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Abstract 

The Paleocene–Eocene Thermal Maximum (PETM; ~55.9 Ma) was a period of rapid and sustained global warming 

associated with significant carbon emissions. It coincided with the North Atlantic opening and emplacement of the 

North Atlantic Igneous Province (NAIP), suggesting a possible causal relationship. Only a very limited number of 15 

PETM studies exist from the North Sea, despite its ideal position for tracking the impact of both changing climate 

and the NAIP explosive and effusive activity. Here we present sedimentological, mineralogical, and geochemical 

proxy data from Denmark in the eastern North Sea, exploring the environmental response to the PETM. An 

increase in the chemical index of alteration and a kaolinite content up to 50 % of the clay fraction indicate an influx 

of terrestrial input shortly after the PETM onset and during the recovery, likely due to an intensified hydrological 20 

cycle. The volcanically derived minerals zeolite and smectite comprise up to 36 % and 90 % of the bulk and clay 

mineralogy respectively, highlighting the NAIPs importance as a sediment source for the North Sea and in 

increasing the rate of silicate weathering during the PETM. XRF element core scans also reveal possible hitherto 

unknown NAIP ash deposition both prior to and during the PETM. Geochemical proxies show that an anoxic to 

sulfidic environment persisted during the PETM body, possibly reaching euxinic conditions particularly in the 25 

upper half of the PETM body stratigraphy with high concentrations of Mo (MoEF>30>30 ppm), U (UEF up to 5), S 

(~4 wt%), and pyrite (~7 % of bulk), and low Th/U (<2 ppm). At the same time, export productivity and organic 

matter burial reached its maximum intensity. These new records reveal that negative feedback mechanisms 

including silicate weathering and organic carbon sequestrationdrawdown rapidly began to counteract the carbon 

cycle perturbations and temperature increase, and remained active throughout the PETM. This study highlights the 30 

importance of shelf sections in tracking the environmental response to the PETM climatic changes, and as carbon 

sinks driving the PETM recovery.  
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1. Introduction 

The early Cenozoic was a period characterized by long-term warming, punctuated by transient periods of rapid 

global hyperthermal events (Zachos et al., 2008; Hollis et al., 2012; Cramwinckel et al., 2018). The most 35 

pronounced of these periods was the Paleocene–Eocene Thermal Maximum (PETM; ~55.9 Ma; Kennett and Stott, 

1991; Thomas and Shackleton, 1996; Westerhold et al., 2018), during which global surface temperatures rose 

rapidly by 4–5 °C (Dunkley Jones et al., 2013; Frieling et al., 2017). The PETM is associated with a large input of 

12C-rich carbon to the ocean–atmosphere system resulting in a 2.5–78 ‰ negative carbon isotope excursion (CIE) 

in the terrestrial and marine sedimentary record (McInerney and Wing, 2011). The PETM CIE lasted up to 200 40 

kyr (Westerhold et al., 2018), and is characterised by a rapid onset (~1–5 kyr; Kirtland-Turner et al., 2017), 

followed by a stable body (~100 kyr; van der Meulen et al., 2020) and a gradual recovery towards background 

conditions (McInerney and Wing, 2011). There were a number of smaller-magnitude hyperthermals in the early 

Eocene, but the PETM differs from these events with both greaterhigher magnitude and longer duration (Zachos 

et al., 2010; Bowen, 2013). However, there is still no consensus on the ultimate PETM cause, or whether several 45 

mechanisms contributed to prolong the PETM duration (e.g. Zeebe et al., 2009; Bowen et al., 2015). Several 12C-

enriched carbon sources may have contributed to the PETM CIE:; the dissociation of methane clathrates (Dickens 

et al., 1995), a bolide impact activating terrestrial carbon reservoirs (Kent et al., 2003; Schaller et al., 2016), and 

volcanic and thermogenic degassing from the North Atlantic Igneous Province (NAIP; Fig. 1; Eldholm and 

Thomas, 1993; Svensen et al., 2004; Storey et al., 2007a).  50 

 

Figure 1: a) Plate tectonic reconstructionPalaeogeographic map from 56 Ma with the known NAIP extent indicated (modified 

from Abdelmalak et al., 2016, Horni et al., 2017, and Jones et al., 2019). The orange dot notes the position of core 22/10a-4 

described by Kender et al. (2012) and Kemp et al. (2016). Blue lines: plate boundaries. Black lines: present-day coastlines. 

Light and dark blue areas: shelf and deep marine areas, respectively. Light red areas: Known extent of subaerial and submarine 55 

extrusive volcanism from the NAIP. Dark red: individual volcanic centres. Black areas: extent of known NAIP sill intrusions 
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in sedimentary basins. The total extent of intrusions beneath the extrusive volcanism is not known. The dashed square indicates 

the position of Figure 12. ba) Map of Denmark showingwith the locations of the study area Fur. Additional locations from 

other relevant studies are indicated as, 1=Mors, 2=Ølst and 3=Store Bælt. indicated cb) Topographic map of the island of Fur 

(22 km2) with the two sample sites indicated. The high topography in the north of the island is a partially overturned anticline 60 

of Fur Formation and upper Stolleklint Clay strata. FigureMap modified from Stokke et al. (2020a).  

Marine uptake of increased atmospheric CO2 altered the ocean chemistry, leading to deep ocean acidification and 

substantial deep-sea carbonate dissolution (Zachos et al., 2005; Babila et al., 2018). The temperature increase and 

ocean acidification were accompanied by transient ocean circulation changes, increased halocline stratification and 

a global reduction in bottom water oxygen (Kennet and Stott, 1991; Nunes and Norris, 2006; Kender et al., 2012; 65 

Pälike et al., 2014). This led to the extinction of 30–50 % of all benthic foraminifera species (Koch et al., 

1992Thomas, 1990; Thomas & Shackleton, 1996; Alegret et al., 2009; Nagy et al., 2013). Anoxic conditions were 

less extensive during the PETM than in previous ocean anoxic events (Jenkyns, 2010), and there were large 

regional variations in ocean oxygenationicity (Pälike et al., 2014). Still, globally widespread ocean deoxygenation 

has been recognised (Pälike et al., 2014; Zhou et al., 2014; Yao et al., 2018), with particularly prevalent anoxic to 70 

euxinic conditions observed in semi-enclosed shelf areas such as in the Tethys Ocean (Egger et al., 2003; Khozyem 

et al., 2013), Peri Tethys Basin (Gavrilov et al., 19972003; Speijler et al., 1997; Dickson et al., 2014), the North 

Sea (Schoon et al., 2015), and the Arctic Ocean (Stein et al., 2006; Harding et al., 2011).  

The hydrological cycle also changed substantially during the PETM (e.g. Carmichael et al., 2017), with modelling 

studies suggesting an overall increase in extreme weather events (Carmichael et al., 2018). Proxy evidence 75 

indicates a more humid climate, particularly in higher latitudes and marginal marine areas such as Antarctica 

(Robert and Kennett, 1994), the northeast US coast (Gibson et al., 2000; John et al., 2012), the Tethys (Bolle et 

al., 2000; Egger et al., 2003; Khozyem et al., 2013), North Atlantic (Bornemann et al., 2014), North Sea (Kender 

et al., 2012; Kemp et al., 2016), and the Arctic (Dypvik et al., 2011; Harding et al., 2011). In contrast, areas such 

as the Pyrenees (Schmitz and Pujalte, 2003) and the US interior (Kraus and Riggins, 2007) show evidence of arid 80 

climates. There seems to be considerable regional and temporal variation in the hydrological changes, with an 

increased meridional transport of water vapour from low to high latitudes leading to an overall dry–dryer, wet–

wetter climate response to the global warming (Carmichael et al., 2017). 

The 4–5 °C PETM temperature increase (Dunkley Jones et al., 2013; Frieling et al., 2017) is comparable to that 

predicted in response to the current anthropogenic carbon emissions (e.g. Riahi et al., 2017). The PETM is therefore 85 

an important natural analogue for future greenhouse conditions, as the environmental and ecological response may 

hold clues for the consequences of present day global warming (Zachos et al., 2010; Alley, 2016; Penman and 

Zachos, 2018; Svensen et al., 2019). Model predictions suggest that the current global warming will lead to an 

enhanced hydrological cycle, akin to that indicated by PETM proxy records (Held and Soden, 2006; Seager et al., 

2010; Trenberth, 2011). The intensification of both droughts and extreme weather events are already occurring in 90 

parts of the world, with substantial consequences for human settlements (e.g. Riahi et al., 2017). Similarly, a 

decrease in ocean oxygenation has been observed for the last 50 years, most likely resulting from the current global 

warming (Bograd et al., 2008; Stramma et al., 2012). The spread of marine anoxia is a well-known consequence 

of global warming, negatively affecting marine ecosystems as a whole (Stramma et al., 2008; Gilly et al., 2013). 

Understanding the timing and regional distribution of the environmental response to global warming in the past is 95 

therefore vital to meet the challenges of the future. 
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Figure 2: H./Ø.=Holmehus/Østerrende Formation. Data from the Stolleklint beach and a nearby quarry (Fig. 3), with 

lithological units indicated to the left. H./Ø.=Holmehus/Østerrende Formation. The depth scale is measured upwards and 

downwards from the main marker bed Ash -33. The yellow column indicates the interpreted PETM CIE duration, based on the 100 

δ13C curve from Jones et al. (2019). The base of the column marks the CIE onset, and the gradually lighter colours toward the 

top marks the CIE recovery. Sea surface temperature (SST) variations are given as BAYSPAR calibrated TEX86 SSTs with 1σ 

error bar indicated by the light blue area (Stokke et al., 2020a). Ages are indicated based on 1Westerhold et al., 2018; 2Charles 

et al. (2011), assuming the Svalbard and Fur CIEs timing is coeval; 3Age of Ash -17 from Storey et al. (2007a) recalibrated by 

Jones et al. (2019). 105 

The Stolleklint section on the island of Fur in northwest Denmark offers an excellent opportunity to study the 

environmental response to temperature changes during the PETM in detail (Fig. 1). Denmark is placed in the 

eastern part of the epicontinental North Sea, which during the latest Paleocene became a highly restricted basin 

due to NAIP thermal uplift (Knox et al., 2010). During the PETM the North Sea was characterised by bottom-

water deoxygenation (Schoon et al., 2015), and a high sedimentary input, significant surface water freshening, and 110 

development of halocline stratification reflecting an intensified hydrological cycle (Zacke et al., 2009; Kender et 

al., 2012; Kemp et al., 2016). At Stolleklint, the PETM is recognized by a 4.5 ‰ CIE and the appearance of the 
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diagnostic dinoflagellate Apectodinium augustum at the base of the earliest Eocene Stolleklint Clay (Fig. 2; 

Heilmann-Clausen, 1994; Schmitz et al., 2004; Schoon et al., 2013; Jones et al., 2019). The Stolleklint Clay – 

which covers the PETM interval in Denmark – is a thermally immature and expanded clay-dominated sectionunit, 115 

making this a unique and particularly well-suited section for detailed geochemical analyses.  Located in a 

downwind direction and within proximity to the NAIP, Denmark was also ideally placed to record the 

contemporary volcanic activity from the NAIP (Fig. 1) that lasted between ~63-54 Ma (Fig. 1; Jones et al., 2019; 

Stokke et al., 2020b; Wilkinson et al., 2017). This is evidenced by the hundreds of NAIP tephra layers interbedded 

in the Danish and North Sea stratigraphy, mainly deposited during the most voluminous phase of the NAIP between 120 

~56-54 Ma (Fig. 2; Bøggild, 1918; Knox and Morton, 1988; Larsen et al., 2003). The NAIP importance in the 

PETM initiation and termination is a topic of much discussion (Svensen et al., 2004; Jolley and Widdowson, 2005; 

Storey et al., 2007a; Frieling et al., 2016; Saunders, 2016; Gutjahr et al., 2017). To refine this relationship, better 

constraints on the relative timings of volcanic activity and climatic and environmental changes are needed.  

