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Abstract.
Surface observations are usually too few and far between

to properly assess multidecadal variations at the local scale
and characterize historical local extreme events at the same
time. A data assimilation scheme has been recently presented5

to assimilate daily observations of temperature and precip-
itation into downscaled reconstructions from a global ex-
tended reanalysis through an Ensemble Kalman fitting ap-
proach and derive high-resolution fields. Recent studies also
showed that assimilating observations at high temporal res-10

olution does not guarantee correct multidecadal variations.
The current paper thus proposes (1) to apply this scheme
over France and over the 1871-2012 period based on the
SCOPE Climate reconstructions background dataset and all
available daily historical surface observations of tempera-15

ture and precipitation, (2) to develop an assimilation scheme
at the yearly time scale and to apply it over the same pe-
riod and lastly, (3) to derive the FYRE Climate reanalysis, a
25-member ensemble hybrid dataset resulting from the daily
and yearly assimilation schemes, spanning the whole 1871-20

2012 period at a daily and 8-km resolution over France.
Assimilating daily observations only allows reconstructing
accurately daily characteristics, but fails in reproducing ro-
bust multidecadal variations when compared to indepen-
dent datasets. Combining the daily and yearly assimilation25

schemes, FYRE Climate clearly performs better than the
SCOPE Climate background in terms of bias, error, and cor-
relation, but also better than the Safran reference surface
reanalysis over France available from 1958 onward only.
FYRE Climate also succeeds in reconstructing both local ex-30

treme events and multidecadal variability. It is made freely
available from http://doi.org/10.5281/zenodo.4005573 (pre-
cipitation) and http://doi.org/10.5281/zenodo.4006472 (tem-
perature).

1 Introduction 35

Several studies show that long-term meteorological obser-
vation often display strong multidecadal variations both
in terms of annual values (Slonosky, 2002) and extremes
(Willems, 2013). These variations in meteorological vari-
ables end up affecting multidecadal variations of stream- 40

flow observations (Boé and Habets, 2014). However, the few
available long-term observations do not allow to grasp the
evolving climate in a spatially continuous way. To solve this
discontinuity issue, daily meteorological high-resolution sur-
face reanalyses have been built at the country scale (Vi- 45

dal et al., 2010a; Quintana-Segui et al., 2017) or span-
ning Europe (Landelius et al., 2016; Soci et al., 2016).
These reanalyses are mainly built using Optimal Interpola-
tion (Gandin, 1965) combining daily observations and large-
scale atmospheric reanalyses as background. However, due 50

to the low number of daily meteorological observations be-
fore the 1950s (Caillouet et al., 2019), these reanalyses are
usually limited to the second half of the Twentieth Century
(Minvielle et al., 2015). This lack of sufficient daily histori-
cal observations in many countries in Europe led to the cre- 55

ation of several long-term high-resolution reconstructions.
These datasets are mainly built using statistical downscaling
of global atmospheric reanalyses (Dayon et al., 2015; Min-
vielle et al., 2015; Caillouet et al., 2019; Horton and Brönni-
mann, 2018), but in data rich areas, some are also built as an 60

interpolation of surface observations (Keller et al., 2015).
In the past few years, some studies have also developed or

used different processes to take advantage of both historical
observations and downscaled reconstructions. For instance,
the downscaled reconstructions may be modified using indi- 65

vidual long-term observed times series (Kuentz et al., 2015;
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Brigode et al., 2016). Observations may also be integrated in
a post-processing of the downscaling step, through e.g. the
selection of a unique member among a downscaled ensem-
ble (Bonnet et al., 2017, 2020; Minvielle et al., 2015).

In parallel, paleoclimate studies that usually deal with5

coarser temporal and spatial resolutions have used data as-
similation (DA) to reconstruct past climate fields. DA usually
combines (i) a background, (ii) observations, (iii) a model,
and (iv) their associated uncertainty to provide an optimal
analysis and its associated error (Asch et al., 2016). DA is10

usually composed of two steps: the analysis, and the fore-
cast, which is a propagation of the analysis by the (dynami-
cal) model. In paleoclimate studies in which the propagation
step may be highly computationnaly demanding typically,
DA methods have been applied “offline” (Goosse et al., 2006;15

Annan and Hargreaves, 2012; Bhend et al., 2012; Hakim
et al., 2016; Valler et al., 2019): the background is computed
by the dynamical model once for the entire period, and the
DA comes down to the analysis step (Matsikaris et al., 2015).

Some recent studies have also attempted to follow the20

offline DA methodology at higher resolution to assimilate
daily observations into various reconstructions. Pfister et al.
(2020) have also assimilated daily temperature over Switzer-
land into a statistical reconstruction, leading to an improve-
ment using only a limited number of stations – 25 over the25

entire Switzerland. Devers et al. (2020a) also developed a DA
scheme of daily precipitation and temperature over France
into the SCOPE Climate (Spatially COherent Probabilistic
Extension Method) downscaled reconstruction dataset (Cail-
louet et al., 2019). The DA method is an offline Ensemble30

Kalman Filter (Evensen, 2003), also referred to as Ensem-
ble Kalman fitting (EnKf, Bhend et al., 2012). They showed
that the DA scheme allows for improvements upon the back-
ground even with a limited number of assimilated stations.
However, assimilating observations at a high temporal reso-35

lution as in the two previous examples does not guarantee a
correct multidecadal variation in the reanalysis (Steiger and
Hakim, 2016). To bypass this problem, some studies in pa-
leoclimatology assimilate temporal averages of observations
through offline DA in existing reconstructions (Steiger and40

Hakim, 2016; Dirren and Hakim, 2005; Huntley and Hakim,
2010; Steiger et al., 2014).

Devers et al. (2020a) developed and tested their ensem-
ble DA scheme over a short period of time (2009-2012)
with assimilated observation density reproducing the histor-45

ical density (number and spatial patterns) at a few carefully
selected years between 1871 and 2012, representative of the
evolution of the observation network: 1871, 1900, 1930 and
1950 (see Fig. 1, top left, for the evolution of the number
of available observations). Such a set-up allowed to keep a50

large number of independent observations – 783 for precip-
itation and 1500 for temperature) – for validation purposes.
The authors showed that the ensemble produced is well cal-
ibrated, and that the performance of the reanalysis decreases
when the density of assimilated observations decreases, i.e.55

when one goes further back in time. Over the 2009-2012
period, the DA scheme furthermore leads to a better per-
formance than the current reference surface reanalysis over
France (Safran, which assimilates all available observations
Vidal et al., 2010b), for (1) temperature even with an assimi- 60

lated density as low as that of 1871, and (2) for precipitation
with a density as low as that of 1930. Note that assessing the
DA scheme against independent observations as done by De-
vers et al. (2020a) is a prerequisite to the current study which
uses all available observations. 65

Indeed, this study applies here over the 1871-2012 period
the scheme developed by Devers et al. (2020a) in order to
produce the full FYRE Daily reanalysis, composed of 25
members of daily precipitation and temperature at a 8 km
resolution over France. In order to address multidecadal vari- 70

ations, a new DA scheme at the yearly time scale is then
proposed using once again SCOPE Climate (Caillouet et al.,
2019) as a background. The scheme is then applied over
the 1871-2012 period for both precipitation and tempera-
ture leading to the 25-member yearly reanalysis of precipi- 75

tation and temperature at 8 km resolution: FYRE Yearly. In
order to include both multidecadal variations and extreme
events, FYRE Daily and FYRE Yearly are hybridized to
build a new reanalysis: FYRE Climate. Finally, the benefits
of hybridization is assessed by comparing FYRE Daily and 80

FYRE Climate against several products over a recent period
(1950-2000) and over the entire 20th century. These compar-
isons include the computation of several metrics: Continuous
Ranked Probability Score (CRPS, Brown, 1974), bias, error,
and correlation. The multidecadal variations of the two re- 85

analyses and the background are also compared with those of
other products. Furthermore, the reconstruction of extreme
events is investigated with the study of an extreme rainfall
event during September 1890 and the unusually cold month
of December 1879. 90

The paper is organised as follows: Section 2 introduces the
background, the assimilated observations and their metadata,
as well as validation datasets. Section 3 describes the DA
implementation and the creation of the different reanalyses.
Their validation through different comparisons and examples 95

is presented in Sect. 4. Finally, several points are discussed
in Sect. 5 and conclusions are drawn in Sect. 6.

