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ABSTRACT

Constraints on the evolution of atmospheric COz levels throughout Earth’s history ar? foundational to our
understanding of past variations in climate. Despite considerable effort, records vary in their temporal
and spatial coverage and estimates of past CO:z levels do not always converge, and therefore new records
and proxiesQare valuable. Here we reconstruct atmospheric COz values across major climate transitions
over the past 16 million years using the boron isotopic composition (§''B) of plankti(? foraminifera from
89 samples obtained from two sites in the West Pacific Warm Pool, Ocean Drilling Program (ODP) Sites
806 and 807 measured using high-precision multi-collector inductively-coupled plasma mass
spectrometry. We compare our results to published data from Pacific Site 872, also in the Western
Equatorial Pacific, that goes back to 22 million years ago. These sites are in a region that today is near
equilibrium with the atmosphere and are thought to have been in equilibrium with the atmosphere for the
interval studied. We show that data from this region is consistent with ice core data and other boron-based
studies. The data show evidence for elevated pCO2 during the Middle Miocene and Early to Middle
Pliocene, and reductions in pCO2 of ~200 ppm during the Middle Miocene Climate Transition, ~250 ppm
during Pliocene Glacial Intensification, and ~50 ppm during the Mid-Pleistocene Climate Transition.
There is possible evidence for a larger reduction in glacial pCO2 during the Mid-Pleistocene Transition
compared to interglacial pCO2, and a minimum in pCOz2 during glacial MIS 30. Our results are consistent

with a coupling between pCOz, temperature and ice sheet expansion from the Miocene to Recent.

Highlights

In this study, we reconstruct atmospheric pCO2 using §''B data from ODP Sites 806 and 807 and compare
them with ice core data, demonstrating the fidelity of our approach. We therefore apply the same
framework to older samples to create a long-term pH and pCO: reconstruction for the past 16 million
years, and recalculate pCO2 for ODP Site 872 from 17 to 22 million years ago. We find major increases
in surface water pH and decreases in atmospheric pCO2 were associated with decreased temperature in
the Western EquatorialQPaciﬁc, including associated with major episodes of ice sheet expansion in the
high latitudes?providing more robust quantitative constraints on the past coupling between pCOs2,

temperature, and cryosphere stability.
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1. Introduction

Due to concerns about the long-term consequences of anthropogenic emissions and associated
climate change (IPCC, 2014, 2018), efforts have been made to quantify pastQ atmospheric CO2 and
examine past relationships between CO2 and temperature. Such data areQ not only critical for constraining
Earth-system sensitivity (Lea, 2004; Lunt et al., 2010? Pagani et al., 2010; Hansen et al., 2012, 2013,
Foster and Rohling, 2013; Schmittner et al.?201 1; Tierney et al., 2020), but are also of broad interest
because such data can help u? understand the evolution of climate and geological systems through Earth’s
history (Tripati th al.,2011; Foster et al., 2017; Tripati and Darby, 2018). However, discrepancies between
proxy reconstructions still exist, including for major climate transitions of the Cenozoic. In particular,
there remains a pressing need for robust and higher-resolution atmospheric COzQ records from sites that
are in equilibrium with the atmosphere.

High-resolution and direct determinations of atmospheric COz are availablg for the last 800 kyr
through analysis of air bubbles extracted from ice-cores, but these records'are limited to the availability
of cores (Petit et al., 1999; Siegenthaler et al., 2005; Liithi et al., 2008; Bereiter et al., 2015). A window
into atmospheric COz levels comes from 1 million-year-old blue iceq’ (Higgins et al., 2015) and more
recently a snapshot from the early Pleistocene period (Yan et al., 2019). Mos? reconstructions of COz2 for
prior to 800 ka are based on indirect terrestrial and marine proxies? Stomata indices for fossil leaves (Van
der Burgh, 1993; Royer , 2001), carbon isotope ratiosQ (8'3C) of paleosols (Retallak et al., 2009), §'3C of
alkenones (Pagani et al., 2005; Zhang et al., 2013), B/Ca ratios of surface-dwelling foraminifera (Yu and
Honisch, 2007; Foster, 2008? Tripati et al., 2009, 2011), and boron isotope ratios (8''B) of surface-
dwelling foraminifera (Pearson and Palmer., 2000; Honisch et al., 2009; Bartoli et al., 2011; Foster, 2008,
2012; Foster and Sexton, 2014; Chalk et al., 2017; Sosdian et al., 2018; Dyez et al., 2018) havg been used
to estimate atmospheric COsx.

Each of the above proxy methods has sources of systematic errors that we do notQ attempt to
exhaustively document as they have been discussed in-depth elsewhere (e. g.?Pagani et al., 2005; Tripati
et al., 2011; Guillermic et al., 2020). However, we note that significant developments in the boron-based
proxies include improvements to the accuracy and precision of measurements using multi-collector

inductively coupled mass spectrometryQ (MC-ICP-MS) compared to early work with thermal ionization
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mass spectrometry (TIMS;? where there were large instrumental mass fractionations and challenges with
laboratory intercomparison (Foster et al., 2013; Farmer et al., 2016; Aggarwal and You, 2017). There was
also the realization that temperature-dependent Kp to interpreting B/Ca sensitivitie? observed from the
field of sediment trap, core-top, and downcore studies (Yu and H6nisch?2007; Foster et al., 2008; Tripati
et al., 2009, 2011; Babila et al., 2010; Osborne et al., 2020? differ from foraminiferal culture experiments
(Allen et al., 2011, 2012) and inorganic calciteQ (Mavromatis et al., 2015); this type of discrepancy has
also been observed with otheQr elemental proxies (e.g., Mg/Ca). Such differences may be due to differences
in growth rateg (Sadekov et al., 2014), ontogenetic changes, a correlation in the field between temperature
and other hydrographic variables that obscure robust statistical determination of parameter relationships,
culture conditions resulting in organisms being stressed, and/or other factors.

The marine CO2 proxy that appears to be subject to the fewest systematic uncertainties, based on
our current understanding, is the boron isotopic composition (5''B) O?planktic foraminifera as measured
using MC-ICPMS and TE-NTIMS (Hain et al., 2018). This proxy provides constraints on seawater pH,
if temperature, salinity, seawater 3''B, and the appropriate mono-specific calibration between 8''Bearbonate
and &'!'Boorate are constrained (Pearson and Palmer, 2000; Foster et al., 2008; Sosdian et al., 2018; Raitzsch
et al., 2018; Guillermic et al., 2020)? Seawater pH can be used to calculate seawater pCOz if there are
constraints on a seconﬁl’ parameter of the carbonate system (e.g. alkalinity, DIC). Atmospheric pCOz can
then b? constrained if the site being examined is in air-sea CO2 equilibrium.

Given the evolution of the field, there are relatively few studies generating high-precision boron-
based records over major climate transitions in the Cenozoic using@recent analytical methods, that
incorporate our current understanding of the proxy (e.g., Greenop et al., 2014; Martinez-Boti et al., 2015b;
Chalk et al., 2017; Dyez et al., 2018; de la Vega et al., 2020). Furthermore, of the existing studies using
boron-based proxies, anQ additional uncertainty frequently exists, namely the short time interval of study
(e.g., emphasizing on a climate transition) (Martinez-Boti et al., 2015b; Chalk et al., 2017) and whether
the study sites remain in air-sea CO2 equilibrium with the atmosphere (Martinez et al., 2015a). And
although estimation of atmospheric pCO2 from seawater pH using this prox? is relatively straightforward,

reconstructions are still impacted by uncertainties including thg lack of robust constraints on a second


Texte inséré�
Texte
"78"

Texte supprimé�
Texte
"83"

Texte remplacé�
Texte
[Ancien] : "laboratory 84" 
[Nouveau] : "79 laboratory"

Texte remplacé�
Texte
[Ancien] : "85 was" 
[Nouveau] : "was 80"

Texte supprimé�
Texte
"86"

Texte inséré�
Texte
"81"

Texte supprimé�
Texte
"87"

Texte inséré�
Texte
"82"

Texte supprimé�
Texte
"88"

Texte inséré�
Texte
"83"

Texte supprimé�
Texte
"89"

Texte inséré�
Texte
"84"

Texte supprimé�
Texte
"90"

Texte inséré�
Texte
"85"

Texte supprimé�
Texte
"91"

Texte remplacé�
Texte
[Ancien] : "92" 
[Nouveau] : "86"

Texte remplacé�
Texte
[Ancien] : "93 relationships," 
[Nouveau] : "relationships, 87"

Texte remplacé�
Texte
[Ancien] : "94" 
[Nouveau] : "88"

Texte supprimé�
Texte
"95"

Texte inséré�
Texte
"89"

Texte supprimé�
Texte
"96"

Texte inséré�
Texte
"90"

Texte remplacé�
Texte
[Ancien] : "TE-NTIMS. This proxy provides 97" 
[Nouveau] : "TE-NTIMS (Hain et al., 2018). This proxy provides"

Texte inséré�
Texte
"91"

Texte remplacé�
Texte
[Ancien] : "mono98 specific" 
[Nouveau] : "mono-specific"

Texte inséré�
Texte
"92"

Texte remplacé�
Texte
[Ancien] : "Palmer., 99" 
[Nouveau] : "Palmer,"

Texte inséré�
Texte
"93"

Texte supprimé�
Texte
"100"

Texte inséré�
Texte
"94"

Texte supprimé�
Texte
"101"

Texte inséré�
Texte
"95"

Texte supprimé�
Texte
"102"

Texte remplacé�
Texte
[Ancien] : "103" 
[Nouveau] : "96"

Texte remplacé�
Texte
[Ancien] : "the number of studies generating high-precision and 104 high-resolution boron-based" 
[Nouveau] : "there are relatively few studies generating high-precision boron97 based"

Texte supprimé�
Texte
"the 105"

Texte remplacé�
Texte
[Ancien] : "and incorporating" 
[Nouveau] : "that 98 incorporate"

Texte remplacé�
Texte
[Ancien] : "proxy systematics 106 are relatively few (Foster et al., 2012; Martinez-Boti et al., 2015b; Chalk et al., 2017, de la 107" 
[Nouveau] : "the proxy (e.g., Greenop et al., 2014; Martinez-Boti et al., 2015b; 99 Chalk et al., 2017; Dyez et al., 2018; de la"

Texte inséré�
Texte
"100"

Texte supprimé�
Texte
"108"

Texte remplacé�
Texte
[Ancien] : "(e.g., 109" 
[Nouveau] : "101 (e.g.,"

Texte remplacé�
Texte
[Ancien] : "110 whether" 
[Nouveau] : "whether 102"

Texte supprimé�
Texte
"111"

Texte inséré�
Texte
"103"

Texte supprimé�
Texte
"112"

Texte inséré�
Texte
"104"

Texte supprimé�
Texte
"113"

Texte remplacé�
Texte
[Ancien] : "4" 
[Nouveau] : "5"


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

parameter of the carbonate system, and our limitedQ understanding of secular variations in the §''B of
seawater (Tripati et al., 2011; Greenop et al., 2017; Sosdian et al., 2018; Rae et al., 2021).

Therefore, to provide additional constraints on the evolution of atmospheric pCOforom the
Miocene through Pleistocene, we developed new records from the western tropicalQPaciﬁc. We use
foraminiferal 3''B and trace elements in the planktic foraminiferal speciesQT rilobus sacculifer and
Globigerinoides ruber to reconstruct past seawater pH and atmospheric CO2 at Ocean Drilling Program
(ODP) Sites 806 and 807 in the Westerg Equatorial Pacific (WEP) over the last 16 million years (Myr).
The sites are located on the western border of the tropical Pacific Ocean, the largest open-oceanic region
on the globe, and the warmest open ocean region at present.

These two sites have been examined in other boron-based studies (Wara et al., 2003; Tripati et al.,
2009, 2011; Shankle et al., 2020), as has the region more broadly (Pearson and Palmer, 2000), because it
is understood to be in equilibrium with the atmosphere and have relative stable hydrography. The region
experiences equatorial divergence but is not strongly affected by upwelling and has a current estimated
annual air-sea CO2 flux of +28 ppmv (Takahashi et al., 2014). The pre-industrial air-sea COz flux is
calculated to be +16 ppm, (GLODAP database corrected from anthropogenic inputs), with a value of 298
ppm, compared to the Vostok ice core value of 282 ppm at 1.08 ka . This pCO2 difference is similar to
our pCO: uncertainty (an average of ~17 ppm for the youngest samples). If trade winds were much
stronger, and equatorial divergence greater, than this could drive some disequilibrium in the past.
However, a few lines of evidence suggest the region was in quasi-equilibrium in the past: 1) zonal
temperatures are at a maximum in pre-industrial times and during the Pleistocene, and we are able to
reconstruct atmospheric pCO2 values from the ice cores, 2) temperature proxies indicate the region is
relatively stable with respect to temperature compared to other parts of the ocean, and also indicate a
weak and stable zonal temperature gradient during the Miocene and Pliocene which would support air-
sea stable conditions and air-sea equilibrium (e.g., Nathan and Leckie, 2009; Zhang et al. 2014; Liu et al.,
2019).

This study builds on low-resolution prior reconstructions for these sites (Wara et al., 2003; Tripati
et al., 2009, 2011; Shankle et al., 2020), Site 872 in the tropical Pacific (Sosdian et al., 2018), and other

published boron isotope work, to provide additional data to constrain past seawater pH and pCO: for the
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WEP using MC-ICP-MS, thereby providing an invaluable new perspective on reconstructing past
atmospheric CO2 via marine sediment archives. We explore various constraints on the? second carbonate
system parameter using a number of different scenarios, following on thz systematic work done by Tripati
et al. (2009) and (2011) for B/Ca. We interpret these data using recent constraints on seawater 5''B
(Lemarchand et al., 2000; Raitzsch and Ht')nisch?2013; Greenop et al., 2017). For temperature estimation,
we utilize a multi-variable model fo? Mg/Ca (Gray and Evans, 2019), that builds on prior work with
clumped isotopes in plankticQ foraminifera for Site 806 and other WEP sites demonstrating that for the
Last Glacial Maximum to recent, salinity-corrected Mg/Ca values are needed to yield convergent

estimates of mixed-layer temperatures (Tripati et al., 2014).

2. Materials and Methods
Below we describe site locations, analytical methods used, and figures of merit. The supplemental
methods section describes screening for potential contamination, equationsQused for calculations, and

error propagation.

2.1 Site locations

Samples are from three ODP holes recovered during @eg 130 in the WEP (Fig?l, Table 1): Hole
806A (0°19.140'N, 159°21.660'E, 2520.7 m water depth), Hole 806B (0°19.110'N, 159°21.660'E, 2519.9
m water depth), and Hole 807A (3°36.420’NQ, 156°37.500'E, 2803.8 m water depth) (Berger et al., 1993).

Sites 806 and 807 are not likely t(? have experienced major tectonic changes over the last 20 million years.

2.2 Preservation

Microfossils in sediments at these sites, as with any sedimentary sequences, have the potential to
be influenced by diagenesis. Despite evidence of authigenic carbonate formation, recent modeling work
concluded the influence of dissolution and reprecipitation at Sites 806 and 807 was relatively minor
(Mitnik et al., 2018). Prior work has also found minimal impacts on the B/Ca ratio of Pliocene
foraminifera from Site 806 (White and Ravelo, 2020), and on the Mg/Ca ratio of Miocene D. altispera

shells at Site 806 (Sosdian et al., 2020). The weight/shell ratio is commonly used to monitor dissolution,
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and the only published record at Site 806 for the Pliocene does not show a trend consistent with dissolution
of T. sacculifer (Wara et al., 2005). We do note that while the “coccolith size-free dissolution” index
reported in Si and Rosenthal (2019) indicates higher dissolution rates in the Miocene, their records were
thought to be biased from changes in foraminifera assemblages as discussed in White and Ravelo (2020).

To further assess the potential impact of dissolution in our geochemical data, the weight/shell ratio
was examined in our samples. The weight/shell data used to monitor dissolution does not exhibit any
trend within the interval studied consistent with dissolution. Absolute weights/shell are increasing in the
Miocene, which is not consistent with dissolution influencing the record (Fig. 2E). Additionally,
reconstructed pH and pCO2 values also exhibit reasonable correspondence with the Vostok ice core data.
Downcore 8''B values from Sites 806 and 807 are similar, despite evidence for higher authigenic
carbonate at Site 807 relative to Site 806 (Mitnik et al., 2018). Further, the consistency of our boron
isotope and Mg/Ca results with at the two sites with each other, and to the published data from Site 872
(Sosdian et al., 2018), each with different sedimentation rates, are not consistent with diagenesis being a

primary driver of the record. Comparison of raw data, and derived parameters, is shown in Figs. 2 and 7.

2.3 Age models

The age model for Site 806 from 0-1.35 Ma is based on Medina-Elizalde and Lea (2005);
calculated ages correspond well with ages from the Lisiecki and Raymo LR04 stack (Fig. 2A). The fourth
polynomial regression-based biostratigraphy from Lear et al. (2015) was used for the rest of the record,
following other work (Sosdian et al., 2020). Ages for Site 807 are based on published biostratigraphy
(Berger et al., 1993) for 807 with additional constraints placed by Zhang et al., (2007) for the interval
from 0-0.55 Ma.

2.4 Species and trace element cleaning

Samples were picked and cleaned to remove clays at UCLA (Los Angeles, CA) andQ the University
of Western Brittany (Plouzané, France). 50-100 foraminifera shells were picked from the 300-400pm
fraction size for 7. sacculifer (w/o sacc) and from the 250—300Qum for G. ruber (white sensu stricto).