In our previous paper from Stolleklint, we presented a high resolution sea surface temperature (SST) reconstruction 125 

based on the organic palaeothermometer TEX86 (Stokke et al., 2020a). We found that SSTs increased by about 10 

°C across the CIE onset, and then gradually decreased during the CIE body and recovery (Fig. 2; Stokke et al., 

2020a). Here, we combine mineralogical, sedimentological, and geochemical proxies to investigate the relationship 

between changes in temperature and variations in both basin oxygenationicity and sediment input; the latter 

typically inferred to indicate changes in terrestrial erosion and runoff. Both increased weathering of siliciclastic 130 

rocks and enhanced sequestration of organic carbon have been proposed as important negative feedback 

mechanisms, potentially driving the PETM recovery (Speijler and Wagner, 2002; Bowen and Zachos, 2010; Ma 

et al., 2014; Penman, 2016; Dunkley-Jones et al., 2018). Better constraints on the timing and global extent of 

increased silicate weathering and organic matter sequestration drawdown are therefore vital for understanding the 

PETM termination.  135 

2. Field area and stratigraphy 

Stolleklint is located on the northern shore of the island of Fur in northwest Denmark (Fig. 1). In the Palaeogene, 

Fur was part of the Norwegian–Danish Basin, a marginal basin in the eastern semi-enclosed epicontinental North 

Sea Basin (Rasmussen et al., 2008; Knox et al., 2010). The Norwegian–Danish Basin forms a NW to SE striking 

depression, bounded by the Fennoscandian Shield and the Sorgenfrei–Tornquist Zone to the NE and basement 140 

blocks in the Ringkøbing–Fyn High to the SW (Schiøler et al., 2007). Salt diapirs of Zechsten salt creates additional 

restricting structures within the Norwegian–Danish Basin (e.g. Petersen et al., 2008).  

The base of the section at Stolleklint likely comprises the Holmehus Formation, which correspond to the Lista 

Formation offshore in the North Sea (Figs. 2, 3, 4). This is a hemipelagic bioturbated fine-grained mudstone, 

representing the culmination of a long period of transgression in the latest Paleocene Denmark (Heilmann-Clausen, 145 

1995). In the latest Paleocene, a combination of thermal uplift around the NAIP (Knox, 1996) and tectonic uplift 

along the Sorgenfrei–Tornquist Zone (Clausen et al., 2000) led to a relative sea-level fall and almost complete 

isolation of the North Sea Basin (Knox et al., 2010). In Denmark, this resulted in either erosion of the latest 

Paleocene strata, a hiatus in deposition, or deposition of the informal Østerrende clay unit above the Holmehus 

Formation. However, the Østerrende clay unit has a very limited regional distribution, and it is uncertain how much 150 
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is present at Stolleklint despite its presence further south in Denmark (Fig. 2; Schmitz et al., 2004; King, 2016). 

Schoon et al. (2015) correlated the uppermost Paleocene stratigraphy at Fur with the Østerrende clay similar to 

that seen at Store Bælt (Fig. 1a). However, the Østerrende clay is absent in cores drilled at Mors ~20 km to the 

west and at Ølst ~80 km to the SE (Fig. 1aA; Heilmann-Clausen, 1995), suggesting that a hiatus of uncertain 

duration followed the Holmehus Formation at Stolleklint. Still, due to the uncertainty of this boundary, we will 155 

henceforth refer to the lowermost unit as the Holmehus/Østerrende Formation. 

 

Figure 2: Composite figure of the late Paleocene and early Eocene interval, indicating both the Danish stratigraphy and the 

correlative offshore North Sea stratigraphy. Stratigraphy from King (2016) and Schiøler et al. (2007). The δ13C and δ18O curves 

indicate the stratigraphic position of two periods of carbon perturbation; the Paleocene–Eocene Thermal Maximum (PETM) 160 

and the Eocene Thermal Maximum 2 (ETM2). Carbon and oxygen isotope data from Cramer et al. (2009) and Littler et al. 

(2014) and plotted on the GTS2012 timescale (Ogg, 2012).  

The Paleocene–Eocene transition is seen as a lithological shift from the Holmehus/Østerrende Formation 

bioturbated clays, into the dark, laminated clays of the Stolleklint Clay (Figs. 3, 4; Heilmann-Clausen et al., 1985; 

Heilmann-Clausen, 1995; King, 2016). The lithological shift is accompanied by the almost complete absence of 165 

benthic fauna and preferential dissolution of remaining calcareous organisms within the Stolleklint Clay 

(Heilmann-Clausen, 1995; Mitlehner, 1996). The Stolleklint Clay is an informal unit, representing the lower Ølst 

Formation in northern Denmark and correlating with the offshore Sele Formation (Fig. 2; Heilmann-Clausen, 

1995). A condensed, glauconite-rich silty horizon marks the Stolleklint Clay base (Heilmann-Clausen, 1995, 

Schmitz et al., 2004; Schoon et al., 2015). This glauconite-rich silt contains mainly authigenic and biogenic grains 170 

and was likely deposited in an upper bathyal to outer neritic environment with low sedimentation rates (Nielsen et 

al., 1986; Schoon et al., 2015). A relative sea level rise is recorded in PETM sections in the Atlantic, Pacific, 

Tethyan, and Arctic Oceans (Sluijs et al., 2008; Harding et al., 2011; Pujalte et al., 2014; Sluijs et al., 2014). It was 

likely caused by thermal expansion of seawater due to global warming (Sluijs et al., 2008), and may pre-date the 

PETM up to 20–200 kyr (John et al., 2012). Although this transgression was overprinted by regional tectonically 175 

forced regression in the latest Paleocene, the earliest Eocene Stolleklint Clay is deposited in an outer neritic 
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environment (between 100–200 m; Knox et al., 2010; Schoon et al., 2015) during a gradual transgression 

(Heilmann-Clausen, 1995). The Stolleklint Clay is overlain by the ~60 m thick clay-rich Fur Formation diatomites 

(Figs. 3, 4), correlating to the offshore Sele and Balder Formations (Fig. 2). At Stolleklint, the PETM is defined 

by a negative CIE of -4.5 ‰ based on stable carbon isotopes of bulk samples (δ13CTOC). The CIE is; characterized 180 

by a sharp (2cm) onset above Ash SK2 at the base of the Stolleklint Clay, a thick stable body phase (~24 m), and 

a gradual recovery (~4.5 m) from about Ash -33 to around Ash -21a (Fig. 3, 4; Jones et al., 2019). Recent 

glaciotectonic activity has resulted in a relatively steep bedding with internal small scale folding and thrusting 

(Pedersen, 2008), complicating stratigraphic thickness estimates. Jones et al. (2019) used trigonometry to estimate 

a local true thickness of 24.4 ± 2 m (24.2 m excluding ash layers) for the PETM onset and body at the Stolleklint 185 

beach; from the top of Ash SK2 to the base of Ash -33 within the excavated trench. An overall sedimentation rate 

was then calculated for the PETM body based on the estimated true thickness and an assumed 100 kyr duration for 

the PETM body (van de Meulen et al., 2020). The PETM at Stolleklint is consequently associated with a 

substantially increased sedimentation rate from the condensed glauconitic base to a maximum sediment 

accumulation rate in the Stolleklint Clay of about 24 cm/kyr (Stokke et al., 2020a). 190 

 

Figure 3: a) Picture of the coastal cliff at the Stolleklint beach with the main stratigraphic units shown as yellow (Fur 

Formation), green (Stolleklint Clay), and blue (Holmehus/Østerrende Formation). The black lines indicate certain key ash 

layers, and white dashed lines indicate the upper and lower bounds of the PETM CIE. b) Close up of the central part of the cliff 

face showing the colour difference between the dark PETM clays and the light post-PETM diatomites. Ash -33 and the PETM 195 

CIE are indicated. Note the 43 m long ditch on the beach where most of the samples were collected. c) Picture of the continued 

cliff side towards the west, showing the extensive coastal erosion. Approximate location of Ash -33 is indicated. 

More than 180 tephras with thicknesses up to 20 cm have been identified in the stratigraphy exposed at Fur, with 

the majority (~140) within the post-PETM Fur Formation (Fig. 2; Bøggild, 1918; Pedersen and Surlyk, 1983). 

Tephra is a general term for all air-borne volcanic fragmented material, but the grain sizes of all the Fur tephras 200 
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are <2 mm and therefore within the ash fraction. Heavily altered ashes are called bentonites, and while this applies 

to some of the lowermost ashes we will for simplicity use the term ash for all. The volcanic ashes are grouped in 

a negative and positive ash series based on variations on outcrop appearance and geochemistry (Bøggild, 1918), 

with additional ash layers SK1–4 identified later at the base of the Stolleklint Clay (Schmitz et al., 2004; Jones et 

al., 2019). The SK ashes and the negative series are a heterogeneous mix of ash compositions, whereas the positive 205 

series are largely comprised of tholeiitic basalts (Morton and Evans, 1988; Larsen et al., 2003). All the ashes are 

believed to be sourced from NAIP explosive volcanism during the northeast Atlantic opening (Larsen et al., 2003; 

Storey et al., 2007a; Stokke et al., 2020b). These ash layers are found throughout the North Sea and North Atlantic 

(Knox and Morton, 1988; Haaland et al., 2000) with some of the major layers traced all the way to Austria , 

suggesting that ash was occasionally distributed all over Northern Europe (Egger et al., 2000).   210 

3. Materials and methods 

3.1 Sampling 

Samples were mostly collected from the Stolleklint beach (56°50’29’’N, 8°59’33’’E; Figs. 1B, 3), with some 

additional samples from a quarry near Fur Camping (Quarry FQ16 at 56°49’51’’N, 8°58’45’’E; Fig 1B). At 

Stolleklint, the Stolleklint Clay and the Fur Formation are exposed in the cliff side (Fig. 3). However, the base of 215 

the Stolleklint Clay and the Paleocene–Eocene transition were not exposed at the time of field work due to coastal 

erosion (Fig. 3C). We therefore excavated a 43 m long and 0.5 m deep trench along the beach (Fig. 4B). Recent 

glaciotectonic activity has resulted in a relatively steep bedding with internal small scale folding and thrusting 

(Pedersen, 2008), complicating stratigraphic thickness estimates. Jones et al. (2019) used trigonometry to estimate 

a local true thickness of 24.4 ± 2 m (24.2 m excluding ash layers) for the PETM onset and body at the Stolleklint 220 

beach; from the top of Ash SK2 to the base of Ash -33 within the excavated trench. Theis estimated true thickness 

of 24.4 m from the top of Ash SK2 to the base of Ash -33 is used as the depth scale for stratigraphic presentation 

(e.g. Fig. 4)., The scale is measured as positive and negative depth relative to the base of the main marker bed Ash 

-33. As the PETM was the main target, samples are collected at highest resolution across the PETM onset, then at 

lower resolution within the PETM interval and in the post-PETM section: Discrete 1 cm-thick samples were 225 

collected at 1 cm intervals (i.e. 100% sampling) from ~25 cm below to ~90 cm above Ash SK1, (in estimated true 

thickness), and then at 0.5 m intervals (0.2-0.3 m when converted to the estimated true thickness) up to Ash -33. 

Samples above ash -33 were collected from the cliff face at Stolleklint at ~10–20 cm intervals. Additional samples 

from -5.6 to +1.9 m relative to the base of Ash -33 were included from the quarry FQ16, sampled at ~30 cm 

intervals. All samples were oven dried at ≤50 °C and powdered in an agate hand mortar or an agate disc mill before 230 

further analysis. 

The sediments’ unconsolidated character enabled the collection of 4 box-cores up section. The box-cores were 

collected in 50 cm long, and 5 cm wide and deep aluminium boxes. These were pushed into the sediments before 

surrounding material was removed and the box cut away with its content intact using a steel wire. Box-cores were 

collected in order to get complete recovery of selected intervals for XRF core scanning (Fig. 4). Two box-cores 235 

were collected across the PETM onset (-24.90 to -24.40 m and -24.63 to -24.20 m stratigraphic depth intervals), 

and two from the PETM body with one from the lower laminated part (-14.47 to -14.17 m) and one from the non-

laminated upper part (-10.81 to -10.48 m).  
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3.2 XRD bulk and clay mineralogy 

Bulk rock mineralogy was conducted on 8 samples from -24.81 to +5.35 m depth, while 13 samples were analysed 240 

for clay minerals. The mineralogy of both bulk rock and clay fraction (< 2 µm) of Fur sediment samples were 

determined by X-ray diffraction (XRD) analyses on a Bruker D8 ADVANCE diffractometer with a Lynxeye 1-

dimensional position-sensitive detector (PSD) and CuKα radiation (λ = 0.154 nm; 40mA and 40kV) at the 

Department of Geosciences, University of Oslo. The bulk-rock fraction was wet milled in a McCrone Micronizing 

Mill, prepared as randomly oriented samples, and analysed with a step size of 0.01° from 2° to 65° (2θ) at a count 245 

time of 0.3 s (2θ). The software DIFFRAC-EVA (v. 2.0) was used for phase determination, and phase quantities 

were determined by Rietveld refinement (Rietveld, 1969) using PROFEX (v. 3.13.0; Doebelin and Kleeberg, 

2015). 

