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Abstract. Previous studies based on multiple paleoclimate archives suggested a prominent 

intensification of the South Asian Monsoon (SAM) during the mid-Holocene (MH, ~ 6000 years before 

present day). The main forcing that contributed to this intensification is related to changes in the Earth’s 20 

orbital parameters. However, other key factors likely played important roles, including remote changes 

in vegetation cover and airborne dust emission. In particular, northern Africa also experienced much 

wetter conditions and a more mesic landscape than today during the MH (the so-called African Humid 

Period), leading to a large decrease in airborne dust globally. However, most modelling studies 

investigating the SAM changes during the Holocene overlooked the potential impacts of the vegetation 25 

and dust emission changes that took place over northern Africa. Here, we use a set of simulations for 

the MH climate, in which vegetation over the Sahara and reduced dust concentrations are considered. 

Our results show that SAM rainfall is strongly affected by Saharan vegetation and dust concentrations, 

with a large increase in particular over northwestern India and a lengthening of the monsoon season. We 

propose that this remote influence is mediated by anomalies in Indian Ocean sea-surface temperatures 30 

and may have shaped the evolution of the SAM during the termination of the African Humid Period. 
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1 Introduction  

The South Asian Monsoon (SAM) directly affects the climate of the Indian subcontinent and indirectly 

influences far-afield regions through atmospheric and oceanic teleconnections [e.g., Lau, 1992; Liu et 

al., 2004]. Due to its key role for regional and global hydrological cycles, much attention has been 35 

devoted to better understand and predict its variability on multiple timescales, including its long-term 

future changes (e.g., Huo and Peltier, 2020; Swapna et al., 2018). However, SAM future projections are 

highly uncertain (e.g., Huang et al., 2020), and even representing the recent trend and identifying its 

drivers has been challenging (e.g., Mishra et al., 2018) due to the relatively short modern observational 

record that spans roughly a century. Hence, investigating past SAM changes is of utmost importance to 40 

better understand its dynamics and future evolution.  

 

Dramatic shifts in the intensity of the SAM occurred at the end of the deglaciation (Bird et al., 2014; 

Campo et al., 1982; Dallmeyer et al., 2013; Fleitmann et al., 2003; Gill et al., 2017; Saraswat et al., 

2013) when stronger boreal summer insolation, higher greenhouse gas concentrations, and shrinking ice 45 

sheets triggered a strengthening of the northern hemisphere summer monsoon systems (Jalihal et al., 

2019a; Sun et al., 2019). In particular, the increased orbital forcing enhanced moisture transport from 

the Indian Ocean to the Indian subcontinent, leading to increased monsoonal precipitation there (e.g., 

Dallmeyer et al., 2013; Texier et al., 2000). These changes occurred in parallel with a prolonged period 

of intense precipitation over north-western Africa – labelled the African Humid Period. The African 50 

Humid Period spanned the early and middle Holocene (15,000 – 4,000 years BP), and had far-reaching 

local and global climatic influences (Muschitiello et al., 2015; Pausata et al., 2017a, 2017b; Piao et al., 

2020; Sun et al., 2019). Locally, it coincided with a major intensification of the West African Monsoon 

(WAM) and a greening of the present-day Sahara Desert. Amongst its many remote impacts, the WAM 

strengthening contributed to the greening of the arid and semi-arid regions of east and south Asia (see 55 

for a recent review (Pausata et al., 2020)). Indeed, the large circulation changes instigated by the 

African Humid Period greening of the Sahara, together with the associated changes in sea surface 

temperatures, have likely complemented orbital changes in modulating the SAM (see (Texier et al., 

2000) relative to land-surface changes alone). 
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 60 

Numerical paleoclimate simulations have typically been deficient in capturing the dramatic shift in the 

WAM in the mid-Holocene, even when changes in orbital forcing and land-surface cover were 

considered (Harrison et al., 2014). A crucial factor that has been largely overlooked until recently has 

been the role played by the sharp decrease in Saharan dust emissions, which occurred in conjunction 

with the greening (Arbuszewski et al., 2013; McGee et al., 2013). Pausata et al. [2016], Gaetani et al. 65 

[2017] and Messori et al. [2019] have shown that atmospheric dust loading profoundly affects 

monsoonal dynamics and, while changes in vegetation do lead to increased monsoonal precipitation, a 

better agreement with proxy data is only reached when a dust reduction is also simulated (see also 

Tierney et al., 2017). The latter strengthens the effects of land-surface changes, leading to a further 

increase and northward extension of the WAM. Egerer et al. [2018] have also shown that accounting 70 

for both vegetation and dust feedbacks leads to a better match between model simulations and 

paleoclimate reconstructions from the north-western African margin. Another recent study (Thompson 

et al., 2019) has suggested a contribution from dust aerosol reduction of about 15-20% to the total 

rainfall over the Sahara, although these numbers may be dependent on the modelled dust optical 

properties and particle size range (Hopcroft and Valdes, 2019). 75 

 

Through a set of sensitivity experiments performed with an Earth System Model, Pausata et al. [2017a, 

2017b] have shown that the strengthening of the WAM and the associated vegetation and dust 

feedbacks during the MH are able to affect the El Niño Southern Oscillation variability as well as 

tropical storm activity worldwide. Using the same set of simulations, Piao et al. [2020] show that a 80 

vegetated Sahara leads to an enhancement of the western Pacific subtropical high, which in turn 

strengthens the East Asian Summer Monsoon. Sun et al. (2019) highlighted that Northern Hemisphere 

land monsoon precipitation significantly increases by over 30% under the effect of the Green Sahara. 

However, a systematic evaluation of the joint impacts of atmospheric dust loading reductions, Saharan 

land-cover changes, and insolation changes on the SAM during the middle Holocene is lacking in 85 

current literature. 
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Here, we address this gap with the aim of providing insights into future SAM changes. Indeed, a 

number of recent studies have projected future increases in Sahelian precipitation (Biasutti, 2013; 

Giannini and Kaplan, 2019) associated with a surface greening and reduced dust emissions (Evan et al., 90 

2016).  

 

The remainder of the manuscript is organised as follows: The climate model used and the experimental 

design are described in Section 2. Next, we examine SAM changes during the summer, both at the 

surface and aloft (Section 3). A discussion and conclusions follow in Section 4. 95 

2. Model description and experimental set-up 

The study is based on a set of simulations performed with the fully coupled global climate model EC-

Earth version 3.1. EC-Earth version 2 participated in the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) and version 3 will participate in CMIP6 (http://www.ec-earth.org/). 

The model is comprised of the Integrated Forecasting System (IFS cycle 36r4) for the atmosphere, the 100 

Nucleus for European Modelling of the Ocean version 2 (NEMO2) – for the ocean, and the Louvain-la-

Neuve sea-ice Model version 3 (LIM3) for the sea-ice (Hazeleger et al., 2010; Yepes-Arbós et al., 

2016). The IFS model includes the H-TESSEL land surface scheme and is run at T159 horizontal 

spectral resolution corresponding to roughly 1.125° in longitude and latitude, with 62 vertical levels. 

