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Abstract. Changes in water mass distribution are considered to be a significant contributor to the atmospheric CO2 concentra-

tion drop to around 186 ppm recorded during the Last Glacial Maximum (LGM). Yet simulating a glacial Atlantic Meridional

Overturning Circulation (AMOC) in agreement with paleotracer data remains a challenge, with most models from previous Pa-

leoclimate Modelling Intercomparison Project (PMIP) phases showing a tendency to simulate a strong and deep North Atlantic

Deep Water (NADW) instead of the shoaling inferred from proxy records of water mass distribution. Conversely, the simulated5

Antarctic Bottom Water (AABW) is often reduced compared to its pre-industrial volume, and the Atlantic Ocean stratification

is underestimated with respect to paleoproxy data. Inadequate representation of surface conditions, driving deep convection

around Antarctica, may explain inaccurately simulated bottom water properties in the Southern Ocean. We investigate here the

impact of a range of surface conditions in the Southern Ocean in the iLOVECLIM model, using nine simulations obtained with

different LGM boundary conditions associated with the ice sheet reconstruction (e.g. changes of elevation, bathymetry, and10

land-sea mask), and/or modelling choices related to sea-ice export, formation of salty brines, and freshwater input. Based on

model-data comparison of sea-surface temperatures and sea ice, we find that only simulations with a cold Southern Ocean and

a quite extensive sea-ice cover show an improved agreement with proxy records of sea ice, despite systematic model biases in

the seasonal and regional patterns. We then show that the only simulation which does not display a much deeper NADW is

obtained by parameterizing the sinking of brines along Antarctica, a modelling choice reducing the open ocean convection in15

the Southern Ocean. These results highlight the importance of the representation of convection processes, which have a large

impact on the water mass properties, while the choice of boundary conditions appears secondary for the model resolution and

variables considered in this study.
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1 Introduction

The Southern Ocean is a major climate player. Due to its specific geographical setting, it acts as a heat exchanger and buffer20

between the south polar regions and the subtropics, but also connects the other oceanic basins. Furthermore, it is one of the

few oceanic regions where deep water formation takes place. Indeed, cold surface temperatures and brine rejection consecutive

to sea-ice formation allow for a large and localized density increase of surface waters triggering deep convection. As a result,

the dense southern-sourced Antarctic Bottom Water (AABW) fills the bottom of the world ocean. Density gradients between

this water mass and others – such as its counterpart, the northern-sourced North Atlantic Deep Water (NADW) – determine25

the water mass distribution and the large-scale circulation. Rearrangement of water masses explains part of past changes in

the carbon storage capacity of the oceans (Buchanan et al., 2016; Khatiwala et al., 2019; Yu et al., 2016), which stresses the

importance of correctly simulating the processes affecting the deep ocean circulation.

Multimodel studies using outputs from previous Paleoclimate Modelling Intercomparison Project (PMIP) phases showed

that models simulate different responses of the Atlantic Meridional Overturning Circulation (AMOC) to the same Last Glacial30

Maximum (LGM) experimental design. Only a minority of PMIP2 models produce a shoaling of the NADW (Otto-Bliesner

et al., 2007; Weber et al., 2007), while most PMIP3 models produce an intensified and deepened NADW (Muglia and Schmit-

tner, 2015), at odds with reconstructions from paleotracer data which display a shallower NADW along with a denser, more

voluminous and possibly more sluggish AABW during the last glacial compared to pre-industrial (PI) and modern times

(Curry and Oppo, 2005; Howe et al., 2016). Models rarely simulate bottom water temperatures and salinities close to the ones35

suggested by the few pore-fluid measurements in the deep glacial Atlantic (Adkins et al., 2002; Otto-Bliesner et al., 2007).

Moreover, Heuzé et al. (2013) showed that, even in present-day conditions, models generally simulate inaccurate bottom water

temperatures, salinities and densities. Even when they do simulate relatively accurate modern bottom water properties, they

tend to form AABW via the wrong process (namely open ocean deep convection) whereas the largest proportion of AABW cur-

rently results from brine-dominated formation of dense shelf waters, overflowing in the deep ocean (Orsi et al., 1999; Williams40

et al., 2010). While some high resolution CMIP6 models now simulate dense shelf waters, Heuzé (2021) observed no obvious

export of these waters, and open ocean deep convection remains a much too widespread and frequently occurring process.

As both the sea-surface temperature (SST) and salinity related to sea-ice formation in the Southern Ocean influence the

surface density and therefore the AABW formation and properties, any surface conditions bias has the potential to impact the

deep ocean circulation. Studies on the historical period have underlined important model biases in the Southern Ocean SSTs45

(Hyder et al., 2018) and sea ice (Downes et al., 2015), which could also affect paleoclimate simulations. And indeed, PMIP

models struggle to reproduce the glacial sea-ice extent suggested by sea-ice proxy data, and especially its seasonality (Roche

et al., 2012; Goosse et al., 2013; Marzocchi and Jansen, 2017). While Ferrari et al. (2014) have shown a dynamical link between

the deep ocean circulation and Antarctic sea ice, Shin et al. (2003) have highlighted the major role played by Antarctic sea ice

on the glacial AMOC by quantifying the haline density flux increase at the LGM in the CCSM model. Moreover, Marzocchi50

and Jansen (2017) have quantitatively attributed part of the observed discrepancies of the AMOC simulated by PMIP3 models

to insufficient sea-ice formation and export. Therefore, targeting sea-ice biases in models may be necessary to improve the
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simulated water mass distribution. It is also crucial to better understand and simulate the interplay between surface and deep

conditions, especially as some processes – such as brine rejection (Bouttes et al., 2010) and downsloping currents (Campin and

Goosse, 1999) – are inherently limited by the resolution of the models.55

In this study, we use an intermediate complexity model under PMIP2 or PMIP4 experimental design and several bathymetries

to generate a set of simulations computed with different boundary conditions. In addition to these simulations displaying

contrasted surface conditions, three sensitivity tests of Southern Ocean conditions for sea-ice export, formation of brines, and

freshwater input further document the role of sea ice on the deep ocean circulation. This variety of simulations allows us to

investigate the respective effects of the many possible choices for boundary conditions and other experimental settings on the60

simulated surface conditions and associated deep water formation. We hereafter focus on Southern Ocean surface conditions

and evaluate them using proxy data for both SSTs and sea ice. We rely on the principle of a simplified inverse methodology:

we assess what improves the simulated temperatures and sea ice in the Southern Ocean, as evaluated against proxy data, and

we analyse the associated impact on deep ocean circulation.

2 Methods65

2.1 Model description

The iLOVECLIM model is a coupled Earth System Model of intermediate complexity (Claussen et al., 2002). Its relatively

low computation time allows us to run multiple simulations, and to test the effect of different modelling choices and bound-

ary conditions on surface conditions. Over time, iLOVECLIM has significantly diverged from its parent model LOVECLIM

(Goosse et al., 2010), but is still composed in its core of an atmospheric component (ECBilt), a simple land vegetation model70

(VECODE) and an oceanic general circulation model (CLIO). With 20 irregular vertical levels and a horizontal resolution

of 3°× 3°, CLIO is able to simulate the large-scale circulation, which is of interest to us in this study. It also includes a

thermodynamic-dynamic sea-ice component described by Fichefet and Morales Maqueda (1997). This component simulates

a visco-plastic rheology but no sea-ice thickness distribution, which is relatively classic compared to other PMIP models (see

Table 1 of Goosse et al. (2013)) but far from the complexity of more recently developed sea-ice components (Rousset et al.,75

2015).