The clay fraction (< 2 µm) was separated from the crushed whole-rock sample (before wet milling) by gravity 

settling, and then prepared as oriented aggregate mounts using the Millipore filter transfer method (Moore and 250 

Reynolds, 1997). As the dried samples had to be powdered prior to separation, they contain some minor 

contribution from the coarser fraction. XRD clay data were recorded with a step size of 0.01° from 2° to 65° (2θ) 

at a count time of 0.3s (2θ) in air-dried samples, and a step size of 0.01° from 2° to 34° (2θ) at a count time of 0.3s 

(2θ) on treated samples. Three rounds of treatments were applied: 24h of ethylene glycol saturation, 1h heating at 

350 °C, and 1h heating at 550 °C. The software NewMod II (Reynolds and Reynolds, 2012) was used for semi-255 

quantification of the XRD-patterns of inter-stratified clay minerals. 

3.3 XRF elemental core scanning 

Non-destructive geochemical measurements and radiographic images were obtained from the box-cores with an 

ITRAX X-ray fluorescence (XRF) Core Scanner (Croudace et al., 2006) from Cox Analytical Systems at the 

EARTHLAB facilities, Department of Earth Science, University of Bergen. The core scanner was fitted with a 260 

molybdenum X-ray tube run with power settings at 30 kV and 30 mA. The box-cores were scanned with 10 s 

exposure time at 0.5 mm sampling intervals.  

3.4 Rock-Eval pyrolysis 

A total of 39 samples were analysed between -24.81 and +0.01 m depth. Analyses were conducted at the University 

of Oxford on a Rock-Eval 6 (Vinci Technologies SA, Nanterre, France; Behar et al., 2001) with pyrolysis and 265 

oxidation ovens, a flame ionization detector, and infra-red cell. Powder aliquots of 50 mg were weighed into 

crucibles and heated first at a temperature profile of 300 – 650 °C in a pyrolysis furnace and then at 300-850 °C in 

an oxidation oven. For a detailed methodology on the Rock-Eval 6 application, see Lafargue et al. (1998). 

The bulk organic-carbon characteristics including the hydrogen index (HI), oxygen index (OI), and Tmax were 

investigated using RockEval data. The HI (expressed as mg HC/g TOC) corresponds to the quantity of 270 

hydrocarbons per gram TOC, and the OI (expressed as mg CO2/g TOC) to the quantity of oxygen released as CO 

and CO2 per gram TOC. Sediment records of HI and OI provide information on both organic matter sources and 

processing. The HI typically reflect the relative distribution of terrestrially and marine derived organic matter, 

while the OI index indicate the degree of oxidation of the organic matter. The ratio of HI/OI can be used to indicate 

the degree of organic matter alteration. A HI/OI <1 in sediments typically indicate a high degree of alteration, 275 

while fresh organic matter has a HI/OI >2 as oxic degradation preferentially removes hydrogen-rich compounds 
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(Hare et al., 2014). Tmax is the temperature at which the maximum amount of S2 hydrocarbons are generated. It 

can be used to indicate the degree of organic matter maturation with Tmax temperatures <435 °C typically indicating 

immature organic matter (Peters, 1986).  

The bulk organic-carbon characteristics including the hydrogen index (HI), oxygen index (OI), and TMAX were 280 

determined by analysing ca 50 mg powder aliquots with a Rock-Eval 6 (Vinci Technologies SA, Nanterre, France; 

Behar et al., 2001) at the University of Oxford. A total of 39 samples were analysed between -24.81 and +0.01 m 

depth. The HI corresponds to the quantity of hydrocarbons per gram TOC, and reflects the relative distribution of 

terrestrially and marine derived organic matter. A HI <100 indicates a dominantly terrigenous source, while a HI 

>>100 indicates the presence of significant amount of aquatic algae (marine and/or freshwater) and/or microbial 285 

biomass (e.g. Stein et al., 2006). 

3.5 ICP-MS and Element Analyser  

Analyses were conducted on 24 samples between -24.82 to +5.50 m depth. Dried and crushed marine sediment 

samples were digested in hydrochloric, hydrofluoric, and nitric acids to give a total dilution of ∼4 x 106-fold by 

volume. Major and trace element analyses of digested bulk sediment samples were performed on a PerkinElmer 290 

NexION 350D ICP-MS. Total sulfur concentrations were analysed on a Coulomat 702 coulometric analyser. 

Sample digestion and analyses were all conducted at the Department of Earth Sciences, University of Oxford. The 

method detection limit, accuracy, and precision of the analyses areis givenindicated in the supplementary material 

(Table 4, Supplement 1). Major elements analysed on ICP-MS were converted from elemental mass units to oxide 

wt% equivalents. The trace metals Cu, Ni, Mo, U, and V were calculated as enrichment factors (Eq. 1) to account 295 

for possible dilution using standard Al values of average upper crust from McLennan (2001). 

𝐸𝐹𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑋 =
𝑋

𝐴𝑙𝑠𝑎𝑚𝑝𝑙𝑒
/

𝑋

𝐴𝑙𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
        (1) 

P2O5, Ba, Cu, Ni, and V have all been normalized to Al2O3 to account for the potential detrital influx, as Al2O3 

indicates the aluminosilicate fraction of the sediments (Tribovillard et al., 2006). 

ICP-MS analyses of major elements were used to calculate the chemical index of alteration (CIA; Nesbitt and 300 

Young, 1982). The CIA is a measure of weathering intensity based on the relative distribution of mobile cations 

relative to aluminium oxide, and indicates the extent of conversion of feldspars (which dominate the upper crust) 

to clays such as kaolinite (Nesbitt and Young, 1982). While the CIA may directly represent the rate and intensity 

of weathering when measured in situ, when measured in marine sediments it becomes more complex as it also 

reflects changes in the type of sediment sources and the transport sorting processes (Eq. 2; Nesbitt and Young, 305 

1982). The CIA is expressed as: 

 𝐶𝐼𝐴 = (
𝐴𝑙2𝑂3

𝐴𝑙2𝑂3+𝐶𝑎𝑂∗𝐶𝑎𝑂+𝐾2𝑂+𝑁𝑎2𝑂
) ∗ 100       (2) 

Where Al2O5, CaO*, K2O, and Na2O are given as whole-rock molecular proportions, and CaO* is the total silicate 

fraction of CaO corrected for the presence of carbonates and phosphates following the approach of McLennan, 

1993. First, apatite was accounted for using the molecular proportions: 310 

𝐶𝑎𝑂𝑎𝑝 = 𝐶𝑎𝑂 − (
10

3
∗ 𝑃2𝑂5)        (3) 
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As we do not have measurements of CaCO3 from the source rock, we assume a ratio of Ca/Na=1 (McLennan, 

1993), and that samples with excess CaO is where CaOap>Na2O. We then find that CaO*=Na2O where 

CaOap>Na2O and CaO*=CaOap where CaOap≤Na2O. 

4. Results 315 

 

Figure 4: The studied stratigraphy from the island of Fur shown to the left with the depth scale measured upwards and 

downwards from the main marker bed Ash -33. Strat. = stratigraphy, Pa. = Paleocene, Th. = Thanetian, H./Ø. = 

Holmehus/Østerrende Formation (dotted line indicate base of the glauconitic silt). Overall climate indicated based on previously 

published data from the study area. The yellow column indicates the interpreted PETM CIE duration, based on the δ13C curve 320 
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from Jones et al. (2019). The base of the column marks the CIE onset, and the gradually lighter colours toward the top marks 

the CIE recovery. Sea surface temperature (SST) variations are given as BAYSPAR calibrated TEX86 SSTs with 1σ error bar 

indicated by the light blue area (Stokke et al., 2020a).  Sedimentological log from Stolleklint with legend below. Red squares 

labelled A–D indicate the stratigraphic position of XRF box-core scans position shown  in Figures 56 and 6. Bulk-rock and 

clay mineralogy is presented as percentage. δ13C data from Jones et al. (2019), TEX86 data from Stokke et al. (2020a). Ages 325 

indicated to the right are based on 1Westerhold et al., 2018; 2Charles et al. (2011), assuming the Svalbard and Fur CIEs timing 

is coeval; 3 Corrected Ar-Ar age of Ash -17 from Storey et al. (2007a) recalibrated to the FCT calibration from Renne et al. 

(2010; 2011) to 55.66 ± 0.12 Ma. 

4.1 Sedimentology 

The base of the beach section comprises the Holmehus/Østerrende Formation (Figs. 3, 4), which is composed of 330 

dark, blueish clay with pervasive bioturbation. It is overlain by a greenish silty layer indicative of glauconite 

(marked with G in Fig. 5), with up to coarse sand-sized aggregates of glauconite scattered within the clay. The silts 

lower boundary is unclear, but it appears conformable and possibly gradational. The 5 cm thick ash layer SK1 is 

deposited above the glauconitic silt, with a sharp undulating lower boundary (Fig. 5). About 4.5 cm of structureless, 

grey clay conformably overlies SK1, and is followed by the ~8 cm thick ash layer SK2 (Fig. 5). Both ashes are 335 

light grey and seems to be heavily altered. They are upward fining from medium sand to clay-sized particles. Both 

ashes are relatively reworked and become gradually more clay-rich toward the top, with the highest bioturbation 

intensity at the top of Ash SK2 (Fig. 5). About 2 cm of strongly bioturbated and ash-rich clay overlying the ash is 

abruptly ended by the initiation of dark laminations (Fig. 5 section B). The exact level of the Stolleklint Clay base 

is uncertain as the boundary is blurred by ashes SK1 and SK2, but the start of the laminations is included in the 340 

Stolleklint Clay, placing the boundary no higher than here (Fig. 5 section B). Laminated dark clay continues for 

~10 cm before deposition of two ash layers SK3 and SK4, ~1 cm and ~0.4 cm thick respectively (Fig. 5 section 

B). They are separated by 2 cm of clay with slightly undulating lamination. Above the ash, laminated clay continues 

about half-way up the beach (Fig. 4), with increasingly folded and disturbed layering (Fig. 6 section C). 

The PETM body is dominated by hemipelagic clay. Above the lower laminated part, it appears to have an upper 345 

part (from about -10 m depth) comprising very dark grey clay with no visible laminations in field exposures (Fig. 

4). However, the XRF radiographic image reveals that there are intermittent diffuse laminations and patchy 

structures/colour differences within the clay (Fig. 6 section D). The cause of these colour patches is uncertain, but 

could be a result of depositional variations and/or post-depositional deformation. Between about -6 and -2 m depth 

there are some highly pyritized concretions, or likely broken up concreted layers (Fig. 4). Ash layers reappear from 350 

about -5 m depth with deposition of the thin (~2 cm), black Ash -39 (Fig. 4). Ashes -34, -33, -32, and -31 are 

deposited relatively closely spaced between -0.85 to +0.05 m depth, with thicknesses of 2, 20, 2 and 3 cm 

respectively. The thickest layer Ash -33 is repeated at the Stolleklint Beach, due to a small glaciotectonic thrust 

fault (Fig. 4). The boundary between the Stolleklint Clay and the Fur Formation is formally placed at Ash -33, 

although there is no sharp lithological boundary (Figs. 3, 4). Dark clays continue upward with a gradually 355 

increasing diatomite content. Laminations re-appear at about +6 m depth, as the lithology become dominated by 

clay-rich diatomite (Fig. 4). 
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4.2 Mineralogy 

The bulk mineralogy comprises six main phases: zeolites, mica, clay (including smectite, chlorite, kaolin minerals, 

and glauconite), feldspars, quartz, and pyrite (Fig. 4). Phyllosilicates dominate the bulk mineralogy in the lower 360 

laminated part of the stratigraphy. While the mica fraction remains relatively stable throughout, the clay fraction 

reaches its maximum of 50.6 % at ~13 cm above Ash SK2 and the CIE onset (-24.24 m depth), before decreasing 

substantially upward from about -22 m depth to nearly 0 % at -10 m depth (Fig. 4). Zeolites (of the heulandite–

clinoptilolite type) dominate the CIE body, comprising up to 36 % of the bulk mineralogy at -10.48 m depth (Fig. 

