indonesian through-flow do not induce substantial changes in air-sea exchange in the WEP.

484 The warmth and local pCO₂ maxima of the mPWP (mid-Pliocene Warm Period) was
485 followed by a strong decrease of temperature in upwelling and high latitude regions during from 3.3-
486 2.7 Ma, coincident with glacial intensification in the Northern Hemisphere. This climate transition
487 was hypothesized to be driven by the closure of the Panama seaway the opening of the high latitudes
488 and subsequent modifications of oceanic circulation (Haug and Tiedemann, 1998). However,
489 modeling from Lunt et al. (2008) supports an additional major role for CO₂ in the glaciation. pCO₂
490 thresholds have been proposed to explain the intensification of Northern Hemisphere Glaciation, with
491 values proposed ranging from 280 ppm (DeConto et al., 2008) to 200 to 400 ppm (Koening et al.,
492 2011).

493 The pCO₂ concentrations that we calculate indicates a reduction to 350 ppm by 2.7 Ma, ~280
494 ppm by 2.6 Ma, and ~210 ppm by 2.4 Ma, in several steps. These results support roughly a halving of
495 CO₂ values when compared to values of ~530 ppm at 3.3 Ma. These values are consistent with the
496 pCO₂ thresholds proposed by both DeConto et al. (2008) and Koening et al. (2011) for the
497 intensification of Northern Hemisphere glaciation and the low atmospheric CO₂ (280 ppmv) scenario
498 from Lunt et al. (2008). Mg/Ca SST decline from 30°C to 26°C, supporting an Earth System
499 sensitivity of ~4°C/doubling of CO₂ over this range, although given uncertainties, higher values of
500 ~6°C/doubling of CO₂ that have recently been proposed (Tierney et al., 2020) can not be excluded.

501 We speculate that associated with Pliocene glacial intensification, at 4.42, 3.45 and 2.67 Ma,
502 it is possible that the declines in CO₂ and ice growth in turn drove substantial changes in pole-to-
503 equator temperature gradients and winds, that in turn may have impacted iron cycling (Watson et al.,
504 2000; Robinson et al., 2005; Martinez-Garcia et al., 2011), stratification (Toggweiler, 1999; Sigman et
505 al., 2010), and other feedbacks that impact the amplitude of glacial/interglacial cycles and have been
506 implicated as factors that could have contributed to Pliocene glacial intensification. Specifically, as
507 the mean climate state of the planet became cooler, and glacial-interglacial cycles became larger in
508 amplitude, enhanced windiness and dust transport and upwelling during glacials (Martinez-Botí et al.,
509 2015b) may have enhanced iron fertilization and subsequent carbon export (Martinez-Garcia et al.,
510 2011). While data resolution are limited, we speculate this could explain why glacial/interglacial
511 amplitudes in WEP pCO₂ values decrease from the mPWP towards the Pleistocene, whereas
512 variations in $\delta^{18}\text{O}$ are increasing – a speculation that could be tested with increased data resolution.

513

514 **3.5.3 Pleistocene**

515 During the Pleistocene (2.58-0.01 Ma), the climate system experienced a transition in
 516 glacial/interglacial (G/I) variability from low amplitude, higher frequency and obliquity-dominated
 517 oscillations (i.e., ~ 41 kyr) of the late Pliocene to the high amplitude, lower frequency and
 518 eccentricity-dominated cycles (i.e., ~ 100 kyr) of the last 800 kyr. This transition is termed the Middle
 519 Pleistocene Transition (1.2-0.8 Ma – MPT). Questions have been raised about the role of atmospheric
 520 CO₂ during this transition, including using boron-based proxies (Hönisch et al., 2009; Tripati et al.,
 521 2011; Chalk et al., 2017). Previous boron isotope studies for ODP Sites 668 and 999 in the tropical
 522 Atlantic Ocean have suggested that a decline in atmospheric CO₂ did occur during glacial periods in
 523 the MPT, but not during interglacials (Hönisch et al., 2009; Chalk et al., 2017; Dyez et al., 2018).

524 Our pCO₂ concentrations for Sites 806/807 reported here are in good agreement with those
 525 determined from ice cores from the early Pleistocene (Yan et al., 2019, Figs. 9 and 10), and with the
 526 boron-derived pCO₂ from a recent compilation (Rae et al., 2021). Results for the MPT are broadly in
 527 the range of values reported by Hönisch et al. (2009) and Chalk et al. (2017). Although our data are
 528 relatively limited, we note they have greater resolution for the middle and later part of the transition
 529 than prior publications that have drawn conclusions about the MPT (Hönisch et al., 2009; Chalk et al.,
 530 2017; Dyez et al., 2018) (Fig. 10D) and therefore we explore their implications.

531 Taken alone, or when combined with the published data from Chalk et al. (2017) (that is also
 532 based on MC-ICPMS), our results support a possible reduction of both glacial and interglacial pCO₂
 533 values. We also find evidence that during the MPT, glacial pCO₂ declined rapidly from 189 ± 30 ppm
 534 at MIS 36 (Chalk et al., 2017) to reach a minimum of $170 (\pm 52)$ ppm during MIS 30. We note that
 535 pCO₂ concentrations are within error when uncertainty is fully propagated, and then remained
 536 relatively stable until the end of the MPT whereas interglacial pCO₂ values decrease gradually to
 537 reach post-MPT values.

538 In our record for the last 16 Myr, the lowest pCO₂ is recorded at MIS 30 during the MPT,
 539 with values of $164 (\pm 44)$ ppm, which supports an atmospheric CO₂ threshold that leads to large sheet
 540 generation. During this transition, the pCO₂ threshold needed to build sufficiently large ice sheets that
 541 were able to survive the critical orbital phase of rising obliquity to ultimately switch to a 100 kyr
 542 world, was likely reached at MIS 30, but a higher pCO₂ resolution of the MPT is needed for
 543 confirmation. The multiple feedbacks resulting from stable ice sheets (iron
 544 fertilization/productivity/changes in albedo/ changes in deep water formation) might have sustained
 545 larger mean global ice volumes over the subsequent 800 kyr. An asymmetrical decrease between
 546 pCO₂ values during interglacials relative to glacials, with glacials exhibiting the largest change across

547 the MPT, would have led to increased sequestration of carbon during glacials in the 100 kyr world, as
548 discussed by Chalk et al. (2017), with increased glacial dust input and iron fertilization.

549

550 **3.6 Changes in volcanic activity and silicate weathering, and long-term pCO₂**

551 On million-year timescales, atmospheric CO₂ is controlled by its input through mantle
552 degassing in the form of sub-aerial and sub-aqueous volcanic activity and its removal by chemical
553 weathering of continental silicate rocks. Over the last 16 Myr, two relative maxima in atmospheric
554 pCO₂ are observed in our record, one during the MCO (at 15.67 Ma) and a second around the late
555 Miocene/early Pliocene (beginning at 4.7 and 4.5 Ma) (Fig. 11), though the timing for the latter is not
556 precise. The strong pCO₂ increase from the early Miocene to MCO is timely with increasing volcanic
557 activity (Foster et al. 2012), associated with the eruption of the Columbia River Flood Basalts (Hooper
558 et al., 2002; Kasbohm and Schoene, 2018), with recent geochronologic evidence published supporting
559 higher eruption activity between 16.7 and 15.9 Ma (Kasbohm and Schoene, 2018) reinforcing the idea
560 of an episodic pCO₂ increase during the MCO due to volcanic activity. Underestimation of net CO₂
561 outgassing from specific continental flood basalt eruption is possible, as both sub-aqueous and sub-
562 aerial flood basalts, under right climatic conditions, are prone to enhanced chemical weathering. For
563 example, the 4-5‰ drop in $\delta^7\text{Li}$ record at the K-Pg boundary (Misra and Froelich, 2012) is attributed
564 to rapid quasi-congruent weathering of Deccan Traps (Rene et al. 2015) during their eruption.
565 Courtillot and Rene (2003) estimate that about 50% of emitted CO₂, roughly equivalent to the amount
566 emitted by the eruption of a million cubic kilometers of Deccan Traps, may be missing due to
567 chemical and physical weathering. Additionally, the early Eocene (at ~50 Ma) 3-4‰ rise in seawater
568 $\delta^7\text{Li}$ at a time where there is not significant uplift of the Himalayas (Misra & Froelich, 2012) is also
569 attributed to incongruent weathering of previously erupted Deccan Trap basalts as the Indian
570 subcontinent moved from arid mid-latitudes to the wet low latitudes (Kent and Muttoni, 2008). Thus,
571 a significant part of the outgassed CO₂ can be consumed by chemical weathering of freshly erupted
572 hot basalts (Courtillot et al., 2003). However, the congruency of chemical weathering of basalts,
573 depending on regional climatic conditions (warm-wet vs. cold-arid), will determine the nature of
574 observable inflection in the seawater $\delta^7\text{Li}$. The possible quantification of increased rates of silicate
575 weathering inferred from $\delta^7\text{Li}$ (mentioned below) can be utilized to determine total eruptive volume
576 (missing + existing) and volatile emissions from the Columbia River Flood Basalts. At the same time
577 as continental flood basalt emissions, enhanced seafloor production could also be a second possible
578 source of CO₂; however, we note there is evidence that the rate of seafloor production has remained
579 virtually invariant over the last 60 million years (Rowley, 2002; Muller et al. 2016).

580 The second CO₂ peak can possibly be caused either by the observed increase in global
581 volcanism during the early/middle Pliocene (Kennett and Thunell, 1977; Kroenke et al., 1993), and/or
582 a by change in silicate weathering regime. Strontium and lithium isotopes ($^{87/86}\text{Sr}$ and $\delta^7\text{Li}$) have been
583 used as proxy for silicate weathering flux and congruency. Although the strontium isotope record

584 exhibits a monotonous increase, lithium isotope data (Misra and Froelich, 2012) are more variable
585 with a transition from a period of increase seawater $\delta^7\text{Li}$ (e.g. non-steady state weathering) to stable
586 seawater $\delta^7\text{Li}$ (e.g., steady state weathering) beginning at roughly 6.8 Ma (Fig. 11).

587 It is interesting to note that the rise in $\delta^7\text{Li}$ (Fig. 11B) from the early Miocene to the MCO are
588 synchronous with the rise in pCO_2 . Before 18.5 Ma, the pCO_2 is relatively stable, $\delta^7\text{Li}$ is increasing,
589 suggesting non-steady state / incongruent nature of continental chemical weathering. From 18.6 to
590 16.7 Ma, the $\delta^7\text{Li}$ record decreases by ~2 ‰, consistent with decreasing weathering rates and an
591 associated increase in pCO_2 . Between 16.7 and 15.9 Ma, when the eruption of the Columbia River
592 Flood Basalts is at a maximum, $\delta^7\text{Li}$ increases, in line with higher weathering rates that could arise
593 from higher atmospheric CO_2 and the presence of fresh basalts. The $\delta^7\text{Li}$ record then decreases again
594 until the end of the MCO at ~14.7 Ma, in line with a decrease in the eruption rate, sustaining high
595 atmospheric CO_2 . A constant increase in $\delta^7\text{Li}$ is then observed, until the early Pliocene, where there is
596 evidence for a shift to a steady-state weathering regime. This increase in $\delta^7\text{Li}$ is also consistent with
597 the decrease in pCO_2 observed until the early Pliocene.
598

599 **3.9 Conclusions**

600 We developed a reconstruction of atmospheric pCO_2 based on $\delta^{11}\text{B}$ of planktic foraminifera
601 from ODP Sites 806 and 807 located in the Western Equatorial Pacific for the past 16 million years
602 and extended the record to 22 Ma by reprocessing data from Site 872 (Sosdian et al., 2018). We build
603 on past efforts to reconstruct atmospheric pCO_2 using different proxies from this region, including
604 from carbon isotopes in marine organic matter (Rayno et al., 1996) and alkenones (Pagani et al.,
605 2010), as well as foraminiferal B/Ca ratios (Tripati et al., 2009, 2011), all of which have been shown
606 to have a number of complexities and potential sources of systematic error (e.g., Tripati et al., 2011).
607 It also builds on efforts using boron isotopes in other regions using MC-ICP-MS (Seki et al., 2010;
608 Foster et al., 2012, 2014; Greenop et al., 2014; Martinez-Botí et al., 2015b; Stap et al., 2016; Chalk et
609 al., 2017; Dyez et al., 2018; de la Vega et al., 2020), and our recent work constraining fractionation
610 factors and measuring small samples of foraminifera (Guillermic et al., 2020).

611 Our study contributes a new long-term reconstruction of atmospheric pCO_2 for the Neogene
612 derived from boron isotopes from the tropical Pacific Ocean. Although the record is not continuous,
613 with variable resolution, it captures both long-term and short-term variability associated with several
614 key transitions and demonstrates the utility of examining sites in the Western Equatorial Pacific for
615 future higher-resolution studies. Results for Sites 806 and 807 in the Western Equatorial Pacific
616 reproduce the amplitude of late Pleistocene glacial-interglacial cycles in pCO_2 . These observations are
617 consistent with the sites being in equilibrium with the atmosphere, although further work would be
618 useful to explore sources of uncertainty and differences relative to ice core pCO_2 .