2 Data

2.1 Background

The SCOPE (Spatially COherent Probabilistic Extension 100

Method, Caillouet et al., 2016, 2017) climate downscal-
ing method is based on the analogue approach, which as-
sumes that similar large-scale patterns of atmospheric cir-
culation lead to similar local meteorological conditions of
e.g. temperature and precipitation (Lorenz, 1969). SCOPE 105

uses an ensemble analogue approach to reconstruct high-
resolution climate fields from large-scale information on
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Figure 1. Top-left panel: Availability of meteorological observations in the Météo-France database over the 1871–2012 period. Full lines
represent the number of open stations during the considered year and dotted lines represent the number of stations with a complete series.
Lower-left panel: availability of the different gridded datasets: SCOPE Climate, Safran, European Pattern Climatology, and Monthly homog-
enized series. Right-panel: map of the 608 climatologically homogeneous zones – in green – as defined in Safran, and altitude of the 8 km
grid cells of SCOPE Climate and Safran. The case study cell (id: 7548), highlighted in red, is located in the Cevennes area at the altitude of
1,165m a.s.l. in a mountainous Mediterranean climate. An observation station (id: 7154005, Mazan-l’Abbaye) is located in this cell at the
altitude of 1240m a.s.l. The blue frame represents the study area for the heavy rainfall event of 21 September 1890 (see Sect. 4.5)

atmospheric circulation. SCOPE draws on several works
on climate downscaling with analogues (Radanovics et al.,
2013; Ben Daoud et al., 2016; Caillouet et al., 2016, 2017),
and the reader is referred to these for more details. In short,
based on information on large-scale atmospheric circulation5

from e.g. a global reanalysis, SCOPE generates an ensem-
ble of high-resolution daily meteorological fields through
a resampling of an archive of high-resolution meteorologi-
cal fields. Note that the resulting fields from each ensemble
member are coherent in space as well as across variables,10

thanks to the use of the Schaake Shuffle (Clark et al., 2004).
The application of the SCOPE method using the ensemble

mean values of the Twentieth Century Reanalysis (Compo
et al., 2011) as a source of large-scale information – pre-
dictors – and the Safran reanalysis (Vidal et al., 2010b) as15

an archive for analogues – predictands – has led to the cre-
ation of the SCOPE Climate dataset (Caillouet et al., 2019).
This daily 25-member ensemble reconstruction is available
on a 8 km grid (see Figure 1) over the 1871-2012 period for
precipitation (Caillouet et al., 2018a), temperature (Caillouet20

et al., 2018b), and Penman-Monteith reference evapotranspi-
ration (Caillouet et al., 2018c). Note that as SCOPE Climate
resamples Safran data, the daily temperature is actually com-
puted as the daily average of hourly temperature.

The comparison of SCOPE Climate with the indepen-25

dent Météo-France long-term homogenized series (Moisselin
et al., 2002, see Sect. 2.4.2 for details about this dataset) have

put forward a low and steady error – at the monthly time scale
– over the whole 20th century (Caillouet et al., 2019).

Two background ensembles were extracted from SCOPE 30

Climate for this study :

– for daily DA, the 25-member ensemble of daily values
of temperature and precipitation from SCOPE Climate;

– for yearly DA, the 25-member ensemble of yearly-
average temperature and the yearly-accumulated precip- 35

itation from SCOPE Climate.

In both cases, data were extracted between 1 January 1871
and 29 December 2012, i.e the entire period of availability of
SCOPE Climate. 2012 yearly values are computed over the
available period. 40

2.2 Assimilated observations

Surface observations originate from the Météo-France
database composed of the daily sum of precipitation, and
daily minimum and maximum temperature. The observation
network has evolved from less than 10 stations of tempera- 45

ture and precipitation in the 1870s to more than 2500 stations
for temperature and 4300 for precipitation at the end of the
20th century (Figure 1, top left). The number of stations with
a full year of available data evolved in parallel. This large
number of observations is partially based on a strong vol- 50

untary observation network in France (Galliot, 2003; Capel,
2009).
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Variables used as observations over the 1871-2012 period
are :

– for daily DA: the daily sum of precipitation and the
daily mean temperature;

– for yearly DA: the yearly sum of precipitation and5

yearly mean temperature for stations with a full year of
available data. Values are otherwise discarded and not
used in the yearly DA.

Note that because of the low availability of hourly measure-
ments in the past, the daily mean temperature is here com-10

puted as the mean of the daily maximum temperature and
the daily minimum temperature. Observed yearly values for
2012 are computed between 1 January to 29 December to
stick to the background data availability.

2.3 Metadata for observations15

Along with observed values, some metadata are available
over the 1871-2012 period. Three types of metadata have
been used in this study in order to define at best the mea-
surement error of temperature and precipitation.

The first type of metadata available over the entire period20

is the type of station, ranging from 0 for the highest quality
to 5 for the lowest quality. This classification is not linked to
any numerical values of measurement error but can be used
as an indicator of the overall quality of the station. The sec-
ond type of metadata, noted σMP, is only available from 199925

onward and represents the maintained performance of each
station (Leroy, 2010, Table 1a). This classification includes
the intrinsic quality of the measurement device and the qual-
ity of the measurement method. Lastly, the site representa-
tiveness, noted σSR, is also available over the 1999-2012 pe-30

riod (Leroy and Lèches, 2014, Table 1b). This classification
takes into account the error due to the influence of the nearby
environment of the station. The maintained performance and
site representativeness give information about the daily error
measurement and are related to the station quality as estab-35

lished by Météo-France and the World Meteorological Orga-
nization (WMO, 2014).

2.4 Other datasets

2.4.1 Safran

The SAFRAN system is an analysis system based on an Op-40

timal Interpolation scheme that merges in-situ observation
(temperature, precipitation, relative humidity, wind speed,
and cloudiness) and a background – ERA-40 large-scale re-
analysis (Uppala et al., 2005) and ECMWF operational anal-
yses, or climatological values (for precipitation). The analy-45

sis is performed on 608 climatologically homogeneous zones
(see Figure 1, top right) and is afterwards disaggregated
onto 8602 cells in France (8 km grid) based on altitude only

Table 1. Station classifications and related measurement uncer-
tainty – standard deviation, computed as half of the 95 % confidence
interval – for daily temperature and daily precipitation.

(a) Maintained performance (Leroy, 2010). The standard deviation for
precipitation is selected as the maximum between the percentage value
and the minimum value indicated in brackets (in mm).

A B C D E

Temperature [◦C] 0.1 0.25 0.5 0.75 1

Precipitation [%]
2.5

(0.05)
2.5

(0.1)
5

(0.25)
7.5

(0.375)
10

(0.5)

(b) Representativeness of the site (Leroy and Lèches, 2014)

1 2 3 4 5

Temperature [◦C] 0 0 0.5 1 2.5
Precipitation [%] 0 2.5 7.5 12.5 50

(Quintana-Segui et al., 2008). The Safran reanalysis is avail-
able from 1 August 1958 onwards and is updated annually 50

(Vidal et al., 2010b). In this study, daily precipitation and
daily temperature – computed as the average of hourly values
– are extracted from the Safran database over the 1 January
1958 - 29 December 2012 period. The Safran reanalysis is
used here to asses features of the background and the differ- 55

ent reanalyses over the last 50 years or so.

