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Abstract. Earth system models show wide disagreement when simulating the climate of the continents at the Last Glacial

Maximum (LGM). This disagreement may be related to a variety of factors, including model resolution and an incomplete

representation of Earth system processes. To assess the importance of resolution and land-atmosphere feedbacks on the climate

of Europe, we performed an iterative, asynchronously coupled land-atmosphere modelling experiment that combined a global

climate model, a regional climate model, and a dynamic vegetation model. The regional climate and land cover models were5

run at high (18 km) resolution over a domain covering the ice-free regions of Europe. Asynchronous coupling between the

regional climate model and the vegetation model showed that the land-atmosphere coupling achieves quasi-equilibrium after

four iterations. Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and

other paleoenvironmental proxies. To assess the importance of land cover on the LGM climate of Europe, we performed a

sensitivity test where we used LGM climate but present day land cover as boundary conditions. These simulations show that10

the LGM land-atmosphere feedback leads to colder and drier conditions around the Alps and a warmer and drier climate in

southeastern Europe. Even in mid-latitude Europe where the land-atmosphere coupling strength is generally weak, and under

glacial conditions with a southward displacement of the storm track and increased importance of the Atlantic, regional climate

is significantly influenced by land cover.

1 Introduction15

The Last Glacial Maximum (LGM, 21 ka; Yokoyama et al., 2000; Clark et al., 2009; Van Meerbeeck et al., 2009) is a period of

focus for Earth system modelling because it represents a time when boundary conditions were very different from the present

and is therefore a good testbed of models’ ability to faithfully reproduce a range of climate states (e.g., Mix et al., 2001; Janská

et al., 2017; Cleator et al., 2020). In Europe, the LGM is also an interesting period in human history, because small groups of

highly mobile Upper Paleolithic hunter-gatherers persisted in the face of inhospitable climate, while Neanderthals disappeared20

(Finlayson, 2004; Finlayson et al., 2006; Finlayson, 2008; Burke et al., 2014; Maier et al., 2016; Baena Preysler et al., 2019).

However, despite more than three decades of research, the LGM climate of the continents is only poorly understood. Global

climate models (GCMs) show little agreement in LGM simulations for Europe (Braconnot et al., 2012; Kageyama et al., 2017;
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Ludwig et al., 2019; Kageyama et al., 2020). It has been suggested that a reason for the large uncertainty could be related to

spatial resolution in the climate models (Walsh et al., 2008; Jia et al., 2019; Ludwig et al., 2019; Raible et al., 2020). Recent25

advances in high resolution regional climate modelling led to the application of regional climate models to the glacial climate

of Europe (e.g.; Ludwig et al., 2020). Here, we further investigate the importance of land cover for climate during this period.

Paleoclimate reconstructions suggest that the climate of Europe was 10 to 14 ◦C colder and around 200 mm year−1 drier

during the LGM compared to present day (Wu et al., 2007; Bartlein et al., 2011). However, uncertainties in the paleoclimate

reconstructions are large, the few sites with samples dating to the LGM are not uniformly distributed in space (e.g., Wu30

et al., 2007), and in some regions, reconstructions are contradictory (e.g., de Vernal et al., 2006). For example, some LGM

climate reconstructions suggest that the Iberian Peninsula was dry (Bartlein et al., 2011; Cleator et al., 2020), while others

suggest wetter conditions were prevalent (Moreno et al., 2012). Some of these discrepancies may result from the fact that

many paleoclimate archives record a certain season, while the signal is frequently interpreted as an annual value (Beghin et al.,

2016), or because even sites that are close together record strong climatic gradients. Whatever the case, generation of a spatially35

continuous map of climate and environmental conditions in LGM Europe is currently not possible using a strictly data-driven

approach. As an alternative, it should be possible to generate continuous maps using climate models.

GCM simulations are overall consistent with reconstructions in simulating an LGM climate that is largely colder and drier

than present day (e.g., Ludwig et al., 2016; Hofer et al., 2012a). At the regional scale, however, GCMs show broad intermodel

variety and partly disagree in comparison to proxy reconstructions, particularly concerning the magnitude and spatial patterning40

of temperature and precipitation (Harrison et al., 2015). For example, GCMs show broad disagreement in the simulation of

precipitation over the Iberian Peninsula, with some models suggesting it was wetter while in others the simulated climate is

drier (Beghin et al., 2016). One possible explanation for the disagreement is the coarse spatial resolution of the GCMs; at the

continental scale, mountains, ice sheets, and water bodies have an important influence on regional circulation and climate that

may not be represented appropriately at a typical GCM resolution of ca. 100 km (Stocker et al., 2013).45

To improve the representation of local and regional climate, GCMs can be dynamically downscaled using regional climate

models (RCMs). Ludwig et al. (2019) found that downscaling using an RCM offers a clear benefit to answer paleoclimate

research questions and to improve interpretation of climate modelling and proxy reconstructions. They also found that the

regional climate models require appropriate surface boundary conditions to properly represent the lower troposphere. Studies

have demonstrated that a realistic representation of surface conditions is essential for the accuracy of the simulated regional50

climate as they play a crucial role in regulating water and energy fluxes between the land surface and the atmosphere (e.g.,

Crowley and Baum, 1997; Strandberg et al., 2011; Tao et al., 2013; Ludwig et al., 2017).