2.2 The PMIP boundary conditions and their implementation

The Paleoclimate Modelling Intercomparison Project (PMIP) provides standardized boundary conditions for paleoclimate sim-

ulations, enabling robust multimodel comparisons for periods of interest such as the LGM. The atmospheric gas concentrations

and orbital parameters are prescribed to set values (e.g. a forcing parameter of 186 ppm for the glacial CO2 concentration),80

based on data from Bereiter et al. (2015), Loulergue et al. (2008), Schilt et al. (2010), and Berger (1978). Since the ice sheet

reconstructions are still associated with large uncertainties, Kageyama et al. (2017) describe the common experimental design

for LGM experiments in the current phase 4 of the project but let modelling groups choose from three different ice sheet
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reconstructions: GLAC-1D (Tarasov et al., 2012), ICE-6G-C (Peltier et al., 2015; Argus et al., 2014), or PMIP3 (Abe-Ouchi

et al., 2015). To see the impact of such a choice, we have implemented in this study the boundary conditions (e.g. elevation,85

bathymetry, land-sea mask) associated with the first two options since these reconstructions are the most recent. We have also

considered the results obtained with the previous LGM version of the model (PMIP2) described in Roche et al. (2007), which

was generated with the boundary conditions associated with ICE-5G (Peltier, 2004), a previous reconstruction with notably

higher elevation of the Northern Hemisphere ice sheets.

We have implemented the elevation associated with either GLAC-1D or ICE-6G-C topography at 21,000 years ago on90

the T21 grid of ECBilt in the Northern Hemisphere. The bathymetry of the CLIO grid has been modified according to the

same topography and to a low sea level of -133.9 m (Lambeck et al., 2014). The bathymetry of the previous LGM version of

iLOVECLIM was manually generated, while we now use a semi-automated method for our PMIP4 runs (see more detailed

explanations in Appendix A). The land-sea mask is computed using the hypsometry discretized on the CLIO grid. A grid cell

is defined as ocean if, at the subgrid level, the fraction of this cell below sea level exceeds a set threshold of 40%. The land-sea95

mask is manually defined in a few key regions (Gibraltar strait, Greenland–Iceland–Scotland threshold, etc.). We take particular

care of this step, relying on knowledge of the sea level change and of the straits geography at the LGM, and also running a

connectivity program (see Appendix B) computing sills to make informed choices.

2.3 Set of simulations

Thanks to the implementation of the PMIP boundary conditions and to the related development of the model, we have a set100

of five LGM simulations (Table 1) displaying contrasted climates (Fig. 1). Indeed, we ran two simulations under the PMIP4

experimental design (‘P4-G’ and ‘P4-I’, both also used in Kageyama et al. (accepted, 2021)) and three under the PMIP2

one (‘New P2’, ‘Cold P2’ and ‘Warm P2’). We used different boundary conditions and/or modelling choices to obtain them.

The boundary conditions (elevation, bathymetry, and land-sea mask) associated with the GLAC-1D, ICE-6G-C, or ICE-5G

topography were implemented to obtain ‘P4-G’, ‘P4-I’ and ‘New P2’ respectively. The elevation associated with the ICE-5G105

topography was also implemented for the other two PMIP2 simulations (‘Cold P2’ and ‘Warm P2’), but with the former manual

bathymetry instead of the one generated using our new semi-automated method. Finally, we made different modelling choices

with respect to the glacial temperature profiles used in the radiative code of ECBilt for these last two simulations (‘Cold P2’

and ‘Warm P2’). Indeed, due to the coarse vertical resolution of ECBilt, the model uses GCM vertical linearizations which are

region-dependent. We kept the default continental profile in the first case and used the Greenland profile for all ice-covered110

regions in the Northern Hemisphere in the second one, resulting in a large difference in the global mean temperature of these

two simulations.

We added to this set three sensitivity tests. The boundary conditions associated with ICE-6C-G were arbitrarily chosen

as standard in these tests, which is why the simulation ‘P4-I’ is considered as a LGM reference in the following sections.

Sensitivity tests using the simulation ‘P4-G’ as reference (i.e. GLAC-1D boundary conditions) yield fairly similar results (not115

shown here). In ‘P4-I wind’, we multiplied – in the Southern Ocean only – the meridional wind tension on ice by a coefficient

of 3 in order to boost the sea-ice export in the Southern Hemisphere and therefore explore the possible impact of the Antarctic

4



sea-ice dynamics. We ran ‘P4-I brines’ using the parameterization of the sinking of brines described by Bouttes et al. (2010).

The objective of this parameterization is to account for the sinking of dense water rejected during sea-ice formation. Indeed,

this process is often limited by the horizontal resolution of models, as the rejected salt tends to get diluted in the surface120

grid cells where sea ice is forming. This parameterization allows for a fraction of the salt content of the surface grid cell to

be transferred to the deepest grid cell underneath the location of sea-ice formation. As a result, the salinity and density of

the bottom cells increase while the salinity and density of the surface grid cells decrease, without congruent motion of water

masses. The modification of the salinity depends on the rate of sea-ice formation, as well as the chosen fraction parameter.

Here the fraction was chosen at 0.8 to allow for a large effect of this sensitivity test, but the gradual effect of this parameter125

choice on the streamfunction is shown in Fig. S5, as well as the impact of this parameterization on the PI streamfunction (and

deep water mass properties, see ‘PI brines’ simulation in Fig. S6). This simple parameterization is relatively different than a

downsloping current one as it is not confined to the continental slope and does not create mixing along the way of the sinking

brines. While “this brine mechanism is idealized, it reflects the impact of intense Antarctic sea-ice formation during the LGM”

(Bouttes et al., 2010) on the AABW density. In contrast to this transfer of salt, an addition of a freshwater flux (of 0.6 Sv)130

around Antarctica was done in the ‘P4-I hosing’ hosing experiment, as described by Roche et al. (2010).

The simulations are briefly described in Table 1. Each simulation has been run either 3000 or 5000 years to ensure a quasi-

equilibrium state. The drift for any individual simulation is less that 2× 10−4 °C per century for the deep ocean temperature

(global mean of all oceans below 2,000 meters depth). The last 100 years are analyzed. We use this set of simulations to a)

compare the simulated sea-surface temperatures and sea-ice extent to their distribution in the Southern Ocean inferred from135

data and b) explore the impact of these surface conditions on deep ocean circulation.

