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Abstract. Spatiotemporal paleoclimate reconstructions that seek to estimate climate conditions over the last several millennia

are derived from multiple climate proxy records (e.g. tree rings, ice cores, corals, and cave formations) that are heterogeneously

distributed across land and marine environments. Assessing the skill of the methods used for these reconstructions is critical as a

means of understanding the spatiotemporal uncertainties in the derived reconstruction products. Traditional statistical measures

of skill have been applied in past applications, but they often lack formal null hypotheses that incorporate the spatiotemporal5

characteristics of the fields and allow for formal significance testing. More recent attempts have developed assessment metrics

to evaluate the difference of the characteristics between two spatiotemporal fields. We apply these assessment metrics herein

to results from synthetic reconstruction experiments based on multiple climate model simulations to assess the skill of four

reconstruction methods. We further interpret the comparisons using analysis of Empirical Orthogonal Functions that represent

the noise-filtered climate field. The features of climate models and reconstruction methods identified in this paper demon-10

strate more detailed assessments of reconstruction methods and point to important areas of testing and improving real-world

reconstruction methods.

1 Introduction

Climate field reconstructions (CFRs) are spatially explicit estimates of past climate conditions that use layered or banded

archives containing chemical, biological, or physical indicators as proxies for climate prior to the advent of instrumental15

records. CFRs can target climate fields over a range of timescales and mean states, but a particular period of focus for large-

scale (continental to global) CFRs has been the Common Era (CE), or the last two millennia (e.g. Jones et al., 2009; Smerdon

et al., 2016; Christiansen and Ljungqvist, 2017). This interval contains an abundance of high-resolution proxy records that

allow seasonal-to-annual CFRs on regional-to-global spatial scales. Application of CFRs over the CE have provided myriad

insights into climate variability and change (see reviews in Jones et al., 2009; Cook et al., 2016; Smerdon, 2017), including, for20

example, characterizations of volcanic impacts on climate (Anchukaitis et al., 2017, 2010; Zhu et al., 2020; Wahl et al., 2014),

determination of the causal mechanisms of multidecadal droughts in North America (Cook et al., 2004; Coats et al., 2016;

Steiger et al., 2019; Cook et al., 2016), characterization of hydroclimatic variability and forced changes on continental scales
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(e.g. Cook et al., 2004, 2010; Stahle et al., 2016; Palmer et al., 2015; Stahle et al., 2020; Erb et al., 2020), and assessments of

model performance (e.g. Smerdon and Coauthors, 2017; Mann et al., 2009b; Coats et al., 2020).25

There are many different CFR methods (e.g. Tingley et al., 2012; Smerdon et al., 2016; Steiger et al., 2014b), most of

which differ based on the manner in which climatic proxies – principally measurements of a given archival indicator – are

transformed to estimate a given climatic quantity and how spatial and temporal covariance estimates are used to infer missing

data. CFR methods are in turn applied to a wide range of proxy networks that are often curated for a specific purpose. These

collective and fundamental decisions determine the nature of any given derived CFR, all of which are subject to shared and30

unique uncertainties tied to their spatial and temporal performance (Wang et al., 2014; Smerdon et al., 2016; Klein et al.,

2019). Assessing the spatiotemporal skill of CFR methods is therefore critical as a means of understanding the uncertainties in

derived reconstruction products and there has been an ongoing focus in the literature to better understand CFR performance on

hemispheric and global scales (Smerdon et al., 2008a, b, 2010a, b, 2011, 2016; Li and Smerdon, 2012; Dannenberg and Wise,

2013; Steiger et al., 2014a; Evans et al., 2014; Wang et al., 2014; Yun et al., 2020; Harris et al., 2020).35

Over the last decade and a half, one approach that has emerged for evaluating CFR methods relies on synthetic exercises

called pseudoproxy experiments (PPEs; Smerdon, 2012). The basic premise of PPEs is to subsample a given spatially and

temporally complete field from a transient last-millennium simulation derived from a fully-coupled global climate model in

a way that mimics the limited instrumental and proxy data available for deriving real-world CFRs. The subsampled data are

then input into a reconstruction algorithm that is used to generate a CFR estimate for a given last-millennium simulation. The40

derived CFR can then be compared to the withheld and known values of the simulated climate field as a means of evaluating

reconstruction skill in both space and time. The advantage of PPEs lies in their ability to establish controlled experimental

environments in which the performance of CFR methods an be assessed.

Despite their widespread utility, interpretations of PPEs are complicated by the fact that synthetic pseudoproxies are only an

approximation of the complicated signal and noise structures inherent to proxy records (e.g. Wang et al., 2014; Evans et al.,45

2013), while the model-specific climates that underly each PPE may not fully mimic the spatiotemporal characteristics of the

real climate system. Smerdon et al. (2011) were the first to test the spatiotemporal skill of four CFR methods in the context of

a global PPE based on last-millennium simulations from two climate models. This work was later expanded by Smerdon et al.

(2016) to test four CFR methods using newer last-millennium simulations from five models that contributed to the Coupled

Model Intercomparison Project Phase 5 and the Paleoclimate Modeling Intercomparison Project Phase 3 (CMIP5/PMIP3) in50

support of Assessment Report 5 of the Intergovernmental Panel on Climate Change (Stocker et al., 2013). The findings of

both studies highlighted important differences between the performance of the employed methods, while also noting that the

reconstruction skill was dependent on the last-millennium simulation that was the basis of the PPE. It is therefore important

to perform PPEs based on multiple last-millennium simulations, while working to understand how the impacts of modeled

spatiotemporal climate characteristics translate into implications for CFRs performed for the real climate system. Critically, the55

skill of real-world CFRs is ultimately dependent on the spatiotemporal character of the actual climate system, thus necessitating

interpretations of PPEs in terms of the underlying spatiotemporal characteristics of each climate model simulation on which

they are based and how these characteristics compare to those of the real climate system.
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Improved interpretations of PPEs that take into account the above considerations require improved and more detailed skill

assessments. Almost all skill characterizations of previous PPEs are descriptive in nature, largely employing spatial maps and60

global aggregates of statistics such as the mean biases in derived CFRs, correlations between the CFRs and known fields, or the

root mean square error of the CFRs relative to the known fields. While such comparisons are useful for evaluating the relative

performance of the various CFR methods, they do not employ a formal null hypothesis that can determine whether or not the

spatiotemporal differences between reconstructed fields are statistically significant. One limitation this presents, for example,

is an assessment of whether one method in a PPE performs better than another in a statistically robust sense, or whether65

spatiotemporal differences among methods are simply due to random error. An additional challenge of previous statistical

assessments is that they interpret the derived CFRs as complete spatiotemporal representations of the targeted climate field,

despite the fact that most CFR methods target reduced-space versions of a field by selecting, for instance, only a few leading

patterns from matrix decompositions of the field’s covariance matrix. Despite such reductions being the basis of almost all

CFR approaches, it is rare that skill assessments decompose reconstruction performance in terms of leading reconstructed and70

targeted spatiotemporal patterns.

In an attempt to more rigorously compare spatiotemporal characteristics of reconstructed and targeted climate fields in

PPEs, Li and Smerdon (2012) formalized a null hypothesis for these comparisons. Their approach was expanded by Li et al.

(2016) who applied methods for comparing the mean and covariance structure between two spatiotemporal random fields

developed by Zhang and Shao (2015). This method has significant advantages: it evaluates whether the spatially-varying mean75

and covariance structures of two climate fields exhibit similar patterns, it is completely non-paramteric and thus free of the risk

of model misspecification, and it is constructed to separate skill within a given EOF basis and thus allows assessments of skill

within each leading pattern of spatiotemporal variability.