As noted above, the sparse distribution of paleoecological samples in Europe that are securely dated to the LGM preclude

the development of a continuous map of land cover that can be used as a boundary condition for climate modelling and

other purposes, e.g., archaeological and botanical research. Since climate affects land cover and land cover in turn affects55

climate , it is not sufficient to simply use climate model output to generate a vegetation map. To overcome this dichotomy,

one may adopt a coupled modelling approach, where a climate model simulation is initialised with an estimate of land cover

and the resulting climate output fields are used to simulate land cover. This process, which is called asynchronous coupling, is
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repeated between the climate and land cover models until the land-atmosphere system is in equilibrium. Asynchronous coupling

is computationally inexpensive and has been successfully employed in several modelling studies to investigate problems in60

paleoclimate science (e.g., Texier et al., 1997; Noblet et al., 1996).

Here, we perform an asynchronous coupled modelling study to simulate the climate and land cover of Europe at the LGM.

The coupled modelling starts with a GCM (CCSM4; Gent et al., 2011) to simulate global atmospheric boundary conditions,

which are then passed to an RCM (WRF; Skamarock and Klemp, 2008). The RCM output is used to drive a dynamic vegetation

model (LPJ-LMfire; Pfeiffer et al., 2013) which then returns land cover to the RCM. The RCM simulation is then repeated65

with the new land cover as boundary condition. We evaluate the results of our coupled model experiment using independent

reconstructions of land cover and climate, and we perform sensitivity tests to better understand the importance of land cover

for LGM climate in Europe by forcing the RCM with an alternative set of land-surface boundary conditions.

2 Models and methods

2.1 General circulation model: CCSM470

The atmosphere and land component of the Community Climate System Model (version 4; CCSM4; Gent et al., 2011) were

used to perform two global climate simulations: 31 consecutive years for 1990 conditions and another 31 consecutive years for

LGM conditions (Hofer et al., 2012a,b; Merz et al., 2013, 2014a,b, 2015). The atmospheric component (CAM4, Neale et al.,

2010) and the land component (CLM4, Oleson et al., 2010) are coupled to so-called data models for the ocean and sea ice. This

means that the atmospheric component is forced by time-varying sea surface temperatures and sea ice cover, deduced from a75

more coarsely resolved fully coupled simulation with CCSM3 (Hofer et al., 2012a). The atmosphere-land-only model is run

with 6-hourly output, a horizontal resolution of 1.25 ◦ × 0.9 ◦ (longitude × latitude) and 26 vertical hybrid sigma-pressure

levels.

2.2 Regional climate model: WRF

To investigate the importance of model resolution and land cover on the climate of LGM Europe, we dynamically downscaled80

the global CCSM4 simulations using the Weather Research and Forecasting (WRF) model (version 3.8.1, Skamarock and

Klemp, 2008). This regional climate model was set up with two domains that are two-way nested. These domains have 40

vertical eta levels and a horizontal resolution of 56 and 18 km, respectively. The outermost domain is centered on the Alpine

region and includes an extended westward and northward area to capture the influence of the North Atlantic Ocean and the

Fennoscandian ice sheet on the European climate (Fig. 1). The relevant parameterisation schemes chosen to run WRF are85

described in Velasquez et al. (2020).

We performed three sets of WRF simulations for this study. Each simulation was run for 30 years, split up into two single

15-year simulations and carried out with an adaptive time-step to increase the throughput on the available computer facilities.

For each of the 15-year simulations, we used a 2-month spin-up to account for the time required for the land surface to
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come into equilibrium. Tests show that the WRF land surface scheme reaches a quasi-equilibrium after approximately 15 days90

(Velasquez et al., 2020). The initial and boundary conditions for WRF were provided by the global CCSM4 simulations. Note

that no nudging is applied in the RCM simulations. The main simulation (LGMLGM) is the final product of our coupling design

and uses the GCM simulation with perpetual LGM conditions (Hofer et al., 2012a). Reduced sea level and increased ice sheets

are used for LGM conditions as specified in the PMIP3 protocol (for more details see: Hofer et al., 2012a; Ludwig et al., 2017).