619 Values increase from the Miocene to the Miocene Climatic Optimum, and the MCO values
620 for this region has higher pCO_2 than reconstructions from other areas, with values estimated as $511 \pm$

621 201 ppm (2 SD, n=3). These elevated values are likely linked to the eruption of the Columbia River
622 Flood Basalts, with values declining into the early Pliocene, including during Pliocene glacial
623 intensification. The changes in pCO₂ we observed are in line with changes in $\delta^7\text{Li}$, a proxy of silicate
624 weathering, and future modeling of multiple proxy records should be insightful. Early Pliocene data
625 for ~4.7-4.5 Ma support high pCO₂ of 419 ± 119 ppm, and elevated values during the mid-Pliocene
626 Warm Period of 530 ± 110 ppm for ~3.3-3.0 Ma. These data are low in resolution, thereby not fully
627 sampling orbital and millennial scale variability. The higher resolution record for Pliocene glacial
628 intensification supports a reduction in pCO₂ during several steps, with values at 2.7 Ma of 350 ppm,
629 2.6 Ma of ~280 ppm, and 2.4 Ma of ~210 ppm. We find support for a larger reduction in glacial pCO₂
630 during the Mid-Pleistocene Transition compared to interglacial pCO₂, and a minimum in pCO₂ during
631 glacial MIS 30. These findings confirm a role for CO₂ in the transition from a 41 kyr to a 100 kyr
632 world.

633 Higher-resolution boron isotope records from the WEP would allow for further resolution of
634 these changes. Additional constraints on temperature, such as from clumped isotopes (Tripati et al.,
635 2010) in the WEP (Tripati et al., 2014), could allow for uncertainties in pCO₂ estimates from boron
636 isotopes to be reduced and for new constraints on Earth climate sensitivity. Future constraints on the
637 vertical structure of the tropical Pacific (Shankle et al., 2021) during these transitions may also
638 potentially be illuminating.

639

640 **Data availability**

641 All data are available in the supplemental materials. Reconstructed climate parameters and proxy data
642 will be archived at the *NOAA's NCEI World Data Service for Paleoclimatology* on acceptance at
643 <https://www.ncei.noaa.gov/products/paleoclimatology>.

644

645 **Author Contributions**

646 AT developed the project and wrote the proposals that funded the work. All authors contributed to the
647 experimental design. MG performed the measurements with assistance from SM. MG conducted data
648 analysis with input from AT. MG drafted the paper, which was edited by all authors. Interpretation
649 was led by MG and AT, with input from SM and RE.

650

651 **Competing interests**

652 The authors declare that they have no conflict of interest.

653

654 **Acknowledgments**

655 The authors wish to thank the Tripati Lab, including Lea Bonnin and Alexandra Villa, for assistance
656 with picking samples; the IODP core repository for provision of samples; Mervyn Greaves for

657 technical support and use of laboratory space at the University of Cambridge; Yoan Germain,
658 Emmanuel Ponzevera, Céline Liorzou and Oanez Lebeau for technical support and use of laboratory
659 space at IUEM and Ifremer (Plouzané, France). We thank Thomas Chalk, another anonymous
660 reviewer, and Hubertus Fischer for their helpful comments on the manuscript, and Mathis Hain for
661 discussion of this work.

662

663 **Financial support**

664 This research is supported by DOE BES grant no. DE-FG02-13ER16402 to AKT, by the International
665 Research Chair Program that is funded by the French government (LabexMer ANR-10-LABX-19-01)
666 to AKT and RAE, and IAGC student research grant 2017.

667

668 **6. References**

669 Aggarwal, S. K., & You, C. F.: A review on the determination of isotope ratios of boron with mass
670 spectrometry. *Mass Spectrometry Reviews*, 36(4), 499-519, 2017.

671 Allen, K. A. and Hönisch, B.: The planktic foraminiferal B/Ca proxy for seawater carbonate
672 chemistry, A critical evaluation, *Earth Planet. Sci. Lett.*, 345–348, 203–211, 2012.

673 Allen, K. A., Hönisch, B., Eggin, S. M., Yu, J., Spero, H. J., Elderfield, H.: Controls on boron
674 incorporation in cultured tests of the planktic foraminifer *Orbulina universa*. *Earth and Planetary
675 Science Letters*, 309(3-4), 291-301, 2011.

676 Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., D. Pancost, R., J.
677 Lunt, D., Pearson, P. N.: Changing atmospheric CO₂ concentration was the primary driver of
678 early Cenozoic climate. *Nature*, 533(7603), 380-384, 2016.

679 Babilia, T., Huang, K. F., Rosenthal, Y., Conte, M. H., & Lin, H. L. Development of B/Ca as a
680 seawater pH proxy using sediment trap time series, abstract, 2010.

681 Badger M. P. S., Chalk T. B., Foster G. L., Bown P. R., Gibbs S. J., Sexton P. F., Schmidt D. N.,
682 Pälike H., Mackensen A. and Pancost R. D.: Insensitivity of alkenone carbon isotopes to
683 atmospheric CO₂ at low to moderate CO₂ levels. *Climate of the Past*, 15(2), 539-554, 2019.

684 Badger M. P. S., Lear C. H., Pancost R. D., Foster G. L., Bailey T. R., Leng M. J. and Abels H. A.:
685 CO₂ drawdown following the middle Miocene expansion of the Antarctic Ice Sheet.
686 *Paleoceanography* 28, 42–53, 2013.

687 Barker S., Greaves M. and Elderfield H.: A study of cleaning procedures used for foraminiferal
688 Mg/Ca paleothermometry. *Geochemistry, Geophys. Geosystems* 4, 1–20, 2003.

689 Bartoli G., Hönisch B. and Zeebe R. E.: Atmospheric CO₂ decline during the Pliocene intensification
690 of Northern Hemisphere glaciations. *Paleoceanography* 26, 1–14, 2011.

691 Berger, W.H., Kroenke, J.W., Mayer, L.A.: *Proceedings of the Ocean Drilling Program, Scientific
692 Results*, Vol. 130, 1993.

693 Berger, W.H., Kroenke, L., Janecek, T.R., et al., . *Proceedings of the Ocean Drilling
694 Program. Initial Reports*, p. 130, 1991.

695 Bian, N., & Martin, P. A.: Investigating the fidelity of Mg/Ca and other elemental data from
696 reductively cleaned planktonic foraminifera. *Paleoceanography*, 25(2), 2010.

697 Bolton C. T. and Stoll H. M.: Late Miocene threshold response of marine algae to carbon dioxide
698 limitation. *Nature* 500, 558–562, 2013.

699 Bolton C. T., Hernández-Sánchez M. T., Fuertes M.-Á., González-Lemos S., Abrevaya L., Mendez-
700 Vicente A., Flores J.-A., Probert I., Giosan L., Johnson J. and Stoll H. M. : Decrease in
701 coccolithophore calcification and CO₂ since the middle Miocene. *Nat. Commun.* 7, 10284,
702 2016.

703 Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R.
704 A. Locarnini, A. V. Mishonov, T.D. O'Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar,

705 and M. M. Zweng, 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus,
706 Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp.,
707 <http://doi.org/10.7289/V5NZ85MT>, 2013.

708 Brennan, S. T., Lowenstein, T. K., & Cendón, D. I. : The major-ion composition of Cenozoic
709 seawater: The past 36 million years from fluid inclusions in marine halite. *American Journal of*
710 *Science*, 313(8), 713-775, 2013.

711 Caves J. K., Jost A. B., Lau K. V. and Maher K.: Cenozoic carbon cycle imbalances and a variable
712 weathering feedback. *Earth Planet. Sci. Lett.* 450, 152–163, 2016.

713 Chalk T. B., Hain M. P., Foster G. L., Rohling E. J., Sexton P. F., Badger M. P. S., Cherry S. G.,
714 Hasenfratz A. P., Haug G. H., Jaccard S. L., Martínez-García A., Pälike H., Pancost R. D. and
715 Wilson P. A.: Causes of ice age intensification across the Mid-Pleistocene Transition. *Proc. Natl.*
716 *Acad. Sci.*, 201702143, 2017.

717 Coggon R. M., Teagle D. A. H. and Dunkley Jones T. Comment on “What do we know about the
718 evolution of Mg to Ca ratios in seawater?” by Wally Broecker and Jimin Yu. *Paleoceanography*
719 26, 2011.

720 DeConto, R. M., & Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining
721 atmospheric CO₂. *Nature*, 421(6920), 245-249, 2003.

722 DeConto R. M., Pollard D., Wilson P. A., Pälike H., Lear C. H. and Pagani M.: Thresholds for
723 Cenozoic bipolar glaciation. *Nature* 455, 652–656, 2008.

724 DeFantle M. S. and DePaolo D. J.: Sr isotopes and pore fluid chemistry in carbonate sediment of the
725 Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg
726 over the last 10 million years. *Geochim. Cosmochim. Acta* 70, 3883–3904, 2006.

727 Dekens P. S., Lea D. W., Pak D. K. and Spero H. J.: Core top calibration of Mg/Ca in tropical
728 foraminifera: Refining paleotemperature estimation. *Geochemistry, Geophys. Geosystems* 3, 1–
729 29, 2002.

730 Delaney, M. L., Bé, A. W., & Boyle, E. A.: Li, Sr, Mg, and Na in foraminiferal calcite shells from
731 laboratory culture, sediment traps, and sediment cores. *Geochimica et Cosmochimica Acta*,
732 49(6), 1327-1341, 1985.

733 de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., & Foster, G. L.: Atmospheric CO₂ during
734 the Mid-Piacenzian Warm Period and the M2 glaciation. *Scientific Reports*, 10(1), 1-8, 2020.

735 Dickson A. G.: Thermodynamics of the Dissociation of Boric Acid in Potassium Chloride Solutions
736 from 273.15 to 318.15 K. *J. Chem. Eng. Data* 35, 253–257, 1990.

737 Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell, A. E., & John, C. M.:
738 Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. *Paleoceanography*
739 and paleoclimatology, 33(3), 246-263, 2018.

740 Dyez, K. A., Hönisch, B., & Schmidt, G. A.: Early Pleistocene obliquity-scale pCO₂ variability at~
741 1.5 million years ago. *Paleoceanography and Paleoclimatology*, 33(11), 1270-1291, 2018.

742 Evans, D. & Müller, W.: Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for
743 secular change in seawater Mg/Ca. *Paleoceanography* 27, PA4205, 2012.

744 Evans, D., Wade, B. S., Henenhan, M., Erez, J., & Müller, W.: Revisiting carbonate chemistry
745 controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and
746 hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene
747 transition. *Climate of the Past*, 12(4), 819-835, 2016.

748 Farmer, J. R., Hönisch, B., & Uchikawa, J.: Single laboratory comparison of MC-ICP-MS and N-
749 TIMS boron isotope analyses in marine carbonates. *Chemical Geology*, 447, 173-182, 2016.

750 Farrell, J.W., Raffi, I., Janecek, T., Murray, D.W., Levitan, M., Dadey, K.A., Emeis, K.C., Lyle, M.,
751 Flores, J.A., Hovan, S: Late Neogene sedimentation patterns in the eastern Equatorial Pacific
752 Ocean. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., van Andel, T.H. (Eds.),
753 Proceedings of the Ocean Drilling Program. Scientific Results, vol. 138. ocean Drilling
754 Program, College Station, TX, pp. 717–756, 1995.

755 Flower, B. P., & Kennett, J. P.: Middle Miocene deepwater paleoceanography in the southwest
756 Pacific: relations with East Antarctic Ice Sheet development. *Oceanographic Literature Review*,
757 8(43), 796, 1996.

758 Flower, B. P., & Kennett, J. P.: Middle Miocene ocean-climate transition: High-resolution oxygen and
759 carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific.
760 *Paleoceanography*, 8(6), 811-843, 1993.

761 Ford, H. L., Ravelo, A. C., Dekens, P. S., LaRiviere, J. P., & Wara, M. W.: The evolution of the
762 equatorial thermocline and the early Pliocene El Padre mean state. *Geophysical Research
763 Letters*, 42(12), 4878-4887, 2015.

764 Foster G. L.: Seawater pH, pCO₂ and [CO₂-3] variations in the Caribbean Sea over the last 130 kyr: A
765 boron isotope and B/Ca study of planktic foraminifera. *Earth Planet. Sci. Lett.* 271, 254–266,
766 2008.

767 Foster G. L. and Rohling E. J.: Relationship between sea level and climate forcing by CO₂ on
768 geological timescales. *Proc. Natl. Acad. Sci.* 110, 1209–1214, 2013.

769 Foster G. L. and Sexton P. F.: Enhanced carbon dioxide outgassing from the eastern equatorial
770 Atlantic during the last glacial. *Geology* 42, 1003–1006, 2014.

771 Foster, G. L., Hönisch, B., Paris, G., Dwyer, G. S., Rae, J. W., Elliott, T., Gaillardet, J., Hemming, N.
772 G., Louvat, P., Vengosh, A.: Interlaboratory comparison of boron isotope analyses of boric acid,
773 seawater and marine CaCO₃ by MC-ICPMS and NTIMS. *Chemical Geology*, 358, 1-14, 2013.

774 Foster G. L., Lear C. H. and Rae J. W. B.: The evolution of pCO₂, ice volume and climate during the
775 middle Miocene. *Earth Planet. Sci. Lett.* 341–344, 243–254, 2012.

776 Foster G. L., Royer D. L. and Lunt D. J.: Future climate forcing potentially without precedent in the
777 last 420 million years. *Nat. Commun.* 8, 14845. <http://dx.doi.org/10.1038/ncomms14845>, 2017.

778 Gasson E., DeConto R. M., Pollard D. and Levy R. H.: Dynamic Antarctic ice sheet during the early
779 to mid-Miocene. *Proc. Natl. Acad. Sci.* 113, 3459–3464, 2016.

780 Gothmann A. M., Stolarski J., Adkins J. F., Schoene B., Dennis K. J., Schrag D. P., Mazur M. and
781 Bender M. L.: Fossil corals as an archive of secular variations in seawater chemistry since the
782 Mesozoic. *Geochim. Cosmochim. Acta* 160, 188–208, 2015.

783 GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla California USA,
784 www.graphpad.com"

785 Gray, W. R., & Evans, D.: Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of
786 culture studies and application to the Last Glacial Maximum. *Paleoceanography and
787 Paleoclimatology*, 34(3), 306-315, 2019.