Picked foraminifera were gently crushed, clayg removed, and checked for coarse-grained silicates.
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Samples were then cleaned using a ful?reductive and oxidative cleaning protocol following Barker et al.
(2003). A final leach stepQwith 0.001N HCI was done prior dissolution in 1N HCI. Boron purification
used a published microdistillation protocol (see Misra et al., 2014b, Guillermic et al., 2020 for more

detailed methods).

2.5 Chemical purification and geochemical analysis

Chemical separation was performed in a boron-free clean lab at the University of Cambridge
(Cambridge, UK). Calcium concentrations were measured on an ICP-AE§®Ultima 2 HORIBA at the
Pole Spectrometrie Océan (PSO), UMR6538 (Plouzané, France).QElemental ratios (e.g. X/Ca ratios) were
analyzed on a Thermo Scientific ®Element XR HR-ICP-MS at the PSO, Ifremer (Plouzané, France).
Boron isotopic measurements were carrieg out on a Thermo Scientific ®Neptune+ MC-ICP-MS equipped

with 103 Ohm resistorQampliﬁers (Lloyd et al., 2018) at the University of Cambridge (Cambridge, UK).

2.6 Standards
Variations in B isotope ratios are expressed in conventional delta (8) notation withQSHB values

reported against the reference standard NIST SRM 951 (NIST, Gaithersburg?MD, USA):

llB/IOBSam le
p - 1)

HB/1BNisT srm 951

8'"B (%) =1000x ( eq. 1

Multiple analyses of external standards were performed to ensure data quality. Fo? boron isotopic
measurements, JCp-1 (Geological Survey of Japan, Tsukuba, Japan, Gutjahr et al., 2020) was used as a
carbonate standard, and NEP, a Porites sp coral from University 0? Western Australia and Australian
National University was also used (McCulloch et al.?2014). A boron isotope liquid standard, ERM®
AE121 (certified 8''B = 19.9 £ 0.6 %o, SD),Qwas used to monitor reproducibility and drift during each
session (Vogl and Rosner, 2012?Foster et al., 2013; Misra et al., 2014b). For trace elements, external
reproducibility was determined using the consistency standard Cam-Wuellerstorfi (University of

Cambridge) (Misra et al., 2014b).
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2.7 Figures of Merit
2.7.1 5!'B analyses

Samples measured for boron isotopes typically ranged in concentration from 10 ppb §(~5ng B)
to 20 ppb B samples (~10ng B). Sensitivity was 10mV/ppb B (eg. 100mV f(:;r’ 10ppb B) in wet plasma at
50ul/min sample aspiration rate. The intensity of !'B for a sampleQ at 10 ppb B was typically 104 £ 15 mV
(2 SD, typical session) and closely matched the 98 iQ6 mV (2 SD, typical session) of the standard.
Procedural boron blanks ranged from 15 pg BQto 65 pg B (contributed to less than 1% of the sample
signal). The acid blank during analyses was measured at < ImV on the ''B (which also is < 1% of the
sample intensity), and no memory effect was seen within and across sessions.

External reproducibility was determined by analyzing the international standard J CP_IQ(Gutj ahr et
al., 2020) and a Porites sp. coral (NEP). The boron isotopic composition of J Cp. P was measured at 24.06
+ 0.20%0 (2 SD, n=6) within error of published values of 24.37 ﬂ? 0.32%o0, 24.114 0.43%0 and 24.42 +
0.28%o0 from Holcomb et al. (2015), Farmer et al. (2016)Qand Sutton et al. (2018), respectively. Average
values are §''Bnep = 25.72 £ 0.79%o (2 SD, n=31) determined over 13 different analytical sessions, with
each number representing a separately processed sample from this study. These results are within error
ofpublisheg values 0f 26.20 £ 0.88%o (2 SD, n =27) and 25.80 + 0.89%o (2 SD, n = 6), from Holcomb et
al. (2015) and Sutton et al. (2018), respectively. Data are reported in Supplementary Table B.

2.7.2 X/Ca analyses

Trace element (TE) analyses were conducted at a Ca concentration of either 10 or 38 ppm. Typical
blanks for a 30 ppm Ca session were: 'Li < 2%, "B < 7%, Mg < 0.2% andQ‘BCa < 0.02%. Additionally,
blanks for a 10 ppm Ca session were: 'Li < 2.5%, ''B < 10%?25Mg < 0.4% and ¥*Ca < 0.05%. Analytical
uncertainty of a single measurement wachalculated from the reproducibility of the CamWuellestorfi
standard: 0.6 umol/mol for Li/Ca?S umol/mol for B/Ca and 0.02 mmol/mol for Mg/Ca (2 SD, n=48).
Data are reported ir? Supplementary Table B.

2.8 Calculations
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Detailed calculations can be found in the supplemental materials. Briefly, Mg/Ca was used to
reconstruct sea surface temperature (SST) using the framework from Gray and Evans. (2019) correcting
for influences of pH and salinity. 8''Bcarbonate Was corrected using an empirical 8''Bearbonate-weight/shell
ratio relationship. 8''Boorate Was determined using species dependent sensitivities of §''Bearbonate to 8! 'Bborate
(Guillermic et al., 2020). pH was calculated using the §''Boorate with different scenarios of secular seawater
5''B changes (Lemarchand et al., 2002; Raitzsch and Hénisch, 2013; Greenop et al., 2017). pCO2 was
reconstructed using pH based &!'Bearbonate and different scenarios of Alkalinity (Tyrell and Zeebe, 2004;
Ridgwell and Zeebe, 2005; Caves et al. 2016 and Rae et al. 2021). Further details including equations are
in the Supplement.

3. Results and discussion
3.1 Geochemical results

Geochemical data used in this study are presented in Figure 2. Mg/Ca data (Fig. 2C) are consistent
with previously published Mg/Ca values for Site 806 on 7. sacculifer (Wara et al., 2005; Tripati @t al.,
2009; Nathan and Leckie, 2009). Although the record we generated does not overlap with Site 872, they
are time-adjacent, and there is a good correspondence with our Mg/Ca data and the published Mg/Ca
record from 7. trilobus at Site 872 (Sosdian et al., 2018). Mg/Ca from a different species, D. altispira
(Sosdian et al., 2020), is also plotted with an offset, for comparison.

Comparison with Site 872 data that is part of the compilation from Sosdian et al. (2018) shows
that their 8''B data areén line with our dataset (Figure 2B), and all sites examinedfn the WEP (Sites 806,
807, and 872) are above the lysocline (Kroenke et al. 1991). The 8''B data for 7. sacculifer exhibit a
significant decrease (4.2%o) from the Miocene to present. Figure 2B also compares the §''B data used in
this study with published data from other sites, and shows that raw §''B data for éhe WEP can be lower

than values for other regions.

3.2 Reproducing pCO; from ice cores
Validation of air-sea equilibrium in the WEP during the relatively large amplitude late Pleistocene

glacial/interglacial cycles was a primary goal for our work. In order to validate Your approach, we

11
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reconstructed pCO: for the last 800 kyr (Fig. 3). The two criticzﬁ diagnostics we use for method validation
are: 1) that the reconstruction of pCOz is representative of recent atmospheric COz, and 2) that the boron-
based reconstruction empirically reproduces the record from ice cores. For the last 800 kyr, reconstructed
pCOzQ values for Holes 806A and B and Site 807 are mostly within error of the records from the Vostok
and EPICA Dome C ice cores (Fig. 3, Petit et al., 1999, Siegenthaler et al., 2005? Liithi et al., 2008;
compilation from Bereiter et al., 2015), with the exception of two data points at 47 and 79 ka that have
lower pCOz2 in comparison to ice core values. Crossplots comparing our data are presented in Figs. 3C,
3D, 3E; the slope and intercept are not statistically different from a 1:1 line (p=0.69 and p=0.48). Between
MIS 7 and 6, our reconstructions exhibit a decrease in temperature (AT) of 1.2°C, an increase in pH (ApH)
of 0.08 and a decrease in pCO2 (ApCO2) of 58 ppm. Between stage 3 and 1, we observed an increase of
temperature of 2.0°C, a decrease of pH of 0.13 and an increase in pCO:2 of 76 ppm. We also compare
results with recent reconstructionsin Figs. S1 and S2 (Sosdian et al., 2018; Rae et al., 2021). These results
highlight that we are able to reproduce absolute measurements of atmospheric pCO%of the ice core record,
and reproduce the amplitude of changes between transitions, with uncertainties typical for this type of
work (Honisch et al., 2019). We note that reconstructedQ pCO2 uncertainties could potentially be reduced
using independent temperature proxies fo? the WEP such as clumped isotope thermometry (Tripati et al.,
2010; 2014), a technique that i?not sensitive to the same sources of error as Mg/Ca thermometry, and

therefore is an area planned for future work.

3.3 Sea surface temperature in the WEP

Mg/Ca data for the WEP are consistent between studies at Site 806 (Wara et al., 2005; Tripati et
al., 2009, 2011; Nathan and Leckie, 2009) and Site 872 (Sosdian et al., 2018). The Mg/Ca in T. sacculifer
has to date not shown a pH dependency (Gray and Evans, 2019) but Mg/Ca of G. ruber does and was
therefore corrected from this effect (see supplemental material). Data for both species were corrected
from salinity and seawater Mg/Ca changes. Mg/Ca-temperatures for Site 872 was reconstructed using
published data and the same framework we use here, and are presented in Figure 4. Recalculated values
for Site 872 are from D. altispera, with an offset applied relative to 7. sacculifer, and show similar

variations to our record for the MCO-MMCT periods (Sosdian et al., 2020). Temperatures from Texse
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and UX37 are plotted for comparison but those records are limited to the last 12 and 5 Myrs respectively
(Zhang et al., 2014).

The Mg/Ca data support high temperatures of 35.2 + 1.3 °C (2SD, n=11) for the early Miocene
until the MMCT, with relatively small (ca. 1°C) change from into the MCO, and larger changes out of the
MCO. Similarly warm SST for the MCO were reconstructed in the North Atlantic at Site 608 from Texses
(Super et al., 2018). Despite a gap in our compilation from 11.5 to 9.5 Ma, there is a SST decrease of
~6°C from the MCO to ~7 Ma where temperatures similar to present day values are observed. A decline
in temperature during the MMCT is coincident with the timing of a constriction of the Indonesian Seaway,
the pre-closure of the trans-equatorial circulation and subsequent formation of a proto-warm pool (Nathan
and Leckie, 2009; Sosdian et al., 2020). From 12 to 7 Ma, the Mg/Ca-SST record diverges from Texss
and UX’37-based reconstructions, with higher temperatures. At the same time, a record for the North
Atlantic showed a decrease of ~10°C from the MCO to ~9 Ma (Super et al., 2018). From 7 Ma to present,
the record from multiple proxies — Mg/Ca, Texss, and UX’37, in the WEP agree.

3.4 Scenarios of seawater 5!'B and alkalinity used for pCO2 reconstructions

Figures 5 and 6 show the different histories of seawater §''B and alkalinity used for calculations,
respectively. Details of calculations are in the Supplemental methods. Following the approach of Tripati
et al. (2009, 2014) and recent literature (Sosdian et al., 2018; Rae et al., 2021), we explored multiple
scenarios for the evolution of seawater boron geochemistry (Fig. 5) and alkalinity for calculations of pCO2
(Figs. 6, S1 and S2). During the interval overlapping with the ice core record, we observe that the choice
of model used does not make a significant difference in reconstructed values. During earlier time intervals,
we see there is a greater divergence, reflecting larger uncertainties in seawater §''B and alkalinity further
back in Earth history.

Prior to 10 Ma and during the early Pliocene (~4.5 to 3.5 Ma), calculations of pCO2 diverge from
published values largely because of the different assumptions each study has used for past seawater §''B
(Fig. 5). However, we find that when the uncertainty in reconstructed pH is fully propagated, the
differences in reconstructed pH values calculated using each of the §'!Bscawater histories is not significantly

different (Fig. 5 and 6; see also Honisch et al., 2019). In contrast to the results from Greenop et al. (2017),
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the record from Raitzsch and Honisch, (2013) exhibits substantial variations on shorter timescales. Such
variability is a challenge to reconcile with the Li isotope record of Misra and Froelich, (2012), given that
Li has a shorter residence time than boron while having similar sources and sinks. For the remainder of
this study, we use the 6''Bscawater history from Greenop et al. (2017) because it is in good agreement with
seawater ¢’Li (Misra and Froelich, 2012). The recent calculations of seawater pH (Sosdian et al., 2018;
Rae et al., 2021) agree with values from our study when uncertainties are taking into account (Fig. 5).

The four alkalinity models used in this study diverge prior to 9 Ma, with a maximum difference
at ~13 Ma that is also reflected in reconstructed pCO2 values (Fig. 6). However, all four models yield
pCO2 estimates that are within error of each other when the full uncertainty is considered. Uncertainty in
the evolution of seawater alkalinity and seawater 5!'B leads to differences in the absolute values of pCO:
reconstructed (Fig. S2), and a divergence in pCO: values reconstructed that is largest in the Miocene. The
two scenarios that produce the highest divergence in values are those calculated using constant alkalinity
relative to those calculated using values from McCaves et al. (2016), with a maximum difference at 15.06
Ma of up to 250 ppm CO2, and with the latter model producing lower values (Fig. 6). Thus, for the MCO,
alkalinity is a critical parameter in calculations of absolute pCO2 values. For the Miocene and earlier
intervals, improved constraints on past secular variations of seawater 3!'B and alkalinity will yield more
accurate reconstructions of pCOx.

For the remainder of this paper, we use the model of Caves et al. (2016) to estimate alkalinity and
8! Bscawater determined by Greenop et al. (2017). We note that two recent syntheses of boron isotope data
have been published and compare our results to these findings (Figs. 8 and S2). Sosdian et al. (2018)
reports values that are in line with our results in the Miocene but this study does not replicate results from
ice cores. Rae et al. (2021) presents reconstructed values that are higher in the Miocene, due to the

utilization of different scenarios of seawater 5!'B and alkalinity compared to this work.

3.5 Time intervals
3.5.1 Miocene
The study of Miocene climate is thought to provide a useful analog for changes associated with

global warming and melting of polar ice, in concert with ocean circulation (Holbourn et al., 2013). The
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Miocene epoch (23-5.3 Ma) is characterized by a warm interval?the Miocene Climate Optimum (~17-
14.7 Ma - MCO), and an abrupt cooling during thg Middle Miocene Climate Transition (~14-13 Ma —
MMCT) that led to the expansion of ic& on Antarctica and Greenland. Climate modeling supports a role
for decreasing CO2 in thi?transition (DeConto and Pollard, 2003). However, reconstructions for the
Miocene are still relatively limited (Sosdian et al., 2018; Rae et al., 2021). Current boron isotope and
alkenone-based pCO: reconstructions support higher pCO: during the MCO and a decrease over the
MMCT (Sosdian et al. 2018; Stoll et al., 2019; Tanner et al., 2020), consistent with what was previously
inferred from B/Ca (Tripati et al., 2009, 2011).

We applied the same framework we used for calculations at Sites 806 and 807 to published boron
isotope data from Site 872 (Sosdian et al., 2018) in order to extend the WEP record to the early Miocene
(Figs. 7, 8). The Miocene data between Sites 806 and 872 do not overlap as both are low in resolution,
but do show excellent correspondence in their trends in 3''B and reconstructed pH. For example, the
closest datapoints in time at the two sites are at 15.6 Ma at Site 806 with a §''B=14.47+ 0.21 %o, and at
16.7 Ma at Site 872, with a §''B=15.12+ 0.25 %o. The pH values we reconstruct are within error of
published estimates from Site 872 (Sosdian et al. 2018, Figs. 7D and 8D). Collectively, these data suggest
the early Miocene WEP was characterized by a mixed-layer pH of 8.1 + 0.1 (2 SD, n=4) between 19.4
and 21.8 Ma, which decreased to reach a minimum during the MCO of 7.7 (£.3713 ) %o.

Given the sensitivity in absolute pCO2 to assumptions about the second carbonate system
parameter, a few scenarios were explored for the combined 806/807/872 reconstructed pH values. For all
alkalinity scenarios we used, reconstructed pCO2 shows an increase from the Early Miocene to the MCO,
with the highest values in the MCO. Recalculated pCO: for Site 872 between 19.4 and 21.8 Ma is 232 +
92 ppm (2 SD, n=4), lower but within error of the ones presented in Sosdian et al. (2018) and also within
error of a constant alkalinity scenario (Fig 8D). The main difference between reconstructions is when
comparing the same data recalculated in Rae et al. (2021) that show higher pCO2 between 19.4 and 21.8
Ma, with an average value of 591 + 238 ppm (2 SD, n=4) for Site 872, because of the different
assumptions used in their study and ours. This difference is important because that would imply a
relatively high and stable pCO2 from the early Miocene to MCO, which would imply a decoupling

between pCO2 and temperature with no pCO2 change during an interval of decreasing benthic?3!%0.
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However, our reconstructed pCO2 increase towards the MCO is in line with the observed benthic §'*0
decrease and 8'°C increase and suggest a coupling between temperature and pCO: over this period. We
note that overall, Mg/Ca-SSTs are warm (>32 °C), and there are relatively small changes in Mg/Ca-SST
from the early Miocene into the MCO in the WEP.

The highest pCO:2 values we reconstruct are during the MCO (Fig. 6E). ForQ the MCO, our
estimates are 511 =201 ppm (2 SD, n=3, Table 2). The middle Miocene values we reconstruct are in line
with previous studies (Greenop et al., 2014; Sosdian et al., 2018). Publishedé“B—based reconstructions
also support higher pCO: for the MCO of ~350-400 ppm (Foster et al., 2012) or 300-500 ppm (Greenop
et al., 2014) that was recalculated by Sosdian et al. (2018) to be ~470-630 ppm depending on the model
of 6''Bscawater chosen. During the MCOQrelative maxima in pCOz, our data support very warm sea surface
temperatures in the WEP (35.6°C + 0.6°C 2SD, n=3; Fig. 8C), that merits further examination in future
studies. In fact, the highest temperatures recorded in our samples occur when there is a minimum in the
global composite record of §'%0 of benthic foraminifera (Zachos et al., 2001, 2008? Tripati and Darby,
2018).