We use the formalism of Li et al. (2016) and the established PPE framework from Smerdon et al. (2016) to evaluate whether

there are statistically robust differences between derived CFRs and targeted climate fields. As introduced in earlier and pre-80

liminary work at a conference (Lyubchich et al., 2017), we demonstrate how CFR skill can be separated into leading modes

of variability, which allows us to better interpret the performance of each CFR in terms of the particular spatiotemporal char-

acteristics of the climate model simulations on which each PPE is based. This approach allows us to more clearly articulate

the reasons why the applied CFR methods perform differently within model-specific PPEs and across PPEs based on different

last-millennium simulations. Our results demonstrate how our methods can be used to improve interpretations of uncertainties85

and limitations in state-of-the-art CFR methods and provide improved understanding of how specific characteristics of the real

climate system may give rise to enhanced or reduced CFR performance.

2 Data

The adopted experimental setup is specifically chosen to be consistent with previous PPE and methodological assessments of

Smerdon et al. (2016) and Li et al. (2016). This consistency allows meaningful comparisons to previous results that were either90

based on more traditional skill assessment metrics or did not fully diagnose the underlying reasons for skill differences using
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Li et al. (2016) methods. In the following subsections we describe the last-millennium simulations that are used as the basis of

our PPEs and the CFR methods employed.

2.1 Pseudoproxy Experimental Setup

The PPEs employ concatenated last-millennium (850-1849 CE) and historical simulations (1850-2005 CE) from modeling95

centers as configured and implemented in CMIP5/PMIP3. Simulations from the following models are employed: the Beijing

Climate Center CSM1.1 model (BCC), the National Center for Atmospheric Research Community Climate System Model

version 4 (CCSM), the Goddard Institue for Space Studies E2-R model (GISS), the Institue Pierre-Simon Laplace CM5A-

LR model (IPSL) and the Max-Plank Institute ESM-LR model (MPI); abbreviations in parentheses are the convention by

which each model and associated PPE framework will be referenced hereinafter. In all cases, annual means from the surface100

temperature fields of the model are used and all fields are interpolated to uniform 5◦ latitude-longitude grids from which all

subsampling is performed (Smerdon et al., 2016). The CMIP5/PMIP3 simulations from these models were chosen in Smerdon

et al. (2016) based on the availability of PMIP3 last-millennium simulations at the time. There have since become available

additional last-millennium simulations, most notably the last-millennium ensemble from the National Center for Atmospheric

Research (NCAR) Community Earth System Model (CESM) and a few last millennium simulations from the PMIP4 archive.105

These and additional simulations will ultimately be available for PPEs, but in the interest of consistency, and because last-

millennium simulations from the PMIP4 archive are not yet fully available, we limit our assessment to those simulations that

were used for PPEs in Smerdon et al. (2016) and subsequently in Li et al. (2016).

The basic premise of PPEs is to subsample the pseudoproxy and instrumental data from the simulated climate model in a

way that approximates their availability in the real world. Each model field is therefore subsampled to approximate available110

instrumental temperature grids and proxy locations in a given proxy network. The PPE framework employed herein approxi-

mates available grids in the Brohan et al. (2006) surface temperature dataset (M = 1,732 grid cells) and the locations of the

proxies used in the Mann et al. (2009a) CFR (yielding p= 283 proxy locations; see Figure 1). Global proxy networks have been

expanded since Mann et al. (2009a) such that the sampling schemes used herein slightly underestimate the densest network in

state-of-the-art multiproxy datasets (PAGES2k). The spatial sampling biases represented in the Mann et al. (2009a) network115

are nevertheless similar to the PAGES2k biases, with dense sampling in the Northern Hemisphere extratropics, more sam-

pling over land than over oceans, and sparser sampling in the tropics and Southern Hemisphere. Improvements in the PAGE2k

sampling are nevertheless present over some regions, such as the tropical oceans and Antartica. Despite these differences, the

descriptions we have just provided are based on the most recent sampling interval in the Mann et al. (2009a) and PAGES2k

networks. The adopted pseudoproxy sampling scheme is a best-case scenario of the Mann et al. (2009a) network and similarly120

would be representative of the denser sampling intervals in the PAGES2k network. For instance, the increased sampling of

the tropical oceans in the PAGES2k network, relative to Mann et al. (2009a), is associated with the coral-derived proxies in

those regions, but these records typically only span several centuries and are therefore not part of the sampling in the earlier

centuries of the CE. Our emulation of the Mann et al. (2009a) network is therefore still applicable to more recent multiproxy
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compilations and in general represents a best-case sampling scenario even for the most up-to-date networks given that these125

networks still lose significant numbers of records back in time.

The application of PPEs also requires that the time series subsampled from last-millennium simulations are perturbed with

noise to mimic the imperfect connection between measurements in proxy indicators and the climatic signal for which they are

interpreted. The common approach within PPEs is to add randomly generated noise series to the subsampled modeled time

series representing proxy data, with noise amplitudes scaled to mimic the signal-to-noise ratios (SNRs) that are characteristic of130

real-world proxies. In this study, we use the CFRs from Smerdon et al. (2016) that were derived from pseudoproxies perturbed

with Gaussian white-noise at an SNR of 0.5, a value deemed to be within to the range of SNRs (0.5-0.25) in real-world proxy

networks (Smerdon, 2012; Wang et al., 2014). In addition to SNR= 0.5, we also analyze a no-noise experiment (SNR=∞).

In all model cases, the same realization of 283 Gaussian white-noise series are used to perturb the pseudoproxy network.

The above conventions are simplifications of real-world conditions. The noise in real proxies is typically multivariate (i.e.135

sensitive to climate variables in addition to temperature), non-stationary, and autocorrelated (e.g. Jacoby and D’Arrigo, 1995;

Briffa et al., 1998; Esper et al., 2005; Evans et al., 2002; Anchukaitis et al., 2006; Franke et al., 2013; Evans et al., 2014;

Baek et al., 2017; Anchukaitis et al., 2017; Wilson et al., 2016), while proxy sensitivity is typically seasonally dependent (e.g.

Pauling et al., 2003; Anchukaitis et al., 2006; St. George et al., 2010; Baek et al., 2017). The modeled climates are considered

to reasonably mimic real-world spatiotemporal variability, but important features such as the strength and character of tele-140

connections vary across simulations and can be different from observations (e.g.Coats et al., 2013). The adopted experimental

setup therefore can be considered a best-case scenario for real-world conditions, whereas additional modifications to the PPE

framework to more fully mimic real-world proxies will only degrade the CFR skill (e.g. Von Storch et al., 2004; Von Storch

and Stehr, 2006; Mann et al., 2007; Wang et al., 2014; Evans et al., 2014; Smerdon, 2012; Smerdon et al., 2016).
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Figure 1. Proxy Network and Instrumental Sampling Mask. Grey dots (M = 1,732) are the locations where the temperature field is

sampled and the red dots indicate the grid points where the temperature locations are sampled to derive the pseudoproxies (p= 283).

2.2 Climate Field Reconstructions145

We analyze four CFR methods that have been widely applied in the CFR literature and specifically discussed in the context

of the analyzed PPEs in Smerdon et al. (2016). These methods include two versions of regularized expectation maximization

(RegEM) (Schneider, 2001; Mann et al., 2007), standard ridge regressions (Hoerl and Kennard, 1970) and canonical correlation

analysis (CCA) (Smerdon et al., 2010b), all of which are briefly described in following subsections. All CFR methods use a

calibration from 1850-1995 C.E. and a reconstruction interval from 850-1849 C.E. Temperature and proxy data are available150

after 1995, but the proxy network as used in Mann et al. (2009a) becomes sparse after 1995 because many records collected

over the last several decades obviously do not include measurements after their date of collection. Hence, as in Mann et al.

(2009a), Smerdon et al. (2016), and Li et al. (2016), our calibration period is chosen to be 1850-1995 C.E., which follows the

convention of previous PPE frameworks. We also note that while we test these specific configurations and methods, the skill

assessments that we employ and the methodological insights that are developed are not exclusive to the four methods that are155

tested because of broad commonalities across the CFR problem.