2.4.2 Monthly homogenized series (SMR)

The monthly homogenized series – called SMR for “Séries
Mensuelles de Référence” – are produced by Météo-France.
The homogenization is intended to detect and correct poten- 60

tial homogeneity breaks related to changes in location or in-
strumentation (Moisselin et al., 2002; Gibelin et al., 2014).
SMR comprise two differents datasets:

– 1583 times series for precipitation and 308 for tempera-
ture allowing to capture the spatial patterns over France 65

but only covering the period 1959-2009 (Gibelin et al.,
2014);

– 332 times series for precipitation and 88 for temperature
covering the period 1900-2000 (Moisselin et al., 2002).
Although stations are not distributed in a homogeneous 70

way over France, these series constitute a reliable ref-
erence for analyzing multidecadal variations as well as
long-term trends.

The SMR is a high-quality dataset that will be used to
asses the quality of the background and several reanalyses in 75

terms of multidecadal variations and trends, but also to eval-
uate their quality at the monthly time scale through different
metrics – bias, correlation, and error – over different periods.
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2.4.3 European Pattern Climatology

The monthly gridded reconstructions of precipitation and
temperature developed by Casty et al. (2005, 2007) – here
called European Pattern Climatology (EPC) – were created
by regressing a network of station data against a modern cli-5

mate dataset (CRU TS2, Mitchell and Jones, 2005). Transfer
functions via principal component regressions are computed
over a recent period where both products are available. Fi-
nally, the transfer functions are fed by a limited number of
precipitation and temperature stations having a long instru-10

mental record. The reconstruction covers the 1766-2000 pe-
riod over the North Atlantic/European sector with a spatial
resolution of 0.5◦. It is important to note that this method-
ology assumes a stationary behaviour during the entire pe-
riod. Furthermore, non-homogeneity may appear because the15

dataset is composed of the CRU TS2 between 1901 and 2000
and of a climate field reconstruction based on principal com-
ponent regression before 1900.

For this study, values are extracted over the 254 cells cov-
ering the France area between January 1871 and December20

2000 for precipitation and temperature. The EPC reconstruc-
tion will be used to evaluate the coherence of the multi-
decadal variations of the background and the reanalyses over
a long period.

3 Data assimilation setup25

3.1 Ensemble Kalman fitting

The Ensemble Kalman Filter is a sequential data assimila-
tion method relying on an approximation of the Kalman fil-
ter in which the error statistics are computed from an ensem-
ble of members (Evensen, 2003). The background is gener-30

ally computed from a propagation (by the dynamical model)
of the analysis state ensemble at the previous time step. In
an offline approach such as in this study, only the analysis
step is carried out. Hence, we name this application Ensem-
ble Kalman fitting (EnKf) in lieu of Ensemble Kalman Filter35

(Bhend et al., 2012; Franke et al., 2017).
The background ensemble is noted Xb ∈ Rn×N with n

the size of the background state vector – i.e the number of
grid points – and N the number of ensemble members. In a
Gaussian context the background can be defined by the en-40

semble mean xb ∈ Rn, and the background error covariance
matrix P b ∈ Rn×n. In the EnKf, P b is estimated using the
ensemble perturbation matrixX ′b ∈ Rn×N :

P̂
b
=
X ′bX

′T
b

N − 1
with X ′b =X

b−xb (1)

The observation vector y ∈ Rm contains all observations45

(in this case m) for a specific time step, that is, in this study,
daily or yearly, with an error assumed to be gaussian. Burgers
et al. (1998) showed the benefits of perturbed observations in
EnKF and demonstrated that using non-perturbed observa-
tions can lead to filter divergence (Houtekamer and Mitchell,50

1998). Following them, the perturbed ensemble observation
matrix Y ∈ Rm×N is generated :

Y = y+ ε (2)

where the matrix ε is the ensemble of perturbations εi ∈ Rm,
for i= 1, ...,N drawn from a normal distributionN (0,σ2

obs), 55

with σ2
obs the observation error variance.

The analysis step of the Ensemble Kalman Filter can be
solved using the two following equations from the original
Kalman Filter:{
Xa =Xb+ K̂(Y −HXb)

K̂ = P̂ bHT (HP̂ bHT +R)−1
(3) 60

whereXa ∈ Rn×N is the analysis ensemble,K ∈ Rn×m the
Kalman gain,H ∈ Rm×n the observation operator that maps
the background to the observation space, andR ∈ Rm×m the
observation error covariance.

3.2 Observation errors 65

For both daily DA and yearly DA, correlations between ob-
servation errors in space are neglected. This assumption is
strong but common in data assimilation applications, due to
the lack of available information on potential correlations
(Carrassi et al., 2018). In practice, this corresponds to a diag- 70

onal observation error covariance matrix R, which is filled
with the observation error variance σ2

obs. In order to define at
best σ2

obs, two different approaches have been implemented
depending on the DA time scale.

3.2.1 Daily DA 75

Errors derived from the maintained performance (σMP) and
the site representativeness (σSR) are available during the
1999-2012 period, and used to define the measurement error,
assuming that the two types of errors are Gaussian:

σobs =
√
σ2

MP +σ2
SR (4) 80

Before 1999, only the type of station is available (see
Sect. 2.3), and it is used to provide an estimate of observation
error as in Devers et al. (2020a). Type 0 and type 1 stations
are classified as class B for the maintained performance and
class 2 for the representativeness of the site (see Table 1a and 85

1b). Stations with a type higher than 1 are classified as class
C for the maintained performance and class 3 for the rep-
resentativeness of the site. For precipitation, the minimum
standard deviation is set at 1 mm. Equation 4 is used here
again to derive the estimated measurement error. 90

3.2.2 Yearly DA

No metadata on the quality of observations aggregated at
yearly time scale is available. However, the work of Mois-
selin et al. (2002) and Gibelin et al. (2014), and a graphical
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analysis of long-term stations allow to provide a rough esti-
mate of σ2

obs at the yearly time scale :

σ2
obs[Tobs] = 0.5◦C

σ2
obs[Pobs] = 20% × Pobs

(5)

with Tobs the yearly-average observed temperature and Pobs
the yearly-accumulated observed precipitation. The observa-5

tion error as defined here is purposely on the upper range for
both temperature and precipitation to take into account the
lack of information at this time scale.

3.3 Observation operator

The observation operator H was validated in Devers et al.10

(2020a) on the 1999-2012 period. H is linear and identical
for both daily and yearly DA but varies slightly according to
the variable considered.

At each time step t, an altitudinal gradient α(t) is com-
puted using the background values in a linear regression. α15

is estimated within each climatologically homogeneous zone
(Fig. 1). Moreover, if the altitude difference between the cells
is greater than 300 m, the zone is again split by bandwidth of
300 m. At each time step, the following formula is thus ap-
plied:20

HXb(t) =Xb(t)+α(t)× (Altcell−Altstation) (6)

with α(t) a vector containing the altitude gradient by zone
defined previously, Altcell the altitude of the cell, Altstation
the altitude of the measurement station and t the time index.

For precipitation, in order to limit the noise due to small25

altitude differences, α(t) = 1 ∀t when Altstation−Altcell ≤
300m, and when all background member values are null.

3.4 Localization matrices

Considering the 25-member ensemble size of the back-
ground, a localization is applied on the background error co-30

variance matrix to reduce or even remove covariances that
seem physically erroneous (Houtekamer and Mitchell, 1998;
Houtekamer and Zhang, 2016). Equation 3 of the Kalman
gain becomes:

K̂ = [ρ ◦ (P̂ bHT )][ρ ◦ (HP̂ bHT )+R]−1 (7)35

with ρ ∈ Rn×m the localization matrix and ◦ an element-
wise (Schur) product.

