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Abstract. Antarctic continental ice masses fluctuated considerably during the, Oligocene “coolhouse”, at elevated
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atmospheric CO, concentrations of ~600-800 ppm, To assess the role of the ocean on the Oligocene ice sheet -

variability, reconstruction of past ocean conditions jn the proximity of the ,Antarctic margin are needed, While
\

warm ocean conditions have been reconstructed for the Oligocene offshore Wilkes Land, fhe
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geographical extent of that warmth is unknown. In this study, we reconstruct past surface ocean conditions from Vi
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glaciomarine sediments recovered from Deep Sea Drilling Project (DSDP) Site 274, offshore the Ross Sea
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continental margin. This site. located offshore Cape Adare is ideally situated to characterise Oligocene regional
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surface ocean conditions, as it is situated between the colder, higher-latitude Ross Sea continental shelf, and the
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warm-temperate Wilkes Land Margin in the Oligocene. We first improve the age model of DSDP Site 274 using

integrated bio- and magnetostratigraphy. Subsequently, we analyse dinoflagellate cyst
assemblages and lipid biomarkers (TEXss) to reconstruct surface paleoceanographic conditions during the

Oligocene (33.7-24.4 Ma). Both TEXse-based sea surface temperature (SST) and microplankton results show
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temperate (10-17°C £ 5.2°C) surface ocean conditions at Site 274 throughout the Oligocene. Oceanographig,

conditions between offshore Wilkes Land margin and Cape Adare pecame increasingly similar towards the late

Oligocene (26.5-24.4 Ma), inferred to be the consequence of the widening of the Tasmanian Gateway, which

from circum-Antarctic locations, and ice-proximal to ice-
distal temperature gradients are poorly documented.
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resulted in more interconnected ocean basins and frontal systems. To maintain marine terminations of terrestrial '

ice sheets in a proto-Ross Sea with as warm offshore SSTs as our data suggests, requires a strong ice flux fed by

intensive precipitation jn the Antarctic hinterland during colder orbital states, but with extensive surface melt of
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terrestrial ice during warmer orbital states.

1. Introduction

The Southern Ocean plays a crucial role in global ocean circulation, stability of the Antarctic ice sheet and the

carbon cycle. At present, strong temperature gradients isolate Antarctica from fhe influence of warmer surface
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water from lower latitude regions. Despite its crucial role, little is known about the evolution of Southern

Ocean, Southern Ocean surface conditions cooled during the mid, Eocene (<49 Ma; Bijl et al., 2009; 2013), which

culminated with the initiation of Antarctic continental-scale glaciation at the Eocene-Oligocene transition
(EOT~33.7 Ma; Zachos et al., 1994; Coxall et al., 2005; Bohaty et al., 2012). The overall higher bedrock elevation
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and larger subaerial area of Antarctica during the Oligocene (33.9-23.0 Ma: Gradstein et al., 2012) (Wilson et al.,
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a result of the gstablished connection between dinocyst assemblage composition and surface water conditions of

present-day Southern Ocean (Prebble et al., 2013; Zonneveld et al., 2013; Marret et al., 2019). dinocyst
records from the Ross Sea region (notably CRP (Clowes et al., 2016) and DSDP Site 270 (Kulhanek et al., 2019)),
and from Wilkes Land (IODP Site U1356 (Sangiorgi et al., 2018; Bijl et al., 2018a, b) and DSDP Site 269

(Evangelinos et al., 2020)) provided new biostratigraphic constraints. We used these constraints, alongside, new
biostratigraphic and magnetostratigraphic analyses to improve the age model of DSDP Site 274. We then, interpret

paleoceanographic conditions with dinocyst, assemblages, and generate quantitative SST reconstructions with

lipid biomarkers (TEXs6). By comparing these results with available reconstructions from the Ross Sea and Wilkes

Land in selected time slices, we evaluate, how surface oceanographic conditions changed and latitudinal heat

transport developed through the Oligocene.

2. Material

2.1 Site description

DSDP Site 274 (68°59.81'S; 173°25.64'E; 3326 m water depth, Fig. 1a), is located on the lower continental rise
in the northwestern Ross Sea, about 250 km north-northeast of Cape Adare (Hayes, 1975). Sediments were
collected using punch core-rotary drilling on the Glomar Challenger in February 1973 (Hayes, 1975). Currently,
the region is seasonally covered by sea ice (Fetterer et al., 2020) and present-day mean annual SST is ~ -1°C

(Locarnini et al., 2019). The site is in the vicinity of the southern upwelling margin of the Antarctic Divergence

and currently located in the path of a major outflow for Antarctic Bottom Water, spilling out over the western
Ross Sea continental shelf where it is deflected westward (Orsi and Wiederwohl, 2009). The location of DSDP
Site 274 is ideal for studying the Oligocene oceanic properties offshore the Ross Sea (Fig. 1b), which we compare

to documented Antarctic ice sheet and ocean conditions from proximal Ross Sea records (Fig. 1a).