788 Gray, W. R., Weldeab, S., Lea, D. W., Rosenthal, Y., Gruber, N., Donner, B., & Fischer, G.: The
789 effects of temperature, salinity, and the carbonate system on Mg/Ca in *Globigerinoides ruber*
790 (white): A global sediment trap calibration. *Earth and Planetary Science Letters*, 482, 607-620,
791 2018.

792 Greenop R., Foster G. L., Wilson P. A. and Lear C. H.: Middle Miocene climate instability associated
793 with high-amplitude CO₂ variability. *Paleoceanography* 29, 845–853, 2014.

794 Greenop R., Hain M. P., Sosdian S. M., Oliver K. I. C., Goodwin P., Chalk T. B., Lear C. H., Wilson
795 P. A. and Foster G. L.: A record of Neogene seawater $\delta^{11}\text{B}$ reconstructed from paired $\delta^{11}\text{B}$
796 analyses on benthic and planktic foraminifera. *Clim. Past* 13, 149–170, 2017.

797 Guillermic, M., Misra, S., Eagle, R., Villa, A., Chang, F., Tripati, A.: Seawater pH reconstruction
798 using boron isotopes in multiple planktonic foraminifera species with different depth habitats
799 and their potential to constrain pH and pCO₂ gradients. *Biogeosciences*, 17(13), 3487-3510,
800 2020.

801 Gutjahr, M., Bordier, L., Douville, E., Farmer, J., Foster, G. L., Hathorne, E. C., J., Foster, G. L.,
802 Hathorne, E., Hönish, B., Lemarchand, D., Louvat, P., McCulloch, M., Noireaux, J., Pallavicini,
803 N., Rodushkin, I., Roux, P., Stewart, J., Thil, F. You, C.F. Sub-permil interlaboratory consistency
804 for solution-based boron isotope analyses on marine carbonates. *Geostandards and
805 Geoanalytical Research*, 2020.

806 Hain, M. P., Foster, G. L., & Chalk, T.: Robust constraints on past CO₂ climate forcing from the
807 boron isotope proxy. *Paleoceanography and Paleoclimatology*, 33(10), 1099-1115, 2018.

808 Hansen, J., Sato, M., & Ruedy, R.: Perception of climate change. *Proceedings of the National
809 Academy of Sciences*, 109(37), 2012.

810 Hansen J., Sato M., Russell G. and Kharecha P.: Climate sensitivity, sea level and atmospheric carbon
 811 dioxide. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 371, 1–38, 2013.

812 Haug, G. H., & Tiedemann, R.: Effect of the formation of the Isthmus of Panama on Atlantic Ocean
 813 thermohaline circulation. *Nature*, 393(6686), 673–676, 1998.

814 Haywood, A. M., Dowsett, H. J., & Dolan, A. M.: Integrating geological archives and climate models
 815 for the mid-Pliocene warm period. *Nature communications*, 7(1), 1–14, 2016.

816 Hemming N. G. and Hanson G. N.: Boron isotopic composition and concentration in modern marine
 817 carbonates. *Geochim. Cosmochim. Acta* 56, 537–543, 1992.

818 Henehan M. J., Foster G. L., Bostock H. C., Greenop R., Marshall B. J. and Wilson P. A.: A new
 819 boron isotope-pH calibration for *Orbulina universa*, with implications for understanding and
 820 accounting for ‘vital effects.’ *Earth Planet. Sci. Lett.* 454, 282–292, 2016.

821 Henehan M. J., Rae J. W. B., Foster G. L., Erez J., Prentice K. C., Kucera M., Bostock H. C.,
 822 Martínez-Botí M. A., Milton J. A., Wilson P. A., Marshall B. J. and Elliott T. (2013) Calibration
 823 of the boron isotope proxy in the planktonic foraminifera *Globigerinoides ruber* for use in
 824 palaeo-CO₂reconstruction. *Earth Planet. Sci. Lett.* 364, 111–122, 2013.

825 Higgins J. A., Kurbatov A. V., Spaulding N. E., Brook E., Introne D. S., Chimiak L. M., Yan Y.,
 826 Mayewski P. A. and Bender M. L.: Atmospheric composition 1 million years ago from blue ice
 827 in the Allan Hills, Antarctica. *Proc. Natl. Acad. Sci.* 112, 6887–6891, 2015.

828 Holbourn A., Kuhnt W., Frank M. and Haley B. A.: Changes in Pacific Ocean circulation following
 829 the Miocene onset of permanent Antarctic ice cover. *Earth Planet. Sci. Lett.* 365, 38–50, 2013.

830 Holcomb M., DeCarlo T. M., Schoepf V., Dissard D., Tanaka K. and McCulloch M.: Cleaning and
 831 pre-treatment procedures for biogenic and synthetic calcium carbonate powders for
 832 determination of elemental and boron isotopic compositions. *Chem. Geol.* 398, 11–21, 2015.

833 Höönsch, B. and Hemming, N. G., Ground-truthing the boron isotope-paleo-pH proxy in planktonic
 834 foraminifera shells: Partial dissolution and shell size effects, *Paleoceanography* 19, 1–13, 2004.

835 Honisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M., Arbuszewski, J., deMenocal, P.,
 836 Rosenthal, Y., D. Russel, a.: Elderfield, H.: The influence of salinity on Mg/Ca in planktic
 837 foraminifers—Evidence from cultures, core-top sediments and complementary d 18 O.
 838 *Geochimica Et Cosmochimica Acta*, 121, 196–213, 2013.

839 Höönsch, B., Eggins, S. M., Haynes, L. L., Allen, K. A., Holland, K. D., & Lorbacher, K.: Boron
 840 Proxies in Paleoceanography and Paleoclimatology. John Wiley & Sons, 2019.

841 Höönsch B., Hemming N. G., Archer D., Siddall M. and McManus J. F.: Atmospheric carbon dioxide
 842 concentration across the mid-pleistocene transition. *Science* 324, 1551–1554, 2009.

843 Horita J., Zimmermann H. and Holland H. D.: Chemical evolution of seawater during the
 844 Phanerozoic: Implications from the record of marine evaporites. *Geochim. Cosmochim. Acta* 66,
 845 3733–3756., 2002.

846 IPCC: Climate Change 2014 - The Physical Science Basis, edited by Intergovernmental Panel on
 847 Climate Change, Cambridge University Press, Cambridge., 2014.

848 IPCC: Global Warming of 1.5 °C- edited by Intergovernmental Panel on Climate Change, 2018.

849 Johnstone, H. J., Lee, W., & Schulz, M.: Effect of preservation state of planktonic foraminifera tests
 850 on the decrease in Mg/Ca due to reductive cleaning and on sample loss during cleaning.
 851 *Chemical Geology*, 420, 23–36, 2016.

852 Kasbohm, J., & Schoene, B.: Rapid eruption of the Columbia River flood basalt and correlation with
 853 the mid-Miocene climate optimum. *Science advances*, 4(9), eaat8223, 2018.

854 Kennett, J. P., & Thunell, R. C.: On explosive Cenozoic volcanism and climatic implications. *Science*,
 855 196(4295), 1231–1234, 1977.

856 Kisakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., & Erez, J.: Controls on shell Mg/Ca
 857 and Sr/Ca in cultured planktonic foraminiferan, *Globigerinoides ruber* (white). *Earth and*
 858 *Planetary Science Letters*, 273(3–4), 260–269, 2008.

859 Klochko K., Kaufman A. J., Yao W., Byrne R. H. and Tossell J. A.: Experimental measurement of
 860 boron isotope fractionation in seawater. *Earth Planet. Sci. Lett.* 248, 261–270, 2006.

861 Koenig S. J., DeConto R. M. and Pollard D.: Late Pliocene to Pleistocene sensitivity of the Greenland
 862 Ice Sheet in response to external forcing and internal feedbacks. *Clim. Dyn.* 37, 1247–1268,
 863 2011.

864 Kroenke, L. W., Berger, W. H., Janecek, T. R. and Shipboard Scientific Party: Proceedings of the
865 Ocean Drilling Program, Initial Reports, Vol. 130, 1991.

866 Lea, D. W.: The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. *Journal*
867 of *Climate*, 17(11), 2170–2179, 2004.

868 Lee, K., Kim, T. W., Byrne, R. H., Millero, F. J., Feely, R. A., & Liu, Y. M.: The universal ratio of
869 boron to chlorinity for the North Pacific and North Atlantic oceans. *Geochimica et*
870 *Cosmochimica Acta*, 74(6), 1801–1811, 2010.

871 Lea, D. W., Pak, D. K., & Spero, H. J.: Climate impact of late Quaternary equatorial Pacific sea
872 surface temperature variations. *Science*, 289(5485), 1719–1724, 2000.

873 Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M.,
874 Thomas, E., & Wilson, P. A.: Neogene ice volume and ocean temperatures: Insights from
875 infaunal foraminiferal Mg/Ca paleothermometry. *Paleoceanography*, 30(11), 1437–1454, 2015.

876 Lemarchand D., Gaillardet J., Lewin and Allégre C. J.: The influence of rivers on marine boron
877 isotopes and implications for reconstructing past ocean pH. *Nature* 408, 951–954, 2000.

878 Lisiecki L. E. and Raymo M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic $\delta^{18}\text{O}$
879 records. *Paleoceanography* 20, 1–17, 2005.

880 Lloyd, N. S., Sadekov, A. Y. and Misra, S.: Application of 1013ohm Faraday cup current amplifiers
881 for boron isotopic analyses by solution mode and laser ablation multicollector inductively
882 coupled plasma mass spectrometry. *Rapid Commun. Mass Spectrom.*, 32, 9–18, 2018.

883 Lueker, T. J., Dickson, A. G., & Keeling, C. D.: Ocean pCO_2 calculated from dissolved inorganic
884 carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of
885 CO_2 in gas and seawater at equilibrium. *Marine chemistry*, 70(1-3), 105–119, 2000.

886 Lunt D. J., Foster G. L., Haywood A. M. and Stone E. J.: Late Pliocene Greenland glaciation
887 controlled by a decline in atmospheric CO_2 levels. *Nature* 454, 1102–1105, 2008.

888 Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., & Dowsett, H. J.: Earth
889 system sensitivity inferred from Pliocene modelling and data. *Nature Geoscience*, 3(1), 60–64,
890 2010.

891 Lüthi D., Le Floch M., Bereiter B., Blunier T., Barnola J. M., Siegenthaler U., Raynaud D., Jouzel J.,
892 Fischer H., Kawamura K. and Stocker T. F.: High-resolution carbon dioxide concentration
893 record 650,000–800,000 years before present. *Nature* 453, 379–382, 2008.

894 Martínez-Botí, M. A., Marino G., Foster G. L., Ziveri P., Henehan M. J., Rae J. W. B., Mortyn P. G.
895 and Vance D.: Boron isotope evidence for oceanic carbon dioxide leakage during the last
896 deglaciation. *Nature* 518, 219–222, 2015b.

897 Martínez-Garcia, A., Rosell-Melé, A., Jaccard, S. L., Geibert, W., Sigman, D. M., & Haug, G. H.:
898 Southern Ocean dust–climate coupling over the past four million years. *Nature*, 476(7360), 312–
899 315, 2011.

900 Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J. and Schott, J.: Characterization of boron
901 incorporation and speciation in calcite and aragonite from co-precipitation experiments under
902 controlled pH, temperature and precipitation rate. *Geochim. Cosmochim. Acta*, 150, 299–313,
903 2015.

904 McCulloch M. T., Holcomb M., Rankenburg K. and Trotter J. A.: Rapid, high-precision
905 measurements of boron isotopic compositions in marine carbonates. *Rapid Commun. Mass*
906 *Spectrom.* 28, 2704–2712, 2014.

907 Medina-Elizalde M. and Lea D. W.: The mid-pleistocene transition in the tropical pacific. *Science*
908 310, 1009–1012, 2005.

909 Misra, S. and Froelich, P. N.: Lithium isotope history of cenozoic seawater: Changes in silicate
910 weathering and reverse weathering. *Science* (80-.). 335, 818–823, 2012.

911 Misra, S., Greaves, M., Owen, R., Kerr, J., Elmore, A. C. and Elderfield, H.: Determination of B/Ca
912 of natural carbonates by HR-ICP-MS. *Geochemistry, Geophys. Geosystems* 15, 1617–1628,
913 2014a.

914 Misra, S., Owen, R., Kerr, J., Greaves, M. and Elderfield, H.: Determination of $\delta^{11}\text{B}$ by HR-ICP-MS
915 from mass limited samples: Application to natural carbonates and water samples. *Geochim.*
916 *Cosmochim. Acta* 140, 531–552, 2014b.

917 Nathan, S. A., & Leckie, R. M.: *Palaeogeography, Palaeoclimatology, Palaeoecology*, 274(3-4), 140-
 918 159, 2009.

919 Ni Y., Foster G. L., Bailey T., Elliott T., Schmidt D. N., Pearson P., Haley B. and Coath C.: A core
 920 top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers.
 921 *Paleoceanography* 22, 2007.

922 Nir O., Vengosh A., Harkness J. S., Dwyer G. S. and Lahav O.: Direct measurement of the boron
 923 isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH. *Earth*
 924 *Planet. Sci. Lett.* 414, 1–5, 2015.

925 Nürnberg, D., Bijma, J., & Hemleben, C.: Assessing the reliability of magnesium in foraminiferal
 926 calcite as a proxy for water mass temperatures. *Geochimica et Cosmochimica Acta*, 60(5), 803-
 927 814, 1996.

928 O'Brien C. L., Foster G. L., Martínez-Botí M. A., Abell R., Rae J. W. B. and Pancost R. D.: High sea
 929 surface temperatures in tropical warm pools during the Pliocene. *Nat. Geosci.* 7, 606–611, 2014.

