Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.536
IF3.536
IF 5-year value: 3.967
IF 5-year
3.967
CiteScore value: 6.6
CiteScore
6.6
SNIP value: 1.262
SNIP1.262
IPP value: 3.90
IPP3.90
SJR value: 2.185
SJR2.185
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 40
h5-index40
Preprints
https://doi.org/10.5194/cp-2020-147
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-2020-147
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  21 Nov 2020

21 Nov 2020

Review status
This preprint is currently under review for the journal CP.

The role of land cover on the climate of glacial Europe

Patricio Velasquez1,2, Jed O. Kaplan3, Martina Messmer1,2,4, Patrick Ludwig5, and Christoph C. Raible1,2 Patricio Velasquez et al.
  • 1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
  • 2Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
  • 3Department of Earth Sciences, The University of Hong Kong, Hong Kong
  • 4School of Earth Sciences, The University of Melbourne, Melbourne, Victoria, Australia
  • 5Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Earth system models show wide disagreement when simulating the climate of the continents at the Last Glacial Maximum (LGM). This disagreement may be related to a variety of factors, including model resolution and an incomplete representation of Earth system processes. To assess the importance of resolution and land-atmosphere feedbacks on the climate of Europe, we performed an iterative, asynchronously coupled land-atmosphere modelling experiment that combined a global climate model, a regional climate model, and a dynamic vegetation model. The regional climate and land cover models were run at high (18 km) resolution over a domain covering the ice-free regions of Europe. Asynchronous coupling between the regional climate model and the vegetation model showed that the land-atmosphere coupling achieves quasi-equilibrium after four iterations. Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. To assess the importance of land cover on the LGM climate of Europe, we performed a sensitivity test where we used LGM climate but present day land cover as boundary conditions. These simulations show that the LGM land-atmosphere feedback leads to colder and drier conditions around the Alps and a warmer and drier climate in southeastern Europe. Even in mid-latitude Europe where the land-atmosphere coupling strength is generally weak, and under glacial conditions with a southward displacement of the storm track and increased importance of the Atlantic, regional climate is significantly influenced by land cover.

Patricio Velasquez et al.

Interactive discussion

Status: open (until 16 Jan 2021)
Status: open (until 16 Jan 2021)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Patricio Velasquez et al.

Patricio Velasquez et al.

Viewed

Total article views: 120 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
93 25 2 120 0 0
  • HTML: 93
  • PDF: 25
  • XML: 2
  • Total: 120
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 21 Nov 2020)
Cumulative views and downloads (calculated since 21 Nov 2020)

Viewed (geographical distribution)

Total article views: 120 (including HTML, PDF, and XML) Thereof 120 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 24 Nov 2020
Publications Copernicus
Download
Short summary
This study assesses the importance of resolution and land-atmosphere feedbacks on European climate. We performed an asynchronously coupled experiment that combined a global climate model (~100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
This study assesses the importance of resolution and land-atmosphere feedbacks on European...
Citation