2.2.1 Regularized Expectation Maximization

The two employed versions of RegEM both use truncated total least squares for regularization (Schneider, 2001; Mann et al.,

2007). The first is a standard version of RegEM truncated total least squares as originally described by Schneider (2001), here-
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inafter TTLS, and the second is the hybrid version applied by Mann et al. (2009a), hereinafter TTLH. The hybrid convention160

calibrates the multiproxy network on the target temperature field in split spectral domains by first separating the target field and

the multiproxy (or pseudoproxy) network into high and low-frequency components. We follow the Mann et al. (2009a) conven-

tion by splitting these two domains at the 20-year period using a ten-point butterworth filter. The hybrid reconstruction is then

derived by calibrating the pseudoproxy network in the two frequency domains using the RegEM algorithm and subsequently

combining the reconstructions from each domain to derive a complete field (see Mann et al., 2005, 2007) for further description165

of the hybrid method]. Note also that differences between reconstructions derived from the hybrid and standard versions of the

RegEM method have been reported to be minimal (Rutherford et al., 2005; Mann et al., 2005, 2007; Smerdon et al., 2011),

although the importance of hybrid calibrations on the skill of the derived reconstructions has been debated (Rutherford et al.,

2010; Christiansen et al., 2010). A linear fit to the log-eigenvalue spectrum is used to determine the truncation parameter for

the RegEM CFRs in the same manner that was advocated by Mann et al. (2007) for the high-frequency component of their170

derived hybrid reconstructions. For the Mann et al. (2009a) CFRs, a linear fit to the log-eigenvalue spectrum was again used

to determine the truncation parameter for the high-frequency component of the reconstructions, while the low-frequency trun-

cation was determined by selecting the eigenvalue rank yielding 33% of the cumulative variance in the low-frequency field.

This percentage of retained cumulative variance is reduced from 50%, as originally adopted by Mann et al. (2007); the value

of 33% has since been advanced by Rutherford et al. (2010) and Mann et al. (2009a) as more appropriate.175

2.2.2 Ridge regression

We apply standard ridge regressions Hoerl and Kennard (1970) for the ridge regression CFRs in this study. The application of

a single ridge regression was used by Smerdon et al., 2011, 2016 , but is otherwise a break from earlier studies that have used

ridge regression as the form of regularization in the iterative RegEM algorithm. The application of ridge regression within the

RegEM algorithm for the purpose of CE CFRs has been discussed in detail in various publications (Schneider, 2001; Mann180

et al., 2005; Smerdon and Kaplan, 2007; Lee et al., 2008; Smerdon et al., 2008a, 2010a; Christiansen et al., 2009). We use

standard ridge regression instead of ridge-based RegEM herein, because the iterative RegEM ridge regression converges to the

single ridge regression result in the special case of our PPE design, namely when missing values comprise a single and regular

block in the data matrix. We determine the value of the ridge parameter for the single ridge regressions in the same manner

applied by Schneider (2001) using ridge-based RegEM by minimization of the generalized cross validation function (Golub185

et al., 1979).

2.2.3 Canonical correlation analysis

Canonical correlation analysis (CCA) was applied as described in Smerdon et al. (2010b). Dimensions of the proxy and

instrumental fields were both reduced by eigenvalue truncation, as were the number of retained canonical coefficients. These

dimensional reductions were selected based on ‘leave-half-out’ cross-validation statistics, as described by Smerdon et al.190

(2010b).
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3 Skill Assessment

3.1 A brief review of the functional methods

The methods of comparing two spatiotemporal random fields developed in Zhang and Shao (2015) and Li et al. (2016) are

based on a functional data analysis approach. The basic idea is to perform the comparison in subspaces that are of much lower195

dimension but preserve a large portion of the variability. Moreover, these comparisons can be done on individual EOF-PC pairs,

allowing CFR assessments to be done on specific leading modes of the targeted and reconstructed fields. We briefly review the

theoretical framework for the skill assessments below.

Let {Xt(s)}Nt=1 and {Yt(s)}Nt=1 be two spatiotemporal random fields observed over spatial locations, s ∈D, and time

points, t= 1, . . . ,N . We define the mean and covariance function of each spatial process as: µX(s) = E{Xt(s)} and µY (s) =200

E{Yt(s)}, the mean functions over s ∈D, and CX(s,s′) = cov{Xt(s),Xt(s′)} and CY (s,s′) = cov{Yt(s),Yt(s′)}, the co-

variance functions of Xt(s) and Yt(s) over s and s′ ∈D, respectively. To compare the mean and covariance functions of two

spatiotemporal random fields, we consider the following two hypotheses:

(i) H0 : µX = µY vs. Ha : µX 6= µY ,

(ii) H0 : CX = CY vs. Ha : CX 6= CY .205

The two test statistics for these two hypotheses are TS1 and TS2, which are explained in detail in the following two

subsections. Because the empirical distributions of TS1 and TS2 have been derived underH0, their p-values can be calculated.

The p-values for these two hypotheses are ultimately what are used to evaluate the comparison between two fields, in this case

between the known model field and a CFR.

3.1.1 Mean comparison210

The mean surface of a given climate field is a measure of its spatial variability across the global domain. In statistics, this is

called the first moment of a spatiotemporal process and usually carries very important information about the distribution of the

random process. Comparisons between the mean structures between two climate fields is therefore fundamental for assessing

their relative characteristics. The mean structure will be compared in subspaces that contain the major variability of the climate

field, so we start by defining the subspaces and projected mean differences prior to defining the test statistics (TS1). We denote215

the ith eigenvalues and eigenfunctions, also called empirical orthogonal functions (EOFs), corresponding to ĈX by {λ̂iX} and

{φ̂iX}, where ĈX denotes the sample covariance function using all time points. Then we define a sequence of vectors consisting

of the projected mean differences on the first L eigenfunctions:

ψ̂k = (< µ̂X,k − µ̂Y,k, φ̂1
X > · · ·< µ̂X,k − µ̂Y,k, φ̂LX >)T (1)

for 1≤ k ≤N , where< x,y >= xT y, and µ̂X,k (µ̂Y,k) denotes the sample mean based on the recursive subsamples {Xt(s)}kt=1220

({Yt(s)}kt=1). Our test statistic for hypothesis (i) is therefore

TS1(L) =Nψ̂TNV
−1
ψ (L)ψ̂N , (2)
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where Vψ = 1
N2

∑N
k=1 k

2(ψ̂k − ψ̂N )(ψ̂k − ψ̂N )T . The parameter L is user chosen and determines how many eigenfunctions

are to be used in the test.

3.1.2 Covariance comparison225

The covariance structure refers to the correlation of climate observations over different locations. It is called second moment

in statistics. When the climate field can be approximated by a Gaussian random field, the first and second moments determine

the distribution of the entire random field. The covariance structure refers to either the local correlation or far-field correlation

driven by so-called teleconnections within climate fields, and thus is an important description of the large-scale physical

dynamics that underlie the climate system. To allow comparisons between leading patterns in modeled or reconstructed fields,230

we modify the test for covariance to make it suitable for comparing two cross-covariance functions. We again define subspaces

and projected differences of a covariance structure. Let C1,2
X (s,s′) (C1,2

Y (s,s′)) be the cross-covariance function for s ∈D1

and s′ ∈D2 and let Ĉ1,2
X (s,s′) and Ĉ1,2

Y (s,s′) denote the sample cross-covariance function for Xt(s) and Yt(s) based on all

time points. We perform a Singular Value Decomposition (SVD) on Ĉ1,2
X (s,s′) or Ĉ1,2

Y (s,s′), say on Ĉ1,2
X (s,s′):

Ĉ1,2
X (s,s′) = U ′DV, (3)235

where U and V are orthogonal matrices with columns being u1, ...,un and v1, ...,vm for n and m grid cells in subregion

D1 and D2, respectively. Let Ĉ1,2
X,k(Ĉ1,2

Y,k) denote the sample cross-covariance based on recursive subsamples {Xt(s)}kt=1