2.4 Experimental data

The simulated surface conditions are first compared with the LGM sea-surface temperatures reconstructed by MARGO Project

Members (2009). Thanks to the use of multiple proxies (diatoms, radiolaria, dinoflagellates, foraminifera, Mg/Ca, and alkenones),

this dataset, combining 696 individual records, provides a synthesis of our knowledge of the LGM ocean surface temperature.140

However, it should be noted that most proxies are calibrated against summer SST (Esper and Gersonde, 2014; Cortese and

Prebble, 2015) or annual SST (Sikes et al., 1997; Prahl et al., 2000). Only planktonic foraminifera allow for the estimation of

winter SST (Howard and Prell, 1992) but their growth is hampered, and restricted to a couple of species, south of the Polar

Front (Bé and Hutson, 1977). As such, there are only few winter SST estimates to compare with the simulated ones. As for the

model-data comparison of the PI SSTs, we relied on the modern WOA data (World Ocean Atlas, 1998) since it is the one used145

by MARGO Project Members (2009).

Secondly, to evaluate the glacial Antarctic sea-ice distribution we compiled sea-ice proxy data from Gersonde et al. (2005),

Allen et al. (2011), Ferry et al. (2015), Benz et al. (2016), Xiao et al. (2016), Nair et al. (2019) and Ghadi et al. (2020). In

this compilation, LGM data include three types of proxies: a quantitative proxy of yearly sea-ice duration, a quantitative proxy

of the winter (September) or summer (February) sea-ice concentration, and finally a qualitative proxy (based on the relative150

abundance of diatoms Fragilariopsis curta + F. cylindrus for winter sea-ice presence and F. obliquecostata for summer sea-
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ice presence). To integrate these different types of measurements, an index is built based on the number of proxies agreeing

on the sea-ice presence (ranging from 0 to 3 in winter and 0 to 2 in summer, with halved values when a proxy is not very

conclusive). Presence of sea ice at a given location is accepted when the qualitative or quantitative value is above the error

on the calibration step (Gersonde and Zielinski, 2000; Crosta et al., 2004; Esper and Gersonde, 2014). Taking into account all155

marine cores, we draw the likely delimitation of sea-ice presence in austral winter. Unfortunately, there are too few proxy data

available to robustly constrain the location of the austral summer sea-ice edge. We thus extrapolated the modern relationship

between summer sea-ice extent and SST, whereby summer sea ice lies south of the 0°C isotherm (Nicol et al., 2000) to the

LGM. Caution is therefore needed when using the results as this summer contour is not well-constrained.

We then estimated the sea-ice extent inferred from this data compilation: we imported these contours on a 360× 360 points160

grid (of 1°× 0.5° in longitude and latitude), computed the surface area contained within (summing the weighted area of each

grid cell on a perfect sphere) and subtracted an estimated surface of the Antarctic continent (i.e. land and grounded ice sheet

areal extent) at the LGM. Results are discussed in Sect 3.3. We estimated a glacial Antarctica of 16.8×106 km2 by computing

the total area of the continent and of the continental shelves (up to -1000 m) on a high resolution (16× 16 km) modern

topographic dataset (Fretwell et al., 2013). This value falls close to a GIS surface area estimate of 16.4× 106 km2 using165

Bentley et al. (2014) Antarctic maps at 20 ka on a Lambert projection. To put this value into perspective, the modern Antarctic

continent has a surface area of 13.9×106 km2 (Fretwell et al., 2013), due to a smaller areal extension of the Antarctic ice sheet

and a higher sea level. For the indicative error in the sea-ice surface extent computed, we have chosen the values of 15% (in

winter) and 30% (in summer) for two reasons. First of all, it is difficult to estimate the uncertainty linked to the extrapolation

of the sea-ice edges using marine core data, and it makes sense for this uncertainty to be larger in summer than in winter due170

to the scarcity of data. Secondly, another uncertainty is arising from the subtracted surface area of Antarctica at the LGM,

which affects the estimated sea-ice extent (but not its seasonality). Its continental limit is speculative in some regions (Bentley

et al., 2014), while the discretisation of this limit as a land-sea mask on a coarse resolution grid may induce an additional error.

More precisely, with the ICE-6G-C and the GLAC-1D topographic files (with their 1080× 2160 and 360× 360 points grid

resolutions respectively), we find a 21 ka Antarctic surface of 15.0×106 km2 and 17.1×106 km2 respectively. An uncertainty175

of this order of magnitude (2 millions of square kilometers) represents 6% and 20% of the sea-ice extent estimated in winter

and summer respectively. If we further discretise the contours of the winter and summer sea-ice edges and of the ICE-6G-C

Antarctic continent on the 3°× 3° CLIO grid, we underestimate the sea-ice extent by 3.4× 106 km2 (in winter) and 1.7× 106

km2 (in summer), that is to say by 10% and 16% respectively. Considering the order of magnitude of these alternative estimates,

error bars of 15% and 30% seem reasonable. Still, these estimates are only indicative of the order of magnitude of the error.180

Finally, to also evaluate the simulated PI sea-ice extent, we used sea-ice data on the period 1979–2010 from Parkinson and

Cavalieri (2012), who computed a mean extent of 18.5× 106 km2 (in September) and 3.1× 106 km2 (in February) – though it

should be noted that the sea-ice extent we simulated in our pre-industrial run is not fully comparable with these modern values

because of climate change over the last century.
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3 Results185

3.1 Global mean surface air temperature anomaly

Six out of eight of our runs display a global mean surface air temperature anomaly (LGM mean SAT – PI mean SAT) in the

range of -4 ± 0.8°C (Fig. 1) estimated by Annan and Hargreaves (2013), though three of them fall close to its upper limit.

The average climate of ‘Cold P2’ is too cold and ‘P4-I hosing’ is too warm to agree with this range. With a LGM cooling

of around -3.3°C, we also note that the PMIP4 boundary conditions (with lower ice sheets compared to PMIP2) lead to a190

significantly warmer climate than the PMIP2 boundary conditions (see ‘P4-G’ and ‘P4-I’ compared to ‘New P2’). Compared

to other PMIP4 models, iLOVECLIM simulates a quite warm glacial climate, in agreement with previous evaluations (Roche

et al., 2007): Kageyama et al. (accepted, 2021) shows that half of the PMIP4 models simulate a LGM cooling in the -3.7°C

to -4°C range, while three colder models simulate a larger global SAT anomaly (up to -6.8°C). We note that the LGM mean

SAT anomaly was recently re-evaluated at -6.1 ± 0.4 °C (Tierney et al., 2020), due to lower SAT in the tropics than previously195

reconstructed. Both iLOVECLIM and most of the other PMIP4 models simulate relatively modest SAT anomalies which do

not compare well with such a large LGM mean SAT anomaly. Nonetheless, this estimation was obtained thanks to a field

reconstruction of LGM temperatures using data assimilation in the CESM model, an innovative method which is not freed

from potential model biases, CESM being the coldest model out of the PMIP4 ensemble in Kageyama et al. (accepted, 2021).