During the MMCT, we find evidence for changes in pCO2 and temperature in th? WEP (Fig. 8).
From 13.5 to 12.7 Ma, we reconstruct an increase of pH ~0.21 and a majo? decrease of pCO2 of ~215
ppm during an interval highlighted by Flower and Kennett? (1996), who observed changes in §'*0
indicative of rapid East Antarctic Ice Sheet growth, and enhanced organic carbon burial with a maximum
8'3C reached at ~13.6 Ma (Shevenell e?[ al., 2004; Holbourn et al., 2007). As discussed in section 3.4 the
alkalinity model used for the calculations have an important impact during the Miocene which is likely
responsible for the different absolute pCO2 values over the MCO. In comparison, a scenario of constant
alkalinity would lead to a pCO2 during the MCO of 714 + 313 ppm (2 SD, n=3) and a decrease of ~540
ppm during the MMCT. Both those reconstructions could simulate the large-scale advance and retreat of
Antarctic ice with such low pCO2 values (Gasson et al., 2016). At the same time, we find evidence for a
decline in SST of 3.4°C to a minimum of 33.3°C. The synchronous shifts in the §'3C and §'*0 of benthic
foraminifera are consistent with increased carbon burial during colder periods, thus feedinngack into
decreasing atmospheric COz, and supporting the hypothesis that the drawdown of atmospheric COz can

in part, be explained by enhanced export of organic carbon.
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The resolution of our data during the late Miocene is low, with a data gap from 12.5 t0Q9.2 Ma,
and another gap between 6.5 and 5 Ma. We note the pCO:2 peak at ~9 Ma observed by Sosdian et al.
(2018) is not seen in our record although this is likely due to the lov? resolution of our dataset. Between
9.5 and 7.1 Ma we find evidence for a decrease in atmospheric CO2 of 100 ppm associated with a decrease
in temperature of 1.3 °C. pCO: estimates derived from alkenones for Site 1088 (Tanner et al., 2020) do
not show the same trend as boron-based reconstructions from the WEP or other regions (Figure 6), but

this perhaps is unsurprising given the oceanographic setting of Site 1088.

3.5.2 Pliocene

Oxygen isotope data from a global benthic foraminiferal stack show that the Pliocene epoch (5.3-
2.6 Ma) was initially characterized by warm conditions followed by the intensification of glaciation that
occurred in several steps, including during MIS M2 (3.312-3.264 Ma), followed by the Middle Pliocene
Warm Period (Lisiecki and Raymo, 2005). The Middle Pliocene Warm Period (mPWP — 3.29-2.97 Ma)
is considered a relevant geological analogue for future climate change given ~3°C warmer global
temperatures andsea levels that were ~20 m higher than today (Dutton et al., 2015; Haywood et al., 2016),
and is a target for model intercomparison projects, for which accurate paleo-atmospheric pCO:2 estimates
are critical (Haywood et al., 2016).

Figure 9 shows that during the Early Pliocene warm interval, from 4.7 to 4.5 Ma, we calculate
high pCOz2 values 0f 419 + 119 ppm (2 SD, n=3, Table 2). The pCO: data we report provide a higher data
density for the Early Pliocene, with a trend that is in line with the reconstruction from Rae et al. (2021).
Our data support values of 530 + 110 ppm over the mPWP (2 SD, n =4), higher than previously published
data (Figs. 9, S2 and Table 2), although we acknowledge our low data density may not fully sample
variability over this period. The similarity between our reconstructed values and those published for Site
871 in the Indian Ocean (Sosdian et al., 2018) suggests that changes in Indonesian through-flow do not
induce substantial changes in air-sea exchang&in the WEP.

The warmth and local pCO2 maxima of the mPWP (mid-Pliocene Warm Period) was followed by
a strong decrease of temperature in upwelling and high latitude regions during from 3.3-2.7 Ma,

coincident with glacial intensification in the Northern Hemisphere. This climate transition was
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hypothesized to be driven by the closure of the Panama seaway the opening of the higthatitudes and
subsequent modifications of oceanic circulation (Haug and Tiedemann, 1998). However, modeling from
Lunt et al. (2008) supports an additional major role for CO: in the glaciation. pCOz2 thresholds have been
proposed to explain the intensification of Northerr? Hemisphere Glaciation, with values proposed ranging
from 280 ppm (DeConto et al., 2008?t0 200 to 400 ppm (Koening et al., 2011).

The pCO2 concentrations that we calculate indicates a reduction to 350 ppm by 2.7 Ma, ~280 ppm
by 2.6 Ma, and ~210 ppm by 2.4 Ma, in several steps. These results support roughly a halving of CO2
values when compared to values of ~530 ppm at 3.3 Ma. These values are consistent with the pCO2
thresholds proposed by both DeConto et al. (2008) and Koening et al. (201 1? for the intensification of
Northern Hemisphere glaciation and the low atmospheric CO2 (280 ppmv? scenario from Lunt et al.
(2008). Mg/Ca SST decline from 30°C to 26°C, supporting an Earth System sensitivity of ~4°C/doubling
of COz2 over this range, although given uncertainties, higher values of ~6°C/doubling of CO2 that have
recently been proposed (Tierney et al., 2020) can not be excluded.

We speculate that associated with Pliocene glacial intensification, at 4.42, 3.45 and 2.67 Ma, it is
possible that the declines in CO2 and ice growth in turn drove substantial changes in pole-to-equator
temperature gradients and winds, that in turn may have impacted iron cycling (Watson et al., 2000;
Robinson et al., 2005; Martinez-Garcia et al., 2011), stratification (Toggweiler, 1999; Sigman et al.,
2010), anonther feedbacks that impact the amplitude of glacial/interglacial cycles and have been
implicated as factors that could have contributed to Pliocene glacial intensification. Specifically, as the
mean climate state of the planet became cooler, and glacial-interglacieﬁ cycles became larger in amplitude,
enhanced windiness and dust transport and upwelling during glacials (Martinez-Boti et al., 2015b) may
have enhanced iron fertilization and subsequent carbon export (Martinez-Garcia et al., 2011). While data
resolution are limited, we speculate this could explain why glacial/interglacial amplitudes in WEP pCO:
values decrease from the MPWP towards the Pleistocene, whereas variations in 8'%0 are increasing — a

speculation that could be tested with increased data resolution.
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3.5.3 Pleistocene

During the Pleistocene (2.58-0.01 Ma), the climate system experienced a transition in
glacial/interglacial (G/I) variability from low amplitude, higher frequency and obliquity-dominated
oscillations (i.e., ~ 41 kyr) of the late Pliocene to the high amplitude, lower frequency and eccentricity-
dominated cycles (i.e.., ~100 kyr) of the last 800 kyr. Thi? transition is termed the Middle Pleistocene
Transition (1.2-0.8 Ma — MPT). Questions havg been raised about the role of atmospheric CO:2 during this
transition, including using boron-based proxies (Honisch et al., 2009; Tripati et al., 2011; Chalk et al.,
2017). Previous boror? isotope studies for ODP Sites 668 and 999 in the tropical Atlantic Ocean have
suggested that a decline in atmospheric CO2 did occur during glacial periods in the MPT, but not during
interglacials (Honisch et al., 2009; Chalk et al., 2017; Dyez et al., 2018).

Our pCO:z2 concentrations for Sites 806/807 reported here are in good agreement with those
determined from ice cores from the early Pleistocene (Yan et al., 2019, Figs. 9 and 10), and with the
boron-derived pCO: from a recent compilation (Rae et al., 2021). Results for the MPT are broadly in the
range of values reported by Honisch et al. (2009) and Chalk et al. (2017). Although our data are relatively
limited, we note they have greater resolution for the middle and later part of the transition than prior
publications that have drawn conclusions about the MPT (Honisch et al., 2009; Chalk et al., 2017; Dyez
et al., 2018) (Fig. 10D) and therefore we explore their implications.

Taken alone, or when combined with the published data from Chalk et al. (2017) (that is also based
on MC-ICPMS), our results support a possible reduction of both glacial and interglacial pCO2 values. We
also find evidence that during the MPT, glacial pCO2 declined rapidly from 189 (£30) ppm at MIS 36
(Chalk et al., 2017) to reach a minimum of 170 (igi) ppm during MIS 30. We note that pCO2

concentrations are within error when uncertainty is fully propagated, and then remained relatively stable
until thg end of the MPT whereas interglacial pCO: values decrease gradually to reach post-MPT values.

In our record for the last 16 Myr, the lowest pCOz is recorded at MIS 30 during the MPT, with
values of 164 (ﬂ:gg) ppm, which supports an atmospheric CO2 threshgld that leadsQ‘f,o ice sheet stability.
During this transition, the pCOz threshold needed to build sufficiently large ice sheets that were able to
survive the critical orbital phase of rising obliquity t(? ultimately switch to a 100 kyr world, was likely

reached at MIS 30. The multiple feedbacks resulting from stable ice sheets (iron
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fertilization/productivity/changes in albedo/ changes ir? deep water formation) might have sustained larger
mean global ice volumes over the subsequent 800 kyr. An asymmetrical decrease between pCO2 values
during interglacialg relative to glacials, with glacials exhibiting the largest change across the MPT, would
have led to increased sequestration of carbon during glacials in the 100 kyr world, as discussed by Chalk

et al. (2017), with increased glacial dust input and iron fertilization.

3.6 Changes in volcanic activity and silicate weathering, and long-term pCO;

On million-year timescales, atmospheric COz is mainly controlled by volcanic activit}? and silicate
weathering. Over the last 16 Myr, two relative maxima in atmospheric pCO2 arg observed in our record,
one during the MCO (at 15.67 Ma) and a second around the lateQ Miocene/early Pliocene (beginning at
4.7 and 4.5 Ma) (Fig. 11), though the timing for th? latter is not precise. The strong pCOz increase from
the early Miocene to MCO is timely with increasing volcanic activity (Foster al. 2012), associated with
the eruption of the Columbia RiverQ Flood Basalts (Hooper et al., 2002; Kasbohm and Schoene, 2018),
with recent geochronologic evidence published supporting higher eruption activity between 16.7 and 15.9
Ma (Kasbohm and Schoene, 2018) reinforcing the idea of an episodic pCO2 increase during the MCO due
to volcanic activity.

The second CO2 peak could correspond to observed global increased volcanism in the early/middle
Pliocene (Kennett and Thunell, 1977; Kroenke et al., 1993), and/or a change of silicate weathering regime.
Strontium and lithium isotopes (*”%¢Sr and §’Li) have been used as proxy for silicate weathering activity.
Although the strontium isotope record exhibits a monotonous increase, lithium isotope data (Misra and
Froelich, 2012) are more variable with a transition from a period of increase seawater 8'Li (e.g. non-
steady state weathering) to stable seawater 8’Li (e.g., steady state weathering? beginning at roughly 6.8
Ma (Fig. 11).

It is also interesting to note that the changes in 8’Li (Fig. 11B) in the early Miocene to the MCO
are in line with changes in pCO>. Before 18.5 Ma, the pCO:z is relatively stable, §’Li is increasing
representative of a non-steady state weathering. From 18.6 to 16.7 the 8’Li decrease of about 2%o, this
decrease can inform on decreasing weathering rate and this decrease is associated with an increase in

pCOz2. Between 16.7 and 15.9 Ma, when the eruption of the Columbia River Flood Basalts is maximum
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the 8'Li increases, in line with higher weathering due to higher atmospheric CO2 and the presence of fresh
silicate rocks. The 8’Li decreases again until the end of the MCO ~14.7 Ma, in line with a decrease in the
eruption rate and sustaining high atmospheric COz, then, a constant increase is observed until the early
Pliocene where the change toward a steady in weathering regime occurs, this increase in 8’Li is also

consistent with the decrease in pCO2 observed until the early Pliocene.

3.9 Outlook and Conclusions

We developed a reconstruction of atmospheric pCO2 based on 8''B of plankti? foraminifera from
ODP Sites 806 and 807 located in the Western Equatorial Pacific for the past 16 million years and
extended the record to 22 Ma by processing data from Site 872. Our study represents the first long-term
reconstruction for the Neogene derived from boron isotopes from the Pacific Ocean. We build on past
efforts to reconstruc?[ atmospheric pCO2 using different proxies from this region, including from carbon
isotopes ianarine organic matter (Rayno et al., 1996) and alkenones (Pagani et al., 2010), as well as
foraminiferal B/Ca ratios (Tripati et al., 2009, 2011), all of which have been shown to have gnumber of
complexities and potential sources of systematic error (e.g., Tripati et al., 2011). I?also builds on efforts
using boron isotopes in other regions using MC-ICP-MS (Seki et al., 2010; Foster et al., 2012, 2014;
Greenop et al., 2014; Martinez-Boti et al., 2015b; Stap et al.?2016; Chalk et al., 2017; Dyez et al., 2018;
de la Vega et al., 2020), and our recent work constraining fractionation factors and measuring small
samples of foraminifera. Although thg record is not continuous, with variable resolution, it captures both
long-term and short-tern? variability associated with several key transitions and demonstrates the utility
of these site? for future higher resolution study.

As expected, these data generally reproduce the pCO: record from ice cores? consistent with the
sites being in equilibrium with the atmosphere. The MCO has highe? pCOz2 than reconstructions from
other sites, with values estimated as 511 + 201 ppm (2 SD, n=3), likely linked to the eruption of the
Columbia River Flood Basalts, with values declining into the early Pliocene, including during Pliocene
glacial intensification. The changes in pCO2 we observed are in line with changes in 8’Li, proxy of silicate

weathering, future modellisation on those records will provide helpful insights.
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We find support for a larger reductionQin glacial pCOz during the MPT compared to interglacial
pCOz2, and a minimum in pCO2 during glacial MIS 30. These findings confirm a role for CO:z in the
transition from a 41 ky?to a 100 kyr world.

Higher-resolution boron isotope records from the WEP would allow for furtherQ resolution of these
changes. Additional constraints on temperature, such as from clumpedQ isotopes (Tripati et al., 2010) in
the WEP (Tripati et al., 2014), could allow for uncertaintieg in pCOz estimates from boron isotopes to be

reduced and for new constraints on Earth systen? climate sensitivity. Future constraints on the vertical

structure of the tropical Pacific during these transitions may also potentially be illuminating.
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Figure captions

Figure 1: Modern hydrography of sites. A. Map of air-sea pCO, (ApCO», ppm, data from Takahashi et
al. (2014) and plotted using Ocean Data View from Schlitzer, (2016) showing the location of ODP
Sites 806 and 807 (black circles) and Site 872 (black square, Premoli et al., 1993). Depth profiles are
for preindustrial parameters, B. pH calculated from GLODAP database and corrected from
anthropogenic inputs, C. Boron isotopic composition of borate ion (8''Bporae) With associated
propagated uncertainties.

Figure 2: Foraminiferal data for the Miocene to Recent. A. Benthic foraminiferal 6'*0 data (blue line
— stack from Lisiecki and Raymo, 2005; black line — compilation from Zachos et al., 2008). B. §''B of
T. sacculifer (blue circles) and G. ruber (blue triangles) at Sites 806 (light blue), 807 (dark blue), Grey
filled square are data from Site 872 located in the WEP (Sosdian et al., 2018). Open symbols are §''B
data from published studies (Honisch and Hemming, 2009; Seki et al., 2010; Foster et al., 2012;
Greenop et al., 2014; Martinez-Boti et al., 2015a; Chalk et al., 2017; Dyez et al., 2018; Sosdian et al.,
2018; de la Vega et al., 2020), grey open symbols are 7. sacculifer, brown open symbols are for G.
ruber C. Mg/Ca ratios of T. sacculifer and G. ruber at Sites 806, 807 and fourth-order polynomial
regression from Sosdian et al. (2020) representing secular variations of Mg/Cas, (blue dotted line). E.
Calculated weight per shell for 7. sacculifer and G. ruber. For Panels B-D: Circles = T. sacculifer,
Triangles = G. ruber.

Figure 3: A. Reconstruction of surface pCO; for the past 0.8 Myr from 7. sacculifer at ODP Sites 806
and 807. Planktonic foraminiferal §'%0 at site 806 with isotope stages labeled (black line — Medina-
Elizalde and Lea, 2005) and benthic foraminiferal 60 stack (grey line - Lisiecki and Raymo, 2005).
B. pCO; values calculated from boron isotopes (colored symbols - this study) with data from the
literature (open gray triangles — data recalculated in Rae et al., 2021) and ice core pCO; (black line —
Bereiter et al., 2015). Data from the two sites we examined reproduces the absolute values and
amplitude of atmospheric pCO; as determined from ice cores, thereby validating our methodology. C.
Cross plot for the last 0.8 Myr of 8''Br. succuiifer from this study and 8'%0g. yupe from site 806 (Medina-
Elizalde and Lea, 2005) (Linear regression: p=0.7). D. Cross plot for the last 0.8 Myr of pCO: 7. saccuiifer
from this study and 8'30c. use- from site 806 (Medina-Elizalde and Lea, 2005) (Linear regression: p=0.9)
and E. Cross plot for the last 0.8 Myr of pCOa7. succuiirer from this study and pCO,_Vostok (from ice core,
Bereiter et al., 2015) (Linear regression: p=0.3, R?=0.09).