930 Osborne, E. B., Umling, N. E., Bizimis, M., Buckley, W., Sadekov, A., Tappa, E., Marshall, B., R.
 931 Sautter, L., Thunell, R. C.: A Sediment Trap Evaluation of B/Ca as a Carbonate System Proxy in
 932 Asymbiotic and Nondinoflagellate Hosting Planktonic Foraminifera. *Paleoceanography and*
 933 *Paleoclimatology*, 35(2), 2020.

934 Pagani P., Freeman G., Arthur F., Schuster M., Tiercelin J.-J. and Brunet M.: Late miocene
 935 atmospheric CO₂ concentrations and the expansion of C(4) grasses. *Science* 285, 876–9, 1999.

936 Pagani M., Liu Z., Lariviere J. and Ravelo A. C.: High Earth-system climate sensitivity determined
 937 from Pliocene carbon dioxide concentrations. *Nat. Geosci.* 3, 27–30, 2010.

938 Pagani M., Zachos J. C., Freeman K. H., Tipple B. and Bohaty S.: Atmospheric science: Marked
 939 decline in atmospheric carbon dioxide concentrations during the Paleogene. *Science* 309, 600–
 940 603, 2005.

941 Pearson, P. N., & Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million
 942 years. *Nature*, 406(6797), 695-699, 2000.

943 Perez, F. F., & Fraga, F.: Association constant of fluoride and hydrogen ions in seawater. *Marine*
 944 *Chemistry*, 21(2), 161-168, 1987.

945 Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J. M., Basile I., Bender M., Chappellaz J.,
 946 Davis M., Delaygue G., Delmotte M., Kotiyakov V. M., Legrand M., Lipenkov V. Y., Lorius C.,
 947 Pépin L., Ritz C., Saltzman E. and Stievenard M.: Climate and atmospheric history of the past
 948 420,000 years from the Vostok ice core, Antarctica. *Nature* 399, 429–436, 1999.

949 Pierrot, D., Lewis, E., & Wallace, D. W. R.: MS Excel program developed for CO₂ system
 950 calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge
 951 National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 10, 2006.

952 Premoli Silva, L., Haggerty, J., Rack, F., et al.: Proceedings of the Ocean Drilling Program, Initial
 953 Reports, Vol. 144, 1993.

954 Rae, J. W., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., & Whiteford, R. D.: Atmospheric CO₂
 955 over the Past 66 Million Years from Marine Archives. *Annual Review of Earth and Planetary*
 956 *Sciences*, 49, 2021.

957 Raitzsch M. and Hönisch B.: Cenozoic boron isotope variations in benthic foraminifers. *Geology* 41,
 958 591–594, 2013.

959 Raitzsch M., Bijma J., Benthien A., Richter K. U., Steinhoefel G. and Kučera M.: Boron isotope-
 960 based seasonal paleo-pH reconstruction for the Southeast Atlantic – A multispecies approach
 961 using habitat preference of planktonic foraminifera. *Earth Planet. Sci. Lett.* 487, 138–150, 2018.

962 Raitzsch, M., Bijma, J., Bickert, T., Schulz, M., Holbourn, A., & Kučera, M.: Atmospheric carbon
 963 dioxide variations across the middle Miocene climate transition. *Climate of the Past*, 17(2), 703-
 964 719, 2021.

965 Ravelo, A. C., Lawrence, K. T., Fedorov, A., & Ford, H. L.: Comment on “A 12-million-year
 966 temperature history of the tropical Pacific Ocean”. *Science*, 346(6216), 1467-1467, 2014.

967 Retallack G. J.: Greenhouse crises of the past 300 million years. *Geol. Soc. Am. Bull.* 121, 1441–
 968 1455, 2009.

969 Rickaby, R. E. M. and Halloran, P.: Cool La Nina During the Warmth of the Pliocene?, *Science*, 307,
 970 1948–1952, 2005.

971 Ridgwell A. and Zeebe R. E.: The role of the global carbonate cycle in the regulation and evolution of
972 the Earth system. *Earth Planet. Sci. Lett.* 234, 299–315, 2005.

973 Royer D. L.: Stomatal density and stomatal index as indicators of paleoatmospheric CO₂
974 concentration. *Rev. Palaeobot. Palynol.* 114, 1–28, 2001.

975 Rowley, D. B.: Rate of plate creation and destruction: 180 Ma to present. *Geological Society of*
976 *America Bulletin*, 114(8), 927-933, 2002.

977 Russell, A. D., Hönisch, B., Spero, H. J., & Lea, D. W.: Effects of seawater carbonate ion
978 concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera.
979 *Geochimica et Cosmochimica Acta*, 68(21), 4347-4361, 2004.

980 Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P. J., Mix A.
981 C., Rosell-Melé, A.: Climate sensitivity estimated from temperature reconstructions of the Last
982 Glacial Maximum. *Science*, 334(6061), 1385-1388, 2011.

983 Seki O., Foster G. L., Schmidt D. N., Mackensen A., Kawamura K. and Pancost R. D.: Alkenone and
984 boron-based Pliocene pCO₂records. *Earth Planet. Sci. Lett.* 292, 201–211, 2010.

985 Shackleton N.J. , Berger A., Peltier W.R.: *Trans. R. Soc. Edinb. Earth Sci.* 81, 251. Shipboard Leg, O.
986 D. P., Map, O. D. P., & Map, D. S. D.: P. Initial Reports: Volume 130.
987 doi:10.2973/odp.proc.ir.130.108.1991, 1991.

988 Shuttleworth, R., Bostock, H. C., Chalk, T. B., Calvo, E., Jaccard, S. L., Pelejero, C., Martínez-
989 Garcia, A., & Foster, G. L. (2021). Early deglacial CO₂ release from the Sub-Antarctic Atlantic
990 and Pacific oceans. *Earth and planetary science letters*, 554, 116649.

991 Shevenell, A. E., Kennett, J. P., & Lea, D. W.: Middle Miocene southern ocean cooling and Antarctic
992 cryosphere expansion. *Science*, 305(5691), 1766-1770, 2004.

993 Schlitzer, R., Ocean Data View, <https://odv.awi.de>, 2016.

994 Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D.,
995 Barnola, JM., Fischer, H., Masson-Delmotte, V., Jouzel, J.: Stable carbon cycle–climate
996 relationship during the late Pleistocene. *Science*, 310(5752), 1313-1317, 2005.

997 Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., & Lear, C. H.: Ocean carbon storage across
998 the middle Miocene: A new interpretation for the Monterey Event. *Nature communications*,
999 11(1), 1-11, 2020.

1000 Sosdian, S. M., Greenop R., Hain M. P., Foster G. L., Pearson P. N. and Lear C. H.: Constraining the
1001 evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. *Earth*
1002 *Planet. Sci. Lett.* 498, 362–376, 2018.

1003 Stap L. B., de Boer B., Ziegler M., Bintanja R., Lourens L. J. and van de Wal R. S. W.: CO₂ over the
1004 past 5 million years: Continuous simulation and new $\delta^{11}\text{B}$ -based proxy data. *Earth Planet. Sci.*
1005 *Lett.* 439, 1–10, 2016.

1006 Stoll, H. M., Guitian, J., Hernandez-Almeida, I., Mejia, L. M., Phelps, S., Polissar, P., Rosenthal, Y.,
1007 Zhang, H. & Ziveri, P.: Upregulation of phytoplankton carbon concentrating mechanisms during
1008 low CO₂ glacial periods and implications for the phytoplankton pCO₂ proxy. *Quaternary*
1009 *Science Reviews*, 208, 1-20, 2019.

1010 Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., & Hull, P. M.: North Atlantic
1011 temperature and pCO₂ coupling in the early-middle Miocene. *Geology*, 46(6), 519-522, 2018.

1012 Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C. L., & Hull, P. M.: Miocene Evolution of
1013 North Atlantic Sea Surface Temperature. *Paleoceanography and Paleoclimatology*, 35(5), 2020.

1014 Sutton J. N., Liu Y.-W., Ries J. B., Guillermic M., Ponzevera E. and Eagle R. A.: $\delta^{11}\text{B}$ as monitor of
1015 calcification site pH in divergent marine calcifying organisms. *Biogeosciences* 15, 1447–1467,
1016 2018.

1017 Takahashi T., Sutherland S. C., Chipman D. W., Goddard J. G. and Ho C.: Climatological
1018 distributions of pH, pCO₂, total CO₂, alkalinity, and CaCO₃saturation in the global surface
1019 ocean, and temporal changes at selected locations. *Mar. Chem.* 164, 95–125, 2014.

1020 Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J. B., Sepulchre, P., Zhang, Z., De Schepper,
1021 S.: Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO₂
1022 Pliocene background climate. *Earth and Planetary Science Letters*, 472, 266-276, 2017.

1023 Tanner, T., Hernández-Almeida, I., Drury, A. J., Gutián, J., & Stoll, H.: Decreasing atmospheric CO₂
1024 during the late Miocene Cooling. *Paleoceanography and Paleoclimatology*, e2020PA003925,
1025 2020.

1026 Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., & Poulsen, C. J.: Glacial cooling and
1027 climate sensitivity revisited. *Nature*, 584(7822), 569-573, 2020.

1028 Thomas, E.: Descent into the Icehouse. *Geology* 36, 191–192, 2008.

1029 Toggweiler, J. R.: Variation of atmospheric CO₂ by ventilation of the ocean's deepest water.
1030 *Paleoceanography*, 14(5), 571-588, 1999.

1031 Tripati, A., & Darby, D.: Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial
1032 ice and pan-Arctic sea ice. *Nature communications*, 9(1), 1-11, 2018

1033 Tripati A. K., Roberts C. D. and Eagle R. A.: Coupling of CO₂ and Ice sheet stability over major
1034 climate transitions of the last 20 million years. *Science* (80). 326, 1394–1397, 2009.

1035 Tripati A. K., Roberts C. D., Eagle R. A. and Li G.: A 20 million year record of planktic foraminiferal
1036 B/Ca ratios: Systematics and uncertainties in pCO₂ reconstructions. *Geochim. Cosmochim. Acta*
1037 75, 2582–2610. <http://dx.doi.org/10.1016/j.gca.2011.01.018>, 2011.

1038 Tyrrell, T., & Zeebe, R. E.: History of carbonate ion concentration over the last 100 million years.
1039 *Geochimica et Cosmochimica Acta*, 68(17), 3521-3530, 2004.

1040 Van Der Burgh J., Visscher H., Dilcher D. L. and Kürschner W. M.: Paleoatmospheric signatures in
1041 Neogene fossil leaves. *Science* 260, 1788–1790, 1993.

1042 Vogl J. and Rosner M.: Production and Certification of a Unique Set of Isotope and Delta Reference
1043 Materials for Boron Isotope Determination in Geochemical, Environmental and Industrial
1044 Materials. *Geostand. Geoanalytical Res.* 36, 161–175, 2012.

1045 Wara M. W., Ravelo A. C. and Delaney M. L.: Climate change: Permanent El Niño-like conditions
1046 during the Pliocene warm period. *Science* 309, 758–761, 2005.

1047 Yan, Y., Bender, M. L., Brook, E. J., Clifford, H. M., Kemeny, P. C., Kurbatov, A. V., Mackay, S.,
1048 Mayewski, P.A., Ng, J., Severinghaus, J.P., Higgins, J. A.: Two-million-year-old snapshots of
1049 atmospheric gases from Antarctic ice. *Nature*, 574(7780), 663-666, 2019.

1050 Yu, J., Elderfield, H., Greaves, M., & Day, J.: Preferential dissolution of benthic foraminiferal calcite
1051 during laboratory reductive cleaning. *Geochemistry, Geophysics, Geosystems*, 8(6), 2007a.

1052 Yu J., Elderfield H. and Hönisch B.: B/Ca in planktonic foraminifera as a proxy for surface seawater
1053 pH. *Paleoceanography* 22, 2007.

1054 Zachos J. C., Dickens G. R. and Zeebe R. E.: An early Cenozoic perspective on greenhouse warming
1055 and carbon-cycle dynamics. *Nature* 451, 279–283, 2008.

1056 Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K.: Trends, rhythms, and aberrations in
1057 global climate 65 Ma to present. *science*, 292(5517), 686-693, 2001.

1058 Zeebe R. E. and Wolf-Gladrow D.: CO₂ in Seawater: Equilibrium, Kinetics, Isotopes Elsevier
1059 Oceanography Series 65, Amsterdam, 2001.

1060 Zhang Y. G., Pagani M., Liu Z., Bohaty S. M. and Deconto R.: A 40-million-year history of
1061 atmospheric CO₂. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 371, 20130096–20130096,
1062 2013.

1063 Zhang, Y. G., Pagani, M., & Liu, Z.: A 12-million-year temperature history of the tropical Pacific
1064 Ocean. *Science*, 344(6179), 84-87, 2014.

1065 Zhang, J., Wang, P., Li, Q., Cheng, X., Jin, H., & Zhang, S.: Western equatorial Pacific productivity
1066 and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from
1067 ODP Hole 807A. *Marine Micropaleontology*, 64(3-4), 121-140, 2007.

1068 **Figure captions**

1069 **Figure 1:** Modern hydrography of sites. **A.** Map of air-sea pCO_2 (ΔpCO_2 , ppm, data from Takahashi
 1070 et al. (2014) and plotted using Ocean Data View from Schlitzer, (2016) showing the location of ODP
 1071 Sites 806 and 807 (black circles) and Site 872 (black square, Premoli et al., 1993). Depth profiles are
 1072 for preindustrial parameters, **B.** pH calculated from GLODAP database and corrected from
 1073 anthropogenic inputs, **C.** Boron isotopic composition of borate ion ($\delta^{11}\text{B}_{\text{borate}}$) with associated
 1074 propagated uncertainties.