The LGM glaciation over the Alpine region is obtained from Seguinot et al. (2018) and additional LGM glaciated areas (e.g.,95

Pyrenees, Carpathians) is from Ehlers et al. (2011). Calculation of the LGM land cover is described in Sect. 2.4.

We carried out two additional sensitivity simulations to evaluate the importance of land cover for the LGM climate in Europe

and to gain insights into the atmospheric response to changes in land cover. Namely, the sensitivity simulations were compared

against the final product of our coupling design (LGMLGM). The first additional WRF simulation (PDPD) is run using the

GCM simulation with 1990 conditions (Hofer et al., 2012a), and uses the default present-day MODIS-based land cover dataset100

from WRF as the land surface boundary condition (Skamarock and Klemp, 2008). The second additional simulation uses the

GCM simulation with LGM conditions (Hofer et al., 2012a), but with the default present-day MODIS-based land cover dataset

from WRF as for the land surface (LGMPD). Comparing LGMPD with PDPD illustrates the atmospheric response to changes

only in the atmospheric forcing, i.e., without changes in land cover. The comparison of LGMLGM and the LGMPD allows

us to extract the influence of land cover on the atmosphere, i.e., without changes in atmospheric boundary conditions. These105

simulations are summarised in Table 1.

2.3 Dynamic global vegetation model: LPJ-LMfire

Land cover for the LGM is simulated by the LPJ-LMfire dynamic global vegetation model (Pfeiffer et al., 2013), which is an

evolution of LPJ (Sitch et al., 2003). LPJ-LMfire is a processed-based, large-scale representation of vegetation dynamics and

land-atmosphere water and carbon exchanges that simulates land cover patterns in response to climate, soils, and atmospheric110

CO2 concentrations (Prentice et al., 1992; Haxeltine and Prentice, 1996; Haxeltine et al., 1996; Kaplan, 2001; Kaplan et al.,

2016). LPJ-LMfire simulates land cover in the form of the fractional coverage of nine plant functional types (PFTs), including

tropical, temperate, and boreal trees, and tropical and extratropical herbaceous vegetation (Sitch et al., 2003).

In each of our simulations, we drove LPJ-LMfire for 1020 years with the climate from the GCM and RCM, reconstructed

atmospheric CO2 concentrations from ice cores, and present-day soil physical properties extrapolated out on to the continental115

shelves (Kaplan et al., 2016). Such a long simulation is not necessary to bring aboveground vegetation into equilibrium with

climate, but it allows soil organic matter to equilibrate and because the vegetation model is computationally inexpensive, we

performed these millennium-long simulations so that they could be analysed for other purposes in the future.

2.4 Iterative asynchronous coupling design

To create the best possible estimate of European land cover for the LGM, we used an iterative asynchronous coupling design120

that combines CCSM4/WRF with LPJ-LMfire model (i.e., LGMLGM). This coupling design consists of four steps: (i) the fully

coupled CCSM4 provides atmospheric variables for the LGM to generate the first approximation of LGM land cover with
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LPJ-LMfire at a horizontal resolution of 1.25 ◦ × 0.9 ◦ (longitude × latitude), (ii) WRF is driven by the CCSM4 with LGM

conditions and the first approximation of LGM land cover created in step (i) to generate the first downscaled atmospheric

variables for the LGM at 18 and 54 km resolution, (iii) LPJ-LMfire is run with the downscaled LGM atmospheric variables125

(from step ii) to regenerate the LGM land cover at the RCM resolutions, (iv) same as in (ii) but WRF uses the land surface

boundary conditions simulated at 18 and 54 km. Step (iii) and (iv) are carried out asynchronously over six iterations to achieve

a quasi-equilibrium between the climate and land cover. Parts (i) and (ii) are considered as the first iteration and the iterations of

(iii) and (iv) are considered as the second-to-seventh iterations. The variables that are passed between the climate and vegetation

models are summarised in Table 2. Note that to classify vegetation cover fraction into the land cover categories required by130

WRF (according to NOAH-MP MODIS; Niu et al., 2011), we used a simple scheme based only on the cover fraction of the

LPJ-LMfire PFTs.