({Yt(s)}kt=1). That is Ĉ1,2
X,k is the sample cross-covariance of {Xt(s1)}kt=1 and {Xt(s2)}kt=1. We define a sequence of matrices

by the projected covariance differences, Ck = [ci,jk ], where ci,jk =< ûiTX (Ĉ1,2
X,k − Ĉ

1,2
Y,k), v̂jX >,1≤ k ≤N, 1≤ i, j ≤ L, and

1≤ L≤min{m,n}.240

Let α̂k be the vectorized Ĉk. The test statistic for hypothesis (ii) is

TS2(d) =Nα̂TNV
−1
α (d)α̂N , (4)

where d is the length of the unique component in α̂k, which contains the elements on and below the main diagonal of Ck. That

is, d= L(L+ 1)/2 and Vα(d) = 1
N2

∑N
k=1 k

2(α̂k − α̂N )(α̂k − α̂N2)T . Again L is chosen by the user and can be determined

by the cumulative percentage of total variation.245

Additionally, our notation uses X to represent the synthetic climate from climate models and Y to represent the CFRs based

on the X process. The test statistics of above two tests will change if we calculate the sample covariance matrix based on Y

process rather than the X process, because the EOFs from Y are different than those from X . Thus, they are not exchanagable

but we have fixed the sample covariance matrix based on the X process because the goal of our application is to evaluate the

skill of CFRs by comparing them to their known targets, the climate model output on which each PPE is based.250
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4 Results

4.1 Mean-structure skill

Despite the formalism of the preceding section, the important implication is that comparisons between modeled and re-

constructed fields can be measured in terms of p-values based on a null hypothesis that similarities are within the range of

comparisons between two random spatiotemporal fields. In other words, a p-value close to 1 reflects similarities between255

modeled and reconstructed fields that are statistically significant against this null hypothesis, while p-values close to 0 reflect

differences that could be explained by random chance. Moreover, these comparisons are broken out among the leading spa-

tiotemporal patterns in each field. While such comparisons can be done for any number of leading principal components, we

focus herein on the leading five in each field. Subsequent comparisons are made between the CFRs in each model-based PPE

and the known model field during the reconstruction interval (850-1849 CE).260

The mean-structure performance, in terms of the developed skill metric for the five leading EOFs, is shown for each CFR

method within each of the model-based PPEs in Figure 2; results are shown for PPEs using pseudoproxies with SNRs= 0.5

(upper panel) and SNRs=∞ (bottom panel). Several general observations associated with Figure 2 stand out as consistent

with previous work using traditional skill measures in Smerdon et al. (2016). First, there are clearly differences across each

of the model-based PPEs indicating that CFR performance depends strongly on the spatiotemporal characteristics of the un-265

derlying model fields. Consistent with Smerdon et al. (2016), the methods perform best in the CCSM, GISS, and MPI based

PPEs, while the BCC and IPSL models appear to present the most challenging tests for the CFR methods. Secondly, the level

of noise in the pseudoproxies has an important and expected impact on the nature of the methodological performance. Particu-

larly for the CCSM, GISS and MPI based PPEs, the no-noise experiments yield much higher skill scores than the SNR= 0.5

experiment. Notably, however, even the no-noise PPEs yield CFRs with variable skill that depends on method and model.270

With regard to the performance of specific methods, TTLS and TTLH are generally most skillful across the top five EOFs

in the CCSM, GISS, and MPI PPEs, although that is not true across all of the EOFs and is more ambiguous for the CCSM

experiment with SNR= 0.5. It is also true that the TTLS and TTLH methods perform similarly within each model-based PPE

across the top five EOFs, which is not surprising given the close methodological lineage of the two methods (Smerdon et al.,

2016). Similarly, the CCA and RIDGE methods have similar skill performance for each of the five EOFs across the PPEs,275

although the CCSM experiment shows some ambiguity with regard to these general observations again in the SNR= 0.5

case. Finally, the methods collectively perform the worst within the BCC and IPSL PPEs, a finding that is again consistent with

the mean bias assessment in Smerdon et al. (2016) who found the largest mean biases in the BCC and IPSL PPEs.

In addition to the above general observations, the applied skill metric allows the skill associated with each of the leading

EOFs to be separated. Nothing similar to these separations were performed in Smerdon et al. (2016) and they indicate a280

complicated structure associated with skill across each of the model-based PPEs and tied to the applied method. For instance,

some methods perform very well on several leading EOFs, while performing very poorly on several others (CCA in the CCSM

PPE or CCA and RIDGE in GISS PPE). Other methods perform poorly on the leading EOF, while performing very well on the

remaining EOFs (TTLS and TTLH in the CCSM and MPI PPEs) or perform poorly on all EOFs except the 5th EOF (CCA,
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Ridge, and TTLH in the IPSL PPE). The implication of these assessments is that there is a rich structure to the performance of285

the methods across the different model-based PPEs, but the reasons for this performance is not immediately obvious from these

assessments. We therefore perform a similar analysis in the next subsection for the covariance-structure skill, before working

to more deeply understand the performance of the CFR methods as indicated by the applied skill metric.

Figure 2. CFR Mean-structure performance within each of the model-based PPEs. Derived p-values are shown for the mean comparison

between the target model and the CFRs based on the described skill metric and presented for the leading five principle components. Upper and

bottom panels show skill assessment for the SNR= 0.5 and SNR=∞ PPEs, respectively. PCs with p-values greater than the significance

level of 0.05 (dotted line) are considered to skillfully recover the mean structure of each model.

4.2 Covariance-structure skill

Similar to the mean-structure comparison, we employ the applied skill metric to evaluate how derived CFRs reproduce the290

known covariance of the climate model simulations. We first note, however, that the covariance comparisons between the CFRs

and the known climate model fields over the entire reconstruction domain yielded results that were universally unskillful. In

other words, our analyses yielded p-values equal or close to 0 for all methods at all five leading EOFs and across all PPEs. This

result is perhaps not unexpected given an established understanding that there are large regions with very low skill throughout

the global CFR domain. Smerdon et al. (2016) demonstrated that many regions of the reconstructed fields have small and295

insignificant correlations relative to the known model fields, while locations among the tropics and over dense pseudoproxy

sampling locations achieve much larger correlations. These collective results thus suggest that if the global domain is used to
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identify EOFs many of the locations will be defined by variability dominated by noise. Alternatively, constrained domains that

encompass dominant regions of variability can be used to target leading EOFs that are less susceptible to noise. We therefore

modify our approach in this section to describe comparisons between areas of dominant teleconnections in the model fields.300

Our modified approach is to analyze the covariance structure only in regions where the teleconnection associated with

the El Niño-Southern Oscillation (ENSO) is dominant. We specifically focus on ENSO because it is the leading mode of

internal variability on a global scale, making it easy to identify and likely strongly expressed in the leading few modes of

each climate model simulation. We examine the ENSO dependencies by computing the correlation between the time series

of averaged temperatures over the Niño3 region (5◦N-5◦S, 150◦W-90◦W), and the time series at all other grid points in the305

global temperature field. Maps of these correlations for each climate model are shown in Figure 3. We discard locations that are

proximal to the ENSO region (local covariance structure) that are not the consequence of the ENSO teleconnection (large-scale

covariance structure). An empirical covariance estimate suggests that pairs within 10,000 km are due to this proximity. Thus,

we exclude the locations in the orange shaded area (20◦S-20◦N, 150◦E-35◦W) that are within 10,000 km from the center of

the Niño3 region, as shown in Figure 3. After excluding these proximal locations, we choose the grid points (black dots in310

Figure 3) that have significant positive or negative correlations with the Niño3 index in each model at the 10% significance

level, which we interpret as reflecting each model’s ENSO teleconnection pattern. Because the selected grid points vary for

different climate models, we use the collection of overlapping grid points (black dots) from all five climate models.
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Figure 3. Model-based correlations between the Niño3 index and temperatures at all other grid points. The Niño3 index is computed

as the average sea surface temperature within the indicated by the box in the tropical Pacific (5N-5S, 150W-90W). Global correlations are

indicated by the color scaling. Shared grid-point locations where local temperatures significantly correlate with the Niño3 index (p < 0.1) are

indicated by the same black dots in each panel (D2). The orange shaded region in each map indicates where locations have been excluded to

focus predominantly on far-field teleconnection structure.