1075 **Figure 2:** Foraminiferal data for the Miocene to Recent. **A.** Benthic foraminiferal $\delta^{18}\text{O}$ data (blue line
 1076 – stack from Lisiecki and Raymo, 2005; black line – compilation from Zachos et al., 2008). **B.** $\delta^{11}\text{B}$ of
 1077 *T. sacculifer* (blue circles) and *G. ruber* (blue triangles) at Sites 806 (light blue), 807 (dark blue), Grey
 1078 filled square are data from Site 872 located in the WEP (Sosdian et al., 2018). Open symbols are $\delta^{11}\text{B}$
 1079 data from published studies (Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012;
 1080 Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al.,
 1081 2018; de la Vega et al., 2020; Raitzsch et al., 2021), grey open symbols are *T. sacculifer*, brown open
 1082 symbols are for *G. ruber*. **C.** Mg/Ca ratios of *T. sacculifer* and *G. ruber* at Sites 806, 807 and fourth-
 1083 order polynomial regression from Sosdian et al. (2020) representing secular variations of Mg/Ca_{sw}
 1084 (blue dotted line). **E.** Calculated weight per shell for *T. sacculifer* and *G. ruber*. For Panels B-D:
 1085 Circles = *T. sacculifer*, Triangles = *G. ruber*.

1086 **Figure 3:** **A.** Reconstruction of surface pCO_2 (ppm) for the past 0.8 Myr from *T. sacculifer* at ODP
 1087 Sites 806 and 807 (blue symbols) using boron-based pH calculated from $\delta^{11}\text{B}_{\text{seawater}}$ (Greenop et al.,
 1088 2017) and alkalinity from Caves et al. (2016). Planktonic foraminiferal $\delta^{18}\text{O}$ at site 806 with isotope
 1089 stages labeled (black line – Medina-Elizalde and Lea, 2005) and benthic foraminiferal $\delta^{18}\text{O}$ stack
 1090 (grey line - Lisiecki and Raymo, 2005), benthic $\delta^{18}\text{O}$ at Site 806 (dark red line) from Lear et al. (2003,
 1091 2015). **B.** pCO_2 values calculated from boron isotopes (colored symbols - this study) with data from
 1092 the literature (open gray triangles – compilation B are data recalculated in Rae et al., 2021) and ice
 1093 core pCO_2 (black line – Petit et al., 1999, Lüthi et al., 2008, Bereiter et al., 2015). **C.** Cross plot for the
 1094 last 0.8 Myr of $\text{pCO}_{2T, sacculifer}$ from this study and $\text{pCO}_{2, \text{ice core}}$ (from ice core compilation, Bereiter
 1095 et al., 2015), grey line is a simple linear regression: $p = 0.25$, $R^2=0.09$, blue line is a Deming
 1096 regression with bootstrap ($n=1000$) taking into account both x and y uncertainties ($p = 0.25$), ice core
 1097 CO_2 error calculated based 2 SD on ± 1 ky on the age determined from age model and boron based
 1098 pCO_2 error is calculated based on error propagation eq. S17, outputs of the regression are presented in
 1099 Table S6. Data compiled are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010;
 1100 Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al.,
 1101 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020.

1102 **Figure 4:** Compilation of temperature from site 806 in the WEP. Mg/Ca based temperature were
 1103 derived using the same framework (see supplemental information). Blue filled symbols are from Sites
 1104 806 and 807 with blue circles for *T. sacculifer* and triangles for *G. ruber*; filled gray squares are data
 1105 from Site 872 (Sosdian et al., 2018). Open symbols are SST derived from Mg/Ca at Site 806 (Wara et
 1106 al., 2005; Tripati et al., 2009; Nathan and Leckie, 2009). Tex_{86} and U^{37}_{37} are also plotted for
 1107 comparison (Zhang et al., 2014). Orange open circles are SST data calculated with our framework
 1108 from the species *D. altispera* at ODP Site 806 (Sosdian et al., 2020) with an offset of $+8^\circ\text{C}$. Blue line
 1109 is a smooth line (Lowess) going through the data.

1110
 1111 **Figure 5:** Different models for the evolution of the boron geochemistry explored as part of this work.
 1112 Due to the 1 % uncertainty propagated for $\delta^{11}\text{B}_{\text{seawater}}$, all scenarios yield reconstructed seawater pH
 1113 values that are within error of each other. Propagated uncertainties were calculated using eq. S14 (see
 1114 Supplement). **A.** Different models for $\delta^{11}\text{B}_{\text{seawater}}$ used for the reconstruction of pCO_2 in this study
 1115 (blue – Lemarchand et al., 2000; green – Greenop et al., 2017; red – Raitzsch and Hönisch, 2013). **B.**
 1116 Reconstructed pH based on our measured $\delta^{11}\text{B}_{\text{carbonate}}$ values using different models for $\delta^{11}\text{B}_{\text{seawater}}$
 1117 (blue – Lemarchand et al., 2000; green – Greenop et al., 2017; red – Raitzsch and Hönisch, 2013),

compilations of pH from Sosdian et al. (2018) (compilation A - open squares) and Rae et al. (2021) (compilation B - open triangles) are also shown for comparison. Data for compilation A are from: Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Sosdian et al., 2018. Data for compilation B are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020.

Figure 6: Different models for the evolution of a second carbonate (e.g. alkalinity) system parameter explored as part of this work. The propagated uncertainties were calculated using eq. S16 (see Supplement). **A.** Different models for alkalinity used for the reconstruction of $p\text{CO}_2$ in this study (brown – constant alkalinity of 2330 $\mu\text{mol/kg}$, blue - Ridgwell and Zeebe, 2005; green - Tyrell and Zeebe, 2004; violet - Caves et al., 2016. Colored symbols are reconstructed $p\text{CO}_2$ based on our measured $\delta^{11}\text{B}_{\text{carbonate}}$ values , alkalinity scenario and $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al., 2017; open squares (compilation A) are $p\text{CO}_2$ compilation from Sosdian et al. (2018), open triangles (compilation B) are from compilation from Rae et al. (2021), black symbols are from site 872. **B.** Reconstructed $p\text{CO}_2$ using constant alkalinity of 2330 $\mu\text{mol/kg}$ and $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al. (2017). **C.** Reconstructed $p\text{CO}_2$ using constant alkalinity scenario from Ridgwell and Zeebe, (2005) and $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al. (2017). **D.** Reconstructed $p\text{CO}_2$ using constant alkalinity scenario from Tyrell and Zeebe, (2004) and $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al. (2017). **E.** Reconstructed $p\text{CO}_2$ using constant alkalinity scenario from Caves et al., (2016) and $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al. (2017). In black are published estimates from ice core data (circles - Yan et al., 2019). Compilations of $p\text{CO}_2$ from Sosdian et al. (2018) (compilation A - open squares) and Rae et al. (2021) (compilation B - open triangles) are also shown for comparison. Data for compilation A are from: Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Sosdian et al., 2018. Data for compilation B are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020. Stars indicate $p\text{CO}_2$ values reconstructed from alkenones by Tanner et al. (2020) (simulation 6) at Site 1088 in the Southern Ocean.

Figure 7: Proxy data for the past 22 million years in the Western Equatorial Pacific compared to benthic oxygen isotope data. **A.** Benthic $\delta^{18}\text{O}$ (blue line – stack from Lisiecki and Raymo, 2005; black line – compilation from Zachos et al., 2008). **B.** Benthic $\delta^{13}\text{C}$ (black line – compilation from Zachos et al., 2008). **C to E**, colored is indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=*T. sacculifer* and triangle=*G. ruber*), filled grey squares are recalculated data based on Sosdian et al. (2018) at site 872. **C.** SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are reconstructed temperature based on literature Mg/Ca at site 806 (see text or Fig. 4). **D.** Seawater pH reconstructed from $\delta^{11}\text{B}$ of *T. sacculifer* and *G. ruber* using $\delta^{11}\text{B}_{\text{seawater}}$ from Greenop et al. (2017) (refer to text and supplement for calculations, this study), open squares (compilation A) are compilation data from Sosdian et al. (2018) and open triangles (compilation B) are compilation from Rae et al. (2021). **E.** Reconstructed $p\text{CO}_2$ (ppm) using boron-based pH and alkalinity from Caves et al. (2016), data presented are from this study. Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue envelope are the uncertainties calculated based on eq. S16 (taking into account uncertainty on $\delta^{11}\text{B}_{\text{seawater}}$). Crosses are original $p\text{CO}_2$ calculated in Sosdian et al. (2018) at Site 872; asterisks are recalculated $p\text{CO}_2$ at Site 872 by Rae et al. (2021).

Figure 8: Proxy data from 22 to 6 million years, including the Middle Miocene Climate Transition (MMCT) and Miocene Climate Optimum (MCO), in the Western Equatorial Pacific compared to benthic oxygen isotope data. **A.** Benthic $\delta^{18}\text{O}$ (black line – compilation from Zachos et al., 2008). **B.** Benthic $\delta^{13}\text{C}$ (black line – compilation from Zachos et al., 2008). **C and D**, colored is indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=*T. sacculifer*

and triangle=*G. ruber*), filled grey squares are recalculated data based on Sosdian et al. (2018) at site 872. **C.** SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are reconstructed temperature based on literature Mg/Ca at site 806 (see text or Fig. 4). **D.** Reconstructed pCO₂ (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al. (2016). Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue envelope reflects the uncertainties calculated based on eq. S16 (taking into account uncertainty on $\delta^{11}\text{B}_{\text{seawater}}$). Orange datapoints and envelope are calculated pCO₂ and associated uncertainty from our study using our framework and a constant alkalinity scenario. Open squares (compilation A) are compilation data from Sosdian et al. (2018), open triangles are data from Raitzsch et al. (2021) at Site 1092. Crosses are original pCO₂ calculated in Sosdian et al. (2018) at Site 872; asterisks are recalculated pCO₂ at Site 872 by Rae et al. (2021); dark red triangles are from Site 1092 (Raitzsch et al., 2021). Data for compilation A are from: Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Sosdian et al., 2018. Data for compilation B are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020.

Figure 9: Proxy data from 7 to 1 million years, including the Warm Pliocene Transition (WPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. **A.** Benthic $\delta^{18}\text{O}$ (black line – compilation from Zachos et al., 2008). **B.** Benthic $\delta^{13}\text{C}$ (black line – compilation from Zachos et al., 2008). **C and D,** colored is indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=*T. sacculifer* and triangle=*G. ruber*), filled grey squares are recalculated data based on Sosdian et al. (2018) at ODP Site 872. **C.** SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are reconstructed temperature based on literature Mg/Ca at site 806 (see text or Fig. 4). **D.** Reconstructed pCO₂ (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al. (2016). Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue envelope reflects the uncertainties calculated based on eq. S16 (taking into account uncertainty on $\delta^{11}\text{B}_{\text{seawater}}$). Open squares (compilation A) are pCO₂ compilation from Sosdian et al. (2018), open triangles (compilation B) are from compilation from Rae et al. (2021). Data for compilation A are from: Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Sosdian et al., 2018. Data for compilation B are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020. In black are published estimates from ice core data (circles - Yan et al., 2019).

Figure 10: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition (MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. **A.** Benthic $\delta^{18}\text{O}$ (blue line – stack from Lisiecki and Raymo, 2005). **B.** Benthic $\delta^{13}\text{C}$ (black line – compilation from Zachos et al., 2008). **C and D,** colored is indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=*T. sacculifer* and triangle=*G. ruber*), filled grey squares (compilation A) are recalculated data based on Sosdian et al. (2018) at site 872. **C.** SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are reconstructed temperature based on literature Mg/Ca at site 806 (see text or Fig. 4). **D.** Reconstructed pCO₂ (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al. (2016). Propagated uncertainties are given by eq. S17. In black are published estimates from ice core data (line – Bereiter et al., 2015; black circles - Yan et al., 2019). Open triangles (compilation B) are from compilation from Rae et al. (2021). Data for compilation B are from: Foster et al., 2008; Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al., 2018; Greenop et al., 2019; de la Vega et al., 2020.

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

Figure 11: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition (MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope composites. **A.** Benthic $\delta^{18}\text{O}$ (blue line – compilation from Lisiecki and Raymo, 2005, black line – compilation from Zachos et al. 2008). **B.** Records from Lithium isotopes ($\delta^7\text{Li}$, orange, Misra and Froelich, 2012) and Strontium isotopes ($^{87/86}\text{Sr}$, grey, Hodell et al., 1991, Farrel et al., 1995, Martin et al., 1999, Martin et al., 2004), both proxies for silicate weathering. Orange arrows represent the different weathering regimes as indicated by the $\delta^7\text{Li}$, black crosses are indication when changes in weathering regime occurs. **C.** Reconstructed pCO_2 (ppm) using boron-based pH and alkalinity from Caves et al. (2016), colored is indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=*T. sacculifer* and triangle=*G. ruber*), filled grey squares (compilation A) are recalculated data based on Sosdian et al. (2018) at site 872. Data for compilation A are from: Hönisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012; Badger et al., 2013; Greenop et al., 2014; Martinez-Botí et al., 2015a; Chalk et al., 2017; Sosdian et al., 2018. Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue envelope are the uncertainties calculated based on eq. S16 (taking into account uncertainty on $\delta^{11}\text{B}_{\text{seawater}}$). Also shown are timing of major events. The rose band and dark rose band indicate eruption of the Columbia River flood basalts (Hooper et al., 2002) and time of maximum eruption (Kasbohm and Schoene, 2018), respectively.

Table 1: Core information.

Cruise	Leg	Hole	N (°)	E (°)	Depth (m)
ODP	130	807	3.61	156.62	2804
ODP	130	806	0.32	159.37	2520

Table 2: Comparison of reconstructed pCO₂ values for key intervals in the last 16 Myr.