3 Effect of the iterative asynchronous coupling

The offline coupling design (Sect. 2.4) aims at generating a simulation of LGM climate and land cover that is as realistic as

possible. Through empirical observation, we determined that the land surface and atmosphere were in quasi-equilibrium after135

seven iterations. To describe this result and its effects, we concentrate on the climate and land cover responses over the ice-free

land areas of Europe at LGM. These responses are quantified throughout the iterations using variables that mostly govern the

interaction between the atmosphere and land surface and thus, they are most suitable to illustrate the asynchronous coupling

design and its performance. These variables are: the spatial climatological of total precipitation, temperature at 2 m and green

vegetation fraction, and the number of grid points dominated by the following land cover categories: sparsely vegetated, tundra,140

forest, and shrublands (NOAH-MP MODIS categories, Niu et al., 2011). Land cover categories that are functionally similar

are grouped together, e.g., wooded tundra, mixed tundra and barren tundra are all combined to the category tundra. Some land

cover categories are not considered in our analysis as they are poorly represented in both periods, e.g., savanna, grassland and

wetland, or are not relevant for the LGM, e.g., cropland and urban (Fig. 3a-b).

We observe that the most notable changes in the variables exchanged between land cover and atmosphere occur within the145

first four iterations (Fig. 2a,d). The variables level off from the fifth to the seventh iteration. In particular, we observe two

sharp changes in all variables within the first four iterations. The first important change occurs between the first and second

iteration and is observed in the atmospheric and land surface variables. This can be attributed to the important increase in the

horizontal resolution from approximately 1 ◦ to 18 km, which can be explained by the better representation of the regional-to-

local circulation processes and interactions with other components of the climate system in the RCM (Ludwig et al., 2019).150

The second change happens between the third and fourth iteration but is only observed in the atmospheric variables (Fig. 2a).

Oscillations in spatial-averaged temperature at 2 m are observed in the first four iterations (maximum change of 0.5 ◦C), which

turn into small fluctuations in the range of a tenth of a degree afterwards (Fig. 2a). The spatial-averaged total precipitation

continuously decreases till the fourth iteration (drop of 13 mm) with small changes thereafter (increase of 4 mm; Fig. 2a).

Changes in land surface variables are observed in the first three iterations and remain rather small thereafter, especially in the155

5

https://doi.org/10.5194/cp-2020-147
Preprint. Discussion started: 21 November 2020
c© Author(s) 2020. CC BY 4.0 License.



green vegetation fraction and the category sparsely vegetated (Fig. 2d). The small changes found after the fourth iteration are

interpreted as internal variability in the models and therefore we assume that the quasi-equilibrium state is achieved after the

fourth iteration.

In the following, we analyse the spatial patterns of climate and land cover between the iterations that represent the transient

progression towards equilibrium (fourth minus first iteration) and the quasi-equilibrium state (seventh minus fourth iteration).160

We consider total precipitation and green vegetation fraction as variables that summarise the coupled land-atmosphere response.

These two variables are displayed as relative changes with respect to the response of the fourth iteration (Fig. 2b-c and 2e-f).

Precipitation during the transient state reveals a progressive wetting over the Iberian Peninsula, France and Balkan Peninsula,

and drying over central and eastern Europe, north of the Alps and over some regions of France (Fig 2b). In response to the

progressive changes in precipitation, the vegetation cover shows a strong decrease during the transient state, particularly in165

eastern Europe (over 80 % reduction, with respect to the fourth iteration) and the Italian Peninsula, and an increase over the

Iberian Peninsula (around 40 %, with respect to the fourth iteration) and north of the Alps (around 60 %, with respect to the

fourth iteration; Fig. 2e). Regions that experience a drying (wetting) are related to a reduction (an increase) in vegetation cover,

except for the northern Alpine region. The changes in the quasi-equilibrium state are minimal for both variables (Fig. 2c and

2f). The remaining small differences could be interpreted as a part of the internal variability and uncertainties predominantly170

caused by parameterisations in the models, e.g., cloud formation and microphysical processes (Casanueva et al., 2016; Rajczak

and Schär, 2017; Shrestha et al., 2017; Knist et al., 2018; Yang et al., 2019).

4 Comparison of the simulated land surface conditions to proxy reconstructions

To evaluate the LGMLGM climate and land cover simulations, we compare the simulated tree cover, land cover categories, tem-

perature, and precipitation to pollen-based reconstructions. Reconstructed tree cover comes from the BIOME6000 pollen data175

synthesis (Prentice and Jolly, 2000) and a newer synthesis by Kaplan et al. (2016). For the land cover categories, temperature

and precipitation, we use the 14 available pollen-based reconstructions for LGM Europe from Wu et al. (2007).