The localization matrix is generally built on a specific dis-
tance representative of the decorrelation distance inside the
variable (Anderson, 2012). However, these approaches rely40

on the assumption that the error is isotropic. This assumption
may be wrong with respect to daily precipitation and temper-
ature at high resolution (8 km). Hence, the localization matri-
ces ρ are here built upon the background climatology in such

a way that a plausible anisotropic behaviour is intrinsically 45

integrated (see Devers et al., 2020a).
The correlation matrices are computed as follows :

– For the daily DA, the seasonally-adjusted daily time se-
ries of SCOPE Climate over the 1958-2008 period are
extracted. The Pearson correlation coefficient between 50

each pair of cells is then computed for each member,
leading to 25 correlations matrices.

– For the yearly DA, the yearly time series of SCOPE Cli-
mate over the 1958-2008 period are used. Once again
the Pearson correlation is computed for each of the 25 55

members.

The correlation matrices are then processed in the same
way for both the daily and yearly DA. First, a matrix ρ1 is
computed as the element-wise median of the 25 correlation
matrices previously created. Inside a given climatically ho- 60

mogeneous zone, correlations are close to 1, resulting from
the hypothesis made originally in Safran and transferred to
SCOPE Climate. To remove this strong hypothesis of clima-
tologically homogeneous zones, a second correlation matrix
ρ2 is based on an exponential function of the distance be- 65

tween cells. This function is calibrated for each cell allowing
to have a larger radius in areas with oceanic climate and a
smaller one in mountains for example (for more details, see
Devers et al., 2020a). An element-wise product of the two
matrices allows to obtain the final localization matrix ρ : 70

ρ= ρ1 ◦ ρ2 (8)

Localization matrices ρ thus hold an anisotropic behaviour
and allow different values inside the climatologically homo-
geneous zones (Figure 2).

3.5 Precipitation transformation 75

The Ensemble Kalman fitting scheme is optimal in a Gaus-
sian framework, but daily and yearly precipitation follows a
positive, skewed, and asymmetric distribution with a spike
at zero for daily precipitation (Figure 3). However, the non-
normality of daily precipitation is often neglected in data as- 80

similation (e.g., Quintana-Segui et al., 2008; Bhargava and
Danard, 1994; Soci et al., 2016), while Mahfouf et al. (2007)
assume a lognormal distribution. Lien et al. (2013) and De-
vers et al. (2020a) applied an anamorphosis to precipitation,
that consists in projecting the daily precipitation into a nor- 85

mal space where the analysis is carried out, and mapping
the analysis back into the original space using the inverse of
the transformation (Wackernagel, 2003; Bertino et al., 2003).
Devers et al. (2020a) showed that the impact of the Gaussian
anamorphosis on daily precipitation is lower than the impact 90

of localization, but that it improves estimates in areas with
sparse observations. In the current study, two different strate-
gies are selected to transform the precipitation depending on
the DA time scale.
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Figure 3. Schematic view of the transformations applied to SCOPE Climate daily (upper panels) and yearly (lower panels) precipitation
for the case study cell during the 1958–2008 period. The blue line represents zero values. For daily precipitation the x–axis of left panels is
truncated at 5 mm/d for readability.

3.5.1 Daily DA

An anamorphosis transforming the raw daily precipitationX
into a transformed variable Z is applied as follows:

Z =G−1 [F (X)] =
√
2× erf −1 (2−F (X)) (9)

with F (X) the cumulative density function X , G the cumu- 5

lative density function ofZ, and erf −1 the inverse error func-
tion satisfying erf (X) = 2√

π

∫X
0
et

2

dt.
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The anamorphosis is defined locally for each grid cell with
X the ensemble from SCOPE Climate during the 1958-2008
period, and the function is then piecewise-linearized (Simon
and Bertino, 2009; Brankart et al., 2012). Outside of this pe-
riod, the following rules are applied. Considering Xmin and5

Xmax the limit of the function domain, if Xzero <X <Xmin
then Z[X] =G−1[F (Xzero)]. If X >Xmax, then a linear re-
gression fitted on values higher than the 99th percentile of
non-zero precipitation is used, meaning that the tail of the
transformed distribution is considered as gaussian (Devers10

et al., 2020a). However, even with the anamorphosis, the dis-
tribution obtained is closer to a truncated gaussian pdf than a
true gaussian pdf (see Figure 3, top panel).

3.5.2 Yearly DA

For yearly precipitation, a simpler approach is implemented,15

assuming that yearly precipitation follows a log-normal
distribution for each cell, thus making extrapolation more
straightforward (Figure 3). Yearly precipitation values X are
thus transformed as follows, adding a 1 mm offset to allow
for transforming zero total annual precipitation (even if this20

case is unlikely to happen in France) :

Z = log(X +1) (10)

3.5.3 Common processing

Irrespective of the time scale, the above transformation func-
tions are applied before the analysis on (1) the background25

values, (2) the observations, and (3) the standard deviations.
For the standard deviations, the non-linearity of the trans-
formations is taken into account as follows (see Lien et al.,
2013):

σtrans =
[(y+σ)trans− ytrans] + [ytrans− (y−σ)trans]

2
(11)30

with y the observation vector in the original space, σ the as-
sociated error, and the index trans indicates the variable trans-
formed in the Gaussian space. After the analysis step, the
analysis state Xa is then transformed back into the original
space with the reciprocal functions of the anamorphosis and35

the logarithmic transformation.

3.6 Production of the reanalyses over 1871-2012

This section describes how the different reanalyses are pro-
duced over the 1871-2012 period (Figure. 4).

3.6.1 Application of the Ensemble Kalman fitting40

The EnKf described in Sect. 3.1 is here applied for the two
time scales. The FYRE Daily reanalysis is created using the
scheme proposed by Devers et al. (2020a). The assimila-
tion is done independently each day from 1 January 1871

to 29 December 2012 using the 25 SCOPE Climate mem- 45

bers of temperature and precipitation as the background. The
assimilated observations are daily in-situ measurements of
temperature and precipitation originating from the Météo-
France database. FYRE Daily is thus a daily gridded reanal-
ysis composed of 25 time series of precipitation and temper- 50

ature fields.
The FYRE Yearly reanalysis is produced using yearly-

averaged temperature values and yearly-accumulated precip-
itation. Once again the background is given by SCOPE Cli-
mate, and observations from the Météo-France database are 55

assimilated (see Sect. 2.2). The assimilation is applied each
year independently between 1871 and 2012, leading to the
FYRE Yearly reanalysis composed of 25 yearly-averaged
gridded time series of precipitation and temperature fields.

In FYRE Daily and FYRE Yearly, the assimilation is per- 60

formed independently for temperature and precipitation, and
independently at each time step. This means that assimilating
precipitation has no impact on the temperature analysis (see
the discussion in Devers et al., 2020a), and that assimilat-
ing an observation at a given time step has no effect on the 65

analysis at another time step.

3.6.2 Hybridization

Finally, the FYRE Climate daily product combining the
information of the daily and yearly reanalyses is derived
through an hybridization between FYRE Daily and FYRE 70

Yearly, following approaches adopted in numerous meteoro-
logical studies (Magand et al., 2018; Sheffield et al., 2006)
and paleoclimates studies (Dirren and Hakim, 2005; Steiger
and Hakim, 2016; Huntley and Hakim, 2010). The hybridiza-
tion here aims at transforming daily values from FYRE Daily 75

to match yearly values from FYRE Yearly.
For temperature, an additive transformation is commonly

used and is adopted here (Dirren and Hakim, 2005; Steiger
and Hakim, 2016; Huntley and Hakim, 2010). For precipita-
tion, a multiplicative transformation is commonly used and is 80

adopted here (Ngo-Duc et al., 2005; Keller et al., 2015). Note
that such a transformation leads to largest changes in higher
precipitation values, and that dry days from FYRE Daily will
remain unchanged in FYRE Climate.