NEMO has a 1° horizontal resolution except at the equator, where it increases to 1/3° (Sterl et al., 105 

2012), and 46 vertical levels. The different components are coupled via the OASIS3 coupler. Relevant 

for this study, vegetation cover and monthly aerosol concentrations are prescribed in the model; 

however, the indirect effect of aerosols on clouds is not considered.  

 

We analyse an MH experiment (MHPMIP), which follows the protocol for the standard mid-Holocene 110 

simulations in accordance with the third phase of the Paleoclimate Modelling Intercomparison Project 

(PMIP3) (Taylor et al., 2009, 2012) and three sensitivity experiments performed by Pausata et al. 

(2016) and Gaetani et al. (2017) (Table 1). The MHPMIP includes mid-Holocene orbital forcing and 

greenhouse gas concentrations, pre-industrial land cover, and airborne dust concentrations. The three 
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sensitivity experiments were carried out to investigate the effects of changes to land-cover conditions 115 

and dust concentration in isolation as well as in combination. In the MHGS (‘Green Sahara’) setup, the 

vegetation type (and related parameters, see below) over the Sahara (defined as the area 11° – 33°N, 

15°W – 35°E) is prescribed to be evergreen shrub, representing an idealised African Humid Period 

scenario, while dust concentration is left unaltered at its pre-industrial (PI) amounts. In the MHRD 

(‘Reduced Dust’) setup, the dust concentration over North Africa is reduced by up to 80% relative to 120 

pre-industrial values (see Figs. 1 and S1 in Gaetani et al. (2017)), while the land-surface properties are 

kept to PI values. The final experiment (MHGS+RD) considers the case where both vegetation and dust 

changes described above are simultaneously prescribed. The imposed changes in vegetation type 

correspond to important changes in surface albedo and leaf area index (LAI) as summarised in Table 2. 

Under the Green Sahara scenario, the albedo decreases from 0.3 to 0.15, while the LAI increases from 125 

0.2 to 2.6. For a more detailed description of these simulations, the reader is referred to Pausata et al. 

(2016) and Gaetani et al. (2017). These sensitivity experiments are compared to a PI simulation to 

investigate the role of each forcing in altering the SAM.  The analysis focuses on the June-September 

(JJAS) period using the last 50 years of each experiment. Finally, the statistical significance of the 

differences between experiments at the 5% level is evaluated by a two-tailed Student’s t test. 130 

3. Results 

This section discusses the SAM response in terms of local (Section 3.1) and large-scale changes 

(Section 3.2) to each forcing independently and together: orbital (MHPMIP), orbital forcing and Sahara 

greening (MHGS), orbital forcing and dust reduction (MHRD), and orbital forcing, Sahara greening, and 

dust reduction (MHGS+RD). In Section 3.3 we then compare the model findings to paleoclimate archives. 135 

3.1 Changes in surface climate 

Precipitation 

In the PI experiment, the SAM displays the most intense summertime (particularly June and July) 

precipitation over the west coast of the Indian subcontinent and the Himalayan foothills (Fig. 1a), in 

overall agreement with observations (Figs. A1 and A2). The MHPMIP experiment simulates a general 140 
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increase in SAM rainfall over South Asia compared to PI (Fig. 2a) as also shown by other PMIP model 

experiments (e.g., (Zhao and Harrison, 2012)), particularly over southern India and the Himalayan 

foothills. In contrast, decreased precipitation is seen over most of the Bay of Bengal, South China Sea, 

Indochina, and Thailand. This decrease in precipitation is a result of the reduced surface latent heat flux 

over the ocean as shown in (Jalihal et al., 2019b). This results in a decrease in the net energy flux into 145 

the atmosphere over these regions, leading to a decline in precipitation.  A precipitation anomaly dipole 

is simulated along the equatorial Indian Ocean, with increased precipitation to the west and decrease to 

the east. The greening of the Sahara (MHGS) leads to a general intensification of the anomaly pattern 

simulated when only including orbital forcing (MHPMIP; Fig. A3a). However, some peculiar 

characteristics emerge: in particular, the precipitation increases over a broad swathe of north-western 150 

India and Pakistan, while it decreases over the Western Ghats (cf. panels a and b in Figure 2 and see 

also Figure A3a). The positive rainfall anomaly over the western equatorial Indian Ocean extends 

eastward, strongly reducing the negative precipitation anomaly in the eastern side of the basin. The 

reduction in precipitation over the Bay of Bengal, Indochina, and Thailand further intensifies. The 

reduced Saharan dust (MHRD) leads to a pattern that is very similar – albeit with weaker anomalies – to 155 

the orbital only forcing (MHPMIP; Fig. A3b); however, the precipitation increase over southern India is 

confined to east of the Western Ghats, while a small decrease in rainfall is simulated along the western 

coast of the Indian subcontinent (cf. panels a and c in Figure 2 and see also Figure A3b). When 

combining vegetation and reduced dust (MHGS+RD), features of both simulations (MHGS and MHRD) are 

preserved (Fig. 2d): the MHGS+RD anomaly pattern in the region is almost exactly the linear combination 160 

of the MHGS and MHRD experiments (Fig. A4). For example, the reduced precipitation over the Western 

Ghats is further enhanced in the MHGS+RD, while the increase over the Himalayan foothills is reduced 

compared to the MHGS, which is due to the effect of the dust reduction (cf. panels a and c in Figure 2 

and see also Figure A3b). 

 165 

While seasonal-mean precipitation determines the overall amount of water supplied, sub-seasonal 

changes in the monsoon, such as a shift in the onset and/or the withdrawal, are key to determining the 

length and hence the precipitation rate over the monsoonal season. The SAM in the PI simulation starts 
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in late May (Figs. 3 and A2a), with the monsoon then developing until early August and retreating in 

early September (Figs. 3 and A2a). In the MHPMIP experiment, the model simulates a delayed onset 170 

south of 15°N, but not at higher latitudes (Fig. 3a). The withdrawal is, however, delayed at all latitudes, 

lengthening the overall duration of the monsoon by about one month. The Sahara greening (MHGS) 

leads to a further lengthening of the monsoon season from April to October, and increased cumulative 

precipitation over a large part of the SAM region (Fig. 3b). The delayed onset is confined to the region 

well south of 10°N. While showing a lengthening of the monsoon season, the regions around the 15°N 175 

latitude band show a decrease in precipitation between June and mid-August (Fig. 3b). Dust reduction 

(MHRD) leads to a much stronger delay of the monsoon onset that extends up to 25°N compared to the 

MHPMIP experiment (Fig. 3c). The withdrawal of the monsoon is also delayed and resembles the 

MHPMIP simulation (Fig. 3c). In the MHGS+RD case, the distribution of rainfall is dominated by the 

Sahara greening, but the footprint of the dust reduction is visible at the lower latitudes. These display a 180 

stronger decrease in precipitation than the MHGS simulation, in particular during the core monsoonal 

season – June to late August (Fig. 3d). Therefore, reduced dust seems to primarily reduce the South 

Asian monsoonal precipitation at low latitudes, while the greening of the Sahara increases the 

precipitation further north.  