4). The fraction of feldspars is largest within the Holmehus/Østerende Formation (37 % at -24.81 m depth) and 365 

during the CIE recovery (35 % at +5.35 m depth), while quartz increases in the upper part of the stratigraphy up 

to 26 % at -0.28 m depth (Fig. 4). Pyrite makes up the smallest fraction of the bulk mineralogy (Fig. 4). It increases 

from 1.9 % in the lower Holmehus/Østerrende Formation (-24.81 m depth) to 5.3 % ~13 cm above the CIE onset 

(-24.24 m depth). The highest fraction of pyrite (6.1–7.5 %) is reached during the CIE body, before values decrease 

during the PETM recovery to a minimum of 0.11 % at +5.35 m depth. 370 
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Figure 5: XRF element core scans and radiographic images of two box-cores crossing the PETM onset at the Stolleklint beach. 

Note that despite some cracks in the surface below Ash SK1, the sample preservation is overall good and XRF core scanning 

were conducted on a smoothed surface along the centre avoiding any substantial irregularities. Interpretive logs next to the 

images indicate the lithological changes. G=Glauconite; B=Burrow; I-A cl=Inter-ash clay. The corrected stratigraphic depth 375 

relative to Ash -33 of each section is indicated to the left. XRF scanning length seen to the right indicate actual box-core length. 

XRF data given as counts per second (cps) or as dimensionless ratios. 

Clay fraction XRD analyses identified four major clay mineral phases: kaolinite, chlorite, mixed-layer illite–

smectite with only minor illite layers indicating almost pure smectite, and illite + fine-grained mica (Fig. 4). Illite–

smectite is the dominating clay mineral within the studied section. It comprises 84–90 % of the total clay from the 380 

base and up to 13 cm above the CIE onset (-24.24 m depth), before decreasing in the lower PETM body to a 

minimum of 32 % about 1.5 m above the CIE onset (-22.86 m depth). The illite–smectite content increases 

throughout the upper CIE body and recovery with values between 50–77 % (Fig. 4). Illite + fine-grained mica 

comprises a smaller part of the total clay fraction, with 10 % during the CIE onset, and a maximum of 33 % at -
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5.93 m depth (Fig. 4). Kaolinite increases substantially from 5 % about 13 cm above the CIE onset (-24.24 m 385 

depth) to 37 % at 62 cm above the CIE onset (-23.75 m depth). Kaolinite dominates the clay fraction in the lower 

laminated PETM body with a maximum of 52 % at -20.60 m depth, before disappearing in the upper PETM body 

and re-emerging with 11 % during the recovery phase (+5.35 m depth; Fig. 4). Chlorite only appear in 4 of 13 

samples and makes up the smallest part of the clay fraction, with a maximum of 7 % at -10.48 m depth (Fig. 4). 

 390 
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Figure 6: XRF element core scans and radiographic images of two box-cores within the PETM body from the Stolleklint beach. 

The sample preservation of these box-cores were excellent with no substantial irregularities. Interpretive logs next to the images 

indicate the lithological changes. The corrected stratigraphic depth relative to Ash -33 for each section is indicated to the left, 

while the XRF scanning length to the right indicate actual box-core length. Grey bands in section D indicate potentially tephra-

rich horizons. XRF data given as counts per second (cps) or as dimensionless ratios. 395 

4.3 XRF core scanningBox-core major element variations 

Two box-cores cross the PETM onset, covering the transition from Holmehus/Østerrende Formation into 

Stolleklint Clay, and the ash layers SK1–SK4 (Figs. 4, 5, 6).  Sulfur counts show a slight overall increase from 

below to above the ashes, suggesting gradually more suboxic conditions above the ashes. Low K/Ti and Fe/Ti 

ratios suggest that the ashes are Ti-rich basalts. The gradual decrease in both K/Ti and Fe/Ti below Ash SK1 may 400 

subsequently suggests a potential gradual increase in volcanic-derived material before the first ash layers in the 

Danish Basin appears (Fig. 5). Sulfur counts show a slight overall increase from below to above the ashes. Peaks 

in S counts indicate particularly S-rich parts of the ashes, although when correlating with Fe/Ti peaks it is more 

likely due to suboxic formation. Above Ash SK3, there are several peaks of S, Fe/Ti, and Fe/K (although the latter 

signal is swamped by the iron-rich ashes in Fig. 5 section B) that correlate with each other and with the dark 405 

laminations, suggesting at least periods of decreased oxicity.  

 

Figure 7: Biplot (left) and correlation circle (right) with Dimensions 1 and 2 (denoted as Dim 1 and Dim 2) of the principal 

component analysis applied to XRF core scanning data from box cores 1 and 2 across the PETM onset. Dimensions 1 and 2 

represent 62 % of the total variability. The inter-ash clay in the Biplot refers to the clay between ashes SK1 and SK2 as indicated 410 

in Figure 5. 

Principal component analysis reveal a distinct difference in chemistry between the Holmehus/Østerrende 

Formation and the Stolleklint Clay (Fig. 7). It also indicates that both the clay between ashes SK1 and SK2 and 

parts of the glauconitic silt likely include a large ash component. While the glauconitic silt is chemically closer to 

the underlying Holmehus/Østerrende Formation than the Stolleklint Clay, the less ash-rich inter-ash clay appears 415 

to have a composition closest to the Stolleklint Clay. This suggests that this is indeed a part of the Stolleklint Clay 

base, and we therefore propose that Ash SK1 marks the lower Stolleklint Clay boundary. The correlation circle 
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indicate that differences in Ca and Ti on one hand and K on the other is the main controlling factors, reflecting the 

variation between volcanic and clay dominated fractions respectively (Fig. 7). 

 420 

Figure 8: Biplot of Fe and S. Data from XRF element core scans of all four box-cores. CPS = Counts Per Second. 

The box core in Figure 6 section C, covering the lower Stolleklint Clay, shows that the sediments are strongly 

laminated and slightly folded. Elevated S concentrations and high Fe/Ti and Fe/K ratios indicate anoxic conditions. 

Correlations between these peaks in anoxia and darkcorrelate with the dark laminations (Fig. 6 section C) 

suggesting that there were some regular variability in basin oxygenationtions in bottom-water oxicity. The K/Ti 425 

ratio remains relatively stable, suggesting no dramatic lithological changes. Figure 6 section D shows the non-

laminated upper Stolleklint Clay, which displays relatively minor elemental variations. However, drops in the K/Ti 

ratio could indicate areas of increased volcanically-derived material, potentially as cryptotephras (Fig. 6 section 

D); defined as volcanic tephra deposits not visible to the naked eye. The presence of cryptotephra layers is 

particularly likely when low K/Ti ratios correlate with increases in Fe/Ti and Ca, and to some extent S. Relative 430 

changes in Fe/Ti – and to some extent Ca – depend strongly on the source of the volcanic material. The biplot of 

S and Fe (Fig. 8) shows that there is an overall increase in S upward from the pre-PETM Holmehus/Østerrende 

Formation and throughout the Stolleklint Clay. It also indicate that there upper PETM body have a more 

homogenous high sulfur content, while there is significant variation in the sulfur counts between dark and light 

laminations in the lower laminated PETM body, as also observed in the XRF core scans (Fig.8 section C).shows 435 

that the variability of S measurements decreases upward, and that there is an overall increase in S upward from the 

pre-PETM Holmehus/Østerrende Formation and throughout the Stolleklint Clay.  

4.4 Organic geochemistry 

The thermal immaturity of the Stolleklint Clay has previously been suggested based on the dominating odd over 

even preference in long-chained n-alkanes (Stokke et al., 2020a). This is now also verified by the low RockEval 440 

Tmax values of <422 °C (Table 3, Supplement 1). The HI peaks up to 150 mgHC/gTOC in the glauconitic silt 

between -24.61 to -24.59 m depth, but is otherwise <100 mgHC/gTOC pre-PETM (Fig. 9). The HI increases >100 

mgHC/gTOC about 13 cm above the CIE onset at -24.05 m depth. A second major increase in HI occurs above -

14 m depth, after which values remain high and reaches maximum values of 303 mgHC/gTOC at -0.78 m depth 

(Fig. 10). The OI values are relatively even and low with values between 25-42 mgCO2/gTOC for most of the 445 
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section. The main exception is elevated interval with OI values between 51-94 mgCO2/gTOC starting at the base 

of the glauconitic silt (OI rise from 37 to 78 mgCO2/gTOC at -24.58 m depth) and lasting during the PETM onset 

up to about -24.32 m depth. The HI/OI ratios is consistently >2 with the exception of the same interval covering 

the glauconitic silt and the PETM onset between -24.58 to -24.32 m depth where values vary between 0.74-1.33. 

Both the Terrigenous Aquatic Ratio (TAR) and TOC data is taken from Stokke et al. (2020a). TAR is defined as 450 

the ratio of the primarily land-plant derived long-chain n-alkanes, over the short-chain n-alkanes mainly derived 

from marine algae (Peters et al., 2005). There is a considerable peak in TAR ~5 cm below Ash SK1, within the 

glauconitic silt. A second increase in TAR values shortly after the PETM onset (about -24.2 m depth) is followed 

by gradually decreasing TAR values during the PETM body and recovery. The TOC data shows a pronounced 

increase from ~0.45 to ~1.3 wt% TOC about 2 cm above the PETM CIE onset (Fig. 9). TOC concentrations remain 455 

relatively stable for the lower CIE body, before increasing again in the upper CIE body (from about -13 m depth) 

up to a maximum of 3.9 wt% at -0.78 m depth (Fig. 10). At the start of the CIE recovery, TOC drops down again 

to around 1 wt%.  

4.54 Major and trace elements of single samples 

4.4.1 Detrital input 460 

The CIA in the pre-PETM sediments is generally at around 6775, but has one peak of 805 just before the pre-

PETM cooling event (-24.64 m depth; Fig. 9) indicating a relative rise in the influx of terrestrially weathered 

material. Following the onset, the CIA risesincreases to a maximum of about 7983 at -20.60 m depth, before 

returning to pre-PETM values in the upper PETM body (Fig. 10). The recovery phase shows increasing CIA values 

again towards Ash -19, with 84.56 at +5.50 m depth.  465 

The sediments thermal immaturity was verified by the low RockEval Tmax values of <422 °C (Table 3, Supplement 

1). The HI peaks up to 150 mgHC/gC in the glauconitic silt between -24.61 to -24.59 m depth, but is otherwise 

<100 mgHC/gC pre-PETM (Fig. 9). The HI increases >100 mgHC/gC about 13 cm above the CIE onset at -24.05 

m depth. A second major increase in HI occurs above -14 m depth, after which values remain high and reaches 

maximum values of 303 mgHC/gC at -0.78 m depth (Fig. 10). 470 
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Figure 9: The lowermost 2.5 m of the Stolleklint beach section showing a close-up of the CIE onset. Graphs show: TEX86 data 

from Stokke et al. (2020a); δ13C and Total Organic Carbon (TOC) data from Jones et al. (2019); Chemical Index of Alteration 

(CIA); Hydrogen Index (HI) and Oxygen Index (OI) where vertical line divide between dominantly terrigenous (<100) and 

marine (>100) organic material; Terrigenous Aquatic Ratio (TAR) from Stokke et al. (2020a); fraction of pyrite from bulk 475 

XRD analyses; S concentrations in wt%; trace metal enrichment factors of Ni, Cu, U, Mo, and V.productivity proxies Ni, Cu, 

P2O5, and Ba normalised to Al2O3; fraction of pyrite from bulk XRD analyses; S concentrations in wt%; Th/U ratio where 

vertical line divide anoxic (<2) form oxic (2–7) sediments; molybdenum concentrations in ppm where vertical line divide 

between anoxic (<30 ppm) and euxinic (>30 ppm); V normalised to Al2O3. 

4.4.2 Productivity 480 

The TOC data shows a pronounced increase from ~0.45 to ~1.3 wt% TOC about 2 cm above the PETM CIE onset 

(Fig. 9). TOC concentrations remain relatively stable for the lower CIE body, before increasing again in the upper 

CIE body (from about -13 m depth) up to a maximum of 3.9 wt% at -0.78 m depth (Fig. 10). At the start of the 

CIE recovery, TOC drops down again to around 1 wt%.  