The p-values for the modified covariance-structure skill metric assess how well the large-scale teleconnection patterns asso-

ciated with ENSO are reproduced in the CFRs, relative to the known model fields. These results are shown in Figure 4, which315

presents the p-values for all four CFRs for the leading five PCs using the SNR= 0.5 and ∞ PPEs. Relative to assessments

over the entire domain, stronger associations between the CFRs and known model fields are observed when the covariance

structure is limited to the ENSO teleconnection regions. Even with a constrained focus on the ENSO teleconnection regions,

however, the covariance-structure skill is still limited across most of the methods and model-based PPEs. The TTLS and TTLH

methods are again the most skillful across all of the methods. In the case of no-noise (SNR=∞), skill is detected for the320

CCA method across all model-based PPEs and there is some skill for the RIDGE method except for the IPSL and MPI PPEs.

Interestingly, the skill of TTLS and TTLH is higher for most of the EOF patterns in the SNR= 0.5 for CCSM, GISS, and

IPSL PPEs, relative to the no-noise case, while it is more typical to have skill reduction for SNR= 0.5 as in the CFRs derived

for the BCC and MPI PPEs. Specifically, compared to the no noise case, CCA and RIDGE results show skill reduction for

SNR= 0.5 for all PPEs. We also note that for the covariance comparison, it is particularly important to examine the skill325

of CFRs at the first PC because the first EOF contains over 80% of the total variation in all models (see further discussion in
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Section 4.4), except for BCC (the first EOF contains approximately 45% of the variability). TTLS and TTLH within the CCSM

PPE are most skillful over the first two PCs showing evident skill in the subspace containing over 90% of the total variation.

While most of the model-based PPEs indicate some skill associated with at least the TTLS and TTLH methods, the BCC and

MPI-based PPEs stand out as yielding almost no skill at any PC for all the methods in the SNR= 0.5 PPEs. In the case of no330

noise, CCA, TTLS, and TTLH have skill associated with over 80% of the variation in MPI, while CCA or RIDGE methods

show very little skill in all EOFs other than the first.

Figure 4. CFR covariance-structure performance within each of the model-based PPEs in ENSO teleconnection regions only. Derived

p-values are shown for the covariance comparison between the target model and the CFRs based on the described skill metric and presented

for the leading five principle components. Comparisons are performed only in the ENSO teleconnection regions shown in Figure 3 (D2

locations). Upper and bottom panels show skill assessment for the SNR= 0.5 and SNR=∞ PPEs, respectively. PCs with p-values

greater than the significance level of 0.05 (dotted line) are considered to skillfully recover the covariance structure in the strong ENSO

teleconnection regions.

To complement the analysis of the covariance-structure skill in the ENSO teleconnected regions, we investigate the

proportion of variance explained by the first five leading EOFs of the ENSO teleconnection dominant region (D2). Figure 5

shows that more than 30% of the variance is explained by the first EOF in CCSM and IPSL models and all the other three models335

present less than 30% of the variance in their first EOFs. This feature is likely linked to the results in Figure 4 (SNR= 0.5)

showing that the first PC of BCC, GISS, and MPI models fail to show skill. This signal is especially weakly expressed in the

leading modes of the modeled data and not well represented in its CFRs when SNR= 0.5 (only TTLH showing p-value of
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0.03), although Figure 3 shows that MPI exhibits a strong teleconnection signal. This is particularly so as noise is added to

the pseudoproxies and especially for the CCA and RIDGE methods. Thus for the MPI model, the skill of most of the CFRs is340

associated with the first PC when there is no noise (SNR=∞) but none when the noise is present (SNR= 0.5).

Figure 5. Eigen value spectra of ENSO teleconnected region for each of the last millennium simulation: The spectra of the ENSO

teleconnected region for each last-millennium simulation are computed as the ratio of between the first five eigenvalues and the cumlative

sum of all eigenvalues on ENSO dominant region (D2).

4.3 Cumulative CFR Skill

Figures 2 and 4 present the performance of the CFRs over the first five EOFs in each of the PPEs, but these comparisons do not

characterize how the skill accumulates over the collection of EOFs and how much total variability in the field in represented

in the skill assessment. Figures 6 and 7 therefore present the p-values for the overall skill of CFRs associated with the mean-345

and covariance structure for the SNR= 0.5 PPEs, respectively, but in this case they are derived according to the proportion of

the cumulative variability explained by a successive number of leading PCs. Despite the indication of skill across multiple PCs

demonstrated in Figures 2 and 4, the skill as a function of cumulative variance reveals that most methods across most PPEs do

not recover mean-structure skill beyond about 30% of the total variability. Regarding mean-structure skill specifically, TTLH

exhibits the most skill within the CCSM and GISS PPEs, and only up to about 20% - 30% of the total variation. In the GISS350

model, unlike the other models, all of the CFRs except RIDGE present skill up to 20% of the total variability. On the other

hand, CFRs in the BCC and MPI PPEs show no skill for cumulative EOFs. The mean comparison results for the no-noise cases

also exhibit very similar results (results not shown).
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Figure 6. Mean comparison of successive order of principal components during the reconstruction period: For every climate model,

p-values for the mean comparison between the target model and the CFRs based on the described skill assessment are presented for the

successive range of PCs. PCs with p-values greater than the significance level of 0.05 (dotted line) are considered to skillfully recover the

mean structure.

Regarding the cumulative covariance-structure skill in the ENSO teleconnection regions shown in the top panel of Figure 7,

only TTLS and TTLH in the CCSM and IPSL PPEs show skill. Because the first PC of these CFRs in CCSM and IPSL already355

consists of more than 80% of the total variation, TTLS and TTLH are very skillful in recovering the teleconnection pattern in

the CCSM and IPSL PPEs. There is also some skill detected for TTLS and TTLH in the GISS PPE (Figure 4), but because

the percent of variation in the 3rd PC is very small (less than 10% of the total variation) the skill at this PC is masked by the

variation of the previous two PCs. Moreover, in the case of no noise, CFRs of the BCC and GISS PPEs consistently show no

skill and there is some skill associated with TTLS and TTLH at the first PC in CCSM, IPSL, and MPI PPEs in the bottom360

panel of Figure 7.
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Figure 7. Covariance comparison of successive order of principal components within only ENSO teleconnection regions: For every

climate model, p-values are derived for covariance comparisons only in the D2 locations of the target model and the CFRs using the

described skill assessment for the successive range of PCs based on SNR= 0.5 and SNR=∞ PPEs shown in top and bottom panels,

respectively. PCs with p-values greater than the significance level of 0.05 (dotted line) are considered to have some skill in recovering the

ENSO teleconnection structure.

Figure 6 - 7 indicate that even though CFRs show some skill for each individual PC, the cumulative variability that is

skillfully explained must be evaluated for a more complete picture of methodological performance. This is especially true for

the TTLS and TTLH methods. Despite showing outstanding skill recovering the modeled mean structure at each PC in most of

the climate models in Figure 2, Figure 6 shows that the two methods often do not account for skill up to higher order cumulative365

EOFs. For example, both TTLS or TTLH are skillful only up to 20-30% of the total variation of the climate field. Additionally,

we note that the CCA method poorly recovers the mean structure in most of the climate models and both CCA and RIDGE are

poor in recovering the covariance structure in all five climate models when the comparison is projected onto the cumulative

EOF basis function.