 185 

Surface temperature 

The highest PI surface temperatures on the Indian subcontinent are simulated over its northwestern part, 

in agreement with observations (Fig. A1). However, while the temperature pattern is similar to 

observations, our simulation displays a cold anomaly over a large part of the domain (Fig. A1). The 

changes in the orbital forcing (MHPMIP) do not remarkably alter the summer temperature over India and 190 

Southeast Asia, with only a modest increase over central eastern India and up to 1°C warming in 

Indochina (Fig. 4a). A large increase (even more than 3°C) is instead simulated outside the area of 

direct influence of the SAM and in particular over the arid and semi-arid regions of South Asia and the 

Arabian Peninsula (Fig. 3a). Warmer sea surface temperatures (SSTs) are simulated in the Indian Ocean 

from the equator up to roughly 12 – 14 °N, with the largest anomalies of over 0.5°C around the southern 195 

tip of India and off the coast of the Somali peninsula (Fig. 4a). Colder SSTs are instead present over the 
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northernmost part of the Arabian Sea. The Sahara greening (MHGS) leads to a similar anomaly pattern 

(cf. panels a and b in Figure 4 and see also Figure A5a). However, the warming is more pronounced 

than in MHPMIP over the bulk of the domain, with north-western India being an exception (Fig. A5a). 

This may be linked to the simulated increase in rainfall in the region (Fig. 2b, A3a). The cold SST 200 

anomalies over the northern Arabian Sea are replaced by warm anomalies that encompass almost the 

entire Indian Ocean north of the equator. The temperature increases off the coast of the Somali 

peninsula and the southern tip of India exceed 1°C. Reduced Saharan dust (MHRD) leads to a 

widespread surface warming over the Arabian Peninsula, the Arabian Sea, and the Indian subcontinent 

(panels a and b in Figure 4 and see also Figure A5b). The cold SST anomalies in the northernmost 205 

Arabian Sea in the MHPMIP experiment are replaced by a modest warm anomaly, likely as a result of the 

increased incoming solar radiation reaching the surface due to less airborne dust. Finally, the surface 

temperature response to the combined forcings (MHGS+RD; Fig. 4d) closely resembles the linear 

combination of the two forcings (Fig. A4f), except over the regions facing the Gulf of Aden and 

southern Red Sea, where the cooling due to increased monsoonal precipitation in the MHGS (Fig. 2b) 210 

prevails over the warming associated with enhanced shortwave radiation in the MHRD. 

 

Evapotranspiration 

From an impacts-based perspective, changes in precipitation are only one part of the hydrological cycle, 

which also includes evaporation and, over land, transpiration as well. Therefore, it is important to also 215 

investigate the evapotranspiration changes during the MH climate to better understand the impacts of 

changes in orbital forcing and Saharan vegetation and dust on the water budget of South Asia. In the PI 

experiment, weak evapotranspiration is simulated over the dry sub-tropical desert regions, while rates in 

excess of 3 mm/day are present over the Indian subcontinent (Fig. 1c). In the MHPMIP experiment, the 

evapotranspiration is increased over north-western and south-eastern India, the Tibetan Plateau, and 220 

Indochina (Fig. 5a). These regions are characterized by increases in precipitation and/or in temperature 

(Figs. 2 and 4), which enhance the evapotranspiration. On the contrary, the Indian Ocean displays a 

widespread decrease in evaporation rates except along the coast of Somalia. The Sahara greening 

(MHGS) leads to a widespread increase in evapotranspiration across most of the Indian subcontinent, 
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enhancing the anomaly pattern simulated in the MHPMIP experiment (panels a and b in Figure 5 and see 225 

also Figure A6a). The reduction in airborne dust (MHRD) does not notably alter the evaporation over 

land compared to the orbital forcing only experiment (MHPMIP); however, it significantly increases the 

evaporation over the Arabian Sea (panels a and c in Figure 5 and see also Figure A6b), due to the 

increase in incoming solar radiation. Finally, the combined forcing (MHGS+RD) leads to mainly positive 

anomalies over land, as in the MHGS case, while the effects of dust reduction dominate over the Arabian 230 

Sea and western Indian Ocean (Fig. 5d). 

3.2 Changes in the large-scale monsoonal circulation 

The PI sea-level pressure (SLP) pattern displays a thermal low over the Arabian Peninsula extending 

into the northern part of the Indian subcontinent (Fig. 1d). This is associated with an anticyclonic 

circulation over the Indian Ocean leading to a strong westerly flow across the Indian subcontinent and 235 

Indochina, which brings large amounts of moisture to these regions (Figs. 1a and d, A8a). The strong 

westerlies over the Arabian Sea favour upwelling and explain the origin of the “cold pool” in that region 

(Fig. 1b). The MH orbital forcing (MHPMIP) deepens the Saudi Arabian heat low, while increasing the 

pressure over the Bay of Bengal relative to the PI. This anomaly pattern leads to an intensification of the 

easterly flow south of the Indian subcontinent, which then turns north-eastward over the Arabian Sea 240 

(Fig. 6a), intensifying the monsoonal flow and in turn the upwelling in the region. The colder SSTs 

simulated over the northernmost part of the Arabian Sea are likely a direct consequence of this (Fig. 4a). 

The intensified monsoonal flow enhances the transport of moisture from the Bay of Bengal towards the 

western Indian Ocean and then the Arabian Sea and Indian subcontinent (Fig. 7a), explaining the 

rainfall changes seen in Figure 2a. One may further connect the above circulation changes to the 245 

widespread decrease in evaporation rates simulated across most of the Indian Ocean, and the 

concomitant increase along the coast of Somalia (Fig. 5a). For example, the latter evaporation increase 

is most likely driven by weakened monsoonal flow (Fig. 6a), which causes higher SSTs (Fig. 4a) and 

increases evaporation in the MHPMIP compared to the PI experiment (Fig. 5a). Conversely, the decreased 

evaporation in the northern Arabian Sea may be ascribed to the strengthened monsoonal flow, which 250 

increases upwelling and in turn cools the region (Fig. 4a). Finally, the weakened westerly flow around 
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the southern tip of India may be responsible for decreased evaporation and a consequent increase in 

SSTs of that region. Under the Green Sahara conditions (MHGS), the SLP anomaly pattern intensifies 

relative to the MHPMIP and shifts to the northwest, thus weakening the south-westerlies over the Arabian 

Sea, while strengthening the easterlies over the southern tip of India (panels a and b in Figure 6 and see 255 

also Figure A7a). The latter anomaly can explain the decrease in precipitation over the western slopes of 

the Western Ghats and the increase on their eastern side. Although the south-westerly flow over the 

Arabian Sea is less intense than in the MHPMIP (Fig. A7a), the moisture advection is enhanced (Figs. 6b 

and A9a), which explains the increased precipitation and evapotranspiration over most of India (Figs. 