Both S and pyrite concentrations start to rise before Ash SK1 and the CIE onset, with S increasing from about 1 485 

wt% in the Holmehus/Østerrende Formation to about 3 wt% in the glauconitic silt (Fig. 9). Sulfur concentrations 

remain high throughout the CIE body, with maximum values of 4.6 wt% reached at -8.6 m depth (Fig. 10). Th/U 

decreases below Ash SK1 and reaches values below 2 before the CIE onset (Fig. 9). In the lower CIE body between 

-20.60 to -16.68 m depth Th/U increases up to 3, coinciding with slightly lowered S concentrations (Fig. 10). Th/U 

values decreases again and persist below 2 for the remaining CIE body (Fig. 10), as U concentrations are enriched 490 

up to 11.4 ppm (Table 4, Supplement 1), well above average crustal values of 2.8 ppm (Taylor and McLennan, 

1995). 

While CuEF and VEF have values consistently >1 indicating a constant relative enrichment, NiEF show overall lower 

EF values and some depletion with 5 samples <1. Before the CIE onset Ba/Al2O3 decreases from the base of the 

glauconitic silt, while Cu/Al2O3 increases, and Ni/Al2O3 and P2O5/Al2O3 remain relatively stable (Fig. 9). Before 495 

the CIE onset CuEF and VEF values rises from the base of the glauconitic silt (at -24.58 m depth), while NiEF remain 
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relatively stable (Fig. 9). Vanadium,Both Cu and Ni are elements typically associated with volcanic ash, and both 

remainthey all show a relative enrichmently high within the lower ash-rich interval, with particularly Cu and Ni 

peaking around ash layers SK1 and SK3. All three elements decrease to lower values in the lower PETM body, 

before increasing in the upper half (Fig. 10). However, while CuEF and VEF continue to increase until the recovery, 500 

NiEF decreases slightly about 5 m below Ash -33.The main increase in productivity proxies occurs within the 

uppermost CIE body between about -8.56 m depth and Ash -33 (Fig. 10). This trend is most notable in Ba/Al2O3 

and P2O5/Al2O3, reaching maximum values of 49.8 and 0.017 respectively at -4.48 m depth. Cu/Al2O3 shows a 

similar although less distinct trend with the main increase in the upper CIE body, while Ni/Al2O3 decreases much 

earlier at about -5 m depth. During the recovery Ba/Al2O3 and P2O5/Al2O3 decreases, while Cu/Al2O3 and Ni/Al2O3 505 

remain relatively stable (Fig. 10). 

Uranium appears to be depleted below the PETM onset with UEF values consistently <1 and particularly low values 

above ash layers SK1 and SK3 (Fig. 9). Immediately above the CIE onset UEF rises >1 (at -24.36 m depth), although 

it does not become consistently enriched until about -23.75 m depth. Molybdenum is also depleted in the lowermost 

part of the section, with MoEF rising >1 at the base of the glauconitic silt (-24.8 m depth; Fig. 9). However, MoEF 510 

still does not increase substantially until after the CIE onset (at -24.36 m depth) similar to UEF. Both UEF and MoEF 

remain relatively stable around 1.3 and 10 respectively in the lower part of the PETM body, but increases 

dramatically in the upper, non-laminated part before decreasing again during the recovery (Fig. 10). While UEF 

reaches maximum values of about 5.2 (at -1.34 m depth), MoEF increases substantially with values of about 30-38 

between -8.56 to -0.11 m depth (Fig. 10; Supplement). 515 

 

Figure 10: The section covering the whole Stolleklint PETM, with some additional samples from the nearby quarry FQ16 

(Fig.ure 2) between -5.6 and 2 m depth. See Figure 9 for details on each graph. 
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4.4.3 Redox 

Both S and pyrite concentrations start to rise before Ash SK1 and the CIE onset, with S increasing from about 1 520 

wt% in the Holmehus/Østerrende Formation to about 3 wt% in the glauconitic silt (Fig. 9). Sulfur concentrations 

remain high throughout the CIE body, with maximum values of 4.6 wt% reached at -8.6 m depth (Fig. 10). Th/U 

decreases below Ash SK1 and reaches values below 2 before the CIE onset (Fig. 9). In the lower CIE body between 

-20.60 to -16.68 m depth Th/U increases up to 3, coinciding with slightly lowered S concentrations (Fig. 10). Th/U 

values decreases again and persist below 2 for the remaining CIE body (Fig. 10), as U concentrations are enriched 525 

up to 11.4 ppm (Table 4, Supplement 1), well above average crustal values of 2.8 ppm (Taylor and McLennan, 

1995). 

Molybdenum concentrations vary between 0.7–3.0 ppm below the CIE onset, before increasing to ~15 ppm about 

2 cm above the CIE onset (Fig. 9). Molybdenum concentrations continue between 11–43 ppm indicating anoxic 

conditions prevail throughout the CIE body and recovery, with euxinic conditions (>30 ppm Mo) indicated in the 530 

upper CIE body between -12.4 to -0.1 m depth (Fig. 10). 

V/Al2O3 increases in the glauconitic silt and remain relatively high in the ash interval (Fig. 9). Vanadium 

enrichments can also be associated with ash deposition, which might affect V concentrations in this particularly 

ash-rich interval. V/Al2O3 values increase gradually throughout the CIE body, reaching maximum just below Ash 

-33 at -0.11 m depth, and decreases again in the recovery (Fig. 10). 535 

5. Discussion 

5.1 Changing sediment input – tectonic and climatic influence 

5.1.1 Illite–Smectite – importance and origin 

Smectite is the dominant clay mineral within the pre-PETM and most of the earliest Eocene strata at both Fur (Fig. 

4) and generally in the North Sea (Nielsen et al., 2015). Clay mineral assemblages have been used as indicators of 540 

palaeoclimate, most commonly using kaolinite as a proxy for humid tropical climates and smectite for warm 

climates with seasonal humidity and longer dry spells (e.g. Thiry, 2000). However, soil formation is a slow process, 

and the subsequent long duration between formation and deposition in a marine basin suggests that clay mineralogy 

is an unreliable palaeoclimate proxy at resolutions shorter than 1 Myr (Thiry, 2000). Changes in the clay mineral 

assemblage in the marine sediments may therefore instead indicate changes in source area and intensity of sediment 545 

transport, and reflect the climatic conditions at the time of continental soil formation rather than at the time of 

deposition (Thiry, 2000; Nielsen et al., 2015). Smectite is a common weathering product of mafic volcanic material 

(Stefánsson and Gíslason, 2001), and previous studies have suggested that smectites in the Danish stratigraphic 

record are of predominantly volcanic origin (Nielsen and Heilmann-Clausen, 1988; Pedersen et al., 2004). 

Although smectite may precipitate in situ from hydrothermal fluids, this has largely been discounted in the North 550 

Sea due to the wide geographic extent of smectite and the overall lack of indices of hydrothermal influence 

(Huggett and Knox, 2006; Kemp et al., 2016). In situ post-depositional alteration of volcanic ash also probably 

contributed only minor amounts of smectite, as the ashes are mostly relatively well-preserved (Nilsen et al., 2015). 

While clay minerals make up a small fraction of the bulk mineralogy in the upper PETM body (4–8 %), zeolites 
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comprise up to 36 % (Fig. 4). Zeolites are another typical weathering product of volcanic materials, supporting a 555 

volcanic provenance (Stefánsson and Gíslason, 2001; Nielsen et al., 2015).  

The volcanic source is likely to be the NAIP. Major flood basalts erupted in East Greenland, the Faroe Islands, and 

the British Isles across the Paleocene–Eocene boundary, producing large uplifted areas several km high of easily 

eroded material (Larsen and Tegner, 2006; Storey et al., 2007b; Wilkinson et al., 2017). This is reflected in Os 

isotopes and CIA records in the Arctic Ocean, which record an influx of weathered volcanic material both prior to 560 

and during the PETM (Wieczorek et al., 2013; Dickson et al., 2015). Moreover, the first phase of ash deposition 

was identified within Late Paleocene strata in the North Sea, well before the PETM onset (Knox and Morton, 1988; 

Haaland et al., 2000). Erosion and redeposition of altered tephra deposited around the North Sea likely constituted 

a highly important source for the volcanic material in the North Sea basins (Pedersen et al., 2004; Nielsen et al., 

2015; Kemp et al., 2016). Smectite is found in abundance throughout the North Sea stratigraphic record, and 565 

decreases as ash deposition ceases upward in the Eocene (Nielsen et al., 2015; Kemp et al., 2016). It seems likely 

that the dominance of smectite and abundance of zeolites reflect this extensive extrusive volcanism around the 

NAIP (Nielsen et al., 2015; Kemp et al., 2016).  

5.1.12 Kaolinite and changes in weathering across the PETM onset 

At Fur, there is a substantial influx of kaolinite in the lowermost 10 m of the PETM CIE (Fig. 4). The pulse of 570 

kaolinite initiates shortly after the CIE onset and again in the CIE recovery, in both instances concordant with a 

rise in the CIA and in the bulk mineralogy clay fraction (Figs. 4, 10). As the clay fraction in the strata above and 

below the kaolinite pulse is dominated by smectite, it suggests some major change in climate and/or sediment 

supply occurs within the lower part of the PETM stratigraphy. Clay mineral assemblages have been used as 

indicators of palaeoclimate, most commonly using kaolinite as a proxy for humid tropical climates and smectite 575 

for warm climates with seasonal humidity and longer dry spells (Bolle et al., 2000; Thiry, 2000). However, soil 

formation is a slow process, and the subsequent long duration between formation and deposition in a marine basin 

suggests that clay mineralogy is an unreliable palaeoclimate proxy at resolutions shorter than 1 Myr (Thiry, 2000). 

Changes in the clay mineral assemblage in the marine sediments is therefore unlikely to reflect an increase in 

continental soil production induced by changing temperatures and humidity (Carmichael et al., 2017).  580 

An increase in kaolinite content during the PETM is observed globally (Robert and Kennett, 1994; Dypvik et al., 

2011; John et al., 2012; Khozyem et al., 2013; Bornemann et al., 2014; Kemp et al., 2016), yet the timing and 

magnitude varies considerably even within the North Sea (Kender et al., 2012; Kemp et al., 2016). In the western 

North Sea, the kaolinite content increase earlier before and during the CIE onset and again during the CIE recovery, 

but is relatively low in the CIE body (Kender et al., 2012; Kemp et al., 2016). However, at Fur a rise in the kaolinite 585 

content is not observed until after the CIE onset (Fig. 4), and southward in the Bay of Biscay in the North Atlantic 

the kaolinite content does not significantly change until the PETM recovery (Bornemann et al., 2014). It would be 

expected that changes in the climate and the hydrological cycle would be broadly similar within such a narrow 

region. It is therefore reasonable to assume that the timing and extent of kaolinite deposition depends just as much 

on the availability and proximity to potential source areas as the climatic conditions. Kender et al. (2012) suggested 590 

that the initiation of the kaolinite pulse before the CIE in the central North Sea was due to the thermal uplift and 

short-lived regression in the latest Paleocene. A drop in sea level exposes larger areas to erosion and brings river 

mouths closer to the marginal marine areas, which could subsequently trigger an influx of terrestrially derived 
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material. A peak in the HI, TAR and CIA just below the glauconitic silt suggest that a similar short-lived regression 

is recorded also in Denmark (Fig. 9). However, as the kaolinite pulse at Fur occurs after the CIE and major 595 

temperature increase (Fig. 10), it substantially post-dates sea level fall and major tectonic uplift in the latest 

Paleocene. This suggest that some other trigger than sea-level fall activated the shift to kaolinite deposition in 

Denmark. 

 

Figure 11: Close up of Figure 1 with modifications based on Schiøler et al. (2007). See Figure 1a for colour legend. Dashed 600 

circles indicate main sedimentary source areas for the North Sea during the Paleocene and Eocene from Anell et al. (2012). 

Arrows indicate the main sediment transport directions based on Jordt et al. (2000) and Anell et al. (2012).  