Each member of FYRE Climate is generated as follows. 85

First, the ratio of precipitation β and temperature α are
computed for each year based on the annual values of
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Figure 4. Production scheme of the different reanalyses. Details can be found in Sect. 3.6.

FYRE Yearly and FYRE Daily:

β[y,c] =
Pyearly[y,c]

Pdaily[y,c]

α[y,c] = Tyearly[y,c]−Tdaily[y,c]

with


Pdaily[y,c] =

D∑
d=1

Pdaily[d,c]

Tdaily[y,c] =
1

D

D∑
d=1

Tdaily[d,c]

(12)

where y and d the year and day considered, D the number of
days during year y, c the cell, P and T the value of precip-
itation and temperature, respectively, and the index defines5

the dataset considered: daily for FYRE Daily and yearly for
FYRE Yearly. Then, the times series of FYRE Climate are
computed using the previously defined ratio and the daily
time series of FYRE Daily:

Pclimate[d,c] = Pdaily[d,c]×β[y,c]

Tclimate[d,c] = Tdaily[d,c] +α[y,c]
(13)10

with notations as above. The climate index refers to the fi-
nal FYRE Climate values. This process leads to two daily
25-member ensemble products over the 1871-2012 period:
FYRE Daily and FYRE Climate, whose differences are as-
sessed below.15

4 Results

A first part of the results section is dedicated to the com-
parison between SCOPE Climate/FYRE Daily/FYRE Cli-
mate, and (1) the Safran reanalysis, (2) the monthly homog-
enized series (SMR) and (3) the European Pattern Climatol- 20

ogy (EPC). A second part will provide examples of time se-
ries and extreme events to give a more precise idea of the
characteristics of each dataset.

4.1 Comparison with the Safran reanalysis

A first verification is done using the Safran reanalysis as ref- 25

erence (Fig. 5). Scores are averaged over the 1960-2000 pe-
riod and the ensemble median is display to provide a robust
estimate of the central tendency of the ensemble. A more de-
tailed year-by-year evaluation is proposed is the next section.

For temperature, over the 1960-2000 period, the behaviour 30

of FYRE Daily and FYRE Climate is similar to the Safran
reanalysis with a low CRPS and a high daily correlation
(see Fig. 5, left panels). The impact of DA can be evalu-
ated by comparing the background and reanalysis metrics.
SCOPE Climate shows a higher CRPS and a lower daily cor- 35

relation with Safran, but a slightly lower daily bias than the
two reanalyses for specific areas. These differences may be
explained by the assimilation of mean daily temperature that
is computed using the minimum and maximum temperature,
while the mean daily temperature in Safran is computed from 40

hourly data. Indeed, this difference in the computation lead
to a difference in the estimation of the mean daily tempera-
ture when the diurnal cycle is not perfectly symmetric. Biases
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Figure 5. Mean of daily Continuous Ranked Probabiliy Score (CRPS) (top row), daily correlation (middle row) and daily bias (bottom row)
between Safran and SCOPE Climate/FYRE Daily/FYRE Climate for the 1960-2000 period for temperature (left panels) and precipitation
(right panels). Correlation and bias are median values over each ensemble.

shown by FYRE Daily are highly reduced in FYRE Climate,
showing the benefits of the hybridization.

The right panels of Fig. 5 demonstrate the interest of DA
concerning precipitation. The FYRE Daily and FYRE Cli-
mate reanalyses have a much lower CRPS and a much higher5

correlation with Safran than SCOPE Climate all over France.
Although some differences are of opposite sign on contigu-
ous cells, there is a clear underestimation of FYRE Daily pre-
cipitation in mountainous areas, which is highly reduced in
FYRE Climate, reaching values between -5% and 5%.10

4.2 Comparison to the the monthly homogenized series

In order to produce a verification constant over time – i.e
with a rather steady number of validation stations – the anal-
ysis is divided in two periods. The reanalyses are compared
to the monthly homogenized series (SMR) over the 1959-15

2009 period and the 1900-2000 period, that include 1583 and
332 stations respectively for precipitation and 308 and 88 for
temperature (see Sect. 2.4.2). Scores (bias, correlation, and
RMSE) are computed for each station and then averaged over

France to provide a synthetic assessment of the performance 20

with respect to SMR.

4.2.1 Over the 1959-2009 period

For temperature, the Safran reanalysis is negatively biased
with respect to SMR (Fig. 6, left panels). This difference is
probably induced by differences in the computation of the 25

mean daily temperature (see above), and the non-stationarity
of the bias over time could reflect the asymmetric evolution
of the minimum and maximum temperature. The bias of the
background SCOPE Climate is around 0 at the start of the
period and slowly degrades towards negative values, result- 30

ing from an underestimation of the recent warming already
noted by Caillouet et al. (2019). FYRE Daily and FYRE Cli-
mate both display a much smaller negative bias – with val-
ues around -0.2◦C – and relatively constant over the last 30
years. SCOPE Climate has a lower correlation than all other 35

products over the entire period. The FYRE Daily and FYRE
Climate reanalyses show a higher correlation than Safran,
and an uncertainty – defined by the spread of the ensemble –



Alexandre Devers et al.: FYRE Climate: A high-resolution reanalysis of daily precipitation and temperature in France 11

Precipitation

Bias [%
]

C
orrelation [−]

R
M

SE [m
m

/m
onth]

1960 1970 1980 1990 2000 2010

−10

0

10

20

30

0.4

0.6

0.8

1.0

10

20

30

40

50

Temperature

Bias [°C]
Correlation [−]

RM
SE [°C/m

onth]

1960 1970 1980 1990 2000 2010

−0.8

−0.4

0.0

0.990

0.995

1.000

0.50

0.75

1.00

1.25

Safran SCOPE Climate FYRE Daily FYRE Climate
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the monthly homogenized series and each member of SCOPE Climate/FYRE Daily/FYRE Climate/Safran for temperature (left panels) and
precipitation (right panels) between 1959 and 2009. See text for details. Please note that the correlation curve of FYRE Daily is actually
hidden by that of FYRE Climate.

quite reduced compared to SCOPE Climate. A similar analy-
sis may be drawn for the RMSE. FYRE Daily shows slightly
lower RMSE values than FYRE Climate, but the two reanal-
yses perform overall similarly, and much better than SCOPE
Climate or even Safran.5

For precipitation, SCOPE climate shows a bias with a high
interannual variability (Figure 6, top-right panel). All reanal-
yses including Safran show a very low and constant bias,
with a very small spread for FYRE Daily and FYRE Climate.
The impact of DA on correlation is also very clear, with a10

0.3 increase in average for FYRE Daily and FYRE Climate
compared to SCOPE Climate. Once again, the spread of the
ensemble is reduced through the DA over the entire period.
Finally, the Safran reanalysis has slightly lower correlations
than the FYRE Daily and the FYRE Climate reanalyses. The15

RMSE is four times higher in SCOPE Climate than in the
reanalyses. Among those, FYRE Daily shows the lowest er-
rors, followed by FYRE Climate and then by Safran.

Figure 6 shows an overall large impact of the DA that al-
lows FYRE Daily and FYRE Yearly to reach higher perfor-20

mances (lower bias, higher correlation, lower RMSE) than
Safran – the current reference reanalysis – over the 1959-
2009 period compared to the monthly homogenized series.
This result may be surprising but has already been pointed

out by Devers et al. (2020a) in their validation set-ups. Even 25

if the same observations are assimilated in both reanalyses,
many differences may explain this result, notable the two
following ones : (1) Safran is based on the strong hypoth-
esis of climatically homogeneous zones (of 15 cells each on
average, but with large variations across France with up to 30

50 cells for one zone, see Vidal et al. (2010b)), where val-
ues only depend on altitude, and not on the specific 8-km
cell, and (2) as a background, Safran uses vertical profiles
from the ERA-40 global reanalysis and operational Météo-
France analyses after 2002 (for temperature), and from cli- 35

matological values (for precipitation) as mentioned in Sec-
tion 2.4.1, so with a larger spatial information content com-
pared to SCOPE Climate used by FYRE Daily/Climate as a
background. FYRE Climate and FYRE Daily have therefore
more assets to match the individual time series at local sta- 40

tions composing SMR.