2b, 5b, A6a). Indeed, the weakened atmospheric flow decreases the upwelling and in turn increases 260 

SSTs, favouring more evaporation over the Arabian Sea (Fig. A6a). Reduced Saharan dust (MHRD) 

results in a northward expansion of the Mascarene High in the southern Indian Ocean and a weakening 

of the Saudi Arabian heat low relative to MHPMIP experiment (panels a and c in Figure 6 and see also 

Figure A7b). This leads to a weakening of the Somali Jet, a weaker coastal upwelling in the Arabian 

Sea favouring modest warm SST anomalies there (Fig. 4c), and ultimately a weaker moisture transport 265 

from the Arabian Sea to the southern half of the Indian subcontinent (panels a and c in Figure 7 and see 

also Figure A9b). The weakened low-level winds relative to MHPMIP are consistent with the significant 

decrease in precipitation over western India (Fig. A3b). Further east, there is a strengthened north-

westerly flow over the Bay of Bengal extending towards the equatorial western Pacific, associated with 

a decreased moisture convergence over Bangladesh and north-eastern India relative to the MHPMIP 270 

simulation (Fig. A9b). This circulation change causes a precipitation increase in the MHRD that is 

smaller than in the MHPMIP relative to the PI (Figs. 2c and A3b). When combining both Sahara greening 

and dust reduction (MHGS+RD), SLP anomalies are mostly a linear combination of the two forcings (Fig. 

6d). In particular, the cyclonic footprint over the Indian Ocean and the easterly moisture transport from 

the Pacific to the Indian Ocean are both features of the MHGS experiment (Figs. A7 and A9). On the 275 

other hand, over the Arabian Sea, both forcings contribute to a weakened westerly flow, albeit at 

slightly different latitudes.  
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We next analyse the mid and upper-level circulation associated with the monsoonal flows. The PI 500-

hPa vertical velocity field shows a strong ascending flow across the tropics during the monsoon season 280 

(Fig. A8b), matching the areas of low SLP shown in Figure 1d, with the clear exception of the areas 

under thermal low pressures (e.g., Saudi Arabia and Iran). Subsidence is largely limited to the west 

Arabian Sea and Somali peninsula (Fig. A8b). Additionally, strong subsidence occurs over the desert 

regions of the Arabian Peninsula and Iran. Changes in orbital forcing (MHPMIP) drive a strengthened 

upward motion over the western north-equatorial Indian Ocean, southern India, and Himalayan foothills 285 

(Fig. 8a). This favours cloud formation and is consistent with increased precipitation over these regions 

(Fig. 2a). Upward anomalies are also found over the climatologically dry southern Arabian Peninsula 

and part of the Horn of Africa (Fig. 8a). Sahara greening (MHGS) intensifies the anomaly pattern seen in 

the MHPMIP experiment, in particular over north-western India and the western Indian Ocean, with much 

stronger increases in upward motions (Fig. A10a). On the other hand, subsidence develops on the lee 290 

side of the Western Ghats (Figs. 8b and A10a) due to the stronger easterly anomalies simulated in the 

MHGS relative to the MHPMIP experiment (Fig. A7a). Reducing Saharan dust emissions (MHRD) leads to 

overall minor and mostly insignificant anomalies over the central SAM region relative to the MHPMIP 

simulation (cf. panels a and c in Figure 8 and see also Figure A10b), except over the southern tip of 

India where subsidence is increased. However, significant anomalies in the vertical velocity emerge 295 

over the Arabian Peninsula relative to the MHPMIP simulation (Fig. A10b). The result of the Sahara 

greening and dust reduction forcing (MHGS+RD) over Asia is to a great extent a linear combination of the 

two separate forcings (Fig. 8d), as was indeed the case for the other variables analysed here.  

 

We next discuss the upper-level velocity potential and divergent winds, which provide a framework to 300 

analyse the regional anomalies in the context of the large-scale tropical overturning circulation. The PI 

experiment shows a divergent flow emanating from Southeast Asia towards the surrounding Asian 

Monsoon regions (contour lines in Fig. 9), which is consistent with the low SLP there (Fig. 1d). In the 

MHPMIP, the whole pattern of velocity potential and the centres of divergence/convergence are shifted 

westward (Fig. 9a), with dipole anomalies centred over Northern Africa and the Arabian Peninsula 305 

(negative velocity potential/divergence) and South America (positive velocity potential/convergence). 
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The divergence over the north-western Indian subcontinent is strengthened, which implies an intensified 

low-level convergence and hence stronger precipitation in the region. The greening of the Sahara 

(MHGS) further intensifies the anomaly pattern seen in the MHPMIP experiment (cf. panels a and b in 

Figure 9 and see also Figure A11a). The dust reduction experiment contributes to a strong positive 310 

anomaly in velocity potential over the Arabian Sea relative to MHPMIP (cf. panels a and c in Figure 9 

and see also Figure A11b), thus weakening upper tropospheric divergence and the lower tropospheric 

convergence. The Green Sahara-reduced dust (MHGS+RD) experiment resembles the MHGS forcing, but 

the anomalies are reduced due to the effect of dust reduction (Fig. 9 and A11c). 

 315 

The anomalies in velocity potential are negative over both India and the Bay of Bengal, albeit with 

smaller magnitudes over the latter region. Therefore, the decrease in precipitation over the Bay of 

Bengal cannot be explained by the changes in upper level velocity potential/divergence alone. To 

understand the effect of the greening of the Sahara and the reduction of dust concentrations (MHGS, 

MHRD, and MHGS+RD) on the precipitation over the Bay of Bengal, we consider the rainfall over the 320 

western-equatorial Indian Ocean (WEIO, 5°S to 5°N; 50°–65°E) and north-eastern Africa (NEA, 10°–

20°N; 30°–45°E). Anomalous convective heating over these regions in response to changes in Earth’s 

precession can drive a Matsuno-Gill like response in the low-level winds (Jalihal et al., 2019b), which 

decreases the wind speed over the Bay of Bengal, leading to a reduction in surface latent heat fluxes. 

This further leads to a decrease in the net energy flux into the atmosphere (top + bottom) over the Bay 325 

of Bengal. Since precipitation is proportional to the net energy flux into the atmosphere, precipitation 

over the Bay of Bengal decreases (Jalihal et al., 2019b). In general, as the precipitation over the WEIO 

and NEA increases, there is a corresponding decrease in latent heat flux over the Bay of Bengal. MHGS 

shows the largest increase in precipitation over the WEIO and NEA (Fig. 10a). Proportionately, the 

decrease in latent heat flux over the Bay of Bengal is also the largest. On the other hand, the weakest 330 

increase in precipitation over the WEIO and NEA regions is simulated in the MHRD. The associated 

reduction in latent heat flux over the Bay of Bengal is also the smallest. As the latent heat flux 

decreases, it leads to a larger reduction in precipitation over the Bay of Bengal (Fig. 10b). This change 

in latent heat flux is due to the impact of precipitation over the WEIO and NEA on wind speed over the 
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Bay of Bengal (Fig. A12). Our simulations show a linear relationship between precipitation over the 335 

WEIO and NEA, and precipitation over the Bay of Bengal (Fig. 10c). 