Kaolinite particles are relatively large and heavy and typically deposited closer to the source than finer clays like 

smectite (Gibbs, 1977; Nielsen et al., 2015). Nielsen et al. (2015) found that deposition of kaolinite in the 

Paleocene–Eocene North Sea thickens substantially towards the Fennoscandian shield, and suggest that this as the 605 

main source area for the Danish sediments. The Fennoscandian shield was characterised by deeply weathered 

bedrocks in the Paleogene, reflecting the warm tropical Mesozoic climate (Nielsen et al., 2015), and would 

therefore be enriched in kaolinite. Considering the typically shorter transport of kaolinite (Gibbs, 1977) and the 

Danish areas distal position in relation to the NAIP (Figs. 1, 11) it seems likely that the main source of kaolinite 

was from the Fennoscandian Shield to the north and northeast, despite the main sediment source for the North Sea 610 

as a whole during this period being from the west and northwest (Fig. 11; Jordt et al., 2000; Anell et al., 2012). A 

North Sea surface water freshening is suggested from palynology and shark-tooth apatite δ18O values in the central 

North Sea (Zacke et al., 2009; Kender et al., 2012). The global influx in kaolinite has generally been attributed to 

an intensified hydrological cycle leading to enhanced erosion and sediment transport of older deeply weathered 

bedrock and soils (Schmitz and Pujalte, 2003; John et al., 2012; Bornemann et al., 2014; Carmichael et al., 2017). 615 

It therefore seems likely that the observed influx of kaolinite, increased CIA, and rapid intensification of 

sedimentation rates after the CIE onset at Fur is the result of increased erosion and runoff from the deeply 

weathered Fennoscandian bedrock. Considering the potential time-lag between increased runoff and final marine 

deposition, this indicates a rapid response in the hydrological cycle to changes in temperature and carbon emissions 

across the PETM onset. 620 
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An important deviation from the smectite dominance is the substantial influx of kaolinite in the lowermost 10 m 

of the PETM CIE (Fig. 4). The abundance of kaolinite at Fur growsrises shortly after the CIE onset and again in 

the CIE recovery, in both instances concordant with a risen increase in the CIA and the overall clay fraction (Figs. 

4, 10). An increase in kaolinite content during the PETM is observed globally (Robert and Kennett, 1994; Dypvik 

et al., 2011; John et al., 2012; Khozyem et al., 2013; Bornemann et al., 2014; Kemp et al., 2016). While it was 625 

initially attributed to a warmer and more humid climate (e.g. Bolle et al., 2000), it is now generally acknowledged 

that the formation of kaolinite requires too much time (1–2 Myr; Thiry, 2000) to be a direct result of climate on 

such short timescales (Carmichael et al., 2017). The increase in kaolinite is therefore most likely due to an 

intensified hydrological cycle, leading to enhanced erosion and sediment transport of older deeply weathered 

bedrock and soils (Schmitz and Pujalte, 2003; John et al., 2012; Bornemann et al., 2014).  630 

Although the kaolinite pulse appears to be global, the timing and magnitude varies a great dealconsiderably even 

within the North Sea (Kender et al., 2012; Kemp et al., 2016). In the western North Sea, the kaolinite content 

increases earlier before and during the CIE onset and again similarly during the CIE recovery, but is relatively low 

in the CIE body (Kender et al., 2012; Kemp et al., 2016). However, at Fur a kaolinite content increase is not 

observed until after the CIE onset (Fig. 4), and southward in the Bay of Biscay in the North Atlantic the kaolinite 635 

content does not rise at all until the PETM recovery (Bornemann et al., 2014). It would be expected that changes 

in the climate and the hydrological cycle would be broadly similar within such a narrow region. It is therefore 

reasonable to assume that the timing and extent of kaolinite deposition depends just as much on the availability 

and proximity to potential source areas as the climatic conditions.  

 640 

Figure 11: Close up of Figure 1 with modifications based on Schiøler et al. (2007). See Figure 1a for colour legend. Dashed 

circles indicate main sedimentary source areas for the North Sea during the Paleocene and Eocene from Anell et al. (2012). 

Arrows indicate the main sediment transport directions based on Jordt et al. (2000) and Anell et al. (2012).  

During the Paleocene and Early Eocene, the major sediment transport direction in the North Sea were from the 

west and northwest due to the thermal uplift of source areas around the NAIP such as the Faroe–Shetland platform 645 

(Fig. 11; Knox, 1996; Anell et al., 2012). Kender et al. (2012) subsequently suggested that the initiation of the 

kaolinite pulse before the CIE in the central North Sea was due to the thermal uplift and short-lived regression in 

the latest Paleocene. At Fur, there is no pre-PETM pulse of kaolinite and the HI index is >100 within the glauconitic 

silt (Fig. 9), indicating an increase in aquatic organic matter deposition. However, , but there is a peak in the CIAit 

seems there is also an augmented CIA just below the glauconitic silt (~28 cm below the CIE onset at -24.64 m 650 

depth; Fig. 9) and in TAR (-24.61 to -24.58 m depth) at and below the base of the glauconitic silt. This, which 

suggests some increase in the fluxes of terrestrially-derived materialchanges in sediment transport or sea level 

likelycould have occurred also prior to the CIE onset at Fur (Fig. 9).  Conversely, the HI also peaks below the base 

of the glauconitic silt (-24.61 m depth) indicating a slight shift to more marine organic matter. Together, this 

suggests that there may be significant uncertainty regarding the data at and immediately below the glauconitic silt. 655 

If the peaks in CIA and TAR are disregarded, there is little evidence of any change in sediment distribution prior 

to the PETM onset. Stokke et al. (2020a) similarly observed a peak in terrestrially derived long chain n-alkanes 

and in soil-derived branched GDGTs (brGDGTs) around the base of the glauconitic silt, which could reflect a 

tectonically forced regression due to the NAIP thermal uplift. Kaolinite particles are relatively large and heavy and 
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typically deposited closer to the source than finer clays like smectite (Gibbs, 1977; Nilsen et al., 2015). The reduced 660 

response in kaolinite deposition to thermal uplift of the NAIPthis tectonic event in Denmark compared to the 

Central North Sea therefore seems reasonable considering comparably distal position to the NAIP (Figs. 1, 11). 

The influx of kaolinite at Fur correlates with a major increase in the CIA and starts minimum 12 cm above the CIE 

onset, and up to 22 cm (excluding Ash SK2) above the Stolleklint Clay base (Figs. 4, 10) – If we assume the 

boundary base of the Stolleklint Clay is placed at Ash SK1. Changes in mineralogy and the CIA typically reflect 665 

some change in the pattern of sediment distribution that can be triggered by many different factors. Nielsen et al. 

(2015) found that deposition of kaolinite in the Paleocene–Eocene North Sea thickens substantially towards the 

Fennoscandian shield, and suggest that this as the main source area for the Danish sediments. The Fennoscandian 

shield was characterised by deeply weathered bedrocks in the Paleogene, reflecting the warm tropical Mesozoic 

climate (Nielsen et al., 2015), and would therefore be enriched in kaolinite. Considering again the typically shorter 670 

transport of kaolinite (Gibbs, 1977) and the Danish areas distal position in relation to the NAIP (Figs. 1, 11) it 

seems likely that the main source of kaolinite was from the Fennoscandian Shield to the north and northeast, despite 

the main sediment source for the North Sea during this period being from the west and northwest (Fig. 11; Jordt et 

al., 2000; Anell et al., 2012). A drop in sea level exposes larger areas to erosion and brings river mouths closer to 

the marginal marine areas, subsequently triggering an influx of terrestrially derived material that could explain the 675 

early Eocene kaolinite and CIA increase in the Danish area. However, the increase post-dates sea level fall and 

major tectonic uplift in the latest Paleocene, and occurs after the CIE and major temperature increase (Fig. 10). It 

therefore seems reasonable that it at least partially reflects an intensified hydrological cycle due to climatic changes 

rather than purely tectonic forcing. Furthermore, a North Sea surface water freshening is suggested from 

palynology and shark-tooth apatite δ18O values in the central North Sea (Zacke et al., 2009; Kender et al., 2012). 680 

The observed influx of kaolinite, increased CIA, and rapid intensification of sedimentation rates after the CIE onset 

at Fur are therefore likely to be the result of increased runoff due to an enhanced hydrological cycle.  

5.1.2 Illite–Smectite – importance and origin 

Smectite is the dominant clay mineral within the pre-PETM and most of the earliest Eocene strata at both Fur (Fig. 

4) and generally in the North Sea (Nielsen et al., 2015). Smectite is a common weathering product of mafic volcanic 685 

material (Stefánsson and Gíslason, 2001), and previous studies have suggested that smectites in the Danish 

stratigraphic record are of predominantly volcanic origin (Nielsen and Heilmann-Clausen, 1988; Pedersen et al., 

2004). Although smectite may precipitate in situ from hydrothermal fluids, this has largely been discounted in the 

North Sea due to the wide geographic extent of smectite and the overall lack of indices of hydrothermal influence 

(Huggett and Knox, 2006; Kemp et al., 2016). In situ post-depositional alteration of volcanic ash also probably 690 

contributed only minor amounts of smectite, as the ashes are mostly well-preserved (Nilsen et al., 2015). While 

clay minerals only make up a trace fraction of the bulk mineralogy in the upper PETM body (4–8 %), zeolites 

comprise up to 36 % (Fig. 4). Zeolites are another typical weathering product of volcanic materials (Stefánsson 

and Gíslason, 2001; Nielsen et al., 2015), supporting a volcanic provenance.  

Major flood basalts were emplaced in East Greenland and the Faroe Islands between 56.0 and 55.6 Ma, producing 695 

large uplifted areas several km high of easily eroded material (Larsen and Tegner, 2006; Storey et al., 2007b; 

Wilkinson et al., 2017). This is reflected in Os isotopes and CIA records in the Arctic Ocean, which record an 

influx of weathered volcanic material both prior to and during the PETM (Wieczorek et al., 2013; Dickson et al., 
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2015). Moreover, the first phase of ash deposition was identified within Late Paleocene strata in the North Sea, 

well before the PETM onset (Knox and Morton, 1988; Haaland et al., 2000). Erosion and redeposition of altered 700 

tephra deposited around the North Sea likely constituted a highly important source for the volcanic material in the 

North Sea basins (Pedersen et al., 2004; Nielsen et al., 2015; Kemp et al., 2016). Smectite is found in abundance 

throughout the North Sea stratigraphic record, and decreases as ash deposition ceases upward in the Eocene 

(Nielsen et al., 2015; Kemp et al., 2016). It seems likely that the dominance of smectite and abundance of zeolites 

reflect this extensive extrusive volcanism around the NAIP (Nielsen et al., 2015; Kemp et al., 2016), highlighting 705 

the importance of the NAIP in augmenting silicate weathering during the PETM. 

5.2 Volcanic indices 

Although the principal component analysis indicate that the glauconitic silt is most like the Holmehus/Østerrende 

Formation (Fig. 7), the gradual increase in Ti relative to Fe and K shown by the XRF element core scans suggest 

a gradual change in lithology towards Ash SK1 (Fig. 5). Variations in the major elements Fe, Ti, and K in marine 710 

sediments typically indicate changes in the terrigenous fraction (Rothwell and Croudace, 2015). Titanium is 

generally considered a stable element directly reflecting the coarse-grained terrigenous fraction (Rothwell and 

Croudace, 2015), but the highly Ti-rich nature of the ashes SK1-4 renders Ti an unreliable proxy for terrigenous 

input in this particular sectionand the gradual increase could therefore reflect an influx of terrestrially derived 

material within the glauconitic silt. This is supported by a slightly coarser grain size, and peaks in thethe augmented 715 

CIA and TAR (Fig. 9), and an influx of terrestrially derived organic matter (Stokke et al., 2020a). However, this 

influx seems toseeing that these peaks decline prior to Ash SK1 in contrast to the increase in Ti, and that there is 

as discussed significant doubt about these peaks, some other cause need to be considered. Titanium can also be 

used to indicate volcanic provenance, where K and Ti reflect felsic and mafic sources respectively (Rothwell and 

Croudace, 2015). In fact, the K/Ti ratio has been applied as a useful proxy for felsic/mafic provenance in the North 720 

Atlantic (Richter et al., 2006),. The SK ashes are all highly titanium rich (Figs. 5), and it could indicatebe that we 

see a gradual rise in mafic volcanic activity before the main ash deposition (Fig 5). This is corroborated by 

theEstimates of the timing and duration of the East Greenland lava eruptions , which suggests that a 5–6 km thick 

lava pile was emplaced between 56.0 and 55.6 Ma (Larsen and Tegner, 2006), indicating that there was voluminous 

mafic NAIP activity during this period. The trace metals Cu, Ni, and V are also found to increase within the 725 

glauconitic silt (Fig. 9), all of which are typically associated with volcanic material and maintain high 

concentrations within the SK1–SK2 interval. 

An amplified influx of weathered basaltic material such as smectite could also cause the gradually increased Ti 

flux. However, smectite is already the dominant clay phase in the Holmehus/Østerrende Formation (Fig. 4), and 

does not show a significant rise in the glauconitic siltclay. It therefore seems that the augmented Ti concentrations 730 

within the glauconitic silt might be caused by an increased ash component, rather than from basaltic weathering. 