In the PDPD simulations, the land cover of Europe is principally composed of croplands and forests, while in the LGMLGM

simulation land cover is dominated by sparsely vegetated and tundra categories (Fig. 4a and b). The LGMLGM simulation

shows a large decrease in the total vegetation cover fraction compared to PDPD (comparing Fig. 3c to 3d). These changes180

are driven by lower temperatures and reduced precipitation, and lower global atmospheric CO2 concentrations (Gerhart and

Ward, 2010; Woillez et al., 2011; Chen et al., 2019; Lu et al., 2019). The LGMLGM land cover is in good agreement with the

pollen-based reconstructions. We interpret the pollen reconstructions of steppe vegetation as sparsely vegetated in the WRF

land cover categories (Niu et al., 2011). We use the nine nearest 18 km grid points surrounding each pollen site to compare the

model results with pollen-based reconstructions of the land cover categories. For the land cover, the model-proxy agreement185

is considered to be good when at least one of the grid points matches the proxy reconstruction. For example, the dominant

land cover category northwest of the Alps (47.73◦ N, 6.5◦ E) reconstructed from pollen (steppe) agrees with the surrounding
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simulated land cover (sparse vegetation). Over areas with few proxy reconstructions, e.g., Carpathian Basin, the modelled

LGM land cover categories show tundra and grassland, which is in agreement with results found by Magyari et al. (2014a,b).

To assess the simulated LGMLGM climate, we calculate the temperature and precipitation anomalies with respect to PDPD,190

i.e., model-based anomalies. These are then evaluated using anomalies from the pollen-based paleoclimate reconstructions.

We extract the simulated climate for January and July as the reconstructions are only available for the coldest and warmest

months. In general, cooler and drier anomalies are observed in the LGMLGM with especially pronounced cooling in January

and drying in July (Fig. 4a-b and 4c-d). In January, we observe a positive precipitation anomaly of up to 7 mm day−1 over the

Iberian Peninsula, northern Italy and the Dinaric Alps (Fig. 4c). In our model-proxy comparison of paleoclimate anomalies,195

we use only the nearest model grid point to the pollen site and consider the model and proxy reconstruction to agree when the

model-based anomaly is within the 90 % confidence interval of the pollen-based anomaly (more details about the proxies in:

Wu et al., 2007). The LGMLGM climate agrees with the pollen-based paleoclimate reconstructions at most sites.

Still, a few locations show considerable differences between the pollen-based and model-based climate anomalies, in line

with similar findings mentioned in earlier studies (e.g.; Beghin et al., 2016; Ludwig et al., 2016; Cleator et al., 2020). These200

differences could be associated with shortcomings within the RCM and/or uncertainties in the proxy reconstructions (Bartlein

et al., 2011; Ludwig et al., 2019; Cleator et al., 2020). Kageyama et al. (2006) suggested that terrestrial paleoclimate proxies

may be more sensitive to climatic extremes than to the climatological mean state, which could lead to part of the discrepancies

between pollen-based reconstructions and the model simulations. For example, there is large model-proxy disagreement in

January precipitation over the Iberian Peninsula. Based on evidence for the presence of certain tree species in the northwestern205

part of the Iberian Peninsula, Roucoux et al. (2005) suggested that the LGM was not necessarily the period of the most severe,

i.e., cold and dry, climatic conditions everywhere, with the LGM sensu strictu being warmer and wetter than preceding and

following periods (Ludwig et al., 2018) . Similarly, Beghin et al. (2016) and Morellón et al. (2009) found evidence for the

same wetter conditions in the interior and northwestern Iberian Peninsula. To explain these climate anomalies, studies have

suggested that the North Atlantic storm track was shifted southward during the LGM compared to present day (e.g.; Hofer210

et al., 2012a; Luetscher et al., 2015; Merz et al., 2015; Ludwig et al., 2016; Wang et al., 2018; Raible et al., 2020). This could

explain why the LGM simulations (i.e., LGMLGM) shows wetter climate over the Iberian Peninsula compared to present-day

conditions (i.e., PDPD) in wintertime. Lofverstrom (2020) also proposed that stationary large-scale waves could have brought

abundant precipitation to the western Mediterranean region (around 50 % of the total wintertime precipitation). It is important

to note that we had only two pollen-based quantitative climate reconstructions from Iberia for the LGM; we therefore consider215

the model-proxy intercomparison in this region equivocal. In general, there is a good agreement between our simulations and

the independent paleoclimate reconstructions.

We further evaluated the LPJ-LMfire simulations against inferred tree cover from 71 pollen sites across Europe containing

samples securely dated to the LGM based on a compilation by Kaplan et al. (2016). This compilation represents a substantial

improvement in spatial coverage and dating precision compared to the 14 sites of BIOME6000 used by Wu et al. (2007). Com-220

parison between modelled and reconstructed tree cover is shown in Fig. 5. Generally, LPJ-LMfire moderately underestimates

tree cover compared with the pollen-based reconstructions. Modelled tree cover has a maximum value of about 60 %, while
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there are eight sites where the reconstruction is > 60 %, and two samples with 100 % tree cover. As noted by Kaplan et al.