4.4 Interpreting the Mean and Covariance Skill Assessments370

While the preceding subsections provided some guidance regarding the performance and comparisons of the CFR methods

in the multiple model-based PPEs, it is still unclear why the methods perform differently and how they depend on different
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characteristics of the climate simulated by each model. In the following subsection, we therefore characterize the features of

the temperature fields simulated by the models and the underlying consequences for the various CFR methods. We interpret

the skill assessments by exploring several features of the CFRs and the underlying model fields on which the PPEs are based:375

(i) the percent variance explained by the leading EOFs in the modeled temperature field, (ii) the temporal stability of the

EOF structure in the reconstruction and calibration periods, and (iii) the degree to which the spatiotemporal variability in the

modeled temperature fields are represented by the locations where pseudoproxies are sampled.

4.4.1 Structure of the Eigenvalue Spectrum

Because each of the CFR methods investigated in this study are forms of regularized multivariate regression, they all share380

a similar feature, namely they each only target a few of the leading EOFs in the target temperature field. An important control

on the skill of CFRs is therefore tied to how much of the variance in the target temperature field is explained by the leading

EOFs. We therefore hypothesize that the PPEs based on the climate model simulations with significant amounts of variance in

the leading few EOFs will be those experiments in which the CFRs perform most skillfully.

In Figure 8, the variance explained by the first five EOF-PC pairs (same-rank pair of an empirical orthogonal function and385

its principal component) in each model is represented as the ratio between each of the five eigenvalues of the decomposition

of the covariance matrix of the surface temperature fields and the sum of all the eigenvalues. These calculations indicate that

except for the BCC model, a large portion of the variance is explained by the leading EOF-PC pairs in each of the modeled

surface temperature fields. Additionally, the proportion of the explained variance in the first eigenvalue is relatively high in all

of the models except for BCC. Based on these results alone, the BCC model would be predicted to form the basis for the most390

difficult PPE, an expectation that is largely reflected in the skill assessments from Figures 2 and 4.
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Figure 8. Eigen value spectra for each of the last millennium simulations: The spectra for each last-millennium simulation are computed

as the ratio between the first five eigenvalues and the cumulative sum of all eigenvalues.

In addition to providing a broad assessment of the relative challenges presented by the individual model-based PPEs, the

eigenvalue spectra for each of the CFRs in each of the model experiments also indicate that the similarity between the variance

explained in the first several EOFs of the target and reconstructed fields is largely indicative of the performance of the individual

CFR methods. In particular, the proportions of the first eigenvalues in the TTLS and TTLH CFRs are almost equivalent to those395

of the true model fields from the CCSM, GISS, IPSL, and MPI simulations (Figure 9). This is reflective of the fact that those

two methods generally performed the most skillfully in both of the skill assessment metrics. In contrast, the proportions of

the first eigenvalues of the CFRs in the BCC PPE are significantly lower than that of the true model, which matches with the

relatively poor skill of all CFR methods based on the BCC PPE. CFR performance is therefore strongly associated with how

well the first EOF represents the total variation in the targeted climate field and how well that variance is reproduced in a given400

CFR.
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Figure 9. Eigenvalue spectra for each last-millennium simulation and the CFRs for each psuedoproxy experiment: The spectra for

each last millennium simulation and associated CFR are computed as the ratio between the first five eigenvalues and the cumulative sum of

all eigenvalues.

While the above analyses of the eigenvalue spectra give important insights into the difficulty of reconstructing a given

climate field and the likely performance of a reconstruction that targets such a field, the variance explained by a given set of

EOF-PC pairs alone may not be fully indicative of reconstruction performance. For instance, it is possible that the EOFs in the

reconstruction are reordered so that they do not represent well the spatial characteristics of any given EOF in the target field. It405

is therefore useful to assess how well the spatial characteristics of specific EOFs in a CFR represent the spatial characteristics

of the EOFs in a targeted field.

To assess this feature and allow for the fact that a given reconstructed EOF may be ordered differently than the equivalent

EOF in the target field, we take the inner product between each of the first three EOFs in the reconstructed and targeted fields

(this is similar to the spatial correlation statistic often discussed in the climate literature, e.g. Baek et al., 2017). If the absolute410

value of the inner product is close to 0, it suggests that the spatial patterns represented by two EOFs are very different, while

if the inner product is close to 1, it implies that they are equivalent. The p-values testing the significance of the inner products

can be derived using bootstrap analysis. Each sample is obtained by bootstrapping spatial locations at each time point, from

which the inner product of the CFR and the associated true climate model is calculated based on the sampling. For each inner

product pair, we perform bootstrapping 1,000 times and calculate the p-value of the observed inner product.415

Table 1 presents the inner products of the first 3 EOFs for the CFRs and the corresponding climate model fields, with

significance also indicated. Inner products along the diagonals that are close to one and marked as significant indicate that the

order of their corresponding EOFs together with their spatial representations in the CFRs are similar to those of the targeted

climate field. Values close to one, significant, and off the diagonal would indicate a potential reordering of the reconstructed

EOFs, relative to the EOF structure of the target field. Collectively, the inner products indicate that in addition to reflecting420

similar eigenvalue spectra (Figure 9), CFRs targeting the CCSM and MPI models also produce EOFs that are similarly ordered

with patterns that well represent the true model EOF patterns. This is represented by high and significant inner product values

along the diagonals; the opposite is true of most experiments with the BCC model. In summary, in order for the CFRs to well
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depict the mean and covariance structure of the true climate model, the first few leading EOFs should carry the majority of the

total variation while also capturing the spatial features of the targeted EOFs as shown in Table 1.425

Table 1. EOF inner product of the true model fields and the associated CFRs

EOF of CFRs

CCA RIDGE TTLS TTLH

1 2 3 1 2 3 1 2 3 1 2 3

BCC

1 0.814† 0.350 0.387 0.772† 0.006 0.594 0.263 0.312 0.752‡ 0.588 0.511 0.256

2 0.225 0.548 0.328 0.172 0.505 0.056 0.104 0.669† 0.199 0.230 0.400 0.569

3 0.108 0.665 0.153 0.078 0.735 0.209 0.599 0.051 0.410 0.476 0.347 0.412

CCSM

1 0.967‡ 0.163 0.006 0.966‡ 0.179 0.028 0.955‡ 0.191 0.039 0.961‡ 0.078 0.138

2 0.122 0.937‡ 0.115 0.141 0.908‡ 0.197 0.085 0.809† 0.302 0.001 0.857† 0.238

3 0.050 0.166 0.822 0.037 0.226 0.741 0.144 0.366 0.681 0.180 0.396 0.689

GISS

1 0.906‡ 0.046 0.007 0.914‡ 0.006 0.005 0.855† 0.082 0.164 0.809† 0.165 0.268

2 0.113 0.914‡ 0.010 0.059 0.917‡ 0.057 0.269 0.217 0.754‡ 0.272 0.290 0.733†
3 0.027 0.034 0.773† 0.014 0.106 0.767† 0.015 0.657 0.221 0.165 0.608 0.227

IPSL

1 0.932‡ 0.261 0.116 0.911‡ 0.344 0.087 0.949‡ 0.106 0.164 0.969‡ 0.080 0.052

2 0.188 0.822† 0.350 0.249 0.747 0.431 0.042 0.838† 0.176 0.070 0.857† 0.136

3 0.133 0.426 0.503 0.176 0.487 0.465 0.080 0.428 0.443 0.022 0.407 0.548

MPI

1 0.972‡ 0.116 0.111 0.959‡ 0.177 0.128 0.982‡ 0.061 0.065 0.982‡ 0.071 0.034

2 0.123 0.953‡ 0.057 0.193 0.929‡ 0.061 0.054 0.943‡ 0.002 0.079 0.944‡ 0.008

3 0.088 0.003 0.861† 0.096 0.017 0.852† 0.043 0.078 0.846† 0.040 0.054 0.917‡

Note: Significances of inner products are denoted by ‡ and † for the 10% and 20 % levels respectively.