The trace metals Cu, Ni, and V are also found to increase within the glauconitic silt (Fig. 9), all of which are 

typically associated with volcanic material and maintain high concentrations within the SK1–SK2 interval. Such 

volcanic ash deposits that are not visible to the naked eye are called cryptotephras, and typically include glass 

shards and crystals together with non-volcanic deposits (Cassidy et al., 2014). It is possible that the glauconitic silt 735 

includes an increasing portion of cryptotephras prior to the large eruptions producing ashes SK1 and SK2. In ourA 

previous study, we found that SSTs cooled prior to the PETM onset in Denmark (Stokke et al., 2020a). Although 
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the cooling started within the glauconitic silt below Ash SK1 (Fig. 9), theywe proposed that it could be a result of 

volcanic cooling induced by SO2 aerosols from NAIP eruptions (Stokke et al., 2020a). The observation of a 

potentially increasing ash component already within this glauconitic unit could be supportive of a potentially 740 

volcanically induced cooling.  

The identified tephra layers in Denmark represent explosive eruptions with an unusually large magnitude in order 

to be transported such a long distance (Stokke et al., 2020b). The absence of visible tephra layers therefore does 

not automatically mean that there was no tephra producing eruptions during the PETM. Besides two thin ash layers 

about 10 and 12 cm above Ash SK2, there are no visible ash layers during the PETM body until the deposition of 745 

Ash -39 at about -5 m depth (Fig. 4). However, the box cores allow for a detailed and high resolution overview 

that might reveal the presence of ash rich intervals earlier. Figure 6 section D shows correlating changes in S, Ca, 

Fe/Ti, Fe/K, and K/Ti between about -10.81 to -10.48 m depth. The presence of cryptotephra layers is particularly 

likely when low K/Ti ratios correlate with increases in Fe/Ti and Ca, and to some extent S. Relative changes in 

Fe/Ti – and to some extent Ca – depend strongly on the source of the volcanic material. These results indicate four 750 

possible ash rich horizons within the dark clays, which could be cryptotephras of slightly variable chemistry (Fig. 

6 section D). This suggests that explosive volcanic eruptions at a scale substantial enough for some material to 

reach Denmark may also have occurred during the PETM body. However, much more detailed work is needed in 

order to confirm the presence or absence of tephra fall deposits during this interval. 

5.3 Changes in basin oxygenationicity 755 

5.3.1 Oxic–anoxic shift across the PETM onset 

The PETM CIE is concordant with a lithological shift from the bioturbated Holmehus/Østerrende Formation to the 

laminated Stolleklint Clay, reflectsing a shift to a suboxic to anoxicchange in the oxygen content in the bottom 

water environment. An increase in S, pyrite, and VEF/Al, and U (seen as a decrease in Th/U) within the glauconitic 

silt could indicate reducing conditions had already initiated below the laminations, prior to the CIE onset (Fig. 9). 760 

The NAIP uplift led to the closing of ocean seaways and North Sea Basin restriction prior to the CIE, resulting in 

increased halocline stratification that could explain this early deoxygenation (Kender et al., 2012). However, this 

is contrary to the low organic content, abundant bioturbation, and high content of glauconite, suggesting that an 

oxygenated environment prevailed pre-PETM. An oxic environment has also been indicated by the relatively high 

values of the organic biomarker pristane/phytane indicating oxidation of phytol to pristane (Stokke et al., 2020a). 765 

Sluijs et al. (2014) explained a similar co-occurrence of oxic and euxinic proxies within a section in the Gulf of 

Mexico as the result of seasonal to decadal variations in basin oxygenationicity. Alternatively, the increase in S, 

U, and Vit could be attributed to post-depositional authigenic enrichment due to deposition of ash layer SK1an 

increased ash component within the glauconitic silt, as volcanic tephra deposits can reduce the sediment pore 

waters oxygen levels just below an ash layer (Hembury et al., 2012). An increase in the sedimentary ash component 770 

has already been suggested based on the high resolution XRF element core scans (Fig. 5), and the increase in ICP-

MS analyses of Ni and Cu (Fig. 9). However, the highly redox-sensitive elements Mo and U does not show a 

similar increase below the CIE. On the contrary, a UEF<1 suggest the sediments are rather depleted in U (Fig. 9). 

Both the high-resolution XRF element core scans and ICP-MS analyses of Ni and Cu indicate an increased ash 

component within the sediments just below ash SK1. These contradictory observations could be explained by a 775 
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large component of volcanic ash with the sediments, which is expected to have relatively high concentrations of 

both V and S.  

The burial rate of Mo increases three orders of magnitude in sulfidic environments relative to oxic, as Mo becomes 

highly reactive in the presence of hydrogen sulfide (Tribovillard et al., 2004; Scott and Lyons, 2012). Molybdenum 

enrichment above bulk crustal values (1–2 ppm; Taylor and McLennan, 1995) indicates suboxic to anoxic 780 

conditions, and enrichments >30 ppm are argued to indicate euxinic conditions (Scott and Lyons, 2012; Dickson 

et al., 2014). Molybdenum concentrations at Stolleklint do not increase substantially above 3 ppm until after the 

CIE, suggesting that a substantial decrease in oxicity does not occur until after the PETM onset.  

Laminations occur rapidly only 2 cm above after the CIE onset, together with an increase in S and Fe/Ti in XRF 

element core scans (Fig. 5 section B). Iron and Ti in marine sediments commonly co-vary, and elevated Fe/Ti 785 

ratios therefore indicate excess Fe over basaltic lithogenic values (Marsh et al., 2007). Fe is redox-sensitive and 

may also reflect changes in basin oxygenation post-deposition (Rothwell and Croudace, 2015). An increase of Fe 

relative to Ti or K may therefore indicate suboxic conditions, particularly in concert with increased S content (e.g. 

Sluijs et al., 2009). TOC, and MoEF and UEF  concentrations, as well as continued low Th/U values (Fig. 10) also 

rises substantially at the base of the laminations, with MoEF rising above 6. The burial rate of Mo increases three 790 

orders of magnitude in sulfidic environments relative to oxic, as Mo becomes highly reactive in the presence of 

hydrogen sulfide (Tribovillard et al., 2004; Scott and Lyons, 2012). And, although the values are somewhat 

tentative, MoEF and UEF values between about 3-10 have been related to suboxic conditions (Algeo and 

Tribovillard, 2009; Tribovillard et al., 2012). In additionA previous study from the exact same section at Stolleklint 

also found that, photic zone euxinia may have occurred just after the CIE onset, as indicated by the presence of 795 

sulfur bound isorenieratane; a diagenetic product of green sulfur bacteria (Schoon et al., 2015).  

 The XRF element core scans also show an increase in S and Fe/Ti at base of the laminated sediments (Fig. 5 

section B). Iron and Ti in marine sediments commonly co-vary, and elevated Fe/Ti ratios therefore indicate excess 

Fe over basaltic lithogenic values (Marsh et al., 2007). While Ti is considered a stable element that directly reflects 

the coarse-grained terrigenous fraction, Fe is redox-sensitive and may also reflect changes in basin 800 

oxygenationicity post-deposition (Rothwell and Croudace, 2015). An increase of Fe relative to Ti or K may 

therefore indicate suboxic conditions, particularly in concert with increased S content (e.g. Sluijs et al., 2009). We 

therefore conclude that while there may be some uncertainty as to when oxic conditions started to deteriorate due 

to the high content of ash, the start of laminations about 2 cm above Ash SK2 and the CIE onset indicate the 

initiation of at least periodicallyfully anoxic conditions at Stolleklint. In addition, the XRF element core scans 805 

document a direct correlation between elevated S and Fe/Ti, and the dark laminations (Fig. 6 section C), suggesting 

regular fluctuations in basin deoxygenation in the lower part of the PETM body. 

In the upper part of the PETM body the Stolleklint Clay becomes apparently structureless and almost black. Here 

XRF S counts show continuous high values (Fig. 8), suggesting that reducing conditions become more or less 

continuous. The TOC content and the trace metals CuEF, VEF, and particularly MoEF, and UEF increases similarly 810 

in the dark upper half with MoEF up to ~37 and UEF up to ~5 (Fig. 10). Pyrite, S (wt%), and NiEF values show a 

similar increase initially, but decreases above ash -39 (Fig. 10). MoEF>10 may indicate euxinic conditions (Algeo 

and Tribovillard, 2009; Tribovillard et al., 2012), although the comparatively lower enrichment of U may also 

suggest that some other factor is enhancing Mo enrichment in the sediments such as the “particle shuttle” effect 
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(Algeo and Tribovillard, 2009) or enhanced Mo-trapping by sulfurized marine organic matter (Tribovillard et al., 815 

2004; Algeo and Tribovillard, 2020). Schoon et al. (2015) argued that photic zone euxinia prevailed during the 

entire PETM interval both at Stolleklint and Store Bælt (Fig. 1) based on the presence of green sulfur bacteria. 

Unfortunately, their data from Stolleklint only covers the lowermost 2.5 m and uppermost 0.5 m of the Stolleklint 

Clay, and therefore excludes most of the PETM body. It therefore seems there is little independent evidence in 

support of a euxinic environment prevailing throughout the PETM. We therefore conclude that the PETM in 820 

Denmark was characterised by an anoxic to sulfidic environment that become increasingly prevalent during the 

PETM body. 

5.3.2 Redox and productivity changes during the PETM body 

Schoon et al. (2015) argued that photic zone euxinia prevailed during the entire PETM interval in two sedimentary 

sections in Denmark. Unfortunately, their data from Fur only covers the lowermost 2.5 m and uppermost 0.5 m of 825 

the Stolleklint Clay, and therefore excludes most of the PETM body. All proxies from our continuous record 

through the PETM body suggest that anoxia prevailed throughout (Fig. 9), but the proxies also indicate distinct 

stratigraphic variations in basin oxicity. The XRF element core scans document a direct correlation between 

elevated S and Fe/Ti, and the dark laminations (Fig. 6 section C), suggesting regular fluctuations in basin oxicity 

(approximately every 2 cm). Variations in basin anoxia is also indicated for longer periods. The biplot of S data 830 

from XRF element core scans (Fig. 8) indicate an overall stratigraphic upward increase in basin anoxia. The upward 

decrease in scatter in the S measurements also indicates that anoxic conditions becomes gradually more continuous 

with time (Fig. 8). 

While Th is sourced from continental weathering and unreactive to redox changes, U has minimal detrital influence 

and is enriched in the sediments under reducing conditions (Tribovillard et al., 2006). The Th/U ratio therefore 835 

reflects U enrichment above crustal values, and can be employed to assess basin oxicity (Wignall and Myers, 1988; 

Dypvik et al., 2011; Elrick et al., 2017). Th/U is about 4 in the average upper crust, and typically <2 in anoxic 

environments with substantial authigenic U enrichment (Wignall and Twitchett, 1996). An increase in Th/U above 

2 correlates with a decrease in Mo concentrations well below 30 ppm around -17 to -18 m depth in the lower 

laminated part, indicating a period of less anoxic conditions in the lower PETM body (Fig. 10). Both U and Mo 840 

concentrations increase substantially in the upper PETM body, with Th/U <2 and Mo well above 30 ppm indicating 

euxinic conditions (Fig. 10). Maximum values of S, pyrite and V/Al within this interval also indicate highly 

reducing conditions, with high TOC of 4 wt% indicating augmented burial rate of organic matter.  

The North Sea Basin became very restricted in theNAIP uplift in the latest Paleocene  led to closing of ocean 

seaways and North Sea Basin restriction prior to deposition of ash SK1prior to initiation of seafloor spreading and 845 

basin subsidence, resulting in poor circulation and halocline stratification that could explain an early 

deoxygenationin the basin (Knox et al., 2010; Kender et al., 2012). While this could explain athe initial decrease 

in basin oxygenationicity below the SK ashes and the CIE onset, there is no further evidence supporting regional 

uplift and North Sea basin restriction followingassociated with the PETMCIE onset. On the contrary, high HI (Fig. 

10), and low input of brGDGTs and long-chained n-alkanes (Stokke et al., 2020a) suggest that marine-derived 850 

organic matter increases up stratigraphy, as the Stolleklint Clay was likely deposited during a relative sea level rise 

(Heilmann-Clausen, 1995). Kender et al. (2012) found evidence of low surface water salinity and extensive 

stratification in the North Sea, and suggested this as the main cause of anoxia during the PETM. The dark massive 
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clays in the upper part of the PETM body is strongly enriched in organic matter (TOC up to 2.9 wt%) and Cu (CuEF 

up to 5.1), which both may indicate an increase in productivity (Tribovillard et al., 2006). A combination of ocean 855 

stratification and increased productivity would efficiently contribute to the increase in basin anoxia in the upper 

PETM body. 