Figure 4: Compilation of temperature from site 806 in the WEP. Mg/Ca based temperature were
derived using the same framework (see supplemental information). Blue filled symbols are from Sites
806 and 807, filled gray squares are data from Site 872 (Sosdian et al., 2018). Open symbols are SST
derived from Mg/Ca at Site 806 (Wara et al., 2005; Tripati et al., 2009; Nathan and Leckie, 2009).
Texgs and UX 37 are also plotted for comparison (Zhang et al., 2014). Blue line is a smooth line
(Lowess) going through the data.

Figure 5: Different models for the evolution of the boron geochemistry explored as part of this work.
Due to the 1%o uncertainty propagated for 6''Bgeawater, all scenarios yield reconstructed seawater pH
values that are within error of each other. Propagated uncertainties were calculated using eq. S14 (see
Supplement). A. Different models for §''Bseawater used for the reconstruction of pCO, in this study (blue
— Lemarchand et al., 2000; green — Greenop et al., 2017; red — Raitzsch and Ho6nisch, 2013). B.
Reconstructed pH based on our measured 8''Beabonate Values using different models for 6''Bgeawater (blue
— Lemarchand et al., 2000; green — Greenop et al., 2017; red — Raitzsch and Honisch, 2013), compilation
pH from Sosdian et al. (2018) (open squares) and Rae et al. (2021) (open triangles) are also shown for
comparison.

Figure 6: Different models for the evolution of a second carbonate (e.g. alkalinity) system parameter
explored as part of this work. The propagated uncertainties were calculated using eq. S16 (see
Supplement). A. Different models for alkalinity used for the reconstruction of pCOs; in this study
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(brown — constant alkalinity of 2330 umol/kg, blue - Ridgwell and Zeebe, 2005; green - Tyrell and
Zeebe, 2004; violet - Caves et al., 2016. Colored symbols are reconstructed pCO; based on our
measured 6''Beabonate Values , alkalinity scenario and 8''Bgeawater from Greenop et al., 2017; open
squares are pCO, compilation from Sosdian et al. (2018), open triangles are from compilation from
Rae et al. (2021), black symbols are from site 872. B. Reconstructed pCO> using constant alkalinity of
2330 pmol/kg and 6" Bseawater from Greenop et al. (2017). C. Reconstructed pCO; using constant
alkalinity scenario from Ridgwell and Zeebe, (2005) and 6''Bseawater from Greenop et al. (2017). D.
Reconstructed pCO; using constant alkalinity scenario from Tyrell and Zeebe, (2004) and 6''Bsecawater
from Greenop et al. (2017). E. Reconstructed pCO; using constant alkalinity scenario from Caves et
al., (2016) and 6''Bseawater from Greenop et al. (2017). Stars indicate pCO, values reconstructed from
alkenones by Tanner et al. (2020) (simulation 6) at Site 1088 in the Southern Ocean.

Figure 7: Proxy data for the past 22 million years in the Western Equatorial Pacific compared to benthic
oxygen isotope data. A. Benthic §'30 (blue line — stack from Lisiecki and Raymo, 2005; black line —
compilation from Zachos et al., 2008). B. Benthic §'°C (black line — compilation from Zachos et al.,
2008). C to E, colored is indicating the site (filled light blue=806, filled dark blue=807), symbols
represent the species (circle=T. sacculifer and triangle=G. ruber), filled grey squares are recalculated
data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and 807 using
Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are
reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Seawater pH
reconstructed from 8''B of T sacculifer and G. ruber using 8''Bseawater from Greenop et al. (2017) (refer
to text and supplement for calculations, this study), open squares are compilation data from Sosdian et
al. (2018) and open triangles are compilation from Rae et al. (2021). E. Reconstructed pCO, (ppm)
using boron-based pH and alkalinity from Caves et al. (2016), data presented are from this study.
Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue envelope
are the uncertainties calculated based on eq. S16 (taking into account uncertainty on 8''Bseawater). Cross
symbols are original pCO; calculated in Sosdian et al. (2018) at site 872; asterix symbols are calculated
pCO- at site 872 from Rae et al. (2021).

Figure 8: Proxy data from 22 to 6 million years, including the Middle Miocene Climate Transition
(MMCT) and Miocene Climate Optimum (MCO), in the Western Equatorial Pacific compared to
benthic oxygen isotope data. A. Benthic §'*0 (black line — compilation from Zachos et al., 2008). B.
Benthic §"°C (black line — compilation from Zachos et al., 2008). C and D, colored is indicating the
site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=T. sacculifer
and triangle=G. ruber), filled grey squares are recalculated data based on Sosdian et al. (2018) at site
872. C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations
for reconstruction details), open symbols are reconstructed temperature based on litearature Mg/Ca at
site 806 (see text or Fig. 4). D. Reconstructed pCO; (ppm) from this study (blue symbols) using boron-
based pH and alkalinity from Caves et al. (2016). Propagated uncertainties are given by eq. S17 for the
dark blue envelope, while the light blue envelope reflects the uncertainties calculated based on eq. S16
(taking into account uncertainty on &''Bseawater). Orange datapoints and envelope are calculated pCO,
and associated uncertainty from our study using our framework and a constant alkalinity scenario. Open
squares are compilation data from Sosdian et al. (2018). Cross symbols are original pCO; calculated in
Sosdian et al. (2018) at site 872; asterix symbols are calculated pCO; at site 872 from Rae et al. (2021).

Figure 9: Proxy data from 7 to 1 million years, including the Warm Pliocene Transition (WPT), in the
Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic §'%0 (black line —
compilation from Zachos et al., 2008). B. Benthic §'"°C (black line — compilation from Zachos et al.,
2008). C and D, colored is indicating the site (filled light blue=806, filled dark blue=807), symbols
represent the species (circle=7. sacculifer and triangle=G. ruber), filled grey squares are recalculated
data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and 807 using
Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are
reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Reconstructed
pCO: (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al.

34


Texte remplacé�
Texte
[Ancien] : "(orange -Ridgwell and Zeebe, 2005; violet -Tyrell and Zeebe, 2004; green -Caves et al., 2016. B. Reconstructed" 
[Nouveau] : "1055 (brown – constant alkalinity of 2330 µmol/kg, blue -Ridgwell and Zeebe, 2005; green -Tyrell and 1056 Zeebe, 2004; violet -Caves et al., 2016. Colored symbols are reconstructed"



Corps « 11.04 » remplacé par « 12 ».

Texte inséré�
Texte
"1057"

Texte remplacé�
Texte
[Ancien] : "using different models for alkalinity" 
[Nouveau] : ", alkalinity scenario"

Texte remplacé�
Texte
[Ancien] : "2017. Figure 5: Reconstruction of surface pCO 2 for the past 0.8 My from T. sacculifer at ODP Sites 806 and 807. Also shown is benthic foraminiferal δ 18 O with isotope stages labeled (black line – stack from Lisiecki and Raymo, 2005). pCO 2 values calculated from boron isotopes (colored symbols -this study) with data from the literature (gray symbols: circles -Honisch et al., 2009; half filled circles -Seki et al. 2010; triangles – Foster et al., 2014; diamonds -Stap et al., 2016; squares – Chalk et al., 2017) and ice core pCO 2 (black line -LePetit at al., 2009). Data from the two sites we examined reproduces the absolute values and amplitude of atmospheric pCO 2" 
[Nouveau] : "2017; open 1058 squares are pCO 2 compilation from Sosdian et al. (2018), open triangles are from compilation from 1059 Rae et al. (2021), black symbols are from site 872. B. Reconstructed pCO 2 using constant alkalinity of 1060 2330 µmol/kg and δ 11 B seawater from Greenop et al. (2017). C. Reconstructed pCO 2 using constant 1061 alkalinity scenario from Ridgwell and Zeebe, (2005) and δ 11 B seawater from Greenop et al. (2017). D. 1062 Reconstructed pCO 2 using constant alkalinity scenario from Tyrell and Zeebe, (2004) and δ 11 B seawater 1063 from Greenop et al. (2017). E. Reconstructed pCO 2 using constant alkalinity scenario from Caves et 1064 al., (2016) and δ 11 B seawater from Greenop et al. (2017). Stars indicate pCO 2 values reconstructed from 1065 alkenones by Tanner et al. (2020) (simulation 6) at Site 1088 in the Southern Ocean. 1066 1067"

Texte supprimé�
Texte
"as determined from ice cores, thereby validating our methodology."

Texte remplacé�
Texte
[Ancien] : "6:" 
[Nouveau] : "7:"

Texte remplacé�
Texte
[Ancien] : "17" 
[Nouveau] : "22"

Texte inséré�
Texte
"1068"

Texte inséré�
Texte
"1069"

Texte inséré�
Texte
"1070"

Texte remplacé�
Texte
[Ancien] : "(open grey=806, filled grey=807), symbols" 
[Nouveau] : "(filled light blue=806, filled dark blue=807), symbols 1071"

Texte remplacé�
Texte
[Ancien] : "ruber). C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios and equation S6 and S7 (this study). D. Seawater pH" 
[Nouveau] : "ruber), filled grey squares are recalculated 1072 data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and 807 using 1073 Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are 1074 reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Seawater pH 1075"

Texte inséré�
Texte
"1076"

Texte remplacé�
Texte
[Ancien] : "study). E. Reconstructed pCO 2 (µatm) using boron-based pH and alkalinity from Caves et al. (2016), data presented are from this study." 
[Nouveau] : "study), open squares are compilation data from Sosdian et 1077 al. (2018) and open triangles are compilation from Rae et al. (2021). E. Reconstructed pCO 2 (ppm) 1078 using boron-based pH and alkalinity from Caves et al. (2016), data presented are from this study. 1079"

Texte remplacé�
Texte
[Ancien] : "(green or blue)" 
[Nouveau] : "blue"

Texte remplacé�
Texte
[Ancien] : "(green or blue) envelope" 
[Nouveau] : "blue envelope 1080"

Texte remplacé�
Texte
[Ancien] : "Figure 7: Proxy data from 17 to 6 million years, including the Middle Miocene Climate Transition (MMCT) and Miocene Climate Optimum (MCO), in the Western Equatorial Pacific compared to" 
[Nouveau] : "Cross 1081 symbols are original pCO 2 calculated in Sosdian et al. (2018) at site 872; asterix symbols are calculated 1082 pCO 2 at site 872 from Rae et al. (2021). 1083 Figure 8: Proxy data from 22 to 6 million years, including the Middle Miocene Climate Transition 1084 (MMCT) and Miocene Climate Optimum (MCO), in the Western Equatorial Pacific compared to 1085"



Police « TimesNewRomanPS-BoldMT » remplacée par « TimesNewRomanPSMT ».

Texte inséré�
Texte
"1086"

Texte remplacé�
Texte
[Ancien] : "site (open grey=806, filled grey=807)," 
[Nouveau] : "1087 site (filled light blue=806, filled dark blue=807),"



Corps « 11.04 » remplacé par « 12 ».

Texte inséré�
Texte
"1088"

Texte remplacé�
Texte
[Ancien] : "ruber). C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios and equation" 
[Nouveau] : "ruber), filled grey squares are recalculated data based on Sosdian et al. (2018) at site 1089 872. C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios (see supplemental informations 1090 for reconstruction details), open symbols are reconstructed temperature based on litearature Mg/Ca at 1091 site 806 (see text or Fig. 4)."

Texte remplacé�
Texte
[Ancien] : "26" 
[Nouveau] : "34"

Texte remplacé�
Texte
[Ancien] : "S6 and S7 (this study). D. Reconstructed pCO 2 (µatm)" 
[Nouveau] : "D. Reconstructed pCO 2 (ppm)"



Police « TimesNewRomanPSMT » remplacée par « TimesNewRomanPS-BoldMT ».

Texte remplacé�
Texte
[Ancien] : "boronbased" 
[Nouveau] : "boron 1092 based"

Texte inséré�
Texte
"1093"

Texte inséré�
Texte
"1094"

Texte remplacé�
Texte
[Ancien] : "In grey are δ 11 B-derived estimates from the literature (open triangles – Foster et al., 2012 for Site 761B; half-filled diamonds – Foster et al., 2012 for Site 962A; open circles – Badger et al., 2013 for locality in Malta; half-filled triangles – Greenop et al., 2014 for Site 761B; filled diamonds -Stap et al., 2016 for Site 1264). Figure 8: Proxy data from 7 to 1 million years, including the Warm Pliocene Transition (WPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic δ 18 O (black line – compilation from Zachos et al., 2008). B. Benthic δ 13 C (black line – compilation from Zachos et al., 2008). C and D, colored is indicating the site (open grey=806, filled grey=807), symbols represent the species (circle=T. sacculifer and triangle=G. ruber). C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios and equation S6 and S7 (this study). D. Reconstructed pCO 2 (µatm)" 
[Nouveau] : "Orange datapoints and envelope are calculated pCO 2 1095 and associated uncertainty from our study using our framework and a constant alkalinity scenario. Open 1096 squares are compilation data from Sosdian et al. (2018). Cross symbols are original pCO 2 calculated in 1097 Sosdian et al. (2018) at site 872; asterix symbols are calculated pCO 2 at site 872 from Rae et al. (2021). 1098 Figure 9: Proxy data from 7 to 1 million years, including the Warm Pliocene Transition (WPT), in the 1099 Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic δ 18 O (black line – 1100 compilation from Zachos et al., 2008). B. Benthic δ 13 C (black line – compilation from Zachos et al., 1101 2008). C and D, colored is indicating the site (filled light blue=806, filled dark blue=807), symbols 1102 represent the species (circle=T. sacculifer and triangle=G. ruber), filled grey squares are recalculated 1103 data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and 807 using 1104 Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are 1105 reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Reconstructed 1106 pCO 2 (ppm) from this study (blue symbols)"


1107
1108
1109
1110
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

(2016). Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light blue
envelope reflects the uncertainties calculated based on eq. S16 (taking into account uncertainty on
"' Bseawater). Open squares are pCO, compilation from Sosdian et al. (2018), open triangles are from
compilation from Rae et al. (2021). In black are published estimates from ice core data (circles - Yan
et al., 2019).

Figure 10: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition
(MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic 5'*0
(blue line — stack from Lisiecki and Raymo, 2005). B. Benthic '*C (black line — compilation from
Zachos et al., 2008). C and D colored is indicating the site (filled light blue=806, filled dark blue=807),
symbols represent the species (circle=7. sacculifer and triangle=G. ruber), filled grey squares are
recalculated data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and
807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are
reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Reconstructed
pCO; (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al.
(2016). Propagated uncertainties are given by eq. S17. In black are published estimates from ice core
data (line — Bereiter et al., 2015; black circles - Yan et al., 2019). Open triangles are from compilation
from Rae et al. (2021).

Figure 11: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition
(MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope composites. A. Benthic
880 (blue line — compilation from Lisiecki and Raymo, 2005, black line — compilation from Zachos et
al. 2008). @. Records from Lithium isotopes (8'Li, orange, Misra and Froelich, 2012) and Strontium
isotopes (*”%Sr, grey, Hodell et al., 1991, Farrel et al., 1995, Martin et al., 1999, Martin et al., 2004),
both proxies for silicate weathering. Orange arrows represent the different weathering regimes as
indicated by the 8’Li, black crosses are indication when changes in weathering regime occurs. C.
Reconstructed pCO; (ppm) using boron-based pH and alkalinity from Caves et al. (2016), colored is
indicating the site (filled light blue=806, filled dark blue=807), symbols represent the species (circle=T.
sacculifer and triangle=G. ruber), filled grey squares are recalculated data based on Sosdian et al. (2018)
at site 872. Propagated uncertainties are given by eq. S17 for the dark blue envelope, while the light
blue envelgpe are the uncertainties calculated based on eq. S16 (taking into account uncertainty on
8""Beawater). Also shown are timing of major events. The rose band and dark rose band indicate eruption
of the Columbia River flood basalts (Hooper et al., 2002) and time of maximum eruption (Kasbohm
and Schoene, 2018), respectively.
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Table 1: Core information.

Cruise Leg Hole N (°) E (°) Depth (m)
ODP 130 807 3.61 156.62 2804
OoDP 130 806 0.32 159.37 2520
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Table 2: Comparison of reconstructed pCO, values for key intervals in the last 16 Myr.

Mid-Pleistocene transition (1.2-0.8 Ma)

MIS (G) pCO, (ppm) Reference MIS (IG pCO, (ppm) Reference pCO, amplitude 1G-G (ppm)
20 179 This study 21 254 This study 75
22 187 This study 23 230 This study 43
24 nd 25 298 This study nd
26 nd This study 27 nd nd
28 174 This study 29 nd nd
30 170 This study 31 295 Honisch et al., 2009 (N-TIMS) 125
32 218 Chalketal., 2017 33 323 Chalk et al., 2017 105
34 197 Chalk etal., 2017 35 315 Chalk et al., 2017 118
36 189 Chalk etal., 2017 37 295 This study, Chalk et al., 2017 106

39 306 This study nd

Middle Pliocene Warm Period (3.29-2.97 Ma)

pCO, (ppm) Reference

530 + 110 This study (2 SD, n=4)

320 + 130 Martinez-Boti et al., 2015b (2 SD, n=8)
360 + 85 de la Vega et al., 2020 (2 SD, n=59)

Early Pliocene Warm Period (4.7-4.5 Ma)

pCO, (ppm) Reference
419 +119 This study (2 SD, n=3)

Miocene Climate Optimum (17-14 Ma)

pCO, (ppm) Reference

511+201  This study (2 SD, n=3)
350-400 Foster et al., 2012

300-500 Greenop et al., 2014
470-630 Sosdian et al., 2018

687 £ 421 Rae et al., 2021 (2 SD, n=58)
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ABSTRACT

Constraints on the evolution of atmospheric CO: levels throughout Earth’s history are
foundational to ourunderstanding of past variations in climate. Despite considerable effort,
estimates of past CO> levels do not always converge and therefore new records'and proxies
are valuable. Here we reconstruct atmospheric CO, values across major climate transitions
over the past 17 million years using the boron isotopic composition (5'!B) of planktic
foraminifera from"389 samples obtained from two sites in the West Pacific Warm Pool, Ocean
Drilling Program (ODP) Sites'306 and 807. These sites are in a region that today is in
equilibrium with the atmosphere and are thought to have been in equilibrium with the
atmosphere for the interval studied. We use high-precision multi-collector inductively-
coupled plasma mass spectrometry and show that data from these sites can reproduce the ice
core record. Estimates of early Miocene pCO. are generally higher than published
reconstructions from other sites, while values for the Pliocene and Pleistocene are more
similar to other datasets. We find evidence for reductions in pCO2 of ~280 patm during the
Middle Miocene Climate Transition, ~270 patm during Pliocene Glacial Intensification, and
~50 patm during the Mid-Pleistocene Climate Transition. There is possible evidence for a
larger reduction in glacial pCO2 during the Mid-Pleistocene Transition compared to
interglacial pCOz, and a minimum in pCO- during glacial MIS 30. Our results are consistent
with a coupling between pCO., temperature and ice sheet expansion throughout the past 17

million years.