4.2.2 Over the 1900-2000 period

Most of the comments made above with the most recent SMR
dataset are also valid here for the post-1950s period, and a
focus is thus made on centennial evolutions. 45
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Figure 7. As for Fig. 6, but over the 1900-2000 period with corresponding centennial homogenized time series.

The average bias of temperature between SMR and
SCOPE Climate roughly varies between -0.5◦C and +0.5◦C
(Fig. 7, top-left panel). Before the 1950s, the two reanaly-
ses do not share the same bias characteristics: FYRE Daily
shows a slightly positive bias as well as a strong reduction5

of the ensemble spread after the 1900s, while FYRE Climate
shows a strong dependency to the background and an ensem-
ble spread which gradually shrinks over the 20th century.
The correlation of the two reanalyses with SMR is clearly
linked to the density of assimilated stations (see Fig. 1), with10

slightly reduced values before 1950 and drops during the two
world wars. Nevertheless, values are constantly higher than
those of the background. When RMSE for SCOPE Climate
do not show any trend over the 20th century, those of the two
reanalyses show a steady decrease from 0.7◦/month in 190015

to 0.4◦/month in 2000, only interrupted during the second
world war as a consequence again of the drop in assimilated
observations. During this period the background SCOPE Cli-
mate also shows a lower performance. This could be linked
to the lack of surface observations assimilated across West-20

ern Europe in 20CR as a result of WWII, as shown by Cram
et al. (2015) in their description of ISPDv2.

For precipitation, the background shows a global overes-
timation during the 1900-1960 period and an overall bias
close to zero afterwards, but with a high interannual variabil-25

ity (+30% to -10%) (Fig. 7, top-right panel). The absolute
bias values are rather constant and much lower for the two

reanalyses, albeit slightly increasing towards the beginning
of the century. FYRE Daily (resp. FYRE Climate) shows
a slightly negative (resp. positive) bias before 1960. FYRE 30

Daily also shows an intriguing split of the ensemble before
1960, which will be discussed in Sect. 4.4 below. As for tem-
perature, the correlation of the two reanalyses is quite higher
than those of the background, with slightly lower values dur-
ing the first half of the century. The RMSE pattern is similar 35

to that of temperature, with a steady decrease for the two
reanalyses over the century, ranging from 20 mm/month in
1900 to around 10 mm/month in 2000, when SCOPE Climate
values vary around 40 mm/month.

Overall, and beyond the evolution of ensemble-average 40

values, the spread of the two reanalyses tend to shrink over
the course of the century for all indicators, following the in-
creasing number of assimilated observations.

4.3 Multidecadal variability

The long-term consistency between different datasets allows 45

to further evaluate the two reanalyses. To that end, anomalies
are computed over the 1871-2012 period for several long-
term datasets described in Sect. 2.4, using the 1900-2000 pe-
riod as a reference. Anomalies are computed for each cell
over France (see Sect. 2.4 for the number of cells in each 50

dataset). Their median value is retained, smoothed with a 20-
year rolling mean, and plotted in Fig. 8. Smoothed anoma-
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Figure 8. Anomalies of annual temperature (top panels) and precipitation (bottom panels) averaged over France, and smoothed with a
20-year rolling mean. See text for details.

lies are computed for each member when available. EPC
and SMR show a similar evolution of both temperature and
precipitation over the 20th century. Negative temperature
anomalies are found before the 1940s – from around -0.35◦in
1910 and down to -0.6◦in 1880 for EPC – and around the5

1970s, and positive ones for other periods, with a steep re-
cent warming from the 1980s onward reaching 0.5◦in 1990
(Fig. 8, top-left panel). Negative precipitation anomalies are
found before 1910 and around the 1940s-1950s, and positive
ones in other periods, including the most recent one.10

For temperature, SCOPE Climate anomalies are rather
consistent with those from EPC and SMR over the 20th cen-
tury. However, SCOPE Climate shows much higher – but still
negative – anomalies than EPC before 1900, and underesti-
mate the recent warming compared to EPC and SMR. FYRE15

Daily anomalies are closer to those of EPC and SMR after
1940 compared to SCOPE Climate – including during the
recent warming –, but the original discrepancy at the begin-
ning of the period extends to 1940. FYRE Climate anoma-
lies are quite consistent with those of EPC and SMR from20

1910 onward. However, before 1910, they are roughly con-
stant around -0.2◦, i.e. much less negative than those of EPC.
This discrepancy may come from the non-homogeneity in
underlying data in EPC: gridded observations after 1900 and
climate field regression before that (see Sect. 2.4).25

For precipitation, the high multidecadal variability of
SCOPE Climate leads to positive anomalies over the 1890-
1930 period, with values nearly reaching +10%, when EPC

and SMR values are only slightly positive. This is proba-
bly a bias inherited from the 20CR driving global extended 30

reanalysis. Indeed, Bonnet et al. (2017) found much higher
positive anomalies in 20CR precipitation over France than in
the SMR over this period. SCOPE Climate also shows nega-
tive anomalies from 1960 onward when both EPC and SMR
show positive anomalies. The overall multidecadal evolution 35

of FYRE Daily is much more consistent with those of EPC
and SMR, and the ensemble spread is quite reduced with re-
spect to the background SCOPE Climate. However, anoma-
lies are systematically shifted towards lower ones by 2 to 3%
before 1950 and to higher ones – up to +5% – after 1970, 40

showing that assimilating daily observations only does not
allow to accurately reproduce the multidecadal variability.
Lastly, FYRE Climate is much more consistent to EPC and
SMR long-term evolution, even with a small spread, as small
as that of FYRE Daily. 45

4.4 Time series analysis

Time series over the Cévennes case study cell (see Fig. 1)
derived from observations, Safran, SCOPE Climate, FYRE
Daily, and FYRE Climate are presented in Fig. 9 and Fig. 10
to exemplify the behaviour of the different datasets at dif- 50

ferent time scales and for selected periods differing in the
amount of data assimilated: 1871-2012 at the annual time
scale, years 1900, 1936, and 2000 at the monthly time scale,
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Figure 9. Temperature time series of SCOPE Climate, FYRE Climate, FYRE Daily and Safran over the case study cell for different periods
and different time steps.

and June 1900, June 1936, and June 2000 at the daily time
scale.

For temperature, all long-term datasets are well correlated
at the annual time scale, but FYRE Daily values are system-
atically hotter before 1950. The ensemble spread is rather5

constant for SCOPE Climate while it is shrinking in the two
reanalyses when more observations are assimilated. The un-
derestimation of the recent warming by SCOPE Climate is
once again visible here. The amplitude of the annual cycle for
the three years considered appears underestimated in SCOPE10

Climate compared to the two reanalyses, an issue already
identified by Caillouet et al. (2019) with respect to Safran. At
the daily time scale, the ensemble spread is much reduced in
both reanalyses compared to SCOPE Climate, even more so

for June 2000 when many observations are assimilated close 15

to – and not within – the case study cell considered.
For precipitation, Fig. 10 shows that DA tends to reduce

the ensemble spread at the annual time scale even at the be-
ginning of the period when only few data are assimilated.
Large discrepancies are found for specific years between 20

SCOPE Climate, FYRE Daily and FYRE Climate. More
specifically, extreme values are found for FYRE Daily in e.g.
1879 and 1936, the latter year also showing a split of the
ensemble, already noted earlier in Fig. 7. Similar comments
may be drawn at the monthly and daily time scales, including 25

the ensemble split over 1936, which is also present in FYRE
Climate, but to a lesser extent. The puzzling behaviour of
FYRE Daily is in fact explained by two stations located close
to the cell – less than 10km, hence with high covariances –
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Figure 10. As for Fig. 9, but for precipitation.