2.2 Lithology and depositional settings

Drilling at DSDP Site 274 penetrated 421 meters below the sea floor (mbsf) and recovered a total of 43 cores
containing 275.5 meters of sediment. We focus our study on the interval between 174.2 and 408.5 mbsf (Cores
19-43)(Fig. 2a). Sediment within this interval is mainly composed of (i) diatom-rich detrital silty clay with varying
abundances of diatoms, from trace amounts to up to 80% (diatom ooze) (174.2—-328 mbsf); and (ii) silty claystones

and interbedded chert layers (328-408.5 mbsf). Scattered iceberg-rafted debris (IRD; pebbles, granules) have
been documented between 152 and 323 mbsf. Below 323 mbsf, chert layers compromised core recovery and at
415 mbsf the basalt basement was reached (Hayes et al., 1975). The sediment cores are rather homogenous and
lack strong sedimentary structures. The strong biscuiting and fracturing of lithified sediment testifies to drilling
disturbance due to the rough nature of rotary drilling, and may have obscured depositional sedimentary structures.
Downslope transport of sediment from the Ross Sea continental shelf to the site potentially complicates the
reconstruction of local pelagic-derived ocean conditions. The lithology and the seismic patterns (Hayes et al.,
1975) suggest that sediment in the Oligocene was transported and deposited within the Adare Basin through a

combination of downslope gravity currents and subsequent reworking by bottom currents (Hayes et al., 1975).
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3. Methods

3.1 Age model

The shipboard age model (Hayes et al., 1975). based on few biostratigraphic (diatom, radiolarian and calcareous

nannofossils) age tie points, initially dated the DSDP Site 274 sedimentary record overlying the basalt to late

Eocene — Quaternary. More recently, Cande et al. (2000),dated the ocean crust underneath DSDP Site 274, using

paleomagnetic data, to chron 13, ~33.5 Ma, which is.200 kyr younger than the EOT, and 5-7 Myrs younger than

dated during the expedition (Hayes et al., 1975). Granot et al. (2010) formulated seismic stratigraphic units, and
correlated these units onto the Ross Sea continental shelf. The lowermost regional unconformity (328 mbsf) above
the basement (Hayes et al., 1975) corresponds to a Ross Sea unconformity (RSU) found in the Northern Basin,
RSUBG, estimated to be of garly Oligocene age (34-26.5 Ma: De Santis et al., 1995; Granot et al., 2010; Kulhanek

et al., 2019). The major unconformity at 180.5 mbsf, between Cores 19 and 20 (Hayes et al., 1975) is tied to
seismic reflectors RSU4 and RSU4a (Granot et al., 2010), aged middle Miocene, ~15.8-14.6 Ma and ~17/16.9,

Ma respectively, (Pérez et al., 2021). To further improve the age model, we generated new age tie points based on

dinocyst biostratigraphy and magnetostratigraphy to better constrain the age of the sedimentary record (Core 43—
17). Dinocyst biostratigraphy follows Bijl et al. (2018a) who reassessed dinocyst species first and last occurrence
datums calibrated against the international geological time scale GTS 2012 (Gradstein et al., 2012). Magnetic
reversals on the sediment samples were identified through stepwise demagnetization experiments performed using
the 2G magnetometer with an inline alternating fields (AF) demagnetiser attached to an automatic sample handler
in Fort Hoofddijk (Utrecht University), and the 2G-SRM750 Superconducting Rock Magnetometer housed at the

Paleomagnetic Laboratory of Barcelona (CCiTUB-CSIC). As core orientation is not reconstructed, magnetic

declinations are discarded andonly magnetic inclinations are used to determine polarities. Recently, Jovane et al.

(2020) carried out a paleomagnetic study at the DSDP Sijte 274, focusing on magnetic properties and magnetic

mineralogy characterization, and by means of a review of the available biostratigraphic constraints they also

propose a new age model. Here, we compare their age model with ours and we discuss the differences.

3.2 Organic geochemistry

To reconstruct sea (sub-) surface temperature (SST) we applied the TEXss (TetraEther indeX of 86 carbon atoms)
proxy (Schouten et al., 2002), based on the temperature-dependent cyclization of isoprenoidal glycerol dialkyl
glycerol tetraethers (GDGTs) produced by thaumarchaeotal membrane lipids. GDGTs were extracted from
powdered and freeze-dried sediments using an accelerated solvent extractor. Lipid extracts were then separated
into an apolar, ketone and polar fraction by ALOs column chromatography using hexane:DCM (9:1, v:v),
hexane:DCM (1:1) and DCM:MeOH (1:1) as respective eluents. Of a synthetic C4s (mass-to-charge ratio, m/z
=744) 99 ng GDGT standard was added to the polar fraction, which subsequently was dissolved in
hexane:isopropanol (99:1, v/v) to a concentration of ~3 mg ml' and filtered over a 0.45-um
polytetrafluoroethylene filter. The dissolved polar fractions were injected and analysed by high-performance
liquid chromatography—mass spectrometry (HPLC-MS), using double-column separation (Hopmans et al., 2016).
GDGT peaks in the HPLC chromatograms were integrated using ChemStation software.
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3.2.1. TEXGss calibrations

Several calibrations exist to convert TEXss values into SSTs based on modern core—top datasets (Kim et al., 2010).
We follow the discussion by Hartman et al. (2018), and used the linear calibration by Kim et al. (2010) to calculate
the TEXs6-SST relations which include the high-latitude core-top values. As we present peak areas of individual

GDGTs in the supplements (Table S2), other calibrations can be plotted as well.