Highlights

In this study, we are able to accurately reproduce pCO; data from ice cores using §''B data
from ODP Sites 806 and 807, demonstrating the fidelity of our approach. We therefore apply
the same framework to older samples to create a long-term pH and pCO: reconstruction for
the past 17 million years. We find major increases in surface water pH and decreases in
atmospheric pCO. were associated with decreased temperature in‘the Western Equatorial
Pacific, including associated with major episodes of ice sheet expansion in thehigh latitudes,
providing more robust quantitative constraints on the past coupling between pCO.,

temperature, and cryosphere stability.

Keywords
Boron isotopes, CO., ODP Site 806, ODP Site 807, Miocene, climate
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1. Introduction

Due to concerns about the long-term consequences of anthropogenic emissions and
associated climate change (IPCC, 2014, 2018), efforts have been made to quantify past
atmospheric CO. ana*examine past relationships between CO and temperature. Such data are
not only critical for constraining Earth-system sensitivity (Lea, 2004; Lunt et al., 2010;
Pagani et al., 2010; Hansen et al., 2012, 2013, Foster and Rohling, 2013; Schmittner et al.,
2011; Tierney et al., 2020), but are also of broad interest*because such data can help us
understand the evolution of climate and geological systems through Earth’s"history (Tripati et
al., 2011; Foster et al., 2017; Tripati and Darby, 2018). However, discrepancies between
proxy reconstructions still exist, including for major climate transitions of the Cenozoic. In
particular, there remains a pressing need for robust and higher-resolution atmospheric CO>
records from sites thatvare in equilibrium with the atmosphere.

Relatively high-resolution and direct determinations of atmospheric CO; are available
for the last 800 kyr through analysis of air bubbles extracted from ice-cores, but these records
are limited to the availability of cores (Petit et al., 1999; Siegenthaler et al., 2005; Luthi et al.,
2008). A window into atmospheric CO, levels comes from 1 million-year-old blue ice
(Higgins et al., 2015) and more recently from the Pliocene period (Yan et al., 2019). Most
reconstructions of CO> for'prior to 800 ka are based on indirect terrestrial and marine proxies.
Stomata indices for fossil leaves (Van der Burgh, 1993; Royer , 2001), carbon isotope ratios
(813C) of paleosols (Retallak et al., 2009), §*3C of*alkenones (Pagani et al., 2005; Zhang et
al., 2013), B/Ca ratios of surface-dwelling foraminifera (Yu and"Honisch, 2007; Foster, 2008;
Tripati et al., 2009, 2011), and boron isotope ratios (5!'B) of surface-dwelling foraminifera
(Pearson and Palmer., 2000; Honisch et al., 2009; Bartoli et al., 2011; Foster et al., 2012;
Foster and Sexton, 2014; Chalk et al., 2017; Sosdian et al., 2018; Dyez et al., 2018) have
been useatio estimate atmospheric COa.

Each of the above proxy methods has sources of systematic errors that we do not
attempt to ‘exhaustively document as they have been discussed in-depth elsewhere (e.g.,
Pagani et al., 2005; Tripati¥et al., 2011; Guillermic et al., 2020). However, we note that
significant developments in the boron-based’proxies include improvements to the accuracy
and precision of measurements using multi-collectorginductively coupled mass spectrometry
(MC-ICP-MS) compared to early work with thermal ionizationgmass spectrometry (TIMS),
where there were large instrumental mass fractionations and challenges with laboratory

intercomparison (Foster et al., 2013; Farmer et al., 2016; Aggarwal and You, 2017). There
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was also the realization that temperature-dependent Kp to interpreting B/Ca sensitivities
observed from the*field of sediment trap, core-top, and downcore studies (Yu and Honisch,
2007; Foster et al., 2008; Tripatitet al., 2009, 2011; Babila et al., 2010; Osborne et al., 2020)
differ from foraminiferal culture experiments (Allen et al., 2011, 2012) and inorganic calcite
(Mavromatis et al., 2015); this type of discrepancy has "also been observed with other
elemental proxies (e.g., Mg/Ca). Such differences may be due to differences’in growth rates
(Sadekov et al., 2014), ontogenetic changes, a correlation in the field between temperature
and other hydrographic variables that obscure robust statistical determination of parameter
relationships, culture conditions resulting in organisms being stressed, and/or other factors.

The marine CO> proxy that appears to be subject to the fewest systematic
uncertainties, based orfur current understanding, is the boron isotopic composition (5''B) of
planktic foraminifera as measured’using MC-ICPMS and TE-NTIMS. This proxy provides
constraints on seawater pH, if temperature, salinity, seawater $''B, and the appropriate mono-
specific calibration between 8*'Bcarbonate'and 51'Bhorate are constrained (Pearson and Palmer.,
2000; Foster et al., 2008; Sosdian et al., 2018; Raitzsch¥et al., 2018; Guillermic et al., 2020).
Seawater pH can be used to calculate seawater pCO: if there are"constraints on a second
parameter of the carbonate system (e.g. alkalinity, DIC). Atmospheric pCO. can'then be
constrained if the site being examined is in air-sea CO2 equilibrium.

Given the evolution of the field, the number of studies generating high-precision and
high-resolution boron-based records over major climate transitions in the Cenozoic using the
recent analytical methods, and incorporating our current understanding of proxy systematics
are relatively few (Foster et al., 2012; Martinez-Boti et al., 2015b; Chalk et al., 2017, de la
Vega et al., 2020). Furthermore, of the existing studies using boron-based proxies, an
additional uncertainty frequently exists, namely the short time interval of study (e.g.,
emphasizing on a climate transition) (Martinez-Boti et al., 2015b; Chalk et al., 2017) and
whether the study sites remain in air-sea CO2 equilibrium with the atmosphere (Martinez et
al., 2015a). And'although estimation of atmospheric pCO> from seawater pH using this proxy
is relatively straightforward, reconstructions are still impacted by uncertainties including the
lack of robust constraints on a secondYparameter of the carbonate system, and our limited
understanding of secular variations in the 5B ofgseawater (Tripati et al., 2011; Sosdian et al.,
2018; Greenop et al., 2017).

Therefore, to provide additional constraints on the evolution of atmospheric pCO>

from theMiocene through Pleistocene, we developed new records from the western tropical
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Pacific. We use "foraminiferal 3'!B and trace elements in the planktic foraminiferal species
Trilobus sacculifer and "Globigerinoides ruber to reconstruct past seawater pH and
atmospheric CO, at Ocean Drilling Program (ODP) Sites 806 and 807 in the Western
Equatorial Pacific (WEP) over the last 17 million years (Myr). The two sites we examined are
located on the western border of the tropical Pacific Ocean, the largest open-oceanic region
on the globe, and the warmest open ocean region at present. The west Pacific warm pool is a
region that is in air-sea CO; equilibrium (Takahashi et al., 2014), and is thought to have been
so throughout the Cenozoic so has been targeted for past atmospheric CO. reconstructions
(Pearson and Palmer, 2000; Tripati et al., 2009, 2014).

This work represents the first reconstructions of past seawater pH and pCO; for the
WEP using MC-ICPMS, thereby providing an invaluable new perspective on reconstructing
past atmospheric CO> via marine sediment archives. We explore various constraints on the
second carbonate¥system parameter using a number of different scenarios, following on the
systematic work done by Tripati¥et al. (2009) and (2011) for B/Ca. We interpret these data
using recent constraints on seawater 5'BY(Lemarchand et al., 2000; Raitzsch and Honisch,
2013; Greenop et al., 2017). For temperature estimation,“wve utilize a multi-variable model for
Mg/Ca (Gray and Evans, 2019), that builds on prior work with"clumped isotopes in planktic
foraminifera for Site 806 and other WEP sites demonstrating that for the "Last Glacial
Maximum to recent, salinity-corrected Mg/Ca values are needed to yield convergent
estimates of mixed-layer temperatures (Tripati et al., 2014).

2. Materials and Methods
Below we describe site locations, analytical methods used, and figures of merit. The
supplemental methods section describes screening for potential contamination, equations

used for calculations, an&’error propagation.

2.1 Site locations

Samples are from three ODP holes recovered during ODP:Leg 130 in the WEP (Fig.
1, Table 1): ODP 806A (0°19.140'N, 159°21.660'E, 2520.7 m water depth), ODP 806B
(0°19.110'N, 159°21.660'E, 2519.9 @n water depth), and ODP 807A (3°36.420'N,
156°37.500'E, 2803.8 m water depth) (Berger et al., 1993). §ites 806 and 807 are not likely to
have experienced major tectonic changes over the last 20 million years.
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The WEP sites used in this study are in equilibrium with the atmosphere today
(Takahashi et al., 2014), and given their location, are thought to have been throughout the
Cenozoic (Pearson and Palmer, 2000; Tripati et al., 2009, 2014). We do note, however, that
the thermocline is deep today, and that changes in thermocline depth have been inferred for
the WEP (Nathan and Leckie, 2009; Ford et al., 2015). Any potential changes in depth and
properties coupled with changes in upwelling, have the potential to influence equilibrium at
this site. While this is the case, changes should be smaller in the WEP compared to other
regions, due to the relatively small amplitude of changes in temperature and salinity (e.g.,

compared to eastern boundary current regions or higher latitude sites).

2.2 Age models

Sites 806 and 807 have high quality age models (Shackleton et al., 1991). The age
model for Site 806 from 0-1.35 Ma is based on Lea et al. (2000), while from 1.352-5.875 Ma
it is based on Lisiecki and Raymo, (2005), and Wara et al. (2005) is the source of information
for sediments older than 5.875 Ma. Ages for Site 807 are based on published biostratigraphy
(Berger et al., 1993) for 807 with additional constraints placed by Zhang et al., (2007) for the
interval from 0-0.550 Ma.

2.3 Species and trace element cleaning

Samples were picked and cleaned to remove clays at UCLA (Los Angeles, CA) and
the University of Western Brittany (Plouzane, France). 50-100 foraminifera shells were
picked from the 300-400um fraction size for T. sacculifer (w/o sacc) and from the 250-300
pm for G. ruber (white sensu stricto). Picked foraminifera were gently crushed, clays
removed, and checked for coarse-grained silicates."Samples were then cleaned using a full
reductive and oxidative cleaning protocol following Barker et al."(2003). A final leach step
with 0.001N HCI was done prior dissolution in 1IN HCI. Boron purification used a published
microdistillation protocol (see Misra et al., 2014b, Guillermic et al., 2020 for more detailed
methods).

2.4 Chemical purification and geochemical analysis

Chemical separation was performed in a boron-free clean lab at the University of
Cambridge (Cambridge, UK). Calcium concentrations were measured on an ICP-AES
®Ultima 2 HORIBA at theiP6le Spectrometrie Océan (PSO), UMR6538 (Plouzané, France).
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Elemental ratios (e.g. X/Ca ratios) were'analyzed on a Thermo Scientific ®Element XR HR-
ICP-MS at the PSO, Ifremer (Plouzané, France). Boron isotopic measurements were carried
out on a Thermo Scientific ®Neptune+ MC-ICP-MS equipped .with 102 Ohm resistor
amplifiers (Lloyd et al., 2018) at the University of Cambridge (Cambridge, UK).

2.5 Standards

Variations in B isotope ratios are expressed in conventional delta (3) notation with
31'B values'reported against the reference standard NIST SRM 951 (NIST, Gaithersburg,
MD, USA):

eq. 1

8"'B (%) = 1000 x (oo 1)

"B/1BNist srm 951

Multiple analyses of external standards were performed to ensure data quality. For
boron isotopic'measurements, JCp.1 (Geological Survey of Japan, Tsukuba, Japan, Gutjahr et
al., 2014) was used as a‘carbonate standard, and NEP, a Porites sp coral from University of
Western Australia and Australian YNational University was also used (McCulloch et al.,
2014). A boron isotope liquid standard, ERM®YAE121 (certified ''B = 19.9 + 0.6 %o, SD),
was used to monitor reproducibility and drift during each"session (Vogl and Rosner, 2012;
Foster et al., 2013; Misra et al., 2014b). For trace elements, external ‘reproducibility was
determined using the consistency standard Cam-Wuellerstorfi (University of Cambridge)
(Misra et al., 2014b).

2.6"Figures of Merit
2.6.1 !B analyses

Samples measured for boron isotopes typically ranged in concentration from 10 ppb B
(~5ng B)¥to 20 ppb B samples (~10ng B). Sensitivity was 10mV/ppb B (eg. 100mV for
10ppb B) in wet plasma at'50ul/min sample aspiration rate. The intensity of !B for a sample
at 10 ppb B was typically 104 + 15 mV"(2 SD, typical session) and closely matched the 98 +
6 mV (2 SD, typical session) of the standard."Procedural boron blanks ranged from 15 pg B
to 65 pg B (contributed to less than <1% of the sample signal). The acid blank during
analyses was measured at < ImV on the B (which also is < 1% of the’sample intensity), and
no memory effect was seen within and across sessions.

External reproducibility was determined by analyzing the international standard JCp-1

(Gutjahr et al., 2014) and a Porites sp. coral (NEP). The boron isotopic composition of JCp.1
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was measured at 24.06 = 0.20%o (2 SD, n=6) within error of published values of 24.37 +
0.32%o, 24.11+ 0.43%0 and 24.42 +£70.28%0 from Holcomb et al. (2015), Farmer et al. (2016)
and Sutton et al. (2018), respectively. Average values are 8!Bnep = 25.72 + 0.79%0 (2 SD,
n=31) determined over 13 different analytical sessions, withYeach number representing a
separately processed sample from this study. These results are within errorof published
values of 26.20 + 0.88%o (2 SD, n = 27) and 25.80 + 0.89%0 (2 SD, n = 6), from Holcomb et
al. (2015) and Sutton et al. (2018), respectively. Data are reported in Supplementary Table B.

2.6.2 X/Ca analyses

Trace element (TE) analyses were conducted at a Ca concentration of either 10 or 30
ppm. Typical blanks for a 30 ppm Ca session were: 'Li < 2%, B < 7%, Mg < 0.2% and
43Ca < 0.02%. Additionally, blanks for a 10 ppm Ca session were: 'Li < 2.5%, B < 10%,
Mg < 0.4% and “*Ca < 0.05%. Analytical uncertainty of a single measurement was
calculated from the reproducibility of the CamWouellestorfi'standard: 0.6 pmol/mol for Li/Ca,
8 pmol/mol for B/Ca and 0.02 mmol/mol for Mg/Ca (2 SD, n=48). Data are reported in
Supplementary Table B.

2.7 Calculations

Figure 2 shows the planktic 5!!B and B/Ca data compared to other records (benthic
580, planktic Mg/Ca, and shell weight), while Figures 3 and 4 show the different histories of
seawater 51!'B and alkalinity used for calculations, respectively. Details of calculations are in
the Supplemental methods. Following the approach of Tripati et al. (2009, 2014), we
explored multiple scenarios for the evolution of seawater boron geochemistry (Fig. 3) and
alkalinity for calculations of pCO> (Fig. 4). During the interval overlapping with the ice core
record, we observe that the choice of model used does not make a significant difference in
reconstructed values (Fig. 5). During earlier time intervals, we see there is a greater
divergence, reflecting larger uncertainties in seawater 5 'B and alkalinity further back in
Earth history.

During the early Pliocene (~4.5 to 3.5 Ma) and prior to 10 Ma, calculations of pCO-
diverge largely because of disagreement between studies estimating past seawater 5'B (Fig.
5). However, we also found that reconstructed pH values that utilize each of the §'!'Bscawater
histories are not significantly different, when the uncertaintyn reconstructed pH is fully

propagated (Fig. 5 and 6; see also Honisch et al., 2019). In contrast to the results from
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Greenop et al. (2017), the record from Raitzsch and Honisch, (2013) exhibits substantial
variations on shorter timescales. Such variability is a challenge to reconcile with the Li
isotope record of Misra and Froelich, (2012), given that Li has a shorter residence time than
boron while having similar sources and sinks. For the remainder of this study, we use the
' Bseawater history from Greenop et al. (2017) because it is in good agreement with seawater
d’Li (Misra and Froelich, 2012).

The three alkalinity models used diverge prior to 9 Ma, with a maximum difference at
~13 Ma that is also reflect in reconstructed pCO> (Fig. 6). However, all three models yield
pCO; estimates that are within error of each other when the full uncertainty is considered
(Fig. 6). For the remainder of the text, we utilize the model of Caves et al. (2016) for
alkalinity and the 5'!Bseawater determined by Greenop et al. (2017), as these represent the best
constrained estimates for these parameters at this time.