 

We conclude our analysis by investigating the changes in the upper-level (200 hPa) jet (Fig. 11). In the 

PI experiment, the core of the subtropical jet is located over western Asia and the exit of jet is located 

over north-eastern China (contour lines in Figure 11). In the MHPMIP simulation, the jet is shifted 340 

northwards, with an overall weakening to the south and a strengthening confined to the northward side 

of the exit of the jet streak (Fig. 11a). The Sahara greening (MHGS) leads to an accelerated westerly 

flow at the jet entrance, but an overall slowing down at the jet exit together with a further increase in the 

northward shift relative to the MHPMIP experiment (Fig. 11b). These changes cause a slight tilt in jet that 

favours more aloft divergence over northern India and Pakistan as also seen in figure 9b, which in turn 345 

favours increased rainfall in the region. The dust reduction (MHRD) leads to a pattern anomaly very 

similar to the MHPMIP experiment – albeit weaker (cf. Fig. 11a, c). The effect of the combined forcings 

(MHGS+RD) is dominated by the MHGS pattern (Fig. 11d) and in this case the anomalies are even larger 

than in the MHGS case. This is likely due to the increase in temperature gradient between low and high 

latitude relative to the MHGS case (not shown). 350 

 

3.3 Model – Proxy intercomparison  

To evaluate the model performance when accounting for Sahara greening and reduction in airborne dust 

concentrations, we compare our simulations to the available marine and terrestrial paleoclimate 

archives. We focus on the most apparent dissimilarities between the sensitivity experiments and the 355 

standard MH simulation (MHPMIP) where only orbital forcing is considered. While our simulations are 

centred at 6,000 years BP, they should be seen as indicative of the wet early – middle Holocene rather 

than a snapshot of exactly 6,000 years BP, which appears to be a period of transition in particular for 

Indian terrestrial records (e.g., Prasad et al., 1997).  

 360 
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Notable differences in summer precipitation between the four simulations occur over western India 

(Fig. 2), which shows substantially wetter conditions in MHGS and MHGS+RD, compared to the MHPMIP 

experiment in that region. Nal Sarovar, a brackish lake bordering the Thar desert, appears to have been 

wetter than today around 6,200 years BP, with a drying tendency towards the end of the MH (Prasad et 

al., 1997). There is evidence for a substantial pluvial between ~9 and 6 ka farther north in the core of 365 

the Thar (Deotare et al., 2004; Gill et al., 2015; and references therein), and a reduced dimension 

analysis suggests that reconstructed tropical Pacific SSTs alone could have driven a 60% increase in 

precipitation there during the early Holocene (see figure 5 in (Gill et al., 2017)). However, Gill et al. 

(2017) inferred winds and the precipitation over India using exclusively a proxy-based reconstruction of 

the tropical Pacific SSTs, assuming modern teleconnections. The MHPMIP experiment simulates a 370 

localized rainfall increase in the region of the Thar desert above 40 – 50%, whereas the MHGS+RD 

suggests a more intense and widespread increase in precipitation (Fig. 2) over the western and north-

western India, even though the monsoonal flow is weaker compared to MHPMIP (Fig. A4). This suggests 

that the modern teleconnections may not precisely hold in the past and the inferred changes based on 

only tropical Pacific SST patterns may underestimate the total rainfall changes during the early and 375 

middle Holocene over north-western India.  

 

Another region where our simulations show divergent results is south-western coastal India. There, the 

MHGS+RD experiment shows drier conditions relative to PI, while the MHPMIP shows wetter conditions 

(Fig. 2). Paleoclimate archives from Nilgiri Hills, in the Western Ghats at the eastern edge of the 380 

simulated dry anomaly, suggest that that region was wetter between 12,000 and 10,000 years ago and 

then during the middle Holocene gradually became drier relative to today (Sukumar et al., 1993). 

Hence, accounting for the greening of the Sahara may improve the precipitation anomaly pattern seen 

during the middle Holocene over India; however, a systematic model validation is not currently possible 

due to the paucity of available paleoclimate archives and their large uncertainties. 385 

 

With respect to changes in SSTs, the MHGS+RD experiment simulates a warming of the Arabian Sea and 

Bay of Bengal summer SSTs relative to PI, while little change or a slight cooling is simulated in the 
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MHPMIP experiment (Fig. 4). In the Arabian Sea, proxy evidence for widespread mid-Holocene SST 

warming is lacking. Dahl and Oppo (2006) showed that the early Holocene (at around 8,000 years BP) 390 

was 1.4 ± 1.3 °C cooler than the late Holocene, on the basis of Mg/Ca in the planktic foraminifer 

Globigerinoides ruber from 12 cores spanning much of the basin. Their only core showing a slight 

warming at 8,000 years BP (+1.0 °C) was situated off the Horn of Africa, a region with robust warming 

in all four mid-Holocene simulations. Other G. ruber and Trilobatus sacculifer Mg/Ca records 

corroborate modest cooling (~0 to -1 °C) during the middle Holocene (around 6,000 years BP) in the 395 

eastern Arabian Sea (Anand et al., 2008; Banakar et al., 2010; Govil and Naidu, 2010), with slight 

warming off the coast of southwest India (Saraswat et al., 2013) and again off the Horn of Africa 

(Anand et al., 2008). Alkenones document 0 to 1 °C cooling in the northern Arabian Sea during this 

time period (Böll et al., 2015; Schulte and Müller, 2001), with negligible change off the Arabian 

Peninsula (Huguet et al., 2006; Rostek et al., 1997) and southwest India (Sonzogni et al., 1998). 400 

Regional Mg/Ca and alkenone compilations by Gaye et al. (2018) suggest that no sector of the Arabian 

Sea was warmer at 6 ka, with the possible exception of south of India, which also warms slightly in all 

four simulations. Alkenones from the northern Bay of Bengal (Lauterbach et al., 2020) and G. ruber 

Mg/Ca from the southern Bay of Bengal (Raza et al., 2017) indicate <1 °C cooling during the middle 

Holocene. Records from the Andaman Sea in the northeastern Indian Ocean show contrasting results, 405 

with some presenting a slight cooling (G. ruber; Rashid et al., 2007) and others a slight warming (T. 

sacculifer; Gebregiorgis et al., 2016), conceivably due to habitat differences between the planktic 

foraminifera species used. Overall, given that both simulated and proxy-documented changes are mostly 

<1 °C in the Arabian Sea and Bay of Bengal, it is difficult to draw definitive conclusions on the 

accuracy of the model simulations there.  410 

 

South of the equator west of Sumatra, the MHPMIP simulation produces a stronger cooling (>1 °C) that 

disappears in the MHGS+RD experiment (Fig. 4). Here alkenones are more consistent with MHPMIP, albeit 

with a more modest cooling of 0.5 to 1 °C (Li et al., 2016; Lückge et al., 2009). However, G. ruber 

Mg/Ca indicates negligible change, more consistent with MHGS+RD (Mohtadi et al., 2010). Seasonal 415 

differences in proxy carrier production may explain such differences, with Mg/Ca perhaps being more 
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appropriate for comparison to JJAS simulations, as suggested for the equatorial Pacific (Gill et al., 

2016; Timmermann et al., 2014). Finally, south of the equator on the western side of the Indian basin 

off the coast of Tanzania, Mg/Ca reconstruction suggests that SSTs were about 1 to 1.5 °C warmer 

during the middle Holocene compared to late Holocene (Kuhnert et al., 2014), which is more consistent 420 

with the MHGS+RD experiment (Fig. 4d). This record also shows a rapid SST cooling concomitant with 

an abrupt retreat of the SAM as suggested by a recently published paleoclimate archives from western 

Yunnan Plateau in southwestern China (Wang et al., 2020) and northern Laos (Griffiths et al., 2020). 