Mid-Pleistocene transition (1.2-0.8 Ma)		MIS (IG) pCO₂ (ppm) Reference		pCO₂ amplitude IG-G (ppm)	
MIS (G)	pCO₂ (ppm)	Reference	MIS (IG) pCO₂ (ppm)	Reference	
20	179	This study	21	254	This study
22	187	This study	23	230	This study
24	nd		25	298	This study
26	nd		27	nd	
28	174	This study	29	nd	
30	170	This study	31	295	Hönisch et al., 2009 (N-TIMS)
32	218	Chalk et al., 2017	33	323	Chalk et al., 2017
34	197	Chalk et al., 2017	35	315	Chalk et al., 2017
36	189	Chalk et al., 2017	37	295	This study, Chalk et al., 2017
			39	306	This study
Middle Pliocene Warm Period (3.29-2.97 Ma) <th data-kind="ghost"></th> <th data-cs="4" data-kind="parent"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th>					
pCO₂ (ppm)	Reference				
530 ± 110	This study (2 SD, n=4)				
320 ± 130	Martinez-Botí et al., 2015b (2 SD, n=8)				
360 ± 85	de la Vega et al., 2020 (2 SD, n=59)				
Early Pliocene Warm Period (4.7-4.5 Ma) <th data-kind="ghost"></th> <th data-cs="4" data-kind="parent"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th>					
pCO₂ (ppm)	Reference				
419 ± 119	This study (2 SD, n=3)				
Miocene Climate Optimum (17-14 Ma) <th data-kind="ghost"></th> <th data-cs="4" data-kind="parent"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th> <th data-kind="ghost"></th>					
pCO₂ (ppm)	Reference				
511 ± 201	This study (2 SD, n=3)				
350-400	Foster et al., 2012				
300-500	Greenop et al., 2014				
470-630	Sosdian et al., 2018				
687 ± 421	Rae et al., 2021 (2 SD, n=58)				