3. Results and discussion
3.1 Reproducing pCO2from ice cores

Validation of air-sea equilibrium in the WEP during the relatively large amplitude late
Pleistocene glacial/interglacial cycles was a primary goal for our work. In order to validate
our approach, wegreconstructed pCO, for the last 800 kyr (Fig. 5). The two critical
diagnostics we use for method validation Yare: 1) that the reconstruction of pCO: is
representative of recent atmospheric CO2, and 2) that the boron-based reconstruction
empirically reproduces the record from ice cores. For the last 800 kyr, reconstructed”pCO>
values for Holes 806A and B and Site 807 are mostly within error of the records from the
Vostok and EPICA Dome C ice cores (Fig. 5, Petit et al., 1999, Siegenthaler et al., 2005,
Ldthi et al., 2008). Absolute values for the last glacial/interglacial cycle are also within error
of the ice cores values, with the exception of two data points at 47 and 79 ka that have lower
pCO2 in comparison to ice core values. Between MIS 7 and 6, our reconstructions exhibit a
decrease in temperature (AT) of 2.4°C, an increase in pH (ApH) of 0.08 and a decrease in
pCO2 (ApCO2) of 58 patm. Between stage 3 and 1, we observed an increase of temperature
of 2.5°C, a decrease of pH of 0.13 and an increase in pCO. of 76 patm. These results
highlight that we are able to reproduce absolute measurements of atmospheric pCO> within
error-of the ice core record,@nd reproduce the amplitude of changes between transitions, with
uncertainties typical for this type ofgwork (Honisch et al., 2019). We note that reconstructed

pCO:> uncertainties could potentially be reducedgusing independent temperature proxies for



Texte remplacé�

Texte

[Ancien] : "248 Greenop et al. (2017), the record from Raitzsch and Hönisch, (2013) exhibits substantial 249 variations on shorter timescales. Such variability is a challenge to reconcile with the Li 250 isotope record of Misra and Froelich, (2012), given that Li has a shorter residence time than 251 boron while having similar sources and sinks. For the remainder of this study, we use the 252 δ 11" 
[Nouveau] : "et al., 256 2009; Nathan and Leckie, 2009). Although the record we generated does not overlap with Site 872, they 257 are time-adjacent, and there is a good correspondence with our Mg/Ca data and the published Mg/Ca 258 record from T. trilobus at Site 872 (Sosdian et al., 2018). Mg/Ca from a different species, D. altispira 259 (Sosdian et al., 2020), is also plotted with an offset, for comparison. 260 Comparison with Site 872 data that is part of the compilation from Sosdian et al. (2018) shows 261 that their δ 11 B data are"



Texte supprimé�

Texte

"Bseawater history from Greenop et al."



Texte remplacé�

Texte

[Ancien] : "(2017) because it is in good agreement with seawater 253 δ 7" 
[Nouveau] : "in line with our dataset (Figure 2B), and all sites examined"



Texte supprimé�

Texte

"Li (Misra and Froelich, 2012)."



Texte remplacé�

Texte

[Ancien] : "254 The three alkalinity models used diverge prior to 9 Ma, with a maximum difference at 255 ~13 Ma that is also reflect in reconstructed pCO 2 (Fig. 6). However, all three models yield 256 pCO 2 estimates that are within error of each other when the full uncertainty is considered 257 (Fig. 6). For the remainder of the text, we utilize the model of Caves et al. (2016) for 258 alkalinity and the δ 11" 
[Nouveau] : "in the WEP (Sites 806, 262 807, and 872) are above the lysocline (Kroenke et al. 1991). The δ 11 B data for T. sacculifer exhibit a 263 significant decrease (4.2‰) from the Miocene to present. Figure 2B also compares the δ 11 B data used in 264 this study with published data from other sites, and shows that raw δ 11 B data for"



Texte supprimé�

Texte

"Bseawater determined by Greenop et al."



Texte remplacé�

Texte

[Ancien] : "(2017), as these represent the best 259 constrained estimates for these parameters at this time. 260 261 3. Results and discussion 262 3.1 Reproducing pCO 2 from ice cores 263 Validation of air-sea equilibrium in the WEP during the relatively large amplitude late 264 Pleistocene" 
[Nouveau] : "the WEP can be lower 265 than values for other regions. 266 267 3.2 Reproducing pCO 2 from ice cores 268 Validation of air-sea equilibrium in the WEP during the relatively large amplitude late Pleistocene 269"



Texte supprimé�

Texte

"265"



Texte inséré�

Texte

"11"



Texte inséré�

Texte

"270"



Texte remplacé�

Texte

[Ancien] : "5)." 
[Nouveau] : "3)."



Texte supprimé�

Texte

"266"



Texte inséré�

Texte

"271"



Texte supprimé�

Texte

"267"



Texte remplacé�

Texte

[Ancien] : "boron-based reconstruction 268" 
[Nouveau] : "boron272 based reconstruction"



Texte inséré�

Texte

"273"



Texte supprimé�

Texte

"269"



Texte remplacé�

Texte

[Ancien] : "270 Vostok" 
[Nouveau] : "Vostok 274"



Texte remplacé�

Texte

[Ancien] : "5," 
[Nouveau] : "3,"



Texte supprimé�

Texte

"271"



Texte remplacé�

Texte

[Ancien] : "2008). Absolute values for the last glacial/interglacial cycle are also within error 272 of the ice cores values, with the exception of two data points at 47 and 79 ka that have lower 273" 
[Nouveau] : "2008; 275 compilation from Bereiter et al., 2015), with the exception of two data points at 47 and 79 ka that have 276 lower"



Texte remplacé�

Texte

[Ancien] : "Between MIS 7 and 6, our reconstructions exhibit a 274 decrease in temperature (ΔT) of 2.4°C, an increase in pH (ΔpH) of 0.08 and a decrease in 275 pCO 2 (ΔpCO2) of 58 µatm." 
[Nouveau] : "Crossplots comparing our data are presented in Figs. 3C, 277 3D, 3E; the slope and intercept are not statistically different from a 1:1 line (p=0.69 and p=0.48). Between 278 MIS 7 and 6, our reconstructions exhibit a decrease in temperature (ΔT) of 1.2°C, an increase in pH (ΔpH) 279 of 0.08 and a decrease in pCO 2 (ΔpCO 2 ) of 58 ppm."



Texte remplacé�

Texte

[Ancien] : "temperature 276 of 2.5°C," 
[Nouveau] : "280 temperature of 2.0°C,"



Texte remplacé�

Texte

[Ancien] : "µatm." 
[Nouveau] : "ppm. We also compare 281 results with recent reconstructionsin Figs. S1 and S2 (Sosdian et al., 2018; Rae et al., 2021)."



Texte remplacé�

Texte

[Ancien] : "277" 
[Nouveau] : "282"



Texte supprimé�

Texte

"within 278 error"



Texte inséré�

Texte

"283"



Texte supprimé�

Texte

"279"



Texte inséré�

Texte

"284"



Texte supprimé�

Texte

"280"



Texte inséré�

Texte

"285"



Texte remplacé�

Texte

[Ancien] : "9" 
[Nouveau] : "12"





281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

the WEP such as clumped isotope thermometry (Tripati et al., 2010; 2014), a technique that is
not sensitive to the same sources of error as Mg/Ca thermometry, and"therefore is an area

planned for future work.

3.2 Long-term record

Our reconstruction is consistent with published Mg/Ca estimates of early Pliocene to
recent temperatures at Site 806 (Medina-Elizalde et al., 2005, Wara et al., 2005; Tripati et al.,
2009, 2011). Our reconstruction is also consistent with the work of Nathan and Leckie,
(2009) for time slices at ~7.3 and ~6.2 Ma, though we note that the SST in our study is
slightly higher (~2°C) than what was reported for the middle/late Miocene by Nathan and
Leckie, 2009 and Zhang et al., 2014, which could reflect the different methods used for
reconstructing temperature. Our temperature record over the last 17 Myr for the WEP (Fig.
6C) shows a gradual decrease between 17 and 6.5 Ma from 36.7°C + 0.6°C (2 SD, n=4) for
the Miocene Climate Optimum (MCO) to values of 28.8 + 3.4°C (2 SD, n=67) overghe last
6.5 Myr. From 6.5 Ma to present, we reconstruct a slight decrease in SSTs, with more
variability after the Mid-Pleistocene Transition (MPT). Raw 8''B data (Fig. 2B) exhibit a
significant decrease (4.2%o) with increasing age for T. sacculifer from 16.5 Ma to present.
Reconstructed pH for the MCO¢care 7.80 £ 0.10 (SD, n=4), with an increase of ~0.27 to a
Holocene value of 8.18 £ 0.11 (n=2) (Fig. 6D).

3.3 Miocene

The study of Miocene climate is thought to provide a useful analog for changes
associated with global warming and melting of polar ice, in concert with ocean circulation
(Holbourn et al., 2013). Theiocene epoch (23-5.3 Ma) is characterized by a warm interval,
the Miocene Climate Optimum (~17-14 Ma - MCO), and an abrupt cooling during the
Middle Miocene Climate Transition (~15-13 Ma —"MMCT) that led to the expansion of ice
on Antarctica and Greenland. Climate modeling supports a role*for decreasing CO: in this
transition (DeConto and Pollard, 2003). However, proxies for CO: vyield conflicting
reconstructions for the MCO and MMCT. Alkenone-based reconstructions do not show any
variations over the MCO and MMCT with pCO. below 300 ppm (Zhang et al., 2013).
However, it is a challenge to simulate the large-scale advance and retreat of Antarctic ice
with such low pCO, values (Gasson et al., 2016). In contrast, published §'!B-based
reconstructions supports higher pCO- for the MCO of ~350-400 ppm (Foster et al., 2012),
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300-500 ppm (Greenop et al., 2014) or ~470-630 ppm (Sosdian et al., 2018), although it is
unclear if these values accurately reflect the atmosphere given the sites may or may not have
been in equilibrium with the atmosphere.

Some of the highest pCO> values we reconstruct are during the MCO (Fig. 6E). For
the MCO, our'estimates are 479 + 173 patm (2 SD, n=4, Table 2). The middle Miocene
values we reconstruct are in line"with previous studies (Greenop et al., 2014; Sosdian et al.,
2018). Sosdian et al. (2018) report values of 470 to 630 ppm depending on the model of
o' Bseawater chosen.. We attribute the differences in §''B-based pCO: to the choice of
reconstruction methods and/or the different oceanographic settings at each site. All of the
boron isotope-based reconstructions do not support reconstructions from alkenones for the
Miocene (Pagani et al., 1999; 2005; Zhang et al., 2013). As thoughtfully discussed by Badger
et al. (2019), the response of CO> derived from alkenones is muted compared to boron-based
reconstructions of CO2, and this is possibly due to changes in coccolithophore calcification
based on recent studies (Bolton and Stoll, 2013; Bolton et al., 2016). During the MCO
relative maxima in pCO», our data support very warm sea surface'temperatures in the WEP
(36.7°C £ 0.6°C 2SD, n=4; Fig. 7C and 8C), that merits further examination in future studies.
In fact, the highest temperatures recorded in our samples occur when there is a minimum in
the global composite record of 50 of benthic foraminifera (Zachos et al., 2001, 2008;
Tripati and Darby, 2018).

During the MMCT, we find evidence for changes in pCO2 and temperature in the
WEP (Fig. 7). Fom 13.5 to 12.9 Ma, we reconstruct an increase of pH ~0.24 and a major
decrease of pCO, of ~243 patm during an interval highlighted by Flower and Kennett,
(1996), who observed changes in §'80"indicative of rapid East Antarctic lce Sheet growth,
and enhanced organic carbon burial with a maximum's**C reached at ~13.6 Ma (Shevenell et
al., 2004; Holbourn et al., 2007). At the same time, we find evidence for a decline in SST of
3.4°C to a minimum of 33.3°C. The synchronous shifts in the §'3C and §'®0 of benthic
foraminifera are consistent with increased carbon burial during colder periods, thus feeding
back into'decreasing atmospheric CO2, and supporting the hypothesis that the drawdown of

atmospheric CO- can'in part, be explained by enhanced export of organic carbon.
3.4 Late Miocene

The resolution of our data during the late Miocene is low, with a data gap from 12.5 to

9.2 Ma, @nd another gap between 6.5 and 5 Ma. We note the pCO, peak at ~9 Ma observed

11
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by Sosdian et al."(2018) is not seen in our record although this is likely due to the low
resolution of our dataset. Between 8.8 and 6.5 Ma we find evidence for a decrease in

atmospheric CO of 205 patm associated with a decreas¢ in temperature of 3.1 °C.

3.5 CO2 during Pliocene Warmth

Oxygen isotope data from a global benthic foraminiferal stack show that the Pliocene
epoch (5.3-2.6 Ma) was initially characterized by warm conditions followed by the
intensification of glaciation that occurred in several steps, including during MIS M2 (3.312-
3.264 Ma), followed by the Middle Pliocene Warm Period (Lisiecki and Raymo, 2005).
Figure 5 shows that during the Early Pliocene warm interval, from 4.7 to 4.5 Ma, we
calculate high pCO2 values of 541 + 124 ppm (2 SD, n=3, Table 2).

The Middle Pliocene Warm Period (MPWP — 3.29-2.97 Ma) is considered a relevant
geological analogue for future climate change given ~3°C warmer globalYtemperatures and
sea levels that were ~20 m higher than today (Dutton et al., 2015; Haywood et al., 2016), and
is a target for model intercomparison projects, for which accurate paleo-atmospheric pCO>
estimates are critical (Haywood et al., 2016). Our data support values of 515 + 119 patm (2
SD, n = 4) are marginally consistenwith previously published §'!B-derived pCO from ODP
Site 999 (Martinez-Boti et al., 2015b) but are higher than Bartoli et al. (2011), which was 320
+ 130 (2 SD, n=8) for Site 999, potentially due to instrument offset between N-TIMS and
MC-ICP-MS (Martinez-Boti et al., 2015b). Our values are higher in comparison to boron
isotope estimates from de La Vega et al. (2020) for Site 999 and calculations based on
Martinez-Boti et al., (2015b.) This can suggest differences in air-sea equilibrium between
sites. The pCO; trends in this study are similar to previous ones, the reconstructed pCO-
show larger amplitude in our study. pCO. concentrations determined from ice cores from the
early Pleistocene have recently been published (Yan et al., 2019, Figs. 4 and 5), and those
values are in good agreement with our boron-derived pCO- at site 806/807 reported here, and
with previous boron-based studies (Honisch et al., 2009; Stap et al., 2016; Chalk et al., 2017).

3.6 Pliocene Glacial Intensification

The warmth and local pCO2 maxima of the MPWP was followed by a strong decrease
of temperature in upwelling and high latitude regions during from 3.3-2.7 Ma, coincident
with glacial intensification in the Northern Hemisphere. This climate transition was

hypothesized to be driven by the closure of the Panama seaway the opening of the high

12
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latitudes and'subsequent modifications of oceanic circulation (Haug and Tiedemann, 1998).
However, modeling from*Lunt et al. (2008) supports an additional major role for CO; in the
glaciation. pCO- thresholds have beenproposed to explain the intensification of Northern
Hemisphere Glaciation, with values proposed ranging from 280 patm (DeConto et al., 2008)
to 200 to 400 patm (Koening et al., 2011).

From 3.3 to 3.0 Ma, our boron isotope-derived estimates of pCO; are typically 150
patm higher than Bartoli et al. (2011), and de la Vega., (2020). This study, Martinez-Boti et
al. (2015b) and de la Vega et al., (2020) used an MC-ICP-MS so it is possible the differences
reflect changes in air-sea equilibrium recorded at Site 999 compared to Sites 806/807.

The reconstruction for the WEP exhibits multiple steps during the decline in pCO2,
with a minimum observed at 4.42 Ma (360 (+.') patm), at 3.45 Ma (323 (+72") patm) and at

2.67 Ma (269 (157;) patm) (Fig. 9). Those atmospheric CO2 concentrations are consistent
with the pCO> thresholds proposed by both DeConto et al. (2008) and Koening et al. (2011)
for the intensification of "Northern Hemisphere glaciation and the low§CO2 (280 ppmv)
scenario from Lunt et al. (2008). We speculate that associated with Pliocene glacial
intensification, at 4.42, 3.45 and 2.67 Ma, it is possible that the declines in CO2 and ice
growth in turn drove substantial changes in pole-to-equator temperature gradients and winds,
that in turn may have impacted iron cycling (Watson et al., 2000; Robinson et al., 2005;
Martinez-Garcia et al., 2011), stratification (Toggweiler, 1999; Sigman et al., ,2010), and
other feedbacks that impact the amplitude of glacial/interglacial cycles and have been
implicated as factors that could have contributed to Pliocene glacial intensification.
Specifically, as the¥mean climate state of the planet became cooler, and glacial-interglacial
cycles became larger in amplitude, enhanced windiness and dust transport and upwelling
during glacials mgy have enhanced iron fertilization and subsequent carbon export. This
could explain why glacial/interglacial amplitudes in WEP pCO2 values decrease from the

MPWP towards the Pleistocene, whereas variations in §'80 are increasing.

3.7 Pleistocene

During the Pleistocene (2.58-0.01 Ma), the climate system experienced a transition in
glacial/interglacial (G/I) variability from low amplitude, higher frequency and obliquity-
dominated oscillations (i.e., ~ 41 kyr) of the late Pliocene to the high amplitude, lower
frequency and eccentricity-dominated cycles (i.e.., ~100 kyr) of the last 800 kyr. This
transition is termed the Middle Pleistocene Transition (0.8-1.2 Ma — MPT). Questions have
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been raised about the role of atmospheric CO: during this'transition, including using boron-
based proxies (Honisch et al., 2009; Tripati et al., 2011; Chalk et al., ,2017). Previous boron
isotope studies have suggested that a decline in atmospheric CO> did not occur during the
MPT (Honisch et al., 2009; Chalk et al., 2017; Dyez et al., 2018).