Such changes are also synchronous with the end of the African Humid Period (e.g., deMenocal et al., 

2000), hence our simulations suggest that the changes in vegetation over the Sahara and in airborne dust 425 

emissions may have played a key role in shaping the evolution of the SAM. 

4. Discussion and Conclusions 

The mid-Holocene was characterised by a strengthening of the northern hemisphere monsoon system  

(e.g., Sun et al., 2019) due to increased boreal summer insolation. The consequent increase in rainfall 

led to a greening of several semi-arid and arid regions in Northern Africa and Asia (e.g., Campo et al., 430 

1982; Dallmeyer et al., 2013; Fleitmann et al., 2003; Lézine et al., 2011; Tierney et al., 2017), and to a 

marked reduction in airborne dust emissions (deMenocal et al., 2000; McGee et al., 2013). The largest 

dust emission decreases are thought to have occurred in Northern Africa, where large tracts of what is 

today the Sahara Desert were vegetated. Understanding this complex set of interrelated changes can 

provide insights into the mechanisms of monsoonal variability, and contribute to strengthening our 435 

physical understanding of monsoonal changes in climate projections. However, many modelling efforts 

for the mid-Holocene have focused only on the impact of solar insolation changes as this has been the 

common protocol for climate simulations of this period (Otto-Bliesner et al., 2016; Taylor et al., 2009, 

2012), neglecting the feedbacks induced by the altered vegetation, soil properties, and associated dust 

emissions.  440 

 

Indeed, the role of reduced dust emissions during the mid-Holocene on local and global climate has 

only recently been addressed (Hopcroft and Valdes, 2019; Pausata et al., 2016, 2017a, 2017b; Piao et 
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al., 2020; Sun et al., 2019; Thompson et al., 2019) and it has been shown that airborne dust may play an 

important role in modulating the intensity and geographical extent of the West African Monsoon 445 

(Pausata et al., 2016; Thompson et al., 2019) as well as impacting climate far afield. However, the role 

of Saharan dust changes in affecting the South Asia Monsoon (SAM) system has not hitherto been 

investigated. The key goal of the present study is to fill this knowledge gap, by outlining the remote 

response of the mid-Holocene SAM system to the Sahara greening and associated reduction in airborne 

dust concentrations. 450 

 

We analyse a set of simulations where the land cover is changed from desert to shrubland over a large 

part of North Africa and dust concentration over the region is reduced by up to 80% compared to the 

pre-industrial period (Gaetani et al., 2017; Pausata et al., 2016). We find that a vegetated Sahara – albeit 

weakening the low-level southwesterly winds – enhances the moisture flux from the Arabian Sea to the 455 

northern Indian subcontinent and increases the precipitation in this region compared to a simulation in 

which only the orbital forcing is considered (Figs. 2, A7 and A9). Reduced dust emissions from the 

Sahara partially counter the vegetation effect by weakening the thermal low over the Arabian Peninsula 

and the climatological southwesterlies and subsidence (Figs. 6, 8, A7, A9 and A10). This results in 

decreased precipitation over India in the mid Holocene experiment with both changes in vegetation and 460 

dust concentration (MHGS+RD) compared to the vegetated Sahara only case (MHGS), especially in the 

central-southern and western seaboard regions (Figs. 2 and A3). Overall, the SAM rainfall in the 

MHGS+RD is significantly increased compared to the PI climate as well as to the orbital forcing only 

simulation (MHPMIP). The monsoon season is also extended by several months, particularly in the 

withdrawal phase (Fig. 3). 465 

 

Sun et al. [2019] showed that the greening of the Sahara and a reduction in dust emissions significantly 

influence the Northern Hemisphere land monsoon precipitation, but the largest impact is on the WAM. 

Here, we show that the SAM is significantly affected by both vegetation changes in northern Africa and 

dust reduction and the remote response is about half of the rainfall change simulated locally over 470 

northern Africa (cf. Fig. 2 here with Fig. 2 in Pausata et al. [2016]).  
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A comparison of our simulations with paleoclimate archives points to potential improvements in 

simulating rainfall over India when including the greening of the Sahara and dust reduction relative to 

the orbital forcing-only simulation. In particular, our simulations suggest that the vegetation and dust 475 

emission changes may have played an important role in affecting the Indian Ocean temperature and 

shaping the evolution of the SAM during the termination of the African Humid Period. However, no 

robust conclusions can be drawn in this respect due to the relative paucity of geographically and 

temporally referenced, quantitative paleo-precipitation data in the region. A similar difficulty is 

encountered in evaluating the modelled SST changes. Only some paleo-archives point to closer 480 

agreement with the MHGS+RD simulation, however, in general the amplitudes of SST changes are small 

relative to proxy uncertainties, making it difficult to provide a systematic model validation. 

 

Finally, in our experiments we only consider changes in vegetation over northern Africa and its remote 

impact on SAM. However, proxy archives from the mid-Holocene point to widespread vegetation 485 

changes across the globe, with expanded forest cover in Eurasia (Prentice et al., 1998; Tarasov et al., 

1998) and greener southern and eastern Asia (Dykoski et al., 2005; Fleitmann et al., 2003; Thompson et 

al., 1997; Zhang et al., 2014). Swann et al. [2012, 2014] show that in their model the remote forcing 

from expanded forest cover in Eurasia during the mid-Holocene shifts the intertropical convergence 

zone northward, resulting in an enhancement of precipitation over northern Africa that is greater than 490 

that resulting from orbital forcing and local vegetation alone. Using idealized deforestation experiments 

in the tropics and temperate regions, Devaraju et al. (2015) showed that the monsoonal precipitation 

changes can be more sensitive to remote than local changes in vegetation. Hence, it is possible that the 

rainfall changes seen in our study may be further modulated by vegetation changes in Europe and Asia. 

Therefore, it is critical that the Earth system modelling community conducts a concerted effort to 495 

include reconstructed vegetation distributions and dust concentrations when simulating the mid-

Holocene climate. 
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Appendix 

Model Validation 

In order to evaluate the performance of the EC-Earth model used here in reproducing the SAM 500 

dynamics, we compare our pre-industrial simulation (PI) to temperature and precipitation data from 

ECMWF’s ERA5 reanalysis product, (Hersbach et al., 2020) and gridded observational products. Long-

term precipitation rates from ERA5 compare favourably with NASA's TRMM Multi-satellite 

Precipitation Analysis (Hersbach et al., 2020; Huffman et al., 2010), and over the Indian subcontinent 

differences between ERA5 and the Global Precipitation Climatology Project (GPCP) gridded 505 

observational dataset (Adler et al., 2018) are mostly below 0.5 mm/day (Figs. A1 and A2). Good 

agreement is also found between ERA5 temperatures and the Climatic Research Unit (CRU) data set 

(Harris et al., 2020) and ERA5 improves in this respect over previous datasets (Hersbach et al., 2020).  