3.2 Sea-surface temperatures200

Figure 2 shows that our set of simulations yields a variety of sea-surface temperatures, with some significant regional differ-

ences. The pre-industrial SSTs are obviously warmer than the ones simulated by the reference LGM simulation ‘P4-I’, with a

marked anomaly in the North Atlantic and in the Southern Ocean (Fig. 2a). Overall, the three PMIP2 simulations show colder

SSTs than ‘P4-I’ (Fig. 2b,c,d). The differences between ‘P4-G’ and ‘P4-I’ are small (Fig. 2e), with the exception of the eastern

Atlantic and western Indian sectors of the Southern Ocean, south of the African continent, where ‘P4-G’ displays warmer205

SSTs. This positive anomaly is related to a southward shift of the Antarctic Circumpolar Current. Larger differences exist

between ‘P4-I’ and its sensitivity tests, especially in the North Atlantic and in the Southern Ocean. We note that the transfer

of salt to the bottom of the ocean leads to a cooling of the Southern Ocean (‘P4-I brines’, Fig. 2f), while the opposite occurs

with the addition of a freshwater flux around Antarctica (‘P4-I hosing’, Fig. 2h). Observed in ice-free regions (i.e. where the

SSTs are not necessarily at the freezing point value), this cooling is probably a consequence of the enhanced stratification,210

since a well-mixed water column in upwelling regions would tend to dampen the effect of low winter surface temperatures on

the SSTs. The third sensitivity test (‘P4-I wind’) only yields small differences with ‘P4-I’, except around Kerguelen Islands. A

latitudinal gradient along the Atlantic is sometimes visible in the SST anomalies (‘New P2’, ‘P4-I wind’), suggesting a change

in the meridional heat transport, possibly due to the influence of the choice of boundary conditions and of the sensitivity tests

on the AMOC (see Sect. 3.4).215

We now explore which of these surface conditions agree best with the proxy data from MARGO Project Members (2009).

To quantify the model-data agreement, we compute the root mean square errors (RMSEs) for each ocean basin, for both the
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austral summer (JFM) and winter (JAS) seasons. We choose to plot these values against the mean SST of the Southern Ocean

(Fig. 3), to show the potential relationships between the model-data agreement computed for each simulation and a cold or

warm Southern Ocean. We also choose to compute individual RMSEs for each ocean basin according to the core locations220

of the MARGO data, separating the Southern Ocean into two sectors (Atlantic and Indian sectors versus Pacific sector). The

poorest agreement is observed in the Southern Ocean, especially in the Atlantic and Indian sectors of the Southern Ocean. The

simulations with a colder Southern Ocean (‘Cold P2’, ‘P4-I brines’) show a better agreement with the SST data, as indicated by

a smaller RMSEs computed for the Southern Ocean (see triangles in Fig. 3). However, ‘Cold P2’ is not the simulation with the

lowest mean RMSE (see crosses in Fig. 3b), as it notably shows a higher RMSE in the Atlantic basin in winter (see diamonds).225

To better understand the discrepancies between data and model, we analyse next the SSTs in a data versus model diagram

for the summer and winter months with superimposed information about their latitudinal location. A set of representative

simulations are presented in Fig. 4, the interested reader can find similar plots for all simulations in Fig. S2. In general, the

simulated LGM SSTs in austral winter (Fig. 4d,f,h) agree reasonably well with MARGO data. Although data are scarce in the

Southern Ocean for these winter months, it seems that simulations with a cold Southern Ocean (‘P4-I brines’) yield a better230

agreement with data (compared to ‘P4-I’ or ‘P4-I hosing’). However, during the austral summer months, a clear trend with

latitude is observed for all LGM simulations (Fig. 4c,e,g), with the model-data disagreement peaking around 40–50°S. At

these latitudes, the summer Southern Ocean is too warm to match the data, even when taking into account the uncertainties.

We note that the simulated summer SSTs in the Pacific sector of the Southern Ocean seem less overestimated (compared to

data) than in the Atlantic or Indian sectors. At higher latitudes (∼60°S), the agreement with data improves (as shown by points235

closer to the 1:1 line), and cold simulations even simulate colder summer SSTs than the SST data in the high latitudes of the

Pacific sector, which is where sea ice is also simulated (see white markers in Fig. 4e and S2c, or Fig. S1c). This trend with

latitude is almost as clear for the pre-industrial (Fig. 4a), which simulates a slightly too warm Southern Ocean compared to

WOA98 data for most latitudes of the Southern Hemisphere, and for both seasons – though the model-data disagreement is

more pronounced in the summer months.240

There is a clear anti-correlation between the simulated sea-surface temperature and sea-ice area in the Southern Ocean (Fig.

S3), which suggests a thermodynamic control prevailing over the influence of advection processes. Therefore, we can also use

sea-ice proxy data to further constrain the surface conditions, and examine whether our model-data evaluation using the sea-ice

signal is consistent with our observations so far.

3.3 Sea ice245

Analyzing correctly the sea-ice distribution requires distinguishing the summer and winter values. We here compare the simu-

lated sea ice with data reconstructions for the austral summer (JFM) and winter (JAS) seasons, first in terms of sea-ice extent

and then in terms of regional patterns. Only the sea-ice extent, defined as the surface with a sea-ice concentration over 15%, is

strictly comparable to our data estimates. We however chose to present both the simulated sea-ice extent (here, the total surface

between the northernmost 15% concentration limit and the Antarctic continent) and area (the sea-ice concentration multiplied250

by the area of the grid cell for all ocean cells south of the equator) in Fig. 5.
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Using the method described in Sect. 2.4 to integrate the sea-ice proxy data, we estimated a minimal (in austral summer)

sea-ice extent of ∼10.2×106 km2 and a maximal (in austral winter) extent of ∼32.9×106 km2. This last value is significantly

lower than previous studies (39× 106 km2 in Gersonde et al. (2005) and 43.5× 106 km2 in Roche et al. (2012). While our

estimates inherit the uncertainties linked to proxy data and to the extrapolation of sea-ice edges, this computation does not rely255

on a specific projection on a map. Given the limited change in the area enclosed in the contours, we estimate that the value of

43.5× 106 km2 of Roche et al. (2012) (which was also used in Marzocchi and Jansen (2017) to evaluate the simulated sea-ice

extent of PMIP3 models) was overestimated. It is difficult to pinpoint the exact cause of this overestimation, but two factors

certainly had a significant impact: first the use of a stereographic projection for the areal estimation, and second the use of the

modern surface area of the Antarctic continent instead of the LGM one.260

Comparing now these data reconstructions with our model outputs, Fig. 5 and S3a show that most simulations overestimate

the LGM summer sea-ice extent – a tendency which is also noticeable for pre-industrial conditions (Fig. 5), despite the warm

bias observed in Fig. 4a. Conversely, the sea-ice extent of most simulations fall close to the reconstructed winter sea-ice extent

of 32.9× 106 km2. The warmest simulation (‘P4-I hosing’, see Fig. 1) is the only one to show both a winter and a summer

sea-ice extent under the data estimates. However, simulations which are closer to the -4°C anomaly estimate (such as ‘Warm265

P2’ and ‘New P2’) show an overestimated minimal extent, yet a reasonable maximal extent, while warm simulations which

are almost out of the -4 ± 0.8°C range (such as ‘P4-G’ and ‘P4-I’) show both a small underestimation in winter and a small

overestimation in summer. This suggests that the enhanced seasonality of the LGM Southern Ocean sea ice (22.7× 106 km2

according to our proxy reconstructions, compared to the modern seasonal range of 15.4× 106 km2) is not entirely simulated

by the model, a result already observed in Roche et al. (2012). Two sensitivity tests show opposite results: ‘P4-I brines’ shows270

a larger seasonality (21.3× 106 km2) and ‘P4-I wind’ (14.9× 106 km2) a reduced one compared to their parent simulation

‘P4-I’ (16.7× 106 km2). It should be noted that, if we compared the simulated sea-ice area (instead of the extent) to our data

estimates, we would rather conclude of a reasonable estimation of the sea-ice cover in summer for most simulations and of

an almost systematic underestimation in winter. Indeed, the simulated sea-ice areas fall under the sea-ice extent values by 5

millions of square kilometers approximately, a difference enhanced in ‘P4-I wind’ due to the multiplication of the wind stress275

on ice.