Although our pCO- results for the MPT are broadly in the range of values reported by
Honisch et al. (2009) and Chalk et al. (2017), we have higher data coverage for the middle
and later part of the transition (Fig. 9D). Taken alone, or when combined with the published
data from Chalk et al. (2017) (that is also based on MC-ICPMS), our results support a
reduction of both glacial and interglacial pCO: values. We"also find evidence that during the

MPT, glacial pCO2 declined rapidly from 189 (£30) patm at MIS 36"(Chalk et al., 2017) to

4

reach a minimum of 164 (1‘3’5) patm during MIS 30, the pCO2 concentrations are however

within error when uncertainty is fully propagated,and then remained relatively stable'until the
end of the MPT whereas interglacial pCO values decrease gradually to reach post-MPT
values.

In our record for the last 17 Myr, the lowest pCO- is recorded at MIS 30 during the
MPT, with values of 164 (+**) patm, which supports an atmospheric CO> threshold that leads

—35
to ice sheet stability. During this transition, the pCO> threshold needed to build sufficiently
large ice sheets that were able to'survive the critical orbital phase of rising obliquity to
ultimately switch to a 100 kyr world, was likely reached at MIS 30. The multiple feedbacks
resulting from stable ice sheets (iron'fertilization/productivity/changes in albedo/ changes in
deep water formation) might have sustained larger ¥mean global ice volumes over the
subsequent 800 kyr. An asymmetrical decrease between pCO: values'during interglacials
relative to glacials, with glacials exhibiting the largest change across the MPT, would have
led to increased sequestration of carbon during glacials in the 100 kyr world, as discussed by

Chalk et al. (2017), with increased glacial dust input and iron fertilization.

3.8 Changes in volcanic activity and silicate weathering, and long-term pCO:

On million-year timescales, atmospheric CO2 is mainly controlled by volcanic activity
and silicate'weathering. Over the last 17 Myr, two relative maxima in atmospheric pCO: are
observed in our record,gone during the MCO (at 15.67 Ma) and a second around the late
Miocene/early Pliocene (beginning at$4.7 and 4.5 Ma) (Fig. 10), though the timing for the
latter is not precise. The high CO: levels of the MCO are hypothesized (Foster et al., 2012) to

coincide with increasing volcanic activity, associated with the eruption of the Columbia River
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Flood Basalts (Hooper et al.,, 2002; Kasbohm and Schoene, 2018), with recent
geochronologic evidence published supporting higher eruption activity between 16.7 and 15.9
Ma (Kasbohm and Schoene, 2018). The second CO> peak could correspond to observed
global increased volcanism in the early/middle Pliocene (Kennett and Thunell, 1977,
Kroenke et al., 1993), and/or a change of silicate weathering regime. Strontium and lithium
isotopes (56Sr and &7Li) have been used as proxy for silicate weathering activity. Although
the strontium isotope record exhibits a monotonous increase, lithium isotope data (Misra and
Froelich, 2012) are more variable with a transition from a period of increase seawater &'Li
(e.g. non-steady state weathering) to stable seawater &’Li (e.g., Steady state weathering)

beginning at roughly 6.8'"Ma (Fig. 10).

3.9 History of the WEP

The patterns observed in our study are also in line with major changes in the
equatorial Pacific dynamic reported from other studies over these timescales (Figure 8). The
development of the warm pool and transient changes between La Madre (La-Nina-like) to El
Padre (EI-Nino-like conditions) have been inferred from geological records (Nathan and
Leckie, 2009), including foraminiferal assemblage data and asymmetric carbonate
preservation between the west and the east equatorial Pacific (Chaisson and Ravelo, 2000;
Nathan and Leckie, 2009), and sea surface and sub-surface temperature proxies (Wara et al,
2005; Rickaby and Halloran, 2005; Seki et al., 2012; Ford et al., 2012, 2015; Drury et al.,
2018).

The increase in COz in the late Miocene and early Pliocene in our record corresponds
to the timing of the biogenic bloom in the Eastern equatorial Pacific that has been linked to a
global biogenic bloom (Hermoyan and Owen, 2001). These blooms have been hypothesized
to arise from an increase in nutrients (Hermoyan and Owen, 2001) that arose due to higher
rates of weathering as well as change in oceanic circulation due to Indonesian and Central
American Seaways constrictions (Gupta and Thomas, 1999; Grant and Dickens, 2002
amongst many others). The change in silicate weathering regime inferred from the record of

8 'Li (Misra and Froelich, 2012) would also be consistent with this hypothesis.

3.9 Outlook and Conclusions
We developed a reconstruction of atmospheric pCO; based on &'B of planktic

foraminifera from@ODP Sites 806 and 807 located in the Western Equatorial Pacific for the
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past 17 million years. Our study represents the first long-term reconstruction for the Neogene
derived from boron isotopes from the Pacific Ocean. We build on past efforts to reconstruct
atmospheric pCOz using different proxies from this region, including from carbon'isotopes in
marine organic matter (Rayno et al., 1996) and alkenones (Pagani et al., 2010), as well as
foraminiferal B/Ca ratios (Tripati et al., 2009, 2011), all of which have been shown to have a
number of’complexities and potential sources of systematic error (e.g., Tripati et al., 2011). It
also builds on efforts'using boron isotopes in other regions using MC-ICP-MS (Seki et al.,
2010; Foster et al., 2012, 2014; Greenop et al., 2014; Martinez-Boti et al., 2015b; Stap et al.,
2016; Chalk et al., 2017; Dyez et al., 2018; de la Vega et al., 2020), and our recent work
constraining fractionation factors and measuring small’samples of foraminifera. Although the
record is not continuous, with variable resolution, it captures both"long-term and short-term
variability associated with several key transitions and demonstrates the utility of these sites
for future higher resolution study.

As expected, these data generally reproduce the pCO. record from ice cores,
consistent with the"sites being in equilibrium with the atmosphere. The MCO has higher
pCO; than reconstructions from*other sites, with values estimated as 479 + 173 patm (2 SD,
n=4), potentially linked to the eruption of the'Columbia River Flood Basalts, with values
declining into the early Pliocene. Major drops in pCO2 occurred at 12.9, 4.42, 3.45 and 2.71
Ma, including during Pliocene glacial intensification.\We find support for a larger reduction
in glacial pCO2 during the MPT compared to interglacial pCO», and a minimum in pCO>
during glacial MIS 30. These findings support a role for CO2 in the'transition from a 41 kyr
to a 100 kyr world.

Higher-resolution boron isotope records from the WEP would allow for further
resolution of these'changes. Additional constraints on temperature, such as from clumped
isotopes (Tripati et al., 2010) in"the WEP (Tripati et al., 2014), could allow for uncertainties
in pCO- estimates from boron isotopes to be‘reduced and for new constraints on Earth system
climate sensitivity. Future constraints on the vertical¥structure of the tropical Pacific during

these transitions may also potentially be illuminating.
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Figure captions

Figure 1: Modern hydrography of sites. A. Map of air-sea pCO (ApCO;, patm, data from Takahashi
et al., 2014 and plotted using Ocean Data View from Schlitzer, 2016) showing the location of ODP
Sites 806 and 807 (black circles). Depth profiles are for preindustrial parameters, B. pH calculated
from GLODAP database and corrected fromanthropogenic inputs, C. Boron isotopic composition of
borate ion (8™ Buorate) With associated gropagated uncertainties.

Figure 2: Foraminiferal data for the Miocene to Recent. A. Benthic foraminiferal 60 data (blue line
— stack from Lisiecki and Raymo, 2005; black line — compilation from Zachos et al., 2008). B. 6!'B of
T. sacculifer and G. ruber at Sites 806, 807. C. B/Ca ratios. D. Mg/Ca ratios. E. Calculated weight per
shell for T. sacculifer and G. ruber. For Panels B-E: Circles = T. sacculifer, Triangles = G. ruber.

Figure 3:®ifferent models for the evolution of thesboron geochemistry explored as part of this work.
Due to the 1%o uncertainty propagated for 8™Bsealiater, all scenarios yield reconstructed seawater pH
values that are within error of each other. Propagated uncertainties were calculated using eg. S14 (see
Supplement). A. Different models for 6Bseawater Used for the reconstruction of pCOy; in this study
(blue =~ Lemarchand et al., 2000; green — Greenop et al., 2017; red — Raitzsch and Honisch, 2013). B.
Recoristructed pH based on our measured 8™ Bcaronate Values using different models for 6 Bseawater-

Figure 4: Different models for the evolution of a second carbonate system parameter explored as
part of this work. The propagated uncertainties were calculated using eq. S16 (see.Supplement). A.
Different models for alkalinity used for the reconstruction of pCO- in this study_(orange - Ridgwell
and Zeebe, 2005; violet - Tyrell and Zeebe, 2004; green - Caves et al., 2016. B. Reconstructed pCO-
based on ougsmeasured 6! Bcaronate Values using different models for alkalinity and & Bseawater from
Greenop et al., 2017.

Figure 5: Reconstruction of surface pCO; for the past 0.8 My from T. sacculifer at ODP Sites 806 and
807. Also shown is benthic foraminiferal 60 with isotope stages labeled (black line — stack from
Lisiecki and Raymo, 2005). pCO; values calculated from boron isotopes (colored symbols - this
study) with data from the literature (gray symbols: circles - Honisch et al., 2009; half filled circles -
Seki et al. 2010; triangles — Foster et al., 2014; diamonds - Stap et al., 2016; squares — Chalk et al.,
2017) and ice core pCO; (black line - LePetit at al., 2009). Data from the two sites we examined
reproduces the absolute values and amplitude of atmospheric pCO; as determined-from-ice cores;
thereby validating our methodology.

Figure 6: Proxy data for the past 17 million years in the Western Equatorial Pacific compared to
benthic/xygen isotope data. A. Benthic 5120 (blue line — stack from Lisiecki and Raymo, 2005; black
line ~@ompilation from Zachos et al., 2008). B. Benthic $**C (black line — compilation from Zachos et
al., 2008). C to E, colored is indicating the site (open grey=806, filled grey=807), symbols represent
the Species (circle=T. sacculifer and triangle=G. ruber). C. SST reconstructed at ODP Sites 806 and
807 using Mg/Ca ratios and equation S6 and S7 (this study). D. Seawater pH reconstructed from 5'B
of T. sacculifer and G. ruber using 3'Bseawater from Greenop et al. (2017) (refer to text and supplement
for calculations, this study). E. Reconstructed pCO; (patm) using boron-based pH and alkalinity from
Caves et al. (2016), data presented are from this study. Propagated uncertainties are given by eq. S17
for the dark (green or blue) envelope, while the light (green or blue) envelope are the uncertainties
calculated based on eq. S16 (taking into account uncertainty on 8''Bscawater)-

Figure 7: Proxy data from 17 to 6 million years, including the Middle Miocene Climate Transition
(MMCT) and Miocene Climate Optimum (MCO), in the Western Equatorial Pacific compared to
benthic oxygen isotope data. A. Benthic §'80 (black line — compilation from Zachos et al., 2008). B.
Benthic 8°C (black line — compilation from Zachos et al., 2008). C and D, colored is indicating the
site (open grey=806, filled grey=807), symbols represent the species (circle=T. sacculifersand
triangle=G. ruber). C. SST reconstructed at ODP Sites 806 and 807 using Mg/Ca ratios and equation
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S6 and S7 (this study). D. Reconstructed pCO; (patm) from this study (blue symbols) using boron-
based pH and alkalinity from Caves et al. (2016). Propagated uncertainties are given by eq. S17 for
thedark blue envelope, while the light blue envelope reflects the uncertainties calculated based on eq.
S164{taking into account uncertainty on 8™Bseawater). In grey are 5''B-derived estimates from the
literature (open triangles — Foster et al., 2012 for Site 761B; half-filled diamonds — Foster et al., 2012
for Site 962A,; open circles — Badger et al., 2013 for locality in Malta; half-filled triangles — Greenop
et al., 2014 for Site 761B; filled diamonds - Stap et al., 2016 for Site 1264).

Figure 8: Proxy data from 7 to 1 million years, including the Warm Pliocene Transition (WPT), in the
Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic & 80 (black line —
compilation from Zachos et al., 2008). B. Benthic & *3C (black line — compilation from Zachos et al.,
2008). C and D, colored is indicating the site (open grey=8086, filled grey=807), symbols represent the
species (circle=T. sacculifer and triangle=G. ruber). C. SST reconstructed at ODP Sites 806 and 807
using Mg/Ca ratios and equation S6 and S7 (this study). D. Reconstructed pCO- (patm) using boron-
based pH and alkalinity from Caves et al. (2016), data presented are from this study. Propagated
uncertainties are given by eq. S17 for the dark (green or blue) envelope, while the light (green or blue)
envelope are the uncertainties calculated based on eq. S16 (taking into account uncertainty on
8 MBseawater). In black are published estimates from ice core data (circles - Yan et al., 2019). In grey
are O 'B-derived estimates from the literature (light grey circles — Honisch et al., 2009 for Site 668B;
half-filled circles — Seki et al., 2010 for Site 999A; medium grey circles — Bartoli et al., 2011 for Site
999A,; unfilled triangles — Martinez-Boti et al., 2015b for Site 999A; squares — Chalk et al., 2017 for
Site 999A; half-filled diamonds — Dyez et al., 2018 for Site 668B; grey triangles - de la Vega et al.,
2020 for Site 999A).

Figure 9: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition
(MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic §'0
(blue line — stack from Lisiecki and Raymo, 2005). B. Benthic §**C (black line — compilation from
Zachos et al., 2008). C and D, colored is indicating the site (open grey=806, filled grey=807), symbols
represent the species (circle=T. sacculifer and triangle=G. ruber). C. SST reconstructed at ODP Sites
806 and 807 using Mg/Ca ratios and equations S6 and S7 (this study). D. Reconstructed pCO; (uatm)
using boron-based pH and alkalinity from Caves et al. (2016), data presented are from this study.
Propagated uncertainties are given by eq. S17 for the dark (green or blue) envelope, while the light
(green or blue) envelope are the uncertainties calculated based on eg. S16 (taking into account
uncertainty on 3'Bseawater). 1N black are published estimates from ice core data (line - LePetit at al.,
2009; circles - Yan et al., 2019). In grey are & 'B-derived estimates from the literature (grey circles —
Honisch et al., 2009 for Site 668B; half-filled circles — Seki et al., 2010 for Site 999A; squares —
Chalk et al., 2017 for Site 999A, half-filled diamonds — Dyez et al., 2018 for Site 668B).

Figure 10: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition
(MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope composites. A. Benthic
580 (blue line — compilation from Lisiecki and Raymo, 2005, black line — compilation from Zachos
et al. 2008). B: B. Records from Lithium isotopes (8’Li, orange, Misra and Froelich, 2012) and
Strontium dsotopes (8%¢Sr, grey, Hodell et al., 1991, Farrel et al., 1995, Martin et al., 1999, Martin et
al., 2004), .both proxies for silicate weathering. Orange arrows represent the different weathering
regimes asgindicated by the &'Li, black crosses are indication when changes in weathering regime
occurs. C.AReconstructed pCO- (patm) using boron-based pH and alkalinity from Caves et al. (2016),
data presented are from this study (circle - T. sacculifer and triangle - G. ruber). Propagated
uncertainties are given by eq. S17 for the dark (green or blue) envelope, while the light (green or blue)
envelope are the uncertainties calculated based on eq. S16 (taking into account uncertainty on
8 Bseawater). In grey are § B-derived estimates from the literature (light grey circles — Honisch et al.,
2009 for Site 668B; half-filled circles — Seki et al., 2010 for Site 999A; medium grey circles — Bartoli
et al., 2011 for Site 999A; unfilled triangles — Foster et al., 2012 for Site 761B; top half-filled
diamonds — Foster et al. 2012 for Site 962A; open squares — Badger et al., 2013 for locality in Malta;
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[Nouveau] : "Open squares are pCO 2 compilation from Sosdian et al. (2018), open triangles are from 1110 compilation from Rae et al. (2021). In black are published estimates from ice core data (circles -Yan 1111 et al., 2019). 1112 Figure 10: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition 1113 (MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope data. A. Benthic δ 18 O 1114 (blue line – stack from Lisiecki and Raymo, 2005). B. Benthic δ 13 C (black line – compilation from 1115 Zachos et al., 2008). C and D colored is indicating the site (filled light blue=806, filled dark blue=807), 1116 symbols represent the species (circle=T. sacculifer and triangle=G. ruber), filled grey squares are 1117 recalculated data based on Sosdian et al. (2018) at site 872. C. SST reconstructed at ODP Sites 806 and 1118 807 using Mg/Ca ratios (see supplemental informations for reconstruction details), open symbols are 1119 reconstructed temperature based on litearature Mg/Ca at site 806 (see text or Fig. 4). D. Reconstructed 1120 pCO 2 (ppm) from this study (blue symbols) using boron-based pH and alkalinity from Caves et al. 1121 (2016). Propagated uncertainties are given by eq. S17. In black are published estimates from ice core 1122 data (line – Bereiter et al., 2015; black circles -Yan et al., 2019). Open triangles are from compilation 1123 from Rae et al. (2021). 1124 1125 Figure 11: Proxy data from 1.5 to 0.5 million years, including the Middle Pleistocene Transition 1126 (MPT), in the Western Equatorial Pacific compared to benthic oxygen isotope composites. A. Benthic 1127 δ 18 O (blue line – compilation from Lisiecki and Raymo, 2005, black line – compilation from Zachos et 1128"
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left-filled triangle — Greenop et al., 2014 for Site 761B; upside down triangle — Foster et al., 2014 for
Site 999A; grey triangles — Martinez-Boti et al., 2015b for Site 999A; grey diamonds — Stap et al.,
2016 for Site 1264; grey squares — Chalk et al., 2017 for Site 999A; bottom half-filled diamonds —
Dyez et al., 2018 for Site 668B; grey triangles - de la Vega et al., 2020 for Site 999A). Also shown are
timing of major events. The rose band and dark rose band indicate eruption of the Columbia River
flood basalts (Hooper et al., 2002) and time of maximum eruption (Kasbohr and Schoene, 2018),
respectively. Light grey bands represent hypothesized La Nina-like intervals ahd dashed dark grey
bands represent hypothesized El Nino-like intervals (Farell et al., 1995; Chaisson and Ravelo, 2000;
Nathan and Leckie, 2009; Ford et al., 2012; Drury et al., 2018). The biogenic bloom in the EEP
(Farell et al., 1995) and in the WEP (Berger et al., 1991) is hypothesized to have been driven by
enhanced weathering that increased nutrient delivery to the global ocean (Hermoyian and Owen,
2001).
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Table 1: Boxe core information.