4.4.2 Temporal stability of the leading EOFs

An important underlying assumption of linear regression based CFR methods is that the identified patterns in the calibration

period remain temporally stable back in time over the period of reconstruction. In particular, temporal stability refers to how

much the leading patterns of modeled data in the reconstruction period and in the calibration period share in common and to

what extent the order of leading patterns in the calibration period is preserved in the reconstruction period. If these patterns430

are not temporally stable, a key assumption of the reconstruction approach is violated and the skill of the reconstruction will

be affected. Differences in the performance of CFR methods, such as the differences in the mean structures assessed in Figure

2, may therefore be explained by differences in the temporal stability of leading EOFs in the calibration and reconstruction

intervals within each of the model simulations that form the basis of the PPEs. In other words, if the EOF character and structure
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within the reconstruction interval is similar to that of the calibration interval within a model simulation, all of the CFRs based435

on this model simulation are expected to capture the mean structure better than the CFRs based on simulations for which this

is not the case. Despite the above significance for reconstruction methods, it is unknown whether teleconnections in the real

climate system remain stable over centennial to millennial time scales or how widely they have varied if they are not stable

(e.g. Coats et al. 2013).

To test the stability of the teleconnections in the model simulations, we again use the inner product as a measure of the440

similarity between spatial patterns, in this case between the EOFs in the calibration and reconstruction periods. These inner

products are listed in Table 2 and the p-values of the inner products are again computed through bootstrapping; the pairs of

EOFs that are significantly aligned are marked. If the inner product matrix in Table 2 contains the highest values along the

diagonal and those values are significant in the bootstrapping experiments, it suggests that the order and character of the EOFs

are similar in the calibration and reconstruction intervals. This is predominantly the case for the CCSM and MPI simulations,445

implying that the reconstruction period is defined by the same dominant pattern of leading EOFs in the calibration period.

Moreover, for those two climate models, the order of the modes are preserved as well. In contrast, the BCC model reveals very

weak associations between the calibration and the reconstruction periods, and IPSL only displays strong association for the

first EOF.

The temporal stability assessment, when joined by the previous assessment of the eigenvalue spectra allow a more specific450

criterion for CFR methodological success: if a large fraction of the variability in the climate field is represented by a few

leading EOFs, and the EOFs are stable across the calibration and reconstruction periods, the CFRs tend to recover the true

mean structure well. Because BCC and IPSL simulations violate either or both of these two conditions, CFRs based on BCC

and IPSL have reduced skill in this sense. Again the performance of TTLS and TTLH largely depends on how well the first few

EOFs of the reconstruction period represent the dominant EOF patterns in the calibration period. On the other hand, CCA and455

RIDGE usually outperform the other methods when the reconstruction and calibration period share the total variation across a

larger number of the leading EOFs. As an example, CCA and RIDGE well recover the mean structure in the CCSM and MPI

PPEs because strong and distinct patterns are shared in all five leading EOFs of these model simulations. In contrast, CCA and

RIDGE do not perform well in the BCC PPE (Figure 2) because the BCC simulation carries less of the total variability in its

leading modes, which are also not temporally stable between the calibration and reconstruction intervals.460
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Table 2. Inner product of EOFs derived in the calibration and reconstruction periods

Inner Product
EOFs of Calibration period

1 2 3 4 5

EOFs

of

BCC (Recon)

1 0.55 0.761‡ 0.02 0.207 0.167

2 0.042 0.084 0.436 0.717‡ 0.389

3 0.16 0.334 0.605† 0.555 0.253

4 0.242 0.352 0.569 0.019 0.49

5 0.63 0.327 0.128 0.216 0.45

EOFs

of

CCSM (Recon)

1 0.966‡ 0.093 0.057 0.034 0.037

2 0.002 0.872‡ 0.28 0.091 0.084

3 0.098 0.32 0.82† 0.289 0.173

4 0.017 0.026 0.335 0.804† 0.273

5 0.078 0.192 0.139 0.255 0.815†

EOFs

of

GISS (Recon)

1 0.861‡ 0.164 0.027 0.22 0.08

2 0.194 0.895‡ 0.213 0.045 0.057

3 0.098 0.071 0.225 0.68† 0.155

4 0.247 0.053 0.57 0.272 0.196

5 0.04 0.253 0.661† 0.089 0.345

EOFs

of

IPSL (Recon)

1 0.886‡ 0.378 0.096 0.137 0.022

2 0.223 0.643† 0.627† 0.162 0.062

3 0.222 0.616 0.496 0.439 0.087

4 0.111 0.051 0.455 0.573 0.329

5 0.139 0.11 0.118 0.488 0.024

EOFs

of

MPI (Recon)

1 0.976‡ 0.084 0.092 0.069 0.066

2 0.077 0.943‡ 0.179 0.101 0.127

3 0.072 0.227 0.844‡ 0.352 0.06

4 0.067 0.041 0.323 0.759† 0.185

5 0.048 0.076 0.075 0.145 0.724†

Note: Significances of inner products are denoted by ‡ and †, for the 10% and 15% levels respectively.

4.4.3 Sampling locations

The sampling locations of proxies also play a key role in the performance of CFRs, because all CFR methods train their sta-

tistical models based on how the entire climate field relates to the climate variability reflected in proxy locations. If the climate
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variability at sampling locations poorly represents the variability of the entire climate field, then it will be very challenging

for CFRs to reproduce the mean or covariance structure of the targeted climate. To investigate this possible issue, we sample465

the climate from only the proxy sampling locations and then study the capacity of the climate at those locations to recover

the climate globally. This is carried out by directly using the EOFs at the sampling locations to estimate the climate at other

locations and examine the mean squared error (MSE) of the estimates.

In order to account for spatial correlation in this context, we first decorrelate the spatial climate simulation before fitting a

linear model and then add the correlation back after we obtain the estimates. More specifically, letX∗m(s, t) denote the spatially470

decorrelated climate simulation obtained by

X∗m(s, t) = Σ̂−
1
2

m Xm(s, t), (5)

where m is the index for a given model simulation (e.g. BCC, CCSM, ..., MPI) and Σ̂m is an estimated spatial covariance

matrix of Xm(s, t) with t= 850, ...,1849 using an exponential covariance function.

There are 283 sampling locations out of 1732 grid points. Let fj be the j-th PC of the sampling network from year 850 to475

1849. We construct a linear model of the climate at all 1,732 locations and on fj with the decorrelated spatial fields X∗m(s, t):

X∗m(s, t) =
K∑

j=1

βj(s)fj + ε(s, t), (6)

where ε(s, t) are white noise because X∗m(s, t) has been decorrelated. So for each fixed location s, we have 1,000 observations

(t= 850− 1849) and 1,732 different regressions will be modeled on the whole domain D. We set the number of EOFs to be

K = 10 which typically preserves about 85% of variability in the sample climate field. After we obtain X̂∗m(s, t) then we derive480

X̂m(s, t) = Σ̂
1
2
mX̂∗m(s, t). To evaluate the model fitness, we calculate the mean squared error (MSE) as follows :

MSEm =
1

1000
Σ1849
t=850(X̂m(s, t)−Xm(s, t))2. (7)

The MSEm measures how well the sampling network represents the variability in the climate model simulation. The basic

idea is to measure how much climate variability can be recovered based on the sampled climate alone. We by no means argue

that our method is optimal for this purpose, but this MSE estimate provides a reasonable measure for the capacity of climate485

sampled at the pseudoproxy locations to represent the simulated global climate in each model.

Figure 10 displays the MSE for all five climate models. The red triangles mark proxy locations and the black dots in each

plot indicate the locations with extremely high MSE (MSE > 0.5 and well above the third quartile as indicated by Table 3).