(2016), these sites with very high reconstructed tree cover fraction should be treated with caution because they may represent

locations with very little vegetation, e.g., at the edge of the Alpine ice sheet or at high-altitude in the Carpathian Mountains.225

Therefore, the pollen signal is dominated by the long-distance transport of tree pollen; this phenomenon is also observed, e.g.,

in the analysis of pollen trapped in glacier ice (Brugger et al., 2019). At the bulk of the sites, LPJ-LMfire simulates 10-20 %

lower tree cover than reconstructed by pollen, which is within the uncertainty of both datasets (Kaplan et al., 2016), but may

suggest that the modelled climate is too cold and/or too dry, or that the LPJ-LMfire model is too sensitive to low atmospheric

CO2 concentrations.230

5 Atmospheric sensitivity to land cover

To better understand the importance of the land surface for the LGM climate in Europe, we assess sensitivity simulations by

comparing PDPD, LGMPD and LGMLGM. Our assessment considers the land areas without snow/ice that are shared by both

LGM and PD climate (crosshatched areas in Fig.6), i.e., we discard glaciated areas and land areas on the continental shelves that

were exposed at the LGM. Again, temperature and precipitation are selected as main indicators of the atmospheric response.235

Comparing LGMLGM to PDPD shows a cooling of around -12 ◦C in the annual value (Table 3). This cooling is enhanced to

-15.3 ◦C in DJF (December-January-February), remains similar to the annual mean in MAM and SON (March-April-May and

September-October-November), and weakens to -7.2 ◦C in JJA (June-July-August; Table 3). Moreover, a precipitation decrease

is noted in the annual value, which also applies to most months and in particular to JJA. Only in DJF, we observe a marginal

increase in precipitation (Table 3). This clearly illustrates a seasonality in the atmospheric response. Broccoli and Manabe240

(1987) mentioned that one reason for the seasonality in the temperature response can be the fluctuations in the horizontal

thermal advection from glaciers and ice-sheets to ice-free regions, predominantly in winter and weakened in summer (due

to weaker winds and stronger solar radiation). Cao et al. (2019) on one hand attributed the overall decrease of precipitation

to the strong anticyclonic circulations over the ice-sheets, especially to the low-level divergent cold air (Schaffernicht et al.,

2020). On the other hand, Luetscher et al. (2015) and Lofverstrom (2020) attributed winter wetter conditions over Europe to245

atmospheric rivers and Rossby-wave breaking, respectively. This together with the southward shift of storm track (found by:

Hofer et al., 2012a; Luetscher et al., 2015; Ludwig et al., 2016; Wang et al., 2018; Raible et al., 2020) could then compensate

the general dryness in wintertime, which would therefore lead to the seasonality.

To investigate the origin of the atmospheric response of the LGMLGM with respect to the PDPD, we evaluate the atmospheric

response to changes in the forcing (i.e., LGMPD – PDPD) and to changes in the land cover (i.e., LGMLGM – LGMPD),250

separately. The temperature response is clearly dominated by changes in the forcing, especially in SON and DJF. While changes

in land cover can only slightly influence temperature by an additional cooling of 0.66 ◦C in MAM and a warming of 0.85 ◦C

in JJA (Table 3). The precipitation anomaly is dominated by changes in the forcing as well. However, it is affected by changes

in the land cover only in DJF and JJA where precipitation is reduced by about 43 % in DJF and enhanced by about 35 %

in JJA. This demonstrates that the seasonality of the atmospheric response is mainly driven by changes in the forcing but its255
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intensity can be modulated by changes in the land cover, in particular in the precipitation response. A possible reason for the

seasonality in the response may be a modification of the stability in the lowest levels of the atmosphere that is produced by

the changes in the land cover. A cooling (warming) in the lower layer may lead to an inversion (unstable) zone that therefore

weakens (enhances) precipitation processes. Jahn et al. (2005) found that the LGM-like vegetation cover produces colder

temperatures (ca. −0.6 ◦C globally), especially in areas with the greatest decrease in tree cover. Ludwig et al. (2017) suggested260

that including LGM-like vegetation into regional climate modeling causes changes in albedo, net radiation and heat fluxes

that leads to impacts on temperature and precipitation. Another hypothesis is that the variability in land cover would lead to

modifications in the evapotranspiration affecting the moisture recycling and thus the increases in precipitation (Wallace and

Hobbs, 2006). This suggests that modifications in land cover like deforestation or growth of urban areas could play an important

role when other forcing agents marginally change, as has been observed in some future climate change scenarios like RCP 2.6265

and 4.5 (Stocker et al., 2013).