Cruise Leg Hole N (°) E(°) Depth (m)
ODP 130 807 3.61 156.62 3638
ODP 130 806 0.32 159.37 2521
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Table 2: Comparison of reconstructed pCO, values for key intervals in the last 17 Myr.

Mid-Pleistocene transition (1.2-0.8 Ma)

MIS (G) pCO, (natm) Reference

20 171 This study

22 180 This study

24 nd

26 168 This study

28 165 This study

30 164 This study

32 218 Chalk et al., 2017
34 197 Chalk et al., 2017
36 189 Chalk et al., 2017

Early Pliocene Warm Period (4.7-4.5 Ma)

MIS (IG) pCO, (patm) Reference

21
23
25
27
29
31
33
35
37

39

245
222
288
nd

nd

295
323
315
295

306

This study
This study
This study

Honisch et al., 2009 (N-TIMS)
Chalk et al., 2017
Chalk et al., 2017
This study, Chalk et al., 2017

This study

pCO, amplitude IG-G (patm)
74
42
nd
nd
nd
131
105
118
106

nd

pCO, (natm) Reference
541 +124 This study (2 SD, n=3)

Middle Pliocene Warm Period (3.29-2.97 Ma)

pCO, (natm) Reference
515+119 This study (2 SD, n=4)
320+ 130 Martinez-Boti, 2015b (2 SD, n=8)

Miocene Climate Optimum (17-14 Ma)

pCO, (natm) Reference

479 £ 173 This study (2 SD, n=4)
350-400 Foster et al., 2012
300-500 Greenop et al., 2014
470-630 Sosdian et al»2018
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Texte supprimé�

Texte

"Miocene climate optimum MCO Mid- Warm Middle Miocene"



Texte remplacé�

Texte

[Ancien] : "Shell weight (µg) Mg/Ca (mmol/mol) B/Ca (µmol/mol) δ 11 B (‰) δ 18 O (‰)" 
[Nouveau] : "250 250 Depth (m)"



Police « ArialMT » remplacée par « Arial ».
Corps « 0 » remplacé par « 13.8719 ».
Couleur de police modifiée.



Texte inséré�

Texte

"Figure 1 38"



Texte inséré�

Texte

"Miocene climate optimum MCO Mid- Warm Middle Miocene"



Texte remplacé�

Texte

[Ancien] : "A 2" 
[Nouveau] : "2 A"



Police « Arial-BoldMT » remplacée par « Arial ».
Corps « 11.986 » remplacé par « 8.1972 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Miocene Pliocene Pleistocene 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Age (Ma) 22 B 20 18 16 14 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17" 
[Nouveau] : "24 B 806 G. ruber 22 806 T. sacculifer 807 T. sacculifer 20 d 18 O (‰) Mg/Ca (mmol/mol) Shell weight (µg) d 11 B (‰) 872 recalculated 761 926 18 16 1000 999 14 668 6 12 C 806 G. ruber 5 806 T. sacculifer 807 T. sacculifer 872 T. sacculifer 4 806 T. sacculifer 806 D. altispira Mg/Ca sw 3 2 50 D 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 22"



Police « ArialMT » remplacée par « Arial ».
Corps « 4.9942 » remplacé par « 8.1972 ».
Couleur de police modifiée.



Texte inséré�

Texte

"39 Figure 2"



Texte remplacé�

Texte

[Ancien] : "150 C 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Age (Ma) 6 D 5 4 Mg/Ca sw 3 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Age (Ma) 50 E 40 30 20 10 0 Figure 2" 
[Nouveau] : "pCO 2 (ppm) d 11 B T. sacculifer (‰) -3.0 A 5 9 11 -2.5 1 7 15 19 3 -2.0 -1.5 8 4 20 -1.0 2 6 10 12 16 400 -0.5 B 300 200 806 T. sacculifer 807 T. sacculifer Other studies Rae et al. 2021 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Age (Ma) 400 -0.5 E C D 19 d 18 O (‰) d 18 O G. ruber (‰) -1.0 -1.5 -2.0 pCO 2 _d 11 B (ppm) 300 200 18 17 1:1 line 100 -2.5 100 200 300 400 -0.4 -0.2 0 0.2 -2.5 -2.0 -1.5 -1.0 -0.5 pCO 2 _Vostok (µatm) Ln(pCO 2 _d 11 B/278) d 18 O G. ruber (‰)"



Police « Arial-BoldMT » remplacée par « Arial ».
Corps « 5.4926 » remplacé par « 0 ».
Couleur de police modifiée.



Texte inséré�

Texte

"40 Figure 3"



Texte inséré�

Texte

"SST (°C) 38 36 34 32 30 28 SST Mg/Ca -806 SST Mg/Ca -806 SST Mg/Ca -807 SST Mg/Ca -872 SST(Tex 86 ) -806 SST(Uk 37 ) -806 26 24"



Texte inséré�

Texte

"18 19 20 21 22 Age (Ma)"



Texte remplacé�

Texte

[Ancien] : "Age (Ma)" 
[Nouveau] : "Figure 4 41"



Corps « 5.993 » remplacé par « 13.871 ».
Couleur de police modifiée.
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Age (Ma) Figure 3



Texte supprimé�

Texte

"40.5 A"



Texte inséré�

Texte

"40.5"



Texte inséré�

Texte

"A"



Texte remplacé�

Texte

[Ancien] : "δ 11 B sw (‰) pH seawater 39.0" 
[Nouveau] : "�39.0 ;;: (/) EJ"



Police « Symbol » remplacée par « *Arial-2447-Identity-H ».
Corps « 0 » remplacé par « 10 ».
Couleur de police modifiée.



Texte inséré�

Texte

"t,Q"



Texte supprimé�

Texte

"B"



Texte supprimé�

Texte

"8.3"



Texte inséré�

Texte

"□ l::,. Other s tudies sosdian et al. 2018 Other s tudies Rae et al. 2021 l::,. ai"



Texte inséré�

Texte

"0 ;;: !tl 8.0 è $ (/)"



Texte inséré�

Texte

"o.."



Texte supprimé�

Texte

"Age (Ma)"



Texte remplacé�

Texte

[Ancien] : "3" 
[Nouveau] : "5 42"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».
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Figure 4



Texte supprimé�

Texte

"2400 A"



Texte remplacé�

Texte

[Ancien] : "2200" 
[Nouveau] : "Age (Ma)"



Police « Arial-BoldMT » remplacée par « *Arial-2446-Identity-H ».
Corps « 6.1584 » remplacé par « 10.5 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "µatm) ( 2000 1800 1600 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1000 B" 
[Nouveau] : "-G17-R05 (ppm) pCO 2 -G17-Caves16 (ppm) 2400 2200 2000 A 1800 1000 pCO 2 -G17-constant alkalinity (ppm) pCO 2 -G17-TZ04 (ppm) 900 1600 B 800 700 600 500 400 300 200 100 1000 900 0 C 800 700 600 500 400 300 1000 200 900 100 800 0 D 700 600 500 400 300 200 1000 900 100 0 E"



Police « ArialMT » remplacée par « Arial,Bold ».
Corps « 7.2735 » remplacé par « 10.5516 ».
Couleur de police modifiée.



Oui�

paragraphe

"900"



Texte inséré�

Texte

"Other studies Sosdian et al. 2018 Other studies Rae et al. 2021 Ice core Bereiter et al. 2015 Alkenones Tanner et al. 2020 200 100 0"



Oui�

paragraphe

"0"



Texte supprimé�

Texte

"Age (Ma)"



Texte remplacé�

Texte

[Ancien] : "4" 
[Nouveau] : "6 43"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».





pCO, (uatm)

r2

>

»
S
’8\?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Age (Ma)
O T sacculifer (806), this study
Figure 5

@ T sacculifer (807), this study



Texte remplacé�

Texte

[Ancien] : "2" 
[Nouveau] : "Miocene climate optimum MCO Mid- Warm"



Police « Arial-BoldMT » remplacée par « Arial ».
Corps « 6.1259 » remplacé par « 7.40359 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "5 9 11 3 1 7 15 19" 
[Nouveau] : "18 19 20 21 22 Age (Ma)"



Police « Arial-BoldMT » remplacée par « Arial ».
Corps « 6.991 » remplacé par « 9.02521 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "(µatm) δ" 
[Nouveau] : "(ppm) d"



Police « ArialMT » remplacée par « Arial ».
Corps « 7.26151 » remplacé par « 9.6012 ».
Couleur de police modifiée.



Texte supprimé�

Texte

"4 3 400 4 2 6 8 10 20 5 12 16 300 200 6 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Age (Ma) T. sacculifer (806), this study T. Figure 5"



Texte supprimé�

Texte

"sacculifer (807), this study"
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Texte supprimé�

Texte

"Miocene climate optimum MCO Mid- Warm Middle Miocene"



Texte remplacé�

Texte

[Ancien] : "d 18 O (‰) pCO 2 (µatm)" 
[Nouveau] : "Middle Miocene"



Police « Symbol » remplacée par « Arial ».
Corps « 0 » remplacé par « 7.40359 ».



Texte remplacé�

Texte

[Ancien] : "-1.0 d 13 C (‰) pH seawater (based d 11B) 38 -1.5 C 36 34 32 30 28 26 D 24 8.5 8.4" 
[Nouveau] : "38 -1.0 C -1.5 36 34 32 30 28 26 8.5 D 8.4 24"



Corps « 6.1272 » remplacé par « 8.23399 ».



Texte remplacé�

Texte

[Ancien] : "900 7.6 800 E 700 600 500 400 Site 806 300 Site 807 200 100 Pliocene Miocene Pleistocene 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17" 
[Nouveau] : "d 13 C (‰) d 11 B-pHseawater 1100 1000 E 900 800 700 600 Site 806 500 Site 807 Site 872 recalculated 400 Site 872 Sosdian et al. 2018 300 Site 872 Rae et al. 2021 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Age (Ma) 7.6"



Police « Arial,Bold » remplacée par « Symbol ».
Corps « 6.1732 » remplacé par « 0 ».



Texte inséré�

Texte

"44"



Texte remplacé�

Texte

[Ancien] : "6 Age (Ma)" 
[Nouveau] : "7"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».
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Figure 7

Age (Ma)



Texte inséré�

Texte

"MMCT"



Texte supprimé�

Texte

"MMCT"



Texte remplacé�

Texte

[Ancien] : "pCO 2 ( µatm) δ 13 C (‰) SST (°C) δ" 
[Nouveau] : "d 13 C (‰) SST (°C) pCO 2 (ppm) d"



Police « ArialMT » remplacée par « Symbol ».
Corps « 7.2668 » remplacé par « 9.43919 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Age (Ma)" 
[Nouveau] : "18 19 20 21 22"



Police « ArialMT » remplacée par « Arial ».
Corps « 6.70329 » remplacé par « 8.0408 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Age (Ma)" 
[Nouveau] : "18 19 20 21 22"



Police « ArialMT » remplacée par « Arial ».
Corps « 6.7065 » remplacé par « 8.05 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Age (Ma) 900 D 800 700 600 500 Site 806 400 300" 
[Nouveau] : "18 19 20 21 22 1200 1100 D 1000 900 800 Site 806 G17_Caves16 700 Site 806 G17_cst alk 600 Site 872 recalculated 500 Site 872 Sosdian et al. 2018 400 Site 872 Rae et al. 2021 300 Other studies Sosdian et al. 2018"



Police « ArialMT » remplacée par « Arial ».
Corps « 6.7077 » remplacé par « 8.05 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Age (Ma)" 
[Nouveau] : "45"



Police « ArialMT » remplacée par « TimesNewRomanPSMT ».
Corps « 6.7079 » remplacé par « 12 ».
Couleur de police modifiée.



Texte supprimé�

Texte

"7 6 7"



Texte supprimé�

Texte

"9 10 11 12 13 14 15 16 17"
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Texte remplacé�

Texte

[Ancien] : "δ" 
[Nouveau] : "6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Age (Ma)"



Police « Symbol » remplacée par « Arial ».
Corps « 0 » remplacé par « 8.0132 ».
Couleur de police modifiée.



Texte inséré�

Texte

"d"



Texte remplacé�

Texte

[Ancien] : "( µatm) δ" 
[Nouveau] : "d"



Police « ArialMT » remplacée par « Symbol ».
Corps « 7.2596 » remplacé par « 9.48241 ».
Couleur de police modifiée.



Texte inséré�

Texte

"(ppm)"



Texte inséré�

Texte

"5"



Texte supprimé�

Texte

"5"



Texte supprimé�

Texte

"Age (Ma)"



Texte supprimé�

Texte

"Age (Ma)"



Texte supprimé�

Texte

"36"



Texte remplacé�

Texte

[Ancien] : "Age (Ma)" 
[Nouveau] : "900"



Police « ArialMT » remplacée par « Arial ».
Corps « 6.7121 » remplacé par « 8.06841 ».
Couleur de police modifiée.



Oui�

paragraphe

"D"



Oui�

paragraphe

"D"



Oui�

paragraphe

"600 500 400"



Texte inséré�

Texte

"Other studies Sosdian et al. 2018 Other studies Rae et al. 2021 Ice core Bereiter et al. 2015"



Oui�

paragraphe

"600 500 400"



Texte inséré�

Texte

"0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Age (Ma)"



Texte inséré�

Texte

"46"



Texte remplacé�

Texte

[Ancien] : "8 Age (Ma) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 0" 
[Nouveau] : "9"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».
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Texte inséré�

Texte

"3"



Texte supprimé�

Texte

"3"



Texte remplacé�

Texte

[Ancien] : "21 35 39 33 23 δ 18 O (‰) 4 5 20 32 28 34 36 22 30 ( µatm) δ 13 C (‰) SST (°C) pCO 2" 
[Nouveau] : "d 18 O (‰) 21 35 39 4 33 23 5 22 20 32 28 34 36 30"



Police « Arial-BoldMT » remplacée par « Symbol ».
Corps « 6.71449 » remplacé par « 0 ».
Couleur de police modifiée.



Texte supprimé�

Texte

"Age (Ma)"



Texte supprimé�

Texte

"Age (Ma) C 34 36 32 450 D 400"



Texte remplacé�

Texte

[Ancien] : "Age (Ma) Site 806 350 Site 807" 
[Nouveau] : "450 D 400 Site 806 Site 807 350 Other studies Rae et al. 2021 Ice core Bereiter et al. 2015"



Police « ArialMT » remplacée par « Arial ».
Corps « 6.71761 » remplacé par « 8.1144 ».
Couleur de police modifiée.



Texte inséré�

Texte

"50 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Age (Ma) d 13 C (‰) pCO 2 (ppm) SST (°C)"



Texte inséré�

Texte

"47"



Texte remplacé�

Texte

[Ancien] : "9 Age (Ma) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 0.5 50" 
[Nouveau] : "10"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».
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Texte supprimé�

Texte

"MCO Mid- Warm Middle Miocene"



Texte inséré�

Texte

"pCO 2 (ppm) d 7 Li (‰) d 18 O (‰) MCO Mid- Warm Middle Miocene Pleistocene Pliocene climate transition transition transition MPT WPT MMCT 1 A 2 3 4 5 32 0.7093"



Texte supprimé�

Texte

"32 0.7093"



Texte remplacé�

Texte

[Ancien] : "29 0.7089 28 27 0.7087 B 26 Biogenic bloom EEP 25 0.7085 Increase nutrients Biogenic bloom WEP 87/86 Sr 900 800 C 700 Site 806 Site 807 600 500 400 300 200 El Nino-like La Nina-like 100 Pleistocene Pliocene Miocene" 
[Nouveau] : "0.7089 29 28 0.7087 27 0.7085 26 B 25 0.7083 87/86 Sr 900 800 Site 806 C Site 807 700 Site 872 recalculated Other studies Sosdian et al. 2018 600 500 400 300 200 100"



Police « Arial,Bold » remplacée par « Arial ».
Corps « 6.1548 » remplacé par « 8.9884 ».
Couleur de police modifiée.



Texte remplacé�

Texte

[Ancien] : "Age (Ma) pCO 2 (µatm) d 7 Li (‰) d 18 O (‰)" 
[Nouveau] : "18 19 20 21 22 Columbia river Age (Ma) flood basalts"



Corps « 6.7 » remplacé par « 8.97 ».



Texte inséré�

Texte

"48"



Texte remplacé�

Texte

[Ancien] : "10 flood basalts Columbia river" 
[Nouveau] : "11"



Police « Arial-BoldMT » remplacée par « ArialMT ».
Corps « 10 » remplacé par « 13.871 ».
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