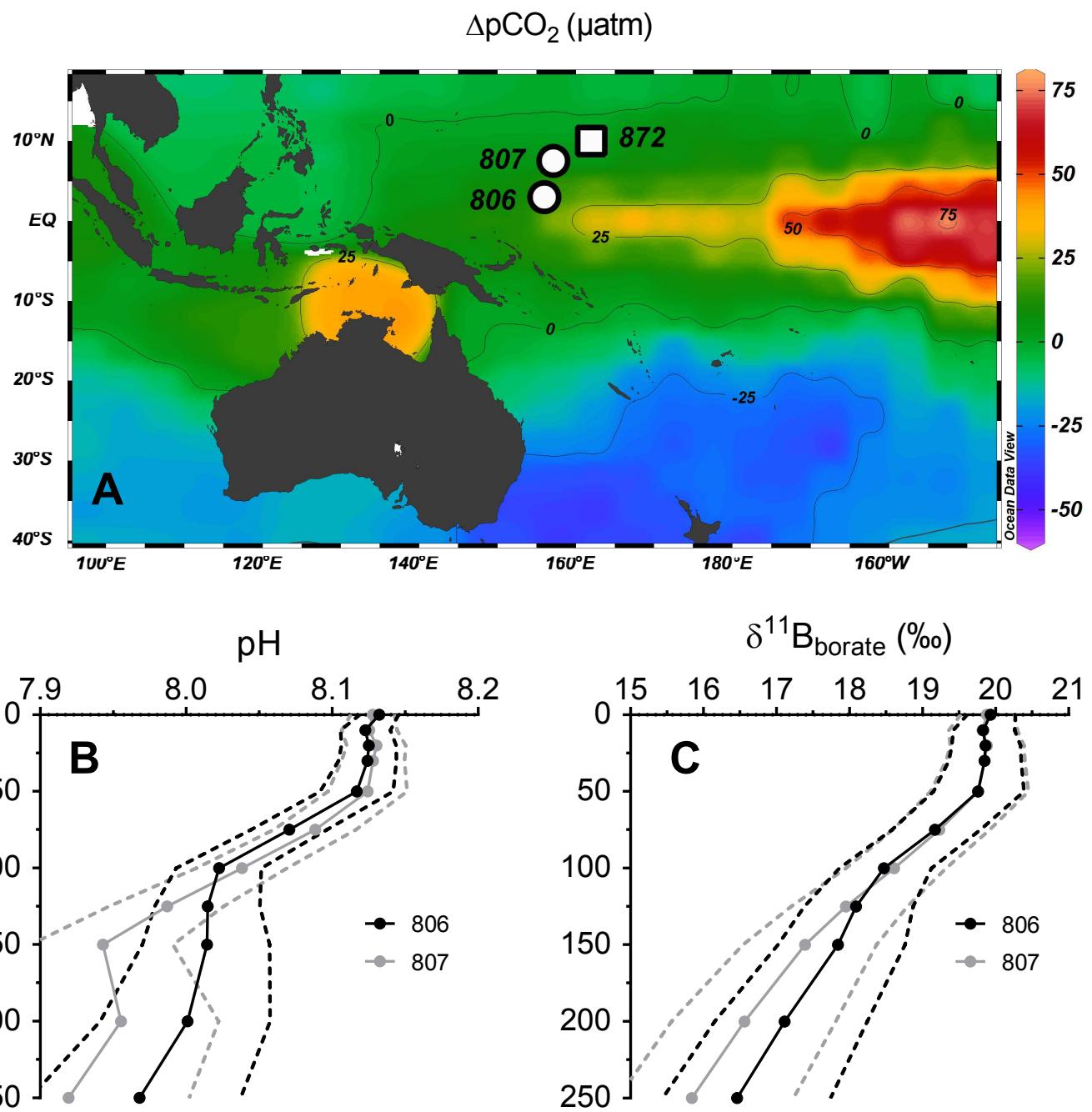


Figure 1

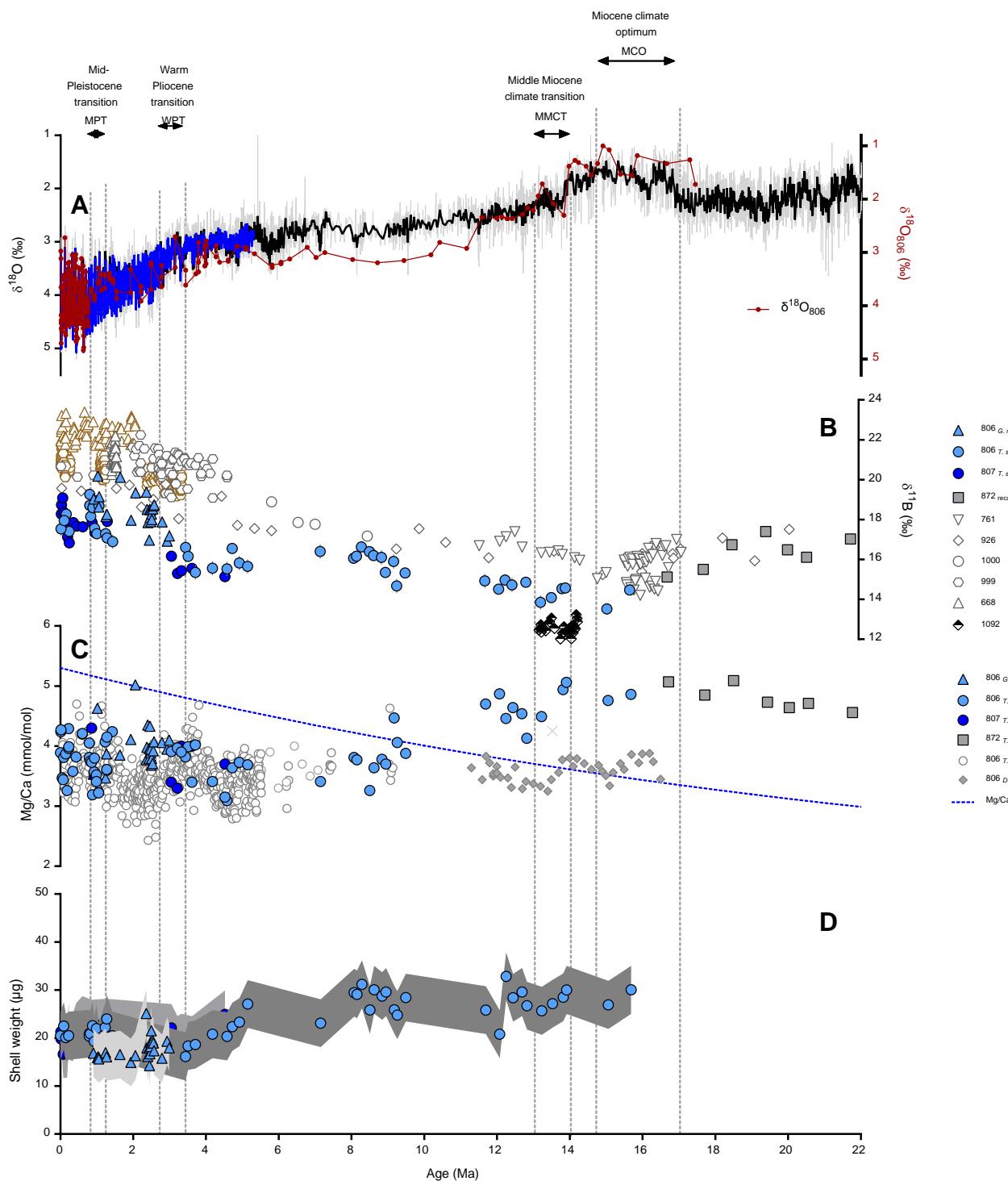


Figure 2

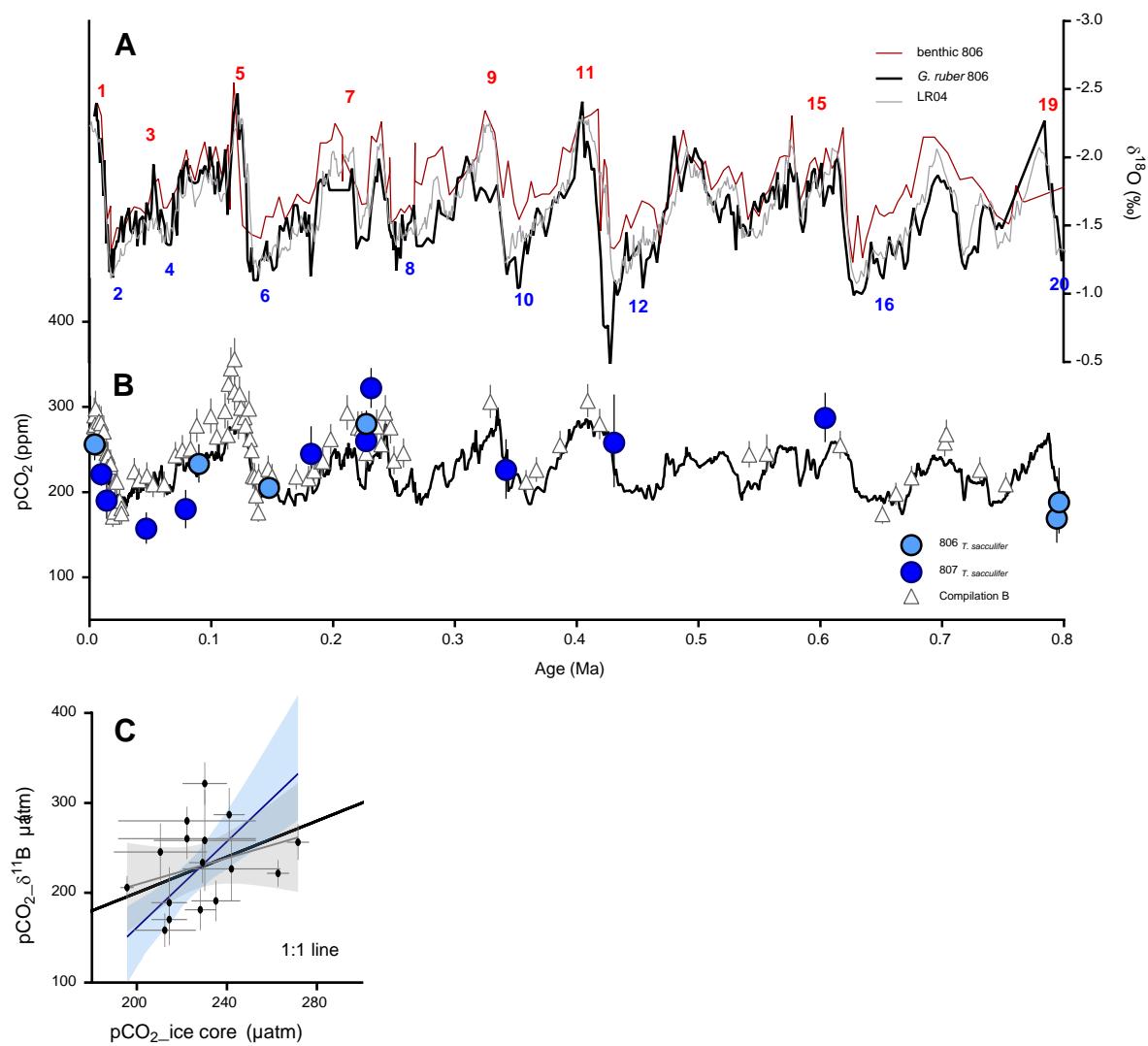


Figure 3

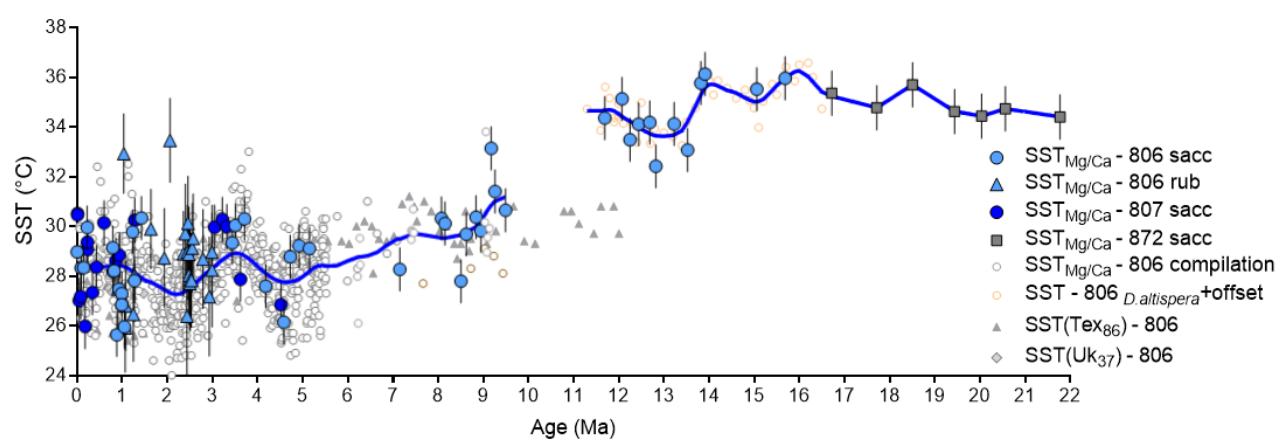


Figure 4

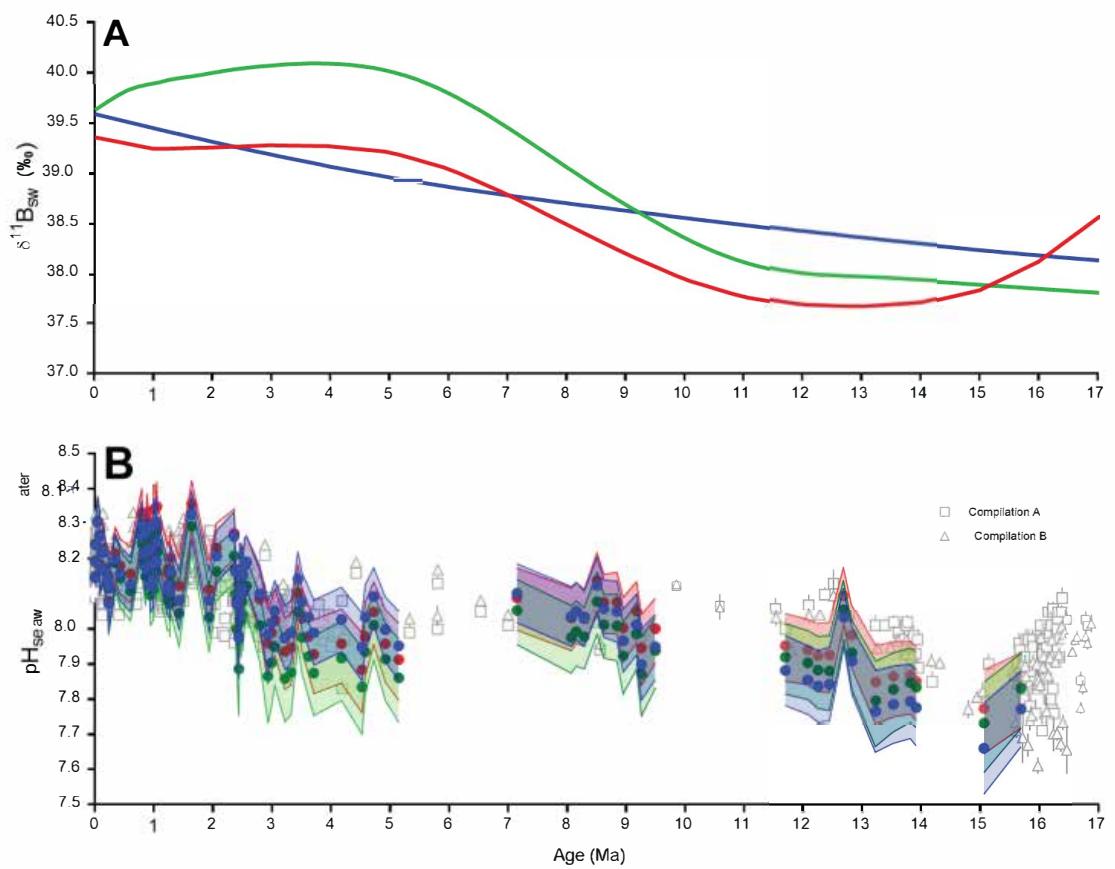


Figure 5

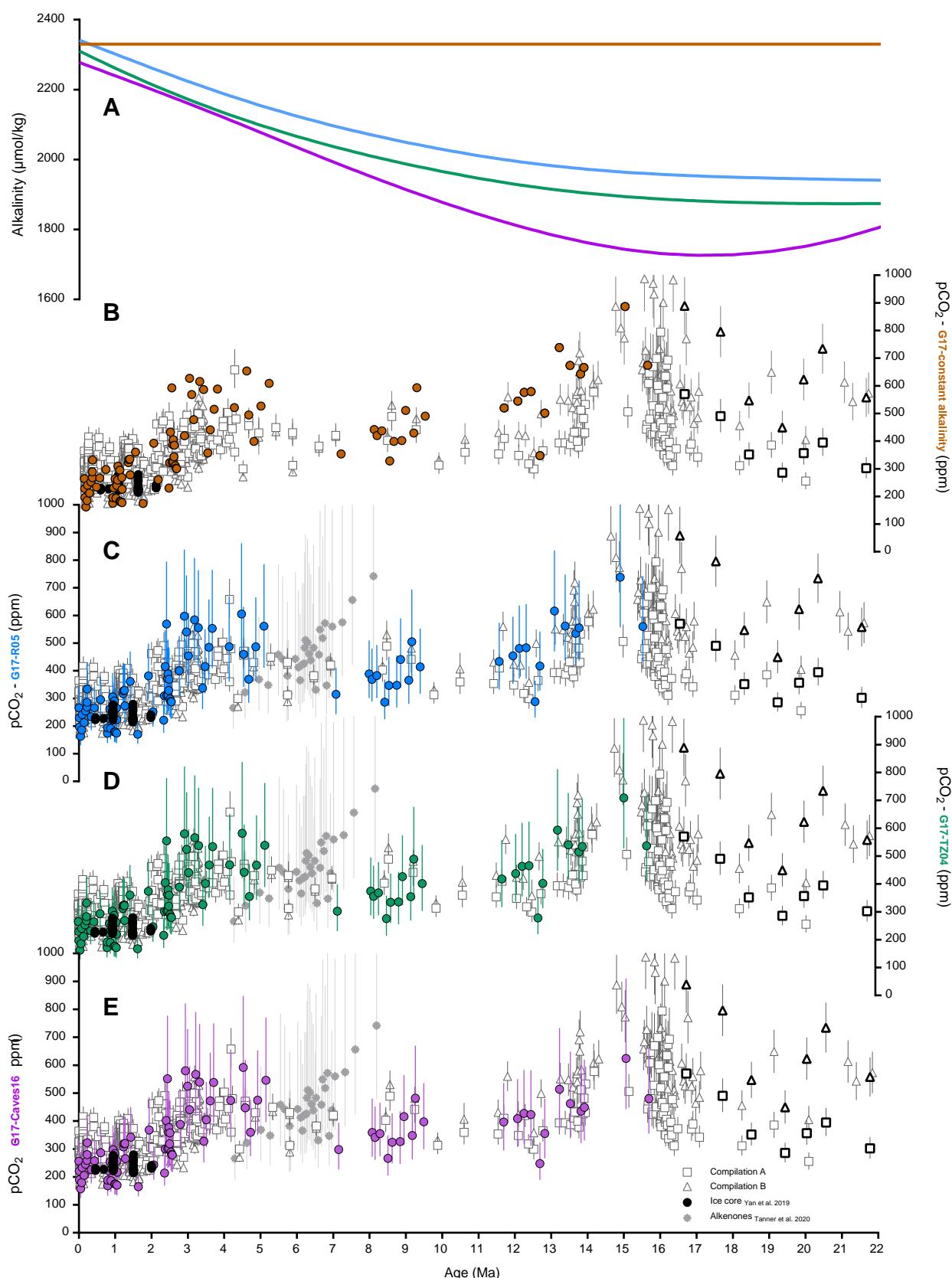