Figure 6 presents the simulated sea-ice edges alongside the sea-ice contours based on marine core data, using the reconstruc-

tion method described in Sect. 2.4. The sea-ice edge – set at 15% of sea-ice concentration by convention (US National Snow

and Ice Data Center) – of all LGM simulations shows a roughly circular regional distribution around Antarctica (also see Fig.

S4). While the scarcity of summer LGM sea-ice indicators does not allow to make firm statements for the minimum extent, the280

circular shape does not compare well with the more oval-shaped proxy reconstruction in winter (Fig. 6b). Indeed, while cold

simulations seem close to the reconstruction in the Atlantic and Indian sectors, they overestimate sea ice in the Pacific sector

compared to proxy data. In summer (Fig. 6a), we observe a similar trend with less available proxy data: the simulated sea ice

seems too extensive in the Pacific sector for cold simulations, but can not match some of the sea-ice presence indications in

marine cores (reaching as far as 50°S in a few cores of the Atlantic sector). As the high southern latitudes of the Pacific are285

also where the model tends to simulate colder SSTs than MARGO data – on the contrary to the warm bias around latitudes of
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40–50°S in the Atlantic and Indian sectors (Fig. 4 and S1), the observed discrepancies in sea-ice distribution seem consistent

with the SST signal.

Both the SST and the sea-ice model-data comparison suggest that a cold Southern Ocean, with an relatively extensive winter

sea-ice cover (which is present in some of our simulations), but also with both a large seasonal amplitude (simulated to a certain290

extent by one of our simulations) and a large interbasin contrast (shown by none of our simulations), would agree best with

proxy data. Now that we have clarified what an improvement of the simulated surface conditions with respect to proxy data

means, we can further use their variety to examine whether improved surface conditions would be linked to a more realistic

water mass distribution.

3.4 Deep ocean circulation295

Although all of our simulations broadly show the same biases in the seasonal and regional patterns of the Southern Ocean

surface conditions, they simulate a variety of SST and sea-ice extent. We can expect these differences to have an impact on the

density of surface waters and possibly on deep water formation. Additionally, since these surface conditions are simulated using

different boundary conditions and/or forcings or model parameter choices (in the sensitivity tests), we take this opportunity to

investigate the relative impact of these modelling choices and boundary conditions on the simulated deep ocean circulation.300

We can examine the impact of the different modelling choices on the streamfunction along a meridional section of the

Atlantic and Southern Ocean basins (Fig. 7). The AMOC depth and strength in our PI simulation are within the PMIP3/PMIP4

ensemble (see Fig. S1 and S2 of Kageyama et al. (accepted, 2021)). In more details, the streamfunction of iLOVECLIM is

fairly comparable to the pre-industrial streamfunctions of HadCM3, AWIESM2, MIROC-ESM and CNRM-CM5, and actually

stronger and deeper than that of IPSL-CM5A2 (and IPSL-CM5A-LR). However, the pre-industrial AMOC strength simulated305

by the iLOVECLIM model is underestimated compared to modern observational data. Since 2004, the RAPID array at 26°N

has measured an AMOC within the range of 13.5 Sv to 20.9 Sv, when interannual variability is accounted for (Moat et al.,

2020), with a mean estimate of 17.2 Sv (McCarthy et al., 2015). The simulated AMOC strength at this latitude does not fall

into this range in any of our PI simulations, which show a maximum of 10.1 Sv (‘PI’) and 11.2 Sv (‘PI brines’, Fig. S5), with

both maximums occurring at depth 1225 m. A clockwise cell can be observed in the Atlantic, which relates to the formation of310

NADW. In the Southern Ocean, we choose to define two anticlockwise cells: one which is located around 60–80°S, and another

which is located both deeper and further north – but which do not always penetrate into the Atlantic Ocean. We name these

three overturning cells the NADW cell, the Southern Ocean cell and the bottom cell respectively. As Otto-Bliesner et al. (2007)

have shown, iLOVECLIM is among the models which simulate a very strong glacial NADW cell at the expense of the bottom

cell (as is also the case here for almost all experimental settings, see Fig. 7b,c,d,e,f,h,i), a response which is not consistent with315

the shallower glacial NADW and the more voluminous AABW inferred from paleotracer data (Curry and Oppo, 2005; Howe

et al., 2016; Böhm et al., 2015; Lynch-Stieglitz et al., 2007).

We first observe an effect of the boundary conditions choice. For example, the use of the new bathymetry generation method

reduces the LGM NADW cell slightly: its overturning is more intense for ‘Warm P2’ than for ‘New P2’. We also notice differ-

ences between the ‘P4-G’ and ‘P4-I’ streamfunctions, with a slight enhancement of the bottom overturning cell in the ’P4-G’320
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simulation associated with GLAC-1D (compared to the ’P4-I’ simulation with ICE-6G-C), but not enough to counterweight the

massive NADW cell. However, we note that the choice of forcings and model parameters seems to have a stronger impact than

the boundary conditions, as evidenced by the contrasting results between the three sensitivity tests and their parent simulation

‘P4-I’. The bottom cell is strongly enhanced by the use of the parameterization of the sinking brines, an experimental setting

which allows for the penetration of AABW in the Atlantic. On the other hand, the Southern Ocean cell is enhanced for ‘P4-I325

wind’, but moderately (‘P4-I hosing’) or strongly (‘P4-I brines’) suppressed for the other sensitivity tests. These results could

be due to the fact that the experimental setting of ‘P4-I wind’ – with the multiplication of the meridional wind stress on ice –

enhances sea-ice export, which leads to an increased sea-ice formation and its consequent brine rejection (Shin et al., 2003).

In ‘P4-I brines’, the Southern Ocean overturning is not fully explicitly computed due to the parameterization, leading to these

very low values. Finally, it is no surprise that the addition of a freshwater flux (‘P4-I hosing’) leads to less overturning as it330

decreases the density of surface waters.

To single out the impact of surface conditions on the convection, we plot the relationship between the mean SST in the

Southern Ocean and the maximum intensity of the three overturning cells in Fig. 8, for all simulations except the two with

modelling choices affecting the density processes (‘P4-I brines’ and ‘P4-I hosing’, plotted on Fig. S7). The correlation coeffi-

cients R are very significant (with |R| ≥ 0.83 for all plots), showing that simulations with a colder Southern Ocean tend to be335

associated with a stronger Southern Ocean cell, a weaker bottom cell and a more intense NADW cell. While this relationship

holds, modelling choices yielding colder SST in the Southern Ocean (thus in better agreement with the data) do not lead to

more realistic water mass distributions. Instead, a Southern Ocean cooling seems associated with an intensification of the open

ocean convection, with a negative effect on stratification.