that give contradictory input to the DA scheme. Indeed, the
two stations – #7235003, Sainte-Eulalie, 1350m a.s.l., and
#7326003, Usclades-et-Rieutord, 1270m a.s.l. – both start
providing precipitation data on 1 January 1936 and are as-
similated, but with very different daily amounts (not shown5

here). At the end of 1936, the station #7235003 is closed, and
FYRE Daily then shows a much more coherent ensemble as
seen at the yearly time scale (Fig. 10, top panel). Hence, the
large separation is due to the assimilation of two stations with
contradictory values, possibly due to measurement errors. In10

a ideal framework where variables are Gaussian and obser-
vations are consistent, the analysis would lead to a Gaussian
distribution. However, we deal here with daily precipitation
whose distribution is (1) positive, (2) skewed, and (3) with a
spike in zero. Note that we put an emphasis on this issue by15

applying a Gaussian anamorphosis prior to the assimilation,
but this does not eliminate completely this issue. Moreover,
and perhaps more importantly, measurement errors (coming
e.g. from exposure like proximity to walls or trees) may eas-
ily lead to inconsistent values within a given grid cell, and 20

consequently to a multimodal analysis. It is interesting to
note that the hybridization leads to a much reduced ensemble
split, showing an unexpected advantage of FYRE Climate.

4.5 Examples of extreme events

The impact of DA on the representation of extreme events 25

is here investigated on two events: (1) the cold month of
December 1879 over the North-East of France (Figure 11),
and (2) an extreme precipitation event in the Cévennes area
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on 21 September 1890 (Figure 12). To that end, three mem-
bers – #8, #15 and #19 – have been randomly selected from
SCOPE Climate, FYRE Daily and FYRE Climate and are
compared with the available observations at the time. The
three randomly selected members are used to give an idea of5

the ensemble dispersion.

4.5.1 An extreme cold wave

December 1879 is an extremely cold month in France as
shown by the frost of the Loire, the Seine, the Saône and
the Rhône rivers (Dubrion, 2008) with a negative anomaly10

of -10.2◦C (Le Roy Ladurie et al., 2011, p. 202). The An-
nals of the Central Meteorological Office of France describe
in details the anticyclonic state lasting most of the month
and the consequent very cold temperature over France and
central Europe (Angot, 1881, p. 19-23). Minimum values15

dropped for example below -25◦in Paris on 10 December
(Le Roy Ladurie and Séchet, 2009, p. 43-44). The specificity
of this cold wave is its duration, which led to December-
averaged daily mean temperature reaching values well be-
low -5◦C in the North-East of France, and even -10.3◦C for20

the Commercy station (id: 55122003). In order to obtain a
more detailed validation of this event, monthly independent
observations have been digitized from the Annals of the Cen-
tral Meteorological Office of France (Mascart, 1881, p. 217-
240).25

Figure 11 shows the December-averaged temperature over
France, in the assimilated observations, in the independent
observations, in the background SCOPE Climate, and in the
two reanalyses. Compared to the observations, SCOPE Cli-
mate members largely overestimate the temperature every-30

where except around the Mediterranean. This is especially
true in the North-East, with more than 3◦C discrepancies.
The impact of DA is quite clear, with both reanalyses show-
ing much colder values, thanks to only 18 unevenly dis-
tributed assimilated stations. FYRE Climate is slightly less35

cold than FYRE Daily, but differences are overall minor. The
independent observations confirm both the location and the
intensity of the extreme cold temperature given by the two
reanalyses, with e.g. -9.4◦C in Troyes and -9.55◦C in Mire-
court located in the center of the event and a larger area with40

temperatures between -7 and -9◦C. The independent stations
located in the South and West of France also allow to grasp
the positive impact of the DA outside the area impacted by
the cold event.

4.5.2 An extreme precipitation event45

At the end of September 1890, an extreme rainfall event in
the Cévennes area1 led to a record flood over the Ardèche
river between the 21 and 23 September 1890 (Sheffer et al.,

1For an extended description of the event,
see http://pluiesextremes.meteo.fr/france-metropole/
Inondations-en-Cevennes-Crue-historique-de-l-Ardeche.html

2003; Naulet et al., 2005). Extreme precipitation amounts
were recorded from 18 to 23 September reaching 971 mm 50

at the Montpezat station (Météo-France, 1995, p. 26-27).
Figure 12 focuses on 21 September, when the highest daily
amount of precipitation – 346 mm at Saint-André de Vale-
borgne, id: 30231001 – was recorded, with similar very high
values in a small area oriented South-West to North-East 55

(Fig. 12, left panel). Observations are mainly located in the
central part of the Cévennes area, with few or no station
further north or south, thus impeding a global view of the
event. The first two selected members of SCOPE Climate
display very low precipitation values compared to observa- 60

tions, when the third one reaches values higher than 250 mm,
but still underestimating recorded values. This latter member
furthermore provides a spatial pattern of precipitation consis-
tent with the classical shape of heavy precipitation events –
called Cévenol events – in this region (see e.g. Boudevillain 65

et al., 2016). This high uncertainty in SCOPE Climate is dra-
matically reduced through DA, with both reanalyses provid-
ing precipitation values much closer to the observations, with
amounts reaching 400 mm – i.e. exceeding recorded ones – in
some cells. A similar spatial pattern of the event is given by 70

the two reanalyses, with a north-eastern extension. Remain-
ing differences between members reflect the uncertainty due
the lack of observations, notably to the north-east, where re-
analyses still suggest very high values. This example shows
that DA thus allow to strongly reduce the uncertainty and 75

to produce gridded meteorological fields more coherent with
in-situ observations.

5 Discussion

5.1 Transforming precipitation

The anamorphosis chosen for transforming daily precipita- 80

tion had already been applied with a large improvement of
the analysis by Lien et al. (2013), and with a smaller one by
Devers et al. (2020a). Implementing the anamorphosis how-
ever requires additional choices for extrapolating values, to
both very low and positive values and to very high values 85

(Lien et al., 2013, 2016). Choices are here made following
Devers et al. (2020a).

A logarithmic transformation is here applied to yearly pre-
cipitation. The impact of this transformation has been stud-
ied in an experimental set-up similar to the one proposed by 90

Devers et al. (2020a) for daily precipitation, by varying the
density of assimilated stations over the 1950-200 period and
evaluating the analysis on independent data. These experi-
ments showed that the logarithmic transformation allow for
cancelling a dry bias in the analysis resulting from DA with- 95

out transformation (not shown).
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Figure 11. Average daily mean temperature in France during December 1879 from observations (left panels), and from three randomly
selected members of SCOPE Climate/FYRE Daily/FYRE Climate (right panels).

5.2 Estimating the observation error

Applying the DA scheme over the 1871-2012 period has put
forward the need for quantifying the observation error, a key
variable in the analysis step.

For the daily DA, the 1999-2012 period is rich in metadata,5

allowing for precisely defining the observation error based on
the work of Météo-France and the World Meteorological Or-
ganization (WMO, 2014). Before 1999, the type of station
is the only relevant metadata available. Devers et al. (2020a)
translated the type of station into the framework of measure-10

ment errors linked to the maintained performance and site
representativeness (Leroy, 2010; Leroy and Lèches, 2014)
and found that making such an hypothesis improved both the
reanalysis uncertainty and its reliability. This approach thus
makes the most of available information, by distinguishing15

two classes of stations and associated measurement errors
when no other metadata are available.

Estimating the observation error is even more difficult for
the yearly DA, as no information is available at this time
scale. Estimates used here may seem large (see Sect. 3.2), but20

a conservative choice has been made here to reflect e.g. the
homogeneity breaks than can be observed in the annual tem-
perature and precipitation times series for some long-term

stations. Further investigation on the yearly estimates of the
observation error could focus on the intensity of the correc- 25

tion applied during the homogenization process of the SMR
(Moisselin et al., 2002; Gibelin et al., 2014) at the yearly time
step.