We further analysed the spatial pattern of the atmospheric response to changes in land cover (LGMLGM – LGMPD). To be

consistent with the evaluation done in Sect. 4, we focus on temperature and precipitation in January and July. Annual mean

temperature shows a cooling of around -2 ◦C in the vicinity of glaciers and in high-altitude regions; while warming is visible

in lower-elevation areas including the southwestern part of the Iberian Peninsula, France and the Carpathian Basin. (Fig. 6a).270

A similar spatial pattern is observed in January and July: Stronger warming is especially noted in the northern part of Italy

in January (Fig. 6b), whereas we observe that the amplitude of the temperature anomaly becomes stronger in July, especially

where the positive temperature anomaly covers a larger area, e.g., over eastern Europe (Fig. 6c). The precipitation response

is moderate in the annual mean. A slight increase of precipitation is seen in parts of the Mediterranean Sea and the Iberian

Peninsula, while a general decrease is observed over the rest of Europe. An enhanced similar pattern is observed in January,275

but with a slight increase over Germany and eastern Europe. LGM land cover leads to a negative precipitation anomaly in

July, which is especially strong around the Alps and in eastern Europe. Even though changes in land cover have a small-to-

moderate effect on the temperature and precipitation response, respectively (Table 3), their spatial pattern strongly changes

across Europe. Particularly, changes in land cover could be very important in some locations and seasons when we might

expect the land-atmosphere coupling strength to be strong, such as eastern Europe in July.280

6 Conclusions

In this study, we investigated the importance of land-atmosphere feedbacks for the climate of Europe during the Last Glacial

Maximum. To this end, we performed a series of high-resolution asynchronously coupled atmosphere-vegetation modelling

simulations. We simulated European climate and vegetation using the WRF regional climate model and LPJ-LMfire vegetation

model on a 56 and an 18 km horizontal resolution.285

Results of the asynchronous coupling show that quasi-equilibrium between climate and land cover is reached after the fourth

iteration. Between the first and fourth iteration, the climate becomes progressively wetter in southern Europe, while it becomes

drier in the east of the model domain. Once the coupled model system reaches equilibrium (from fourth to seventh iterations),
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we identified only marginal spatial differences that we attribute to internal variability in the climate and vegetation models.

The final iteration of the asynchronous coupling represents our best estimate of the atmospheric and land surface conditions in290

Europe at LGM. Consistent with many previous studies, we observe that the LGM climate of Europe was generally much colder

and drier compared to present day. The LGMLGM land cover was characterised by tundra and sparse vegetation, although in

many parts of central Europe open forest parkland may have been common, a result which is supported by comparisons with

pollen-based vegetation reconstructions.

Using two additional sensitivity simulations: PDPD and LGMPD, we quantified the direct effects of land cover on the LGM295

climate. Comparing LGMLGM to PDPD shows not only a general cooling and drying, but also illustrates a seasonality in the

atmospheric response. This seasonality may be related to fluctuations in circulation patterns. Comparing LGMPD to PDPD

illustrates that the seasonality is mainly driven by changes in forcing. Changes in land cover can however modify the intensity

of the climatic response, especially for summer precipitation. The comparison between LGMLGM to LGMPD shows that, even

in Europe where we would generally expect a weak land-atmosphere coupling compared, e.g., to the monsoon tropics, the300

atmosphere is sensitive to changes in land cover. The land-atmosphere response also has a seasonality which differs across

Europe. These features can be partially explained by the variable spatial and temporal influence of vegetation cover (albedo)

and water fluxes (partitioning of sensible vs. latent heat fluxes) to the lower troposphere. Our results show that LGM land cover

led to more (less) pronounced dryness over central (eastern) Europe in summer (JJA) when influenced by a more (less) reduced

vegetation cover fraction.305

As more paleoenvironmental reconstructions become available in the future, these simulations will be worthy of further

evaluation and more detailed examination of specific areas. Although 18 km is relatively high resolution for regional climate

models, future studies benefit from even more detailed climate simulations, particularly to better understand precipitation

patterns in complex terrain such as Iberia, across the Mediterranean, and in the Carpathians. This is also true for studies on the

local and regional paleobotany and archaeology of this important period in Europe’s history.310

Code and data availability. WRF is a community model that can be downloaded from its web page (http://www2.mmm.ucar.edu/wrf/users/

code_admin.php, last access 12 October 2020) (Skamarock and Klemp, 2008). The source code of LPJ-LMfire can be downloaded from

Github (https://github.com/ARVE-Research/LPJ-LMfire/tree/v1.3, last access: 04 November 2020) (Kaplan et al., 2018). The climate sim-

ulations (global: CCSM4 and regional: WRF) and land cover simulations (LPJ-LMfire) occupy several terabytes and thus are not freely

available. Nevertheless, they can be accessed upon request to the contributing authors. Simple calculations carried out at a grid point level315

are performed with Climate Data Operator (CDO, Schulzweida, 2019) and NCAR Command Language (NCL, UCAR/NCAR/CISL/TDD,

2019). The figures are performed with NCL (UCAR/NCAR/CISL/TDD, 2019). Source code of the program to classify vegetation cover

fraction into the WRF land cover categories is archived on Github (https://github.com/ARVE-Research/lpj2wrf).
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Figure 1. Topography and the two domains used by WRF for the LGM simulations.
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Table 1. Set of simulations used in the asynchronous coupling and sensitivity experiments. First column indicates the name of the simulation,

second and third columns the forcing used in the global and regional climate models, and fourth column the purpose of the comparison.