4 Discussion340

4.1 What is the relative impact of boundary conditions and modelling choices?

With this set of simulations, we make use of the recent evolution of the iLOVECLIM model (regarding the recommended

PMIP4 experimental design and its implementation, see Sect. 2.2) to investigate the relative impact of boundary conditions

and of other modelling choices (related to forcings or model parameter choices) on the simulated surface conditions and deep

ocean circulation. Given the uncertainties in the ice sheet reconstructions, Kageyama et al. (2017) gave several options to345

modelling groups in the current phase 4 of PMIP, and advised the use of the new ICE-6G-C and GLAC-1D topographies

(either one or, ideally, both). We have implemented both topographies in the relatively coarse resolution iLOVECLIM model

and we show here that these two boundary conditions yield only small differences on the variables observed in this study. The

use of the PMIP2 (ICE-5G) ice sheet reconstruction – with a higher elevation – causes an overall colder climate compared

to PMIP4 but differences in simulated surface conditions and deep ocean circulation remain relatively small. In contrast, the350

modelling choices made in sensitivity tests can cause much larger differences (e.g. between ‘Cold P2’ and ‘Warm P2’, or

‘P4-I’ and ‘P4-I brines’, or ‘P4-I’ and ‘P4-I hosing’). In particular, the differences between ‘Cold P2’ and ‘Warm P2’ suggest

that, while iLOVECLIM generally simulates a more modest global SAT anomaly than other PMIP4 models (Kageyama et al.,
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accepted, 2021), modelling choices related to the glacial temperature profiles used in the radiative code can induce a very

significant change. Moreover, thanks to the use of proxy data to evaluate our simulations, this inverse methodology approach355

is useful to highlight systematic biases in the simulated surface conditions of the Southern Ocean. In the iLOVECLIM model,

it seems that the recurrent biases are larger than the differences related to the choice of boundary conditions. It is therefore

particularly important to investigate and understand the origin of these biases, while different ice sheet reconstructions have

a relatively smaller impact and may not all be implemented during the PMIP4 exercise. Nonetheless, it should be noted that

Galbraith and de Lavergne (2019) have investigated the effects of a broader range of forcings (greenhouse gas concentrations360

and orbital parameters in addition to changes in ice sheet size) on the deep water masses and they notably highlighted the

nonlinear responses of their volume to varying forcings (e.g. with different global temperatures). Therefore, the choice of ice

sheet reconstruction could potentially yield more significant differences in deep ocean circulation under different time periods

or simulated global temperature.

4.2 What is the “best” simulation, and why?365

Our analysis suggests that in terms of surface conditions, the PMIP2 boundary conditions yield a better agreement than the

PMIP4 ones with SST and sea-ice geological data. However, among our set of eight simulations, the sensitivity test with the

parameterization of the sinking of the dense water (‘P4-I brines’) is the one with the best overall agreement with data. This

parameterization allows for the simulation of a cold Southern Ocean, an extensive winter sea-ice cover along with an enhanced

seasonality of sea ice (close to the data estimate) compared to other simulations. This parameterization also impacts the AABW370

density and, therefore, the deep ocean circulation. Among our set of simulations, it is the only one simulating a water mass

distribution which is reconcilable with reconstructions from paleoproxies. Nonetheless, this experimental design (like all the

others tested in this study) does not result in a shoaling of the AMOC between the PI and LGM state (see Fig. S5), as is usually

inferred from proxy data. In contrast, Morée et al. (2021) were able to simulate with the NorESM-OC model a shoaled and

slightly weaker AMOC at the LGM compared to their PI state. As the radiocarbon ages simulated in southern source waters375

were too young compared to data, they however suggested that the ventilation at the LGM was still overestimated, possibly

in relation to a too small Antarctic sea-ice extent in their LGM simulation (see their Fig. S12). However, if we consider our

new estimates of ∼10.2×106 km2 and ∼32.9×106 km2 (respectively for the summer and winter sea-ice extent inferred from

proxy data), instead of the ones presented in Roche et al. (2012), the sea-ice extent simulated by Morée et al. (2021) is only

slightly underestimated. Therefore additional processes might be involved to explain the weak ventilation of Southern Ocean380

sourced deep water at the LGM.

Artificially sinking dense waters is motivated by the fact that, due to the coarse resolution of the model, the salt linked to

brine rejection during sea-ice formation tends to get diluted in the surface grid cells rather than allowing the sinking of dense

water along the continental slope (Bouttes et al., 2010). Though legitimate, this parameterization is quite crude: a fraction (here

chosen at 0.8) of the salt content of the surface grid cells is directly transferred to the deepest grid cell beneath them, without385

explicitly computing the convection.
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However, we can argue that the open ocean convection in the Southern Ocean is actually hindering the simulation of a

realistic water mass distribution. Indeed, while paleotracer data suggest a dense, stratified glacial deep ocean, the simulation of

cold conditions in the Southern Ocean is rather associated with an intense convection in the Southern Ocean – therefore well-

mixed, and a deep NADW (Fig. 7 and 8). As underlined by Heuzé et al. (2013), models struggle to simulate the correct bottom390

water properties even in the present-day conditions, as they tend to form AABW by open ocean convection, a process rarely

observed, instead of the overflow of dense continental shelf water. While none of the CMIP5 models were able to simulate the

latter, Heuzé (2021) showed that a few CMIP6 models are now able to simulate AABW formation via shelf processes, notably

thanks to the development of an overflow parameterization. Despite this progress, the issue remains, as “the large majority of

climate models form deep water via open ocean deep convection, too deep, too often, over too large an area” (Heuzé, 2021).395

Our results suggest that, even if we were able to simulate surface conditions in perfect agreement with proxy data, it would

probably not be sufficient to simulate a deep ocean circulation in good agreement with paleotracer data, unless the convection

and mixing processes are realistically represented by the model. Accounting for the sinking of brines rejected during sea-

ice formation using a parameterization may be one way of tackling this issue, but other authors have also put forward the

importance of a realistic vertical mixing scheme (De Boer and Hogg, 2014; de Lavergne et al., 2017). Topography-dependent400

mixing parameterizations, linked to the energy received by water masses due to geothermal fluxes and interactions of tidal

waves with the ocean floor, have been recently developed in some high resolution models (de Lavergne et al., 2019). Their

effects on the simulated deep ocean circulation in a coarser resolution z-level model such as iLOVECLIM may be of interest

for further studies.

4.3 What are the systematic biases?405

Still, even in the sensitivity test with the parameterization of the sinking of the dense water (‘P4-I brines’), which yields the best

model-data agreement among our set of simulations, the model results show the same biases than in all the other simulations.

We observe several systematic biases, linked to seasonal or regional patterns of SSTs and sea ice. First of all, the simulated

seasonal amplitude of sea ice is too small with respect to the proxy data estimates, which suggest a sea-ice seasonality of

22.7× 106 km2 (±8.0× 106 km2 based on 15% and 30% error bars on winter and summer sea-ice extent, respectively).410

Secondly, the simulated winter sea-ice extent seems too small (compared to data) in the Atlantic and Indian sectors (∼40–

50°S), and too large in the Pacific sector (∼60°S) for cold simulations. The model simulates round sea-ice distributions while

proxy data suggest more oval-shaped winter and summer covers, as observed today. Thirdly, the simulated summer SSTs are

too high in the Atlantic and Indian sectors (∼40–50°S) with respect to MARGO data, while they sometimes seem slightly

too low in the high latitudes of the Pacific sector. This is true at least for the summer months, as data are scarce in the winter415

months.