Because the sampling locations of the pseudoproxy network are the same across all of the models, the variation in MSE is the

result of how well the network samples the underlying covariance structures of each model simulation. Two general groups of490

MSE patterns are evident in the model simulations. BCC, GISS and MPI have relatively small MSE throughout much of the

tropics and extratropics, while parts of the northern extratropics and polar region display extremely high MSE. In these model

simulations, the implication is that the pseudoproxy network reasonably samples the variability in much of the global field,

except for parts of the northern extratropics and polar regions. The second group comprises the CCSM and IPSL simulations.
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The MSE in each of these simulations is relatively high throughout the global field, with CCSM and IPSL displaying extremely495

high MSE in the northern extratropics and polar region and IPSL also yielding high MSE in parts of the southern extratropics

and polar regions.

The sampling network in BCC well represents the temperature variability around the equator, however, it yields very high

MSE in the NH extratropics. This makes the distribution of MSE associated with BCC largely skewed to the right due to the

extremely large MSEs in the NH extratropics (Table 3 and Figure 10). To further aid our interpretation, we provide the maps500

of the first and second EOFs in Figure 11. A joint comparison between Figures 10 and 11 shows that the variability of the first

and second EOFs of BCC mainly concentrates in the Northern Hemisphere where the large MSE is observed. The implication

is that the pseudoproxy sampling network in BCC does not well sample variability in the NH extratropics, while the leading

EOFs in BCC best represent variability over that region. This collectively further explains the poor performance of CFRs with

BCC in Figure 2 (SNR=0.5).505

Figure 10 also indicates that the MSE is high in CCSM and even higher for the IPSL model. Figure 11 nevertheless indicates

that the main difference between CCSM and IPSL is that the CCSM simulation shows strong signal throughout the leading

EOFs whereas the IPSL model only shows distinct signal in its first EOF. This helps explain the skill of CFRs associated with

the IPSL PPE concentrating in its first EOF (Figure 2). On the other hand, the GISS and MPI models exhibit the smallest

mean MSE, thus supporting the outstanding skill of their CFRs in reconstructing the mean. However, the performance of CFR510

methods, especially CCA and RIDGE, seems also additionally vulnerable to the skewness of the MSE, implied by Figure 2

(SNR=0.5). If we compare the CFR performance associated with the GISS and MPI PPEs, both TTLS and TTLH perform well

but CCA and RIDGE perform better in the MPI PPE due to the relatively high skewness of MSE in the GISS model.

In summary, both the skewness of the MSE and the high MSE distribution with weak signal on the leading EOF structure

together affect the skill of CFRs in all climate models. This is because large differences between the global climate and what515

can be sampled from the proxy network likely weakens the skill of CFRs in retaining the major mean structure of the targeted

climate. In contrast, however, even if the mean MSE is high due to high variability of the temperature field, the mean structure

may be well reconstructed by the CFRs if the leading EOF shows distinct signal.
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Figure 10. Mean square error (MSE) of sampling location regression: The MSE of the estimated temperatures using sampling location

regression is presented. The red triangles present the proxy location and the black dots indicate the extremely high MSE (MSE > 0.5)

Table 3. MSE distribution of five Climate Models

MIN 1ST Q. MEDIAN MEAN 3RD Q. MAX Skewness

BCC 0.122 0.161 0.189 0.263 0.239 4.698 6.579

CCSM 0.290 0.339 0.370 0.425 0.430 2.303 4.162

GISS 0.101 0.141 0.171 0.216 0.229 2.499 4.965

IPSL 0.342 0.430 0.472 0.512 0.538 2.054 3.718

MPI 0.112 0.169 0.208 0.250 0.265 1.788 3.802
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Figure 11. 1st and 2nd EOF of climate models : The upper and bottom panels show 1st and 2nd EOF of climate models, respectively.

5 Discussion and Conclusions

We have provided a comprehensive assessment of four widely-applied CFR methods in terms of their skill recovering the mean520

surface and covariance patterns in the targeted temperature field. The assessment is conducted in the context of PPEs based on

five climate model simulations spanning the 850-1995 CE interval. We have first applied the evaluation metrics presented in

Li et al. (2016) and Zhang and Shao (2015) to assess the skill of each CFR with respect to the differently modeled climates.

We then focused on interpreting and understanding the variability in the skill. We find that although part of the skill variability

arises from the reconstruction method itself, a large part of the discrepancy in the skill across different methods is attributable525

to different characteristics of simulated temperature fields associated with different climate models. Our discoveries provide

useful insights into the assessment and improvement of CFR methods, while the focus on the underlying characteristics of the

targeted climate field make our findings relevant beyond the four methods that we have tested.

The underlying features of a targeted temperature field that can affect the performance of CFRs, as represented across the

climate model simulations that we have investigated, include: (i) the characteristics of the eigenvalue spectrum, namely the530

amount of variance captured in the leading EOFs; (ii) the temporal stability of the leading EOFs; (iii) the representation of

the climate over the sampling network with respect to the global climate; and (iv) the strength of spatial covariance, i.e. the

dominance of teleconnections, in the targeted temperature field.

27

https://doi.org/10.5194/cp-2020-153
Preprint. Discussion started: 23 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Our results show that the CFRs derived within the CCSM, GISS, and MPI PPEs are skillful at recovering the mean structure,

whereas the CFRs associated with the BCC and IPSL PPEs exhibit large biases that are consistent with those presented in535

Smerdon et al. (2016). These results are likely due in part to the fact that the EOFs of the CCSM and MPI models are stable

across the calibration and reconstruction periods. Additionally, the sampling network well represents the global temperature of

GISS and MPI whereas is inadequate for the BCC model. This plays a key role in weakening the ability of CCA and RIDGE to

reconstruct the mean of the BCC model. In terms of skill recovering the spatial covariance associated with teleconnections, the

TTLS and TTLH methods outperform CCA and RIDGE, and in general CFRs derived in the CCSM PPEs outperform the CFRs540

associated with PPEs based on the other climate model simulations. Moreover, the CFRs of BCC and MPI show no skill in

recovering the large-scale teleconnection patterns when the SNR is low. For the BCC model, this low skill is also corroborated

by the observation that CFRs in the BCC PPE fail to represent the variability of teleconnections in the leading EOFs of the

target model in the ENSO dominant region. Within the MPI PPEs, similar challenges reconstructing the spatial covariance are

likely because the teleconnection in the model simulation is already weak, as indicted by the model’s low correlation between545

the leading five EOFs of the Niño3 region and those of the ENSO dominant region.

An important finding is that the skill of CFRs is highly associated to how well the leading EOFs in CFRs represent the

targeted climate field concerning both the variability and the subspace. We find that the spectra of eigenvalues in the CCSM,

GISS, and MPI models align well with their own CFRs. Among the four CFRs, the TTLS and TTLH methods better recover

the eigenvalue spectrum of the targeted climate by having a large amount of variability carried by leading EOFs. In particular,550

CCSM exhibits the highest variability on its first few leading EOFs and this pattern is well reproduced by the corresponding

EOFs in the CFRs derived from the TTLS and TTLH methods. Critically, these characteristics could be assessed for real-world

data sets or through comparisons between CFRs and the observational data during the calibration and validation intervals. Such

assessments are therefore strongly encouraged as additional means of testing both the likelihood of skillful reconstructions, as

well as adding to a source of calibration and validation interval skill metrics.555

Overall, the skill assessment we have performed using PPEs based on five climate models allow a deeper understanding of

both the reconstruction methods and the characteristics of the synthetic climate fields. As we have shown, CFR assessments

can vary based on the underlying spatiotemporal characteristics of the modeled target field. The ultimate goal is to evaluate

and improve real-world CFRs. Based on the results of this study, the reconstruction performance can depend on the eigenvalue

spectrum, the temporal stability of covariance patterns across the reconstruction and calibration intervals, the ability of sampling560

locations to represent the global climate characteristics, and the strength of the dominant teleconnections in the targeted climate

field. A careful investigation of the characteristics of the real-world climate will help identify the likely impact of these features

in CFRs derived from real proxies, as well as choose optimal reconstruction methods and proxy networks given the identified

characteristics of targeted climate fields. Although the characteristics of the real climate of course cannot be modified, our

findings will also help to define absolute limits on the skill of CFRs and thus improve their interpretations.565
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