Name GCM simulations RCM simulations Aim

(Hofer et al. 2012a)
topography and

land cover
insights into the responses

other forcing to changes in the:

PDPD 1990s 1990s 1990s

forcing

LGMPD LGM LGM 1990s

LGMLGM LGM LGM LGM

land cover
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Table 2. Variables passed between GCM/WRF and LPJ-LMfire.

GCM/WRF to LPJ-LMfire

30-year monthly values

mean temperature at 2 m convective available potential energy

daily max. temperature at 2 m horizontal wind velocity at 10 m

daily min. temperature at 2 m precipitation (liquid and solid)

total cloud cover fraction

LPJ-LMfire to WRF

30-year monthly values climatological value

green vegetation cover (fraction) land cover fraction (category)

leaf area index dominant land cover type (category)

soil temperature
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Figure 2. 30-year climatology of annual mean values throughout the iterations. Panel (a) represents the spatial mean values for total precipi-

tation (blue line) and temperature at 2 m (red line), (b) the precipitation difference between the first and fourth iteration (transient). Panel (c)

as (b) but fourth and seventh iteration (quasi-equilibrium). Panel (d) represents the percentage spatial fraction of bare (orange), tundra (pink),

shrubland (sky blue), forest (light green), others (gray), and the spatial mean value of green vegetation fraction (dark green line). Panels (e)

and (f) as (b) and (c) but for green fraction (i.e. green vegetation cover). The grey dotted lines in (a) represent the first, fourth and seventh

iterations
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Figure 3. Land cover used by WRF. Panel (a) represents the land use (i.e., dominant land cover category) during present day. Panel (b) as (a)

but during the LGM. Panels (c) and (d) as (a) and (b) but for green fraction (i.e., green vegetation cover).
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Figure 4. Changes in temperature and precipitation. Panel (a) represents the temperature differences between LGM and PD (LGMLGM –

PDPD) for January. Panel (b) as (a) but for July. Panels (c) and (d) as (a) and (b) but for precipitation differences. Circles represent proxy

evidences: a red (green) border indicates that the simulated value is significantly above (below) the proxy value at the closest grid cell of the

model (outside the 90 % confidence interval, Wu et al., 2007). Solid line represents the LGM coastline, dashed line present-day coastline and

dots the area covered by glaciers.
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Figure 5. Comparison between modelled and reconstructed tree cover. Panel (a) represents the LPJ-LMfire simulated tree cover fraction

from LGMLGM. Circles represent the 71 pollen samples securely dated to LGM from Kaplan et al. (2016). Panel (b) shows a scatterplot of

reconstructed vs. modelled LGM tree cover.
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Table 3. Assessment of the atmospheric response using precipitation and temperature. First column indicates the simulations that are com-

pared, second column the annual response, and the other columns the response in each season. Note that the assessment considers land areas

without snow/ice that are shared by both LGM and PD climate and discards the continental shelves exposed at the LGM.

Annual DJF MAM JJA SON

Temperature response [◦C]

LGMLGM - PDPD -11.99 -15.34 -13.85 -7.24 -11.53

LGMLGM - LGMPD 0.07 0.10 -0.66 0.85 -0.01

LGMPD - PDPD -12.06 -15.44 -13.19 -8.09 -11.52

Precipitation response [mm day−1]

LGMLGM - PDPD -0.67 0.09 -0.86 -1.55 -0.37

LGMLGM - LGMPD -0.14 -0.07 -0.09 -0.40 0

LGMPD - PDPD -0.53 0.16 -0.77 -1.15 -0.37
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a) b) c)

d) e) f)

Figure 6. Atmospheric response to changes in the land cover. Panel (a) represents differences in the annual mean temperature between

LGMLGM – LGMPD. Panels (b) and (c) as (a) but for January and July, respectively. Panels (d), (e) and (f) as (a), (b) and (c) but for

precipitation. The solid line represents the coastline during the LGM, stippled areas are covered by glaciers and crosshatched areas are

considered in the spatial climatology.
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