We note that the model underestimates the interbasin contrasts, as it struggles to simulate a large winter sea-ice cover

in the Atlantic and Indian sectors. While a good representation of sea-ice advection by the Antarctic Circumpolar Current

may be hard to achieve in key areas (e.g. Weddell Sea, Ross Sea, Kerguelen plateau where strong oceanic gyres exist) due

to the discretisation of the coasts on a 3°× 3° land-sea mask, this difficulty could be largely attributed to the warm bias420
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observed in the Southern Ocean. The clear zonal trend of this bias may stem from an underestimated polar amplification,

and/or of the SST gradients across the oceanic fronts (whose location may also be wrong). This type of bias is not surprising

considering the relatively coarse spatial resolution of iLOVECLIM. Interestingly, diverse modelling studies have also pointed

out distinctive regional patterns in the Southern Ocean with significant differences between the Pacific sector and the other two

sectors, whether it considered freshwater fluxes linked to icebergs and their influence on sea ice (Merino et al., 2016), zonal425

asymmetries of the Southern Hemisphere westerly jet trends (Waugh et al., in review, 2020), or the sea-ice retreat scenario with

the best agreement with the Antarctic ice core δ18O records at the Last Interglacial (Holloway et al., 2017).

Identifying the origin of a bias is always a challenge. It might be an especially hard task to identify the origin of biases in the

simulated sea-ice cover, considering the sheer number of feedbacks involved (Goosse et al., 2018). What can be noticed is that

the simulated sea-ice seasonal cycle is affected by some of our modelling choices (increased in ‘P4-I brines’, reduced in ‘P4-I430

wind’). Alongside, the Southern Ocean convection is suppressed in the first sensitivity test, and enhanced in the second. In a

climatological mean in our model there seems to be a link between reduced Southern Ocean convection and increased sea-ice

seasonal cycle. In opposition to this observation, Heuzé et al. (2013) have underlined the fact that CMIP5 models with a large

sea-ice seasonality are also the ones simulating open ocean convection over extensive areas at modern times, arguing that

strong sea-ice formation could precondition the ocean for open ocean deep convection. This questions the relative importance435

of the different simulated mechanisms at play linking the ocean convection and the sea-ice seasonal cycle, an aspect that is

present in several studies (Marshall and Speer, 2012; Behrens et al., 2016; Ma et al., 2020).

5 Conclusions

Using diverse boundary conditions and sensitivity tests, we are able to simulate a variety of LGM climates, and in particular

different surface conditions in the Southern Ocean among our set of simulations. We assess the model-data agreement in terms440

of both SSTs and sea-ice extent, and explore the associated impact on deep ocean circulation.

In this study, we underline that simulated cold surface conditions in the Southern Ocean are overall in better agreement

with proxy data. A detailed analysis shows that there are seasonal and spatial distribution patterns which are associated with

systematic discrepancies between our simulations and both sea ice and SST reconstructions. All simulations underestimate

the sea-ice seasonal range (with a simulated sea-ice extent range equal to 65% to 94% of the range inferred from the proxy445

reconstructions). Model-data comparisons also consistently suggest that the simulated SSTs of the Pacific sector of the Southern

Ocean (∼60°S) are slightly too low while those of the Atlantic and Indian sectors (∼40–50°S) are too high, which may explain

why the model is not able to reproduce the reconstructed oval-shaped distributions of sea ice. Overall, the model results exhibit

a mean warm bias of 2 to 6°C over the Southern Ocean with respect to MARGO data.

Yet, colder conditions in the Southern Ocean would not necessarily lead to a more realistic water mass distribution. Our450

study shows that colder conditions rather tend to intensify the Southern Ocean open ocean convection, a process which leads

to inaccurate AABW properties, as it does not account for the overflow of dense continental shelf water but instead creates

a well-mixed water column. The parameterization of the sinking of brines is the only experimental setting we used which
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accommodates a better representation of both the surface conditions and the deep ocean circulation. For the variables analyzed

in this study, it would therefore seem that the improved simulation of convection processes is paramount, and far more important455

than the choice of ice sheet reconstruction used to implement the orography and bathymetry.

Data availability. The model outputs and reconstructed sea-ice limits are available for download online (doi: 10.5281/zenodo.4576026).

Appendix A: Description of the semi-automated method to generate CLIO bathymetries

This method replaces the tedious manual changes that have been done on the CLIO grid in the past, in order to be able to

generate a CLIO bathymetry quickly from any topography file – a technical development which fastens the start of new PMIP460

phases and enables the run of transient simulations with an interactive bathymetry. It has been used here to (re)generate a pre-

industrial bathymetry (using the high resolution etopo1 topography), a PMIP2 bathymetry (using the ICE-5G reconstruction),

and two PMIP4 bathymetries (using either the GLAC-1D or the ICE-6G-C reconstruction).

This development has been done in several pre-processing steps :465

– Anomalies are computed using the PMIP2/PMIP4 topographies and then regridded on the etopo1 grid :

LGM topography = PI (etopo1) + LGM Peltier (ICE-6G-C, 21kyr) - PI Peltier (ICE-6G-C, 0kyr)

– A connectivity program (see Appendix B) writes the mean bathymetry and hypsometry into a text file, either on the

rotated or regular CLIO grid. It also produces the connections between ocean basins thanks to the computation of subgrid

sills.470

– In a second program, the two grids are first put together.

– Then, the mask is generated using the hypsometry, a chosen sea-level (-0.5 m for the PI, -133.9 m for the LGM, according

to Lambeck et al. (2014)), and a chosen threshold (% of surface of a grid cell above which the cell is defined as ocean

- here 40 %). Small isolated seas are closed. The mask of a few ocean grid cells is manually forced at the PI so that all

the critical straits stay open. These manual points have to be redefined at the LGM. Indeed, while some stay the same475

(Gibraltar), others are not necessary anymore (Hudson Bay and Japan Sea outlets) and a few new critical points appear

(Fram Strait, Golf of Mexico outlet). We take particular care of this step, using the connections computed earlier and our

knowledge of the LGM ocean.

– The bathymetry is converted into the irregular vertical levels of the CLIO model. The new vertical levels are set equal to

the former vertical levels for a few problematic grid cells in order to get realistic salinity values in the Mediterranean Sea480

and Hudson Bay. The vertical level 1 is avoided (either forced to 0 or 2), because the model cannot deal with these very
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shallow grid cells. As the model also cannot deal with isolated oceanic grid cells for which the deepest vertical level is

isolated (e.g. deep grid cells with shallower neighbours), a process similar to a smoothing filter is applied.

– Finally, this program writes a text file containing the bathymetry with the land-sea mask (0 in every land grid cells).

– Two additional pre-processing steps are required to generate the necessary input files (one containing the fraction of485

ocean seen by the T21 grid cells, another containing the interpolation points between the CLIO and the T21 grids).