5.3 On the background uncertainty

The background for DA – SCOPE Climate – comes from a 30

downscaling of the ensemble-mean fields of the 56-member
Twentieth Century Reanalysis (Compo et al., 2011). SCOPE
Climate may therefore underestimate the reconstruction un-
certainty, especially at the end of the 19th century when few
pressure observations were available, as discussed by Cail- 35

louet et al. (2016). Caillouet et al. (2019) showed that SCOPE
Climate ensemble spread is presumably too small for temper-
ature at Paris-Montsouris station. However, DA experiments
made here show that the background uncertainty is yet large
enough to led to very satisfactory results even before 1900 40

(see Sect. 4.5).
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Figure 12. 21 September 1890 precipitation over South-East France from observations (left panel) and from three randomly selected mem-
bers of SCOPE Climate/FYRE Daily/FYRE Climate (right panels).

5.4 Assimilating yearly-averaged observations

Assimilating yearly observations allowed to recover multi-
decadal variations consistent with other products such as
SMR and EPC, as opposed to daily-only DA. For precipi-
tation, this gain could be linked to the non-Gaussian prop-5

erties of daily precipitation – even after anamorphosis – in
contrary to log-transformed yearly precipitation. However,
it is not so clear why this is the case of daily temperature.
Nonetheless, Steiger and Hakim (2016) showed that assimi-
lating low-frequency data improves the low-frequency com-10

ponents of reconstructions compared to using high-frequency
data only.

In addition, most of the observations are assimilated twice
in FYRE Climate: through the daily DA, and through the
yearly DA. This can be problematic, as it is strongly ad-15

vised not to assimilate twice the same observations in a DA
scheme to avoid overemphasizing observations with respect
to the background. However, in this case and similarly to re-
cent paleoclimate DA studies (Steiger and Hakim, 2016, see
e.g.) where the background is composed of the same dataset20

for the two time scales, the daily reanalysis is not used as a
background for the yearly DA, thus maintaining relative in-
dependence.

5.5 On the hybridization

Choices made for the hybridization build on previous stud- 25

ies, notably for the additive formulation for temperature, in
paleoclimate after DA of time-average observations (Steiger
et al., 2014; Steiger and Hakim, 2016; Dirren and Hakim,
2005; Huntley and Hakim, 2010), but also for the more recent
climate (Ngo-Duc et al., 2005; Weedon et al., 2011; Sheffield 30

et al., 2004). A step further would be to make these additive
corrections to also depend on the season. To that end, the
most direct approach would be to assimilate temperature ob-
servations at the monthly or seasonal time scales.

The multiplicative correction applied to precipitation has 35

been implemented following the work of Ngo-Duc et al.
(2005) and Keller et al. (2015). The intensity of the correc-
tion is thus by construction higher during the wet season than
during the dry season. Moreover, the correction has an im-
pact only on wet days and does not affect the number of dry 40

days. Methods have been developed to modify the number of
wet days (Weedon et al., 2011; Sheffield et al., 2004) using
wet–wet and dry–dry conditional probabilities of the com-
pared dataset, but Sheffield et al. (2004) also note that they
may compromise the spatial consistency. 45
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5.6 On the validation

Validating a long-term product, and especially a reanalysis,
is always difficult as (1) the number of information available
decreases when going back further in time, and (2) all avail-
able information is by definition used in the process. That5

is why a first study had been dedicated to the sole purpose
of testing the DA scheme with a density of assimilated ob-
servations similar to selected years from the past, and there-
fore allowing to keep independent observations for valida-
tion (Devers et al., 2020a). More drastic validation set-ups10

like removing one-third of the observations over the 1971-
2012 period would have resulted in no assimilated stations
in the north of France or in the Alps, thus impeding any ro-
bust evaluation of the reanalysis over France. Additionally, it
would be impossible to withhold the same set of stations for15

the whole period given the large changes in the observation
network.

Hence, the choice was made to conduct the validation
through the comparison with a diversity of products. Even
if these products are mainly based on similar observations,20

the comparison still allow to grasp the overall quality of the
product assessed. Furthermore, the study of extremes events
(Section 4.5) highlights the crucial value of literary source
when assessing a long term product both in terms of quanti-
tative or qualitative description. Further comparisons to other25

shorter products could be conducted, for example with the E-
OBS ensemble dataset available across Europe (Cornes et al.,
2018). In order to better apprehend the characteristics of the
reanalyses, an indirect validation using independent stream-
flow observations could also be performed through hydro-30

logical modelling as done in several studies (Raimonet et al.,
2017; Caillouet et al., 2017; Smith et al., 2019).

6 Conclusions

The present study goal was to build on the work of De-
vers et al. (2020a) to provide a long-term daily reanaly-35

sis of precipitation and temperature at high resolution over
France. Two reanalyses were produced based on DA us-
ing the SCOPE Climate downscaled reconstruction (Cail-
louet et al., 2019) as background. FYRE Daily (resp. FYRE
Yearly) used daily (resp. annual) observations in the DA40

process. These two intermediate reanalyses were then hy-
bridized to derived the final FYRE Climate reanalysis cor-
responding to the study objective.

Section 4.1 showed that both FYRE Daily and FYRE
Climate have strong similarities with the current reference45

Safran reanalysis over the period 1950-2000, and clearly
improve on the SCOPE Climate background. Devers et al.
(2020a) even found that FYRE Daily performs better than
Safran with respect to independent data on a set of experi-
ments over the 2009-2012 period. Section 4.2 also showed50

a better performance (bias, correlation, RMSE) than SCOPE
Climate but also than Safran when compared to monthly ho-

mogenized time series. Section 4.5 lastly showed that both
reanalyses perform very well in reproducing extreme tem-
perature and precipitation events, which was a weak point in 55

SCOPE Climate (Caillouet et al., 2019). All these elements
clearly show the benefit of data assimilation for century-long
reconstructions.

Section 4.3 highlighted the most important difference be-
tween FYRE Daily and FYRE Climate. When FYRE Daily 60

clearly improves on the reconstruction of multidecadal vari-
ability as inferred from the SMR and EPC long-term datasets
at the scale of France, FYRE Climate display variations
much more consistent with these datasets than FYRE Daily,
for both precipitation and temperature, and for all subperiods. 65

FYRE Climate thus provides the best features, by perform-
ing as well as FYRE Daily on small time scales, and much
better at longer time scales.

FYRE Climate is therefore the final product of this work:
a daily surface reanalysis of precipitation and temperature at 70

the daily time scale and at a 8 km resolution over France
between 1 January 1871 to 29 December 2012. Moreover,
FYRE Climate is an ensemble reanalysis composed of 25
members whose spread reflects the uncertainty in both the re-
construction used as background for DA, and the assimilated 75

observations. As such, it is the first century-long surface re-
analysis at a country scale, paving the way for assessing the
long-term evolution of climate at the local scale and study-
ing past extreme meteorological events. To this aim, FYRE
Climate is made available freely for non-commercial pur- 80

poses to the research community through two joined datasets:
precipitation (Devers et al., 2020b) and temperature (Devers
et al., 2020c).

Data availability. FYRE Climate is made available as netcdf files
on the zenodo.org platform. For practical reasons, the dataset is split 85

into one for precipitation (Devers et al., 2020b) and another one
for temperature (Devers et al., 2020c). Each dataset comprises 25
netcdf files, one for each ensemble member. Please note that en-
semble member #1 for temperature should be associated to member
#1 for precipitation, and so on. Values are available over the Safran 90

grid (see Vidal et al., 2010b), but only for grid cells located within
France borders, as for SCOPE Climate (Caillouet et al., 2019).
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