Figure 6

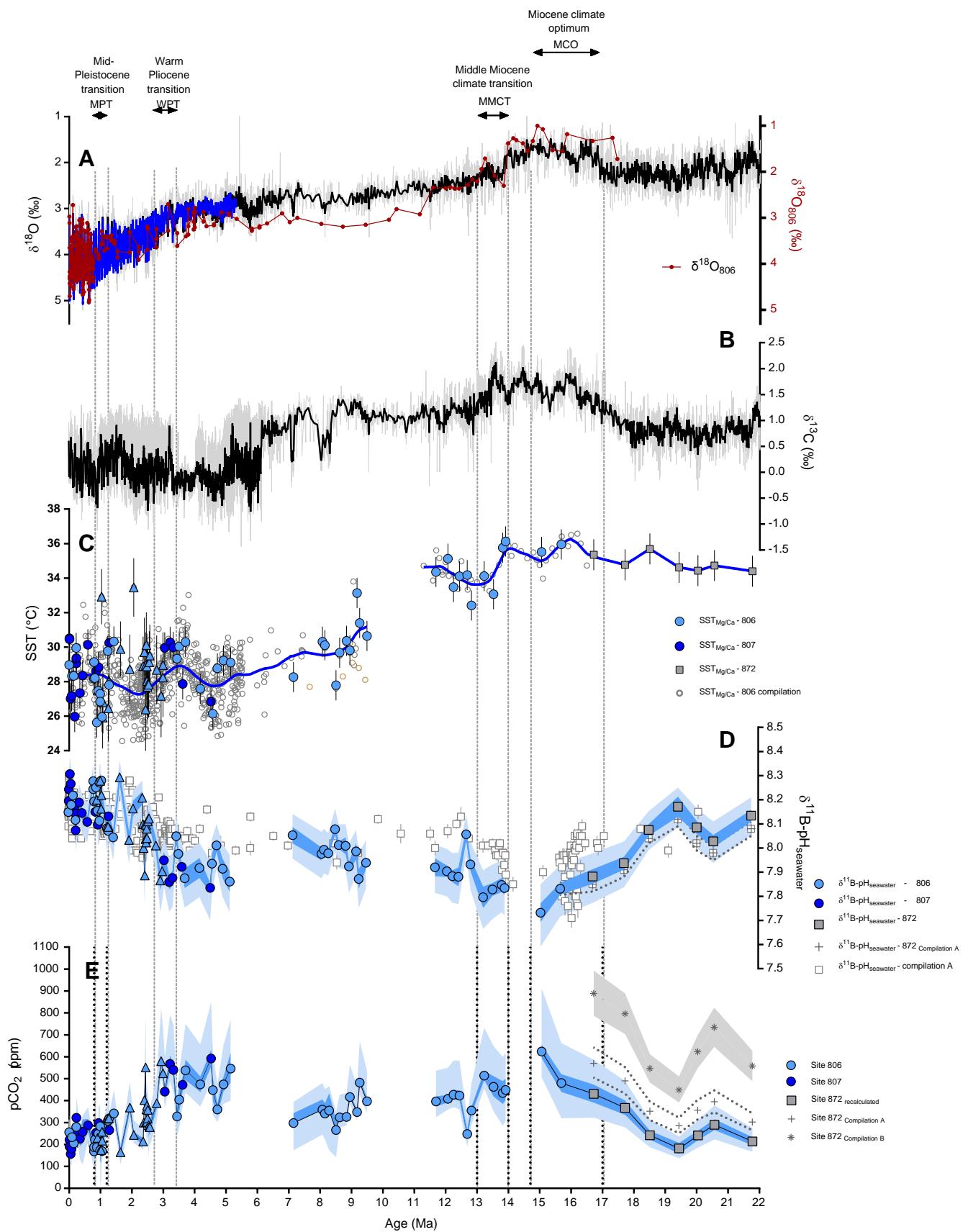


Figure 7

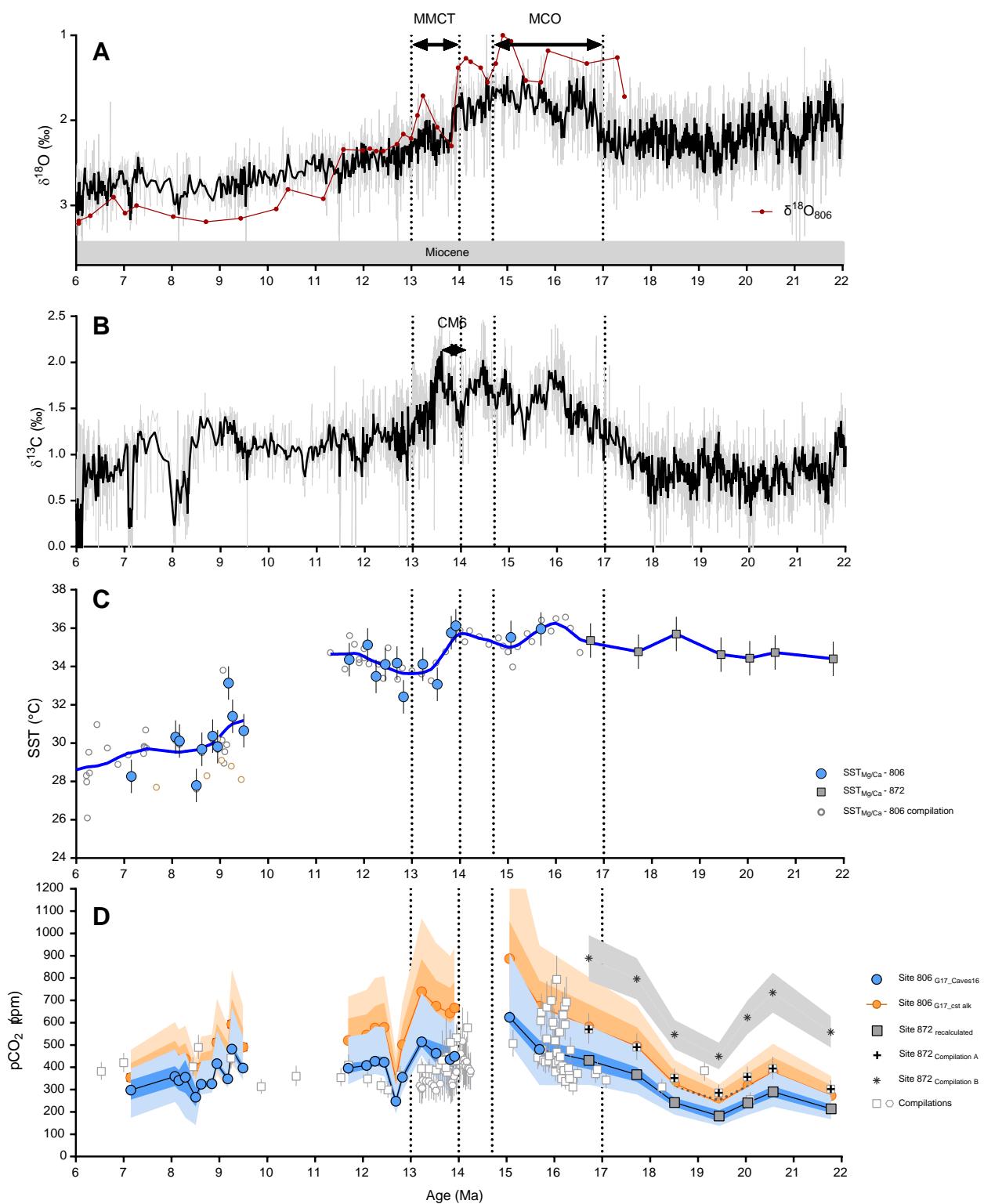


Figure 8

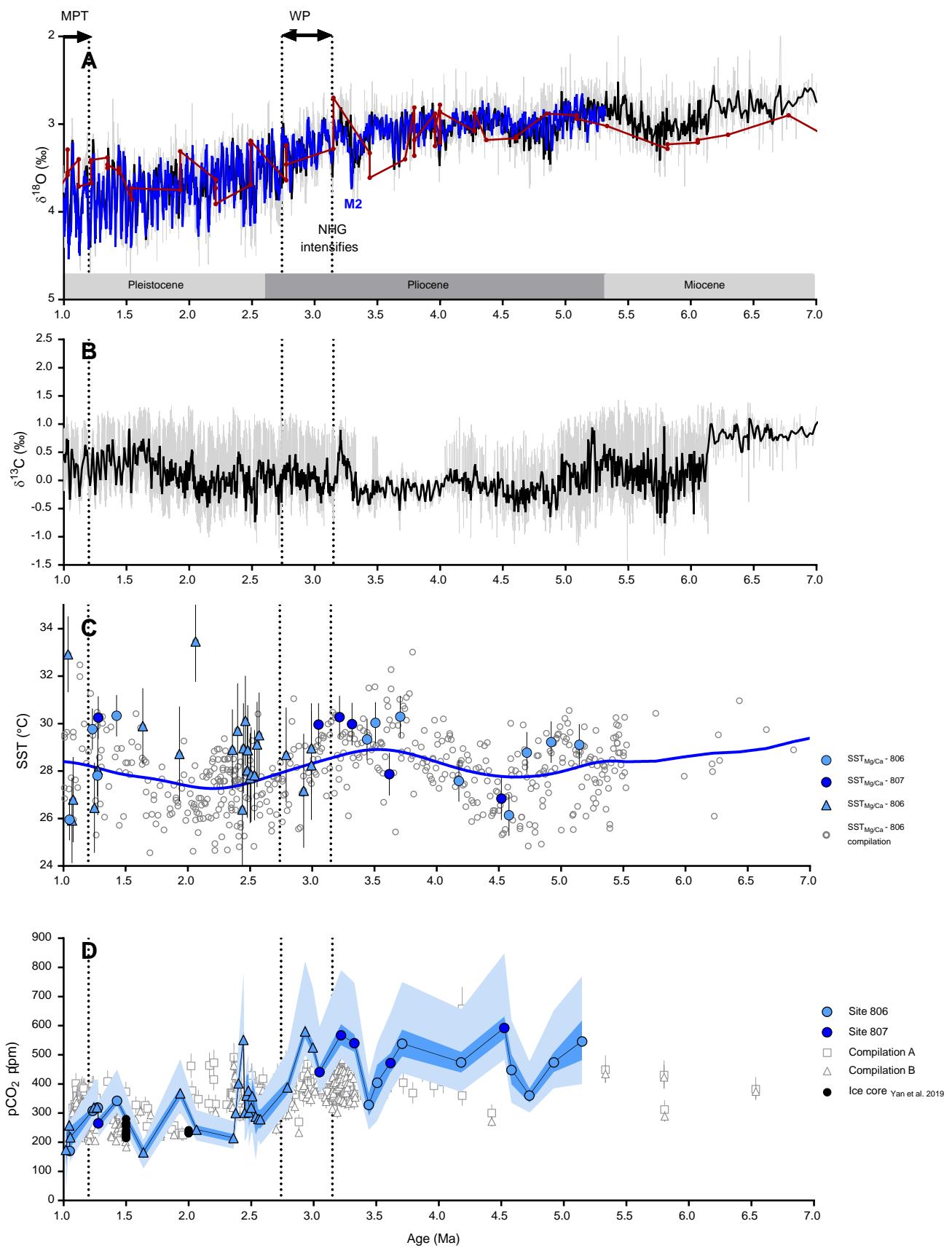


Figure 9

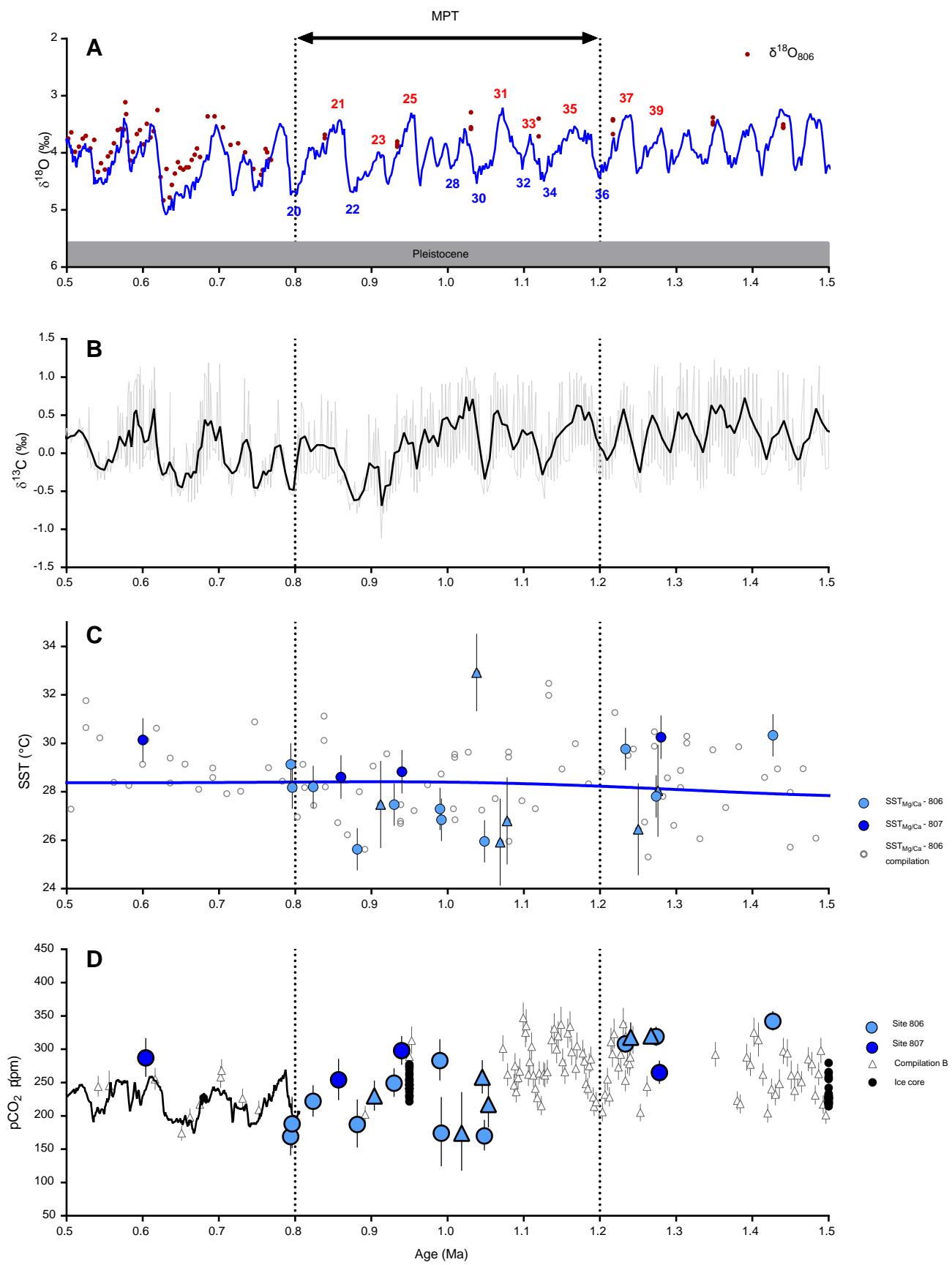


Figure 10

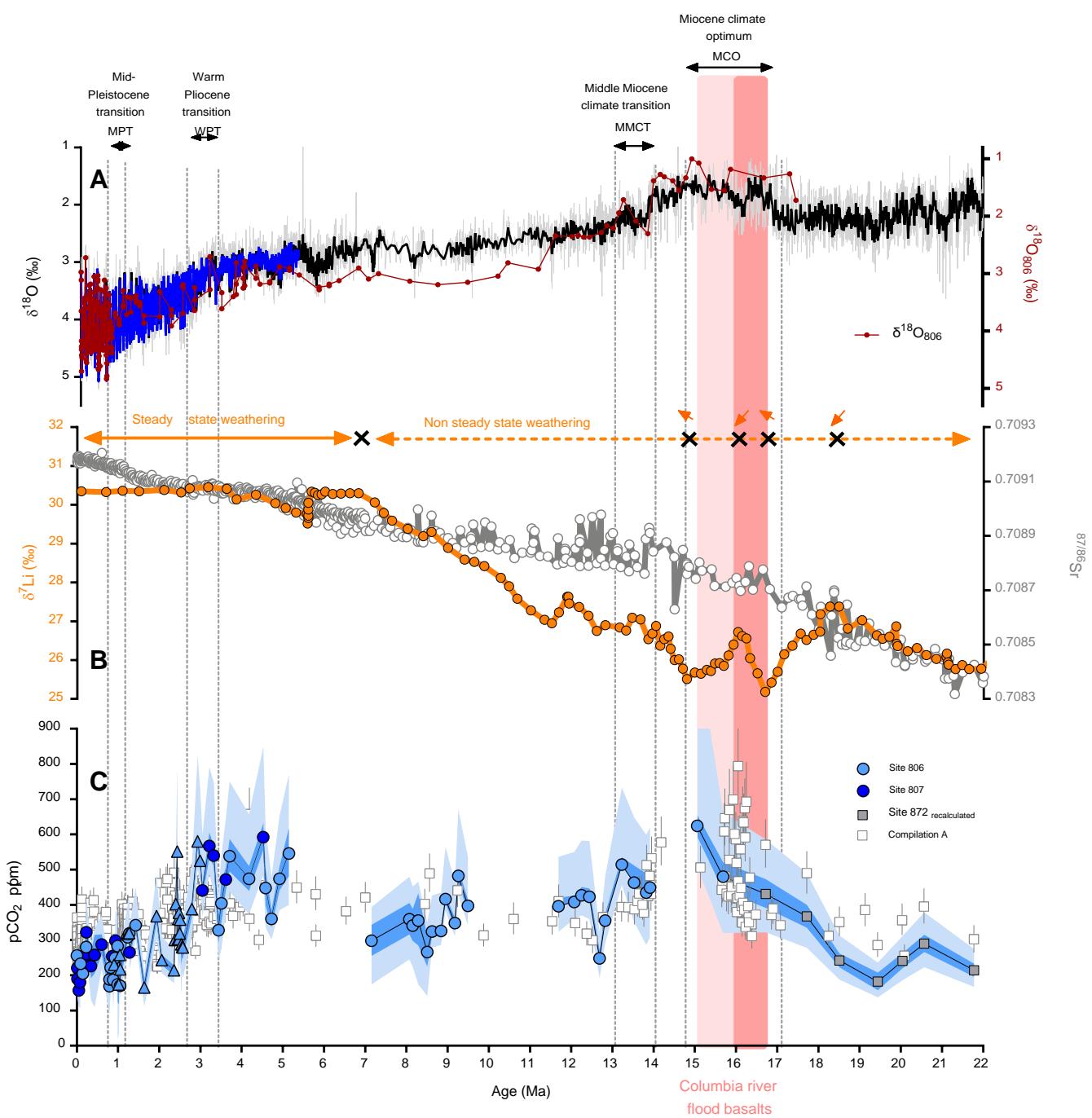


Figure 11