– In order to be able to quickly equilibrate the model when running a simulation with a different bathymetry than its restart,

the initialization code of iLOVECLIM has been modified to generate realistic values of the tracers content of new oceanic

grid cells. To achieve this, the initialization of all the restart variables in new ocean grid cells is done by averaging the

values in neighbouring oceanic grid cells when necessary. The conservation of the total content of conservative variables490

(salt, carbon...) is ensured.

Appendix B: Description of the connectivity program

The software “topo_connect” was developed in order to compute the connection between ocean basins directly from topogra-

phy/bathymetry data. The basic idea is rather simple, though its implementation is not trivial. The algorithm builds a global

tree structure from the topographic data file, with each leaf corresponding to a local minimum in the topographic data, with the495

trunk corresponding to the entire domain, and with branching occurring for each sill between two (or more) sub-basins. From

this tree structure, it is then easy to find the lowest sill connecting any two points, by finding the first common branch to which

they belong.

More precisely, the algorithm starts by finding the local minima in the topographic domain. For each minimum, it builds the

set of points belonging to this minimum basin by adding the lowest (uphill) neighbour, and continues to do so up to finding a500

sill. This sill corresponds to a branching between two (or more) basins. The algorithm then continues the same procedure from

this sill, up to the next one, and so on, until all basins (branches) are connected to a single trunk, which represents the whole

domain. Building this tree structure is the most computationally demanding task. Then, for any two points in the domain, it

is easy to use this tree structure and to find the level (and the location) of the lowest sill connecting them. For a given sea

level, this allows to decide if two ocean basins are connected or not, according to topographic data. This information is then505

aggregated in a new grid system, typically an ocean model grid with a much lower resolution, in order to decide whether model

cells are connected or not.

The implementation requires caution, since non-trivial cases can arise. For example, there may be flat areas in the domain

and/or multiple sills at the same level therefore connecting more than two basins at the same time. The implementation relies

therefore not on simple traditional “arrays” but on more flexible structures like “lists” or “priority_queues” available in standard510

C++. The execution time is a few minutes on a desktop computer when using bathymetric data at the resolution of 1 arc-minute

(etopo1). Higher resolution could be useful to resolve some canyons, in particular to compute the possible extent of lakes on

land, but this was not investigated so far.
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Table 1. Short description of the iLOVECLIM simulations

Simulation Duration

(years)

Forcing

parameters

Topography Bathymetry Comments on the experimental setting

PI 5000 PI default semi-automated* Reference simulation for the pre-industrial climate

Cold P2 5000 PMIP2 ICE-5G manual With the default profile, yielding a very cold climate

Warm P2 3000 PMIP2 ICE-5G manual With the Greenland profile allocated to all ice-covered regions

in the Northern Hemisphere

New P2 5000 PMIP2 ICE-5G semi-automated Reference LGM simulation with boundary conditions associ-

ated with PMIP2

P4-G 5000 PMIP4 GLAC-1D semi-automated Reference LGM simulation with boundary conditions associ-

ated with GLAC-1D**

P4-I 5000 PMIP4 ICE-6G-C semi-automated Reference LGM simulation with boundary conditions associ-

ated with ICE-6G-C**

P4-I brines 5000 PMIP4 ICE-6G-C semi-automated Sensitivity test with the parameterization of the sinking of

brines

P4-I wind 3000 PMIP4 ICE-6G-C semi-automated Sensitivity test with the multiplication by 3 of the meridional

wind tension on ice

P4-I hosing 3000 PMIP4 ICE-6G-C semi-automated Sensitivity test with hosing (+0.6 Sv) around Antarctica

*generated using etopo1 (Amante and Eakins, 2009)

**both simulations are also part of Kageyama et al. (accepted, 2021)
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Figure 1. Global mean surface air temperature anomalies (LGM – PI). The grey bar shows the anomaly (-4 ± 0.8 °C) estimated by Annan

and Hargreaves (2013).
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Figure 2. Anomaly in simulated mean sea-surface temperature (°C) relative to simulation ‘P4-I’ (mean SST = 15.2 °C). Due to the vertical

resolution of iLOVECLIM, the sea-surface temperature is defined as the temperature of the first 10 m of the water column.

26



Figure 3. Relationship between the model-data agreement and the overall temperature of the Southern Ocean, in austral summer (a) and

winter (b). The mean value of the Southern Ocean SSTs (averaged up to 36°S) of each simulation is plotted on the x-axis. The y-axis

represents the root mean square error computed using the SST data from MARGO Project Members (2009), which is small when the

agreement is good. This value was computed for each basin and each simulation, as shown by the marker style and color respectively.
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Figure 4. Austral summer (JFM) and winter (JAS) sea-surface temperatures of the Southern Hemisphere in a model versus data diagram, for

a sample of our simulations (see Fig. S2 for the complete results). The simulated SSTs are plotted against the SST data from the regridded

product (MARGO Project Members (2009) or World Ocean Atlas (1998)) thanks to the aggregation of the coordinates on the nearest ocean

grid cell. The 1:1 line features a perfect model-data agreement (black dashed line), while the grey dotted lines features a 5°C departure from

it. The marker style indicates the ocean basin of each core. The marker color shows the latitude of the core, except it is white where the

model simulates sea ice in the Southern Ocean. The uncertainties associated with the SST data are plotted by the grey horizontal bars.
28



Figure 5. Austral summer (JFM) and winter (JAS) sea-ice areas and extents in the Southern Ocean. The LGM sea-ice extent estimated

using the proxy data compilation is represented by the red (summer) and the blue (winter) dashed lines (with an indicative error bar of 30%

and 15% respectively). The modern values (dashed lines on the left) are mean values on the period 1979–2010 published in Parkinson and

Cavalieri (2012).
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Figure 6. Austral summer (a) and winter (b) sea-ice edges (at 15% of sea-ice concentration, enclosing the total ocean surface defined as

the sea-ice extent) in the Southern Ocean for the LGM simulations. The sea-ice presence suggested by marine cores data is represented as

an arbitrary index on a blue to white scale, where blue denotes no indication of sea ice in proxies, and white denotes agreement of several

proxies on the presence of sea ice. The red lines mark the likely delimitation of the sea-ice presence according to the proxy data (compilation

of data from Gersonde et al. (2005), Allen et al. (2011), Ferry et al. (2015), Benz et al. (2016), Xiao et al. (2016), Nair et al. (2019), and

Ghadi et al. (2020)). We used a solid red line in (b) but a dashed line in (a) as the summer contour is not well-constrained (see Sect. 2.4).
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Figure 7. Streamfunctions (Sv) in the Atlantic (North of 32°S) and Southern Ocean basins (South of 32°S). The black vertical line represents

the limit between these two basins, chosen at 32°S. The thin dotted lines show the latitude of the average sea-ice edge in austral summer

(red) and winter (blue) for each simulation.

31



Figure 8. Relationships between the mean SST in the Southern Ocean (averaged up to 36°S) and the Southern Ocean (a, b), bottom (c, d)

or NADW (e, f) overturning cell maximum, for all simulations except ‘P4-I brines’ and ‘P4-I hosing’. The y-axis is inverted for the two

anticlockwise cells (a, b, c, d). The dotted line represents the linear fit to the model results plotted here.
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