EC-Earth’s PI simulation in general underestimates rainfall over the north-eastern Indian subcontinent, 

and overestimates it over the western side. The model further presents a large cold bias (Fig. A1). 510 
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Figure A1. Climatological summer (JJAS, June to September) precipitation (PRECT; mm/day) from: 

(a) the pre-industrial simulation (PI), (b) the ERA5 reanalysis for the period 1979 – 2018 and (c) the 515 

Global Precipitation Climatology Project (GPCP) version 2.3 for the period 1979 - 2018. Climatological 

summer (JJAS, June to September) surface temperature (TS; °C) from: (d) the pre-industrial (PI) and (e) 

the ERA5 reanalysis for the period 1979 – 2018; and (f) near surface temperature from the Climatic 

Research Unit (CRU) time-series version 4.04 for the period 1979 – 2018. 
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d) e)
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 520 

Figure A2. Climatological seasonal cycle of zonal-mean precipitation (PRECT; mm/day) between 65° 

and 95°E from: (a) the pre-industrial (PI) simulation, (b) the ERA5 reanalysis for the period 1979 – 

2018 and (c) the Global Precipitation Climatology Project (GPCP) version 2.3 for the period 1979 – 

2018. 
 525 

 
Figure A3. Changes in summer (JJAS, June to September) precipitation (PRECT; mm/day) for: (a) the 

middle Holocene Green Sahara (MHGS); (b) the dust reduction only (MHRD); and (c) the Sahara 

greening and dust reduction (MHGS+RD) experiments relative to the middle Holocene orbital forcing 

only (MHPMIP) simulation. The contour lines follow the colorbar scale (the 0 lines are omitted for 530 

clarity). Only differences significant at the 95% confidence level using the Student t test are shaded.  

a) b)
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Figure A4. (a) Summer (JJAS, June to September) precipitation (PRECT, mm/day) and (b) surface 

temperature (TS; °C) anomalies between the MHGS+RD and the MHPMIP experiments. (c) The sum of 

MHGS and MHRD precipitation and (d) surface temperature anomalies relative to the reference MHPMIP 535 

experiment. (e)-(f) Difference between panel (a) and (c), and (b) and (d) respectively. Only differences 

significant at the 95% confidence level using the Student t test are shaded in panels (c) to (f). 
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Figure A5. Changes in summer (JJAS, June to September) surface temperature (TS; °C) for: (a) the 

middle Holocene Green Sahara (MHGS), (b) the dust reduction only (MHRD); and (c) the Sahara 540 

greening and dust reduction (MHGS+RD) experiments relative to the middle Holocene orbital forcing 

only (MHPMIP) simulation The contour lines follow the colorbar scale (the 0 lines are omitted for 

clarity). Only differences significant at the 95% confidence level using the Student t test are shaded. 

 

 545 

Figure A6 Changes in summer (JJAS, June to September) evapotranspiration (EVAP; mm/day) for: (a) 

the middle Holocene Green Sahara (MHGS); (b) the dust reduction only (MHRD); and (c) the Sahara 

greening and dust reduction (MHGS+RD) experiments relative to the middle Holocene orbital forcing 

only (MHPMIP) simulation. The contour lines follow the colorbar scale (the 0 lines are omitted for 

clarity). Only differences significant at the 95% confidence level using the Student t test are shaded. 550 
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Figure A7 Changes in summer (JJAS, June to September) sea level pressure (shadings, SLP; hPa) and 

925hPa wind (arrows, W925; m/s) for: (a) the middle Holocene Green Sahara (MHGS); (b) the dust 

reduction only (MHRD); and (c) the Sahara greening and dust reduction (MHGS+RD) experiments relative 555 

to the middle Holocene orbital forcing only (MHPMIP) simulation. The contour lines follow the colorbar 

scale (the 0 lines are omitted for clarity). Only SLP differences significant at the 95% confidence level 

using the Student t test are shaded. 
 

 560 

Figure A8. Climatological summer (JJAS, June to September) (a) vertical integrated horizontal moisture 

flux (VIMF, kg•m/s) with the arrows representing the zonal and meridional component of the moisture 

flux; (b) vertical pressure velocity at 500 hPa (ω500, 10-2 Pa/s), in the pre-industrial (PI) simulation. 
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 565 

Figure A9. Changes in summer (JJAS, June to September) vertically integrated (from 1000 to 300 hPa) 

horizontal moisture flux (VIMF; kg•m/s) for: (a) the middle Holocene Green Sahara (MHGS); (b) the 

dust reduction only (MHRD); and (c) the Sahara greening and dust reduction (MHGS+RD) experiments 

relative to the middle Holocene orbital forcing only (MHPMIP) simulation. The contour lines follow the 

colorbar scale (the 0 lines are omitted for clarity). The arrows represent the zonal and meridional 570 

component of the moisture flux. Only differences significant at the 95% confidence level using the 

Student t test are shaded.  
 

 
Figure A10. Changes in summer (JJAS, June to September) vertical pressure velocity at 500 hPa 575 

(w500; Pa/s) for: (a) the middle Holocene Green Sahara (MHGS); (b) the dust reduction only (MHRD); 

and (c) the Sahara greening and dust reduction (MHGS+RD) experiments relative to the middle Holocene 

orbital forcing only (MHPMIP) simulation. The contour lines follow the colorbar scale (the 0 lines are 

omitted for clarity). Only differences significant at the 95% confidence level using the Student t test are 

shaded. 580 
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Figure A11. Changes in summer (JJAS, June to September) velocity potential (VelPot – shadings; 106 

m2/s) and divergence wind (DIV – arrows; m/s) at 200 hPa for: (a) the Sahara greening (MHGS); (b) the 

dust reduction only (MHRD); and (c) the Sahara greening and dust reduction (MHGS+RD) experiments 

relative to the middle Holocene only orbital forcing (MHPMIP). The contour lines show the 585 

climatological summer velocity potential of the MHPMIP experiment. Only differences significant at the 

95% confidence level using the Student t test are shaded. 

3 m/s

10	

3 m/s

b)	

a)	

(106	m2/s)	

c)	

3 m/s

https://doi.org/10.5194/cp-2020-142
Preprint. Discussion started: 21 November 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
 

 

 
 590 

Figure A12. Scatter plot of summer (JJAS, June to September) changes between 925-hPa wind speed 

over the Bay of Bengal (BoB, 10°–20°N; 85°–95°E, m/s) and precipitation over west equatorial Indian 

ocean (WEIO, 5°S to 5°N; 50°–65°E, mm/day) and north-eastern Africa (NEA, 10°–20°N; 30°–45°E). 