Barium is closely related to export productivity, as it precipitates from decaying organic matter (Paytan and 

Griffith, 2007; Ma et al., 2014). The sedimentary Ba content is at its highest during the upper PETM body, as is 

P2O5 (an essential macronutrient), indicating that export productivity was at its highest at this point (Fig. 10; Table 860 

4, Supplement 1). Possible remobilisation of Ba and P needs to be considered, particularly in sulfidic environments 

(Tribovillard et al., 2006). However, the dark massive clay in the upper PETM body is also highly enriched in 

organic matter (TOC up to 3.9 wt%). An increase in TOC could reflect declining terrestrial influx, possibly due to 

the increasing sea level, which is expected to lead to a decrease in terrestrial sediment transport to marginal areas 

(e.g. Carmichael et al., 2017). Still, the combined elevation of TOC, Ba/Al, and P2O5/Al, as well as to some extent 865 

Ni/Al and Cu/Al (Fig. 10), are all in support of an increase in export productivity. Kender et al. (2012) found 

evidence of low surface water salinity and extensive stratification in the North Sea, and suggested this as the main 

cause of anoxia during the PETM. A combination of ocean stratification and increased productivity would 

efficiently contribute to the increase in basin anoxia in the upper PETM body. 

5.4 Carbon drawdown – tThe PETM recovery 870 

The PETM carbon cycle perturbations are unusual both in magnitude and duration, and likely a result of a 

combination of triggers and feedback mechanisms that are not yet fully understood (McInerney and Wing, 2011; 

Komar and Zeebe, 2017). Continuous emissions from a light carbon source such as thermogenic degassing around 

the NAIP could have contributed to the long duration (Svensen et al., 2004; Frieling et al. 2016). Another 

suggestion is that an initial pulse of light carbon led to warming (e.g. Frieling et al., 2019), subsequently activating 875 

positive feedback mechanisms producing continued input of light carbon emissions from sources such as methane 

clathrates (Dickens et al. 1995) or terrestrial organic carbon (Bowen 2013). Another key PETM feature is the 

rapidity of the PETM recovery (e.g. Bowen and Zachos, 2010). The carbon cycle recovery occurs through a 

combination of natural carbon sequestration and negative feedback mechanisms reducing the atmospheric CO2 

content (McInerney and Wing, 2011). Silicate weathering and denudation is perhaps the most important negative 880 

feedback mechanisms driving CO2 drawdown (Gislason and Oelkers, 2011), and have been proposed as one of the 

most important drivers during the PETM recovery (Kelly et al., 2005; Torfstein et al., 2010; Penman, 2016).  

Silicate weathering is highly sensitive to runoff, temperature, and topography (Gislason and Oelkers, 2011). 

Temperatures rose globally both before and during the PETM onset (Frieling et al., 2017; Frieling et al., 2019). At 

Stolleklint, temperatures rose at least 10 °C immediately afterfollowing the onset, with at least 10 °C reaching 885 

maximum SSTs of ~33 °C about 0.6 m above the CIE onset (Fig. 9) shortly after the CIE onset, followed by a shift 

to gradually decreasing SSTs throughout the PETM body and recovery (Fig. 9; Stokke et al., 2020a). Silicate 

weathering is highly sensitive to runoff, temperature, and topography (Gislason and Oelkers, 2011). The warming 

combined with the increased runoff, indicated in the North Sea by enhanced surface water freshening (Zacke et 

al., 2009; Kender et al., 2012), would result in a warm and humid climate ideal for increased silicate weathering 890 

and denudation. This is supported by theAt Stolleklint, we see a rapid response in continental weathering and 

runoff to changes in carbon cycle and temperature. This is indicated by the large increase in sedimentation rate, 
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and the influx of weathered material from the Fennoscandian shield suggested by the rise in kaolinite influx, and 

the CIA shortly after the PETM onset  at Stolleklint (Figs. 4, 10), suggesting a rapid response in weathering to 

changes in carbon cycle and temperature. Fresh basaltic volcanic terrains are particularly prone to weathering, and 895 

constitute one of the main sources of weathered suspended material in the world’s oceans (Gislason and Oelkers, 

2011). While both the kaolinite content and the CIA decreases in the upper PETM body, the sedimentation rate 

likely remained high, suggesting a relatively rapid influx of other minerals such as the volcanically derived smectite 

and zeolite. Fresh basaltic volcanic terrains are particularly prone to weathering, and constitute one of the main 

sources of weathered suspended material in the world’s oceans (Gislason and Oelkers, 2011).The extensive NAIP 900 

flood basalt volcanism before and during the PETM (e.g. Larsen and Tegner, 2006) may therefore have played an 

important role in the enhanced silicate weathering, as reflected in the dominance of smectite within the North Sea 

(Nilsen et al., 2015). A second increase in both the CIA and the kaolinite content occur during the CIE recovery at 

Fur (Figs. 4, 10), as well as further west in the North Sea (Kender et al., 2012; Kemp et al., 2016), supporting an 

important role of enhanced silicate weathering in the PETM recovery.  905 

We have documented a relatively rapid rise in silicate weathering as a response to carbon emissions, but a major 

increase in export productivity and organic carbon burial (seen as a rise in TOC) is delayed until the upper PETM 

body. The augmented organic matter burial (increased TOC) in concert with the high CuEF (Fig. 10) suggest a 

possible rise in productivity in the upper PETM body. This could have been prompted by an influx of nutrients to 

the basin, which could have been caused by an enhanced terrestrial sediment influx. An enhanced terrestrial 910 

sediment influx would bring substantial nutrients to the basin. However,, but the low TAR values and the decrease 

in the CIA and kaolinite, as well as the dominance of marine organic matter (high HI>100; Fig. 10), rather suggest 

that sea-level rise and a decrease in the terrigenous influx dominate upwards in the PETM body. 

AlternativelyHowever, the deposition of volcanic ash can work as a fertilizer, supplying key nutrients to the marine 

environment resulting in augmented productivity (Jones and Gislason, 2008). The post-PETM section at Fur is 915 

dominated by diatomite deposition, which could be a result of periodic rise in nutrient supply due to the voluminous 

ash deposition from the PETM recovery and onwards (Stokke et al., 2020a).Substantial increases in Ba and P2O5 

occur after the deposition of Ash -39 at the end PETM body (Fig. 10; Table 4, Supplement 1).  While there is 

limited evidence of ash deposition during the PETM body at Stolleklint, aAdditional ash deposition below Ash -

39 have now been revealed by the possible cryptotephras in XRF element core scans (Fig. 6 section D),. It could 920 

be that volcanic ash which could have had an added fertilizing effect promoting a rise in primary productivity 

during the later stages of the PETM body and recovery.  

The PETM carbon cycle perturbations are unusual both in magnitude and duration, and likely a result of a 

combination of triggers and feedback mechanisms that are not yet fully understood (McInerney and Wing, 2011; 

Komar and Zeebe, 2017). A key PETM feature is the rapidity of the PETM recovery (e.g. Bowen and Zachos, 925 

2010). Carbon cycle recovery occurs through a combination of natural carbon sequestration and negative feedback 

mechanisms reducing the atmospheric CO2 content (McInerney and Wing, 2011). Silicate weathering and 

denudation is perhaps the most important negative feedback mechanisms driving CO2 drawdown (Gislason and 

Oelkers, 2011), and have been proposed as one of the most important drivers during the PETM recovery (Kelly et 

al., 2005; Torfstein et al., 2010; Penman, 2016). However, Bowen and Zachos (2010) suggested that the rate of 930 

recovery is an order of magnitude faster than expected for carbon drawdown by silicate weathering alone. 

Similarly, Penman and Zachos (2018) found that the δ11B and B/Ca records of ocean acidification recovers within 
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a similar time frame as the δ13C record, and far more rapid than suggested by carbon cycle models that rely on 

silicate weathering alone (e.g. Zeebe et al., 2009). Similarly, Bowen and Zachos (2010) found that the rate of 

recovery is an order of magnitude faster than expected for carbon drawdown by silicate weathering alone, and 935 

suggested that terrestrial carbon sequestration may have played an important part. While our data can neither 

support not contradict this theory, wWe have documented a rise in nutrient supply and enhanced primary export 

productivityon, which would contributecould lead to the increased organic carbon sequestration attributed to the 

accelerated PETM recovery (Bowen and Zachos, 2010; Komar and Zeebe, 2017; Bridgestock et al., 2019). 

Enhanced export productivity have also been observed in PETM sites globally (Bains et al., 2000; Egger et al., 940 

2003; Stein et al., 2006; Soliman et al., 2011; Ma et al., 2014; Bridgestock et al., 2019), and average Ba burial rates 

approximately tripled during the PETM (Frieling et al., 2019). Our results show that negative feedback 

mechanisms responded rapidly to changes in carbon cycle and SSTs, and remained highly active from PETM onset 

to recovery. While the δ13C values remained low until the PETM recovery, SSTs decreased gradually throughout 

the PETM body and recovery. This gradual decline may reflect a temperature response to the continued carbon 945 

drawdown by the alternating increases in both silicate weathering and export productivity during the PETM.  

Conclusions 

We present new mineralogical and geochemical data from Stolleklint, an expanded marine section at Fur in 

northwest Denmark covering the PETM onset, body and recovery. Here, the PETM is defined by a negative 4.5 

‰ CIE and at least 10 °C temperature rise across the PETM onset. The study focuses on a section at Stolleklint, 950 

where the PETM onset is seen as lithological shift from the Holmehus/Østerrende Formation bioturbated clays 

into the laminated clays of the Stolleklint Clay. The sediments are composed of marine clays, dominated by 

volcanogenic minerals such as smectite and zeolite, reflecting how the importance oft the NAIP was as a source 

area during this period.  

The CIE onset is quickly followed by an increase in kaolinite and the overall clay content, the chemical index of 955 

alteration, and substantially enhanced sedimentation rates. This reflects a rapid response in silicate weathering and 

transport patterns to changes in the carbon cycle and elevated temperatures, likely due to an enhanced hydrological 

cycle leading to erosion and sediment transport from the deeply weathered Fennoscandian shield. Large volumes 

of easily weathered NAIP flood basalts and widespread tephra deposits likely contributed to accelerate the degree 

of silicate weathering and carbon drawdown. This is reflected in the dominance of volcanogenic minerals such as 960 

smectite and zeolite in large parts of the stratigraphy. 

Basin deoxygenation also begins to become widespread across the PETM onset, indicated by a shift from 

bioturbated to laminated sediments and extensive geochemical proxy evidence. Although the exact onset of 

deoxygenation is somewhat blurred pre-PETM due to ash deposition, our data show anoxic to sulfidic bottom-

water conditions were prevalent from the CIE onset and became increasingly pervasive throughout the PETM 965 

body. Proxy evidence also indicate augmented export productivity towards the upper PETM body, coinciding with 

the reappearance of volcanic ash in XRF element core scans and in field exposures. Such a correlation highlights 

the fertilizing effect of volcanic nutrients, and its potential importance in increasing primary productivity. The 

continued deoxygenation throughout the PETM was likely caused by a combination of the basins already restricted 

nature, increased halocline stratification, and intensified export productivity.  970 
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Proxy evidence shows augmented export productivity and organic matter burial towards the upper PETM body, 

coinciding with the reappearance of volcanic ash in XRF element core scans and in field exposures. Such a 

correlation highlights the fertilizing effect of volcanic nutrients, and its potential importance in increasing primary 

productivity. Pervasive basin deoxygenation also occurs shortly after the PETM onset, with anoxic to 

sulfidiceuxinic bottom-water conditions prevailing throughout the PETM body. The continued basin 975 

deoxygenation was likely caused by its already restricted nature combined with amplified terrestrial runoff leading 

to ocean stratification, and intensified export productivity.  

The results presented in this study show the potentially rapid environmental response to changes in carbon cycle 

and temperature. Our data also show that negative feedback mechanisms were active throughout the PETM. The 

increased export productivity in the upper PETM body and the renewed rise in kaolinite content and the CIA during 980 

the PETM recovery reflect the  and illustrates the important role of enhanced silicate weathering and organic matter 

burial in driving the carbon drawdown leading to the PETM recovery. This highlights the importance of such 

marginal marine areas in carbon sequestration and recovery from carbon cycle perturbations.  
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