Linear summation of precipitation over the two regions is considered. The changes are shown for the 

middle Holocene orbital forcing only (MHPMIP) in red, the Sahara greening (MHGS) in green, dust 595 

reduction only (MHRD) in yellow, and the Sahara greening with dust reduction (MHGS+RD) in blue with 

respect to the pre-industrial (PI) reference simulation.  
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Figures 

 
Figure 1. (a) Climatological summer (JJAS, June to September) precipitation (PRECT, mm/day); (b) 

surface temperature (TS, °C); (c) evaporation (EVAP, mm/day); and (d) sea level pressure (shadings, 875 

SLP, hPa) and 925-hPa wind (arrows, W925, m/s) for the pre-industrial (PI) experiment. The contour 

lines follow the colorbar scale.  
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Figure 2. Changes in summer (JJAS, June to September) precipitation (PRECT; mm/day) for the (a) 880 

middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) the only dust 

reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) experiments relative to 

the pre-industrial (PI) reference simulation. The contour lines follow the colorbar scale (the 0 lines is 

omitted for clarity). Only differences significant at the 95% confidence level using the Student t test are 

shaded.  885 
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Figure 3. Changes in climatological seasonal cycle of zonal precipitation (PRECT; mm/day) between 

65° and 95°E for (a) the middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening 

(MHGS); (c) the only dust reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) 

experiments relative to the pre-industrial (PI) reference simulation. The contour lines show the 890 

climatological zonal precipitation of the PI experiment (1 mm/day intervals). 

 

1.5         -1        -0.5

1.5         -1        -0.51.5         -1        -0.5

a) b)

c) d)

(mm/day)

https://doi.org/10.5194/cp-2020-142
Preprint. Discussion started: 21 November 2020
c© Author(s) 2020. CC BY 4.0 License.



39 
 

 
Figure 4. Changes in summer (JJAS, June to September) surface temperature (TS; °C) for the (a) 

middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) the only dust 895 

reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) experiments relative to 

the pre-industrial (PI) reference simulation. The contour lines follow the colorbar scale (the 0 lines are 

omitted for clarity). Only differences significant at the 95% confidence level using the Student t test are 

shaded. 
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 900 

Figure 5. Changes in summer (JJAS, June to September) evapotranspiration (EVAP; mm/day) for the 

(a) middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) the only dust 

reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) experiments relative to 

the pre-industrial (PI) reference simulation. The contour lines follow the colorbar scale (the 0 lines are 

omitted for clarity). Only differences significant at the 95% confidence level using the Student t test are 905 

shaded.   
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Figure 6. Changes in summer (JJAS, June to September) sea level pressure (shadings, SLP; hPa) and 

925-hPa wind (arrows, W925; m/s) for the (a) middle Holocene only orbital forcing (MHPMIP); (b) the 

Sahara greening (MHGS); (c) the only dust reduction (MHRD); and (d) the Sahara greening and dust 910 

reduction (MHGS+RD) experiments relative to the pre-industrial (PI) reference simulation. The contour 

lines follow the colorbar scale (the 0 lines are omitted for clarity). Only SLP differences significant at 

the 95% confidence level using the Student t test are shaded. 
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 915 

Figure 7. Changes in summer (JJAS, June to September) vertically integrated (from 1000 to 300 hPa) 

horizontal moisture flux (VIMF; kg•m/s) for the (a) middle Holocene only orbital forcing (MHPMIP); (b) 

the Sahara greening (MHGS); (c) the only dust reduction (MHRD); and (d) the Sahara greening and dust 

reduction (MHGS+RD) experiments relative to the pre-industrial (PI) reference simulation. The contour 

lines follow the colorbar scale (the 0 lines are omitted for clarity). The arrows represent the zonal and 920 

meridional components of the moisture flux. Only differences significant at the 95% confidence level 

using the Student t test are shaded.   
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Figure 8. Changes in summer (JJAS, June to September) vertical pressure velocity at 500 hPa (ω500; 

Pa/s) for the (a) middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) 925 

the only dust reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) experiments 

relative to the pre-industrial (PI) reference simulation. The contour lines follow the colorbar scale (the 0 

lines are omitted for clarity). Only differences significant at the 95% confidence level using the Student 

t test are shaded.   
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 930 

Figure 9. Changes in summer (JJAS, June to September) velocity potential (VelPot – shadings; 106 

m2/s) and divergence wind (DIV – arrows; m/s) at 200 hPa for the (a) middle Holocene only orbital 

forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) the only dust reduction (MHRD); and (d) the 

Sahara greening and dust reduction (MHGS+RD) experiments relative to the pre-industrial (PI) reference 

simulation. The contour lines show the climatological summer velocity potential of the PI experiment. 935 

Only differences significant at the 95% confidence level using the Student t test are shaded.   

 

 

 
Figure 10. Scatter plot of summer (JJAS, June to September) changes between (a) latent heat flux over 940 

the Bay of Bengal (BoB, 10°–20°N; 85°–95°E, W/m2) and precipitation over west equatorial Indian 
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ocean (WEIO, 5°S to 5°N; 50°–65°E, mm/day), and northeastern Africa (NEA, 10°–20°N; 30°–45°E), 

between (b) precipitation and latent heat flux over the BoB, and between (c) precipitation over the BoB 

and over WEIO+NEA. Changes are shown for the middle Holocene orbital forcing only (MHPMIP) in 

red, the Sahara greening (MHGS) in green, dust reduction only (MHRD) in yellow, and the Sahara 945 

greening with dust reduction (MHGS+RD) in blue with respect to the pre-industrial (PI) reference 

simulation.  

 

 
Figure 11. Changes in summer (JJAS, June to September) zonal wind at 200 hPa (U200; m/s) for the 950 

(a) middle Holocene only orbital forcing (MHPMIP); (b) the Sahara greening (MHGS); (c) the only dust 

reduction (MHRD); and (d) the Sahara greening and dust reduction (MHGS+RD) experiments relative to 

the pre-industrial (PI) reference simulation. The contour lines show the climatological summer zonal 

wind at 200 hPa for the PI experiment. Only differences significant at the 95% confidence level using 

the Student t test are shaded.   955 
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Table 1: Boundary conditions for all MH experiments. 960 

Simulation 
Orbital forcing 

years BP GHGs 
Saharan 

vegetation 
Saharan 

dust 
MHPMIP 6000 MH desert PI 
MHGS 6000 MH shrub PI 
MHRD 6000 MH desert Reduced 

MHGS+RD 6000 MH shrub Reduced 
 

 

Table 2: Albedo and leaf area index (LAI) for desert, evergreen shrub and the domain over which the 
vegetation changes are applied in each set-up. 

 965 
 

 

 

 

 970 

 

 

 
 

Vegetation type Albedo LAI Domain 

PS Mainly Desert 0.30 0.18 11°–33°N 15°W–35°E 

GS Evergreen Shrub 0.15 2.6 11°–33°N 15°W–35°E 

https://doi.org/10.5194/cp-2020-142
Preprint. Discussion started: 21 November 2020
c© Author(s) 2020. CC BY 4.0 License.