3.2.2 TEXGs6 overprints and bias

We use ratios of GDGTs as proxies to detect potential overprinting factors that may bias the pelagic signature of
the sedimentary GDGTs. The relative contribution of terrestrial GDGT input has been reconstructed using the
branched and isoprenoid tetracther (BIT) index (Hopmans et al., 2004). Samples with BIT index values >0.4 may
be biased by soil- and river-derived GDGTs (Bijl et al., 2013). However, we do note that the validity of this proxy
for soil organic matter input is questioned, now that it becomes clear that branched GDGTs may also be produced
in the marine realm (Peterse et al., 2009; Sinninghe Damsté, 2016), and terrestrial ecosystems that also contain
crenarchaeol (Pearson et al., 2004). The methane index (Zhang et al., 2011) flags overprint by sedimentary
methanogenic activity, GDGT-2/GDGT-3 ratio (Taylor et al., 2013) signals overprint by archaeal communities
dwelling deeper into the water column and GDGT-0/Crenarchaeol ratio (Blaga et al., 2009; Sinninghe Damst¢ et
al., 2009; Taylor et al., 2013) flags overprint by in situ production of isoprenoidal GDGTs in lakes and rivers, and

contribution from Euryarchaeota. The ring index (Zhang et al., 2016), can detect deviations from a pelagic

character in the GDGT ‘assemblage’, Samples which had overprinting values in these biasing indices were marked

as unreliable. High-latitude TEXss-SST reconstructions are believed to be skewed towards summer temperatures

(Schouten et al., 2013; Ho et al., 2014), but studies around Antarctica, have found archaea appear most abundantly
in winter and early spring, with maximum abundances in the subsurface at around 100 m (e.g., Church et al.,
2003; Kalanetra et al. 2009; Massana et al. 2009). However, there is a general agreement that TEXss captures the
relative SST trend (Richey and Tierney, 2016) remarkably well despite these uncertainties, and this will be our

main focus when interpreting the results.

3.3 Palynology

3.3.1 Palynological processing and taxonomy

A total of 50 samples, 2 per core (Core 43—17), were processed for palynology by using palynological processing
and analytical procedures of the Laboratory of Palacobotany and Palynology, published previously (e.g., Bijl et
al., 2018a). Freeze-dried or oven-dried sediment was crushed and weighed (on average 10 g, SD: <1 g). A tablet
of a known amount of Lycopodium clavatum spores (a marker grain) was added prior to palynological processing
to allow for quantification of the absolute number of dinocysts per sample. In order to digest carbonates and
silicates, the sediment was treated with 30% HCI overnight first to remove calcium carbonate, 38% HF overnight
to digest silicates, 30% HCI was then added to remove fluoride gels, and subsequently centrifuged and decanted.
Organic residues were isolated between 250 pm and 10 pm sieve meshes, with the help of an ultrasonic bath to
break down and clear out agglutinated organic particles. Residues were mounted on glass slides using glycerine
jelly. Palynomorphs were counted using a Leica DM2500 LED transmitted light optical microscope. While the

main focus was on dinocysts, terrestrial palynomorphs, acritarchs and prasinophyte algae (unicellular planktonic
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autotrophs) were quantified as well, and the presence and relative abundance of other organic remains were noted.
Dinocyst taxonomy follows Williams et al. (2017), Clowes et al. (2016) and informal species as presented in Bijl
et al. (2018a). Specimens were identified to a species level when possible. A minimum of 200 identifiable

dinocysts were counted per slide at 400x magnification, while the remainder of the slide was scanned at 200x
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assemblages between samples. The palynological data (relative abundance) were plotted in the C2 software

program (Juggins, 2007) using square root transformation.
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limited biostratigraphic markers, and thus we here support Jovane et al., (2020), who suggested Langhian to

Burdgalian ages. Extrapolating linearly between chrono- and biostratigraphic tie points (Fig. 2b; Table 2) we

calculate the average sedimentation rate in the Oligocene to be 2.4 c/kyr.

4.2 Lipid biomarkers

Thirty-nine of the 42 samples processed for lipid biomarkers showed no indication of overprints by biasing indices

(Fig. S2). The low BIT index value (<0.08, with one exception at 361 mbsf; Fig. S2) suggests low terrestrial

organic material influence, relative to marine GDGT production. The normal Ring index values (Fig. S3), with
only two outliers, suggests normal pelagic contributions to the sedimentary GDGTs. Thus overall, TEXss values
represent an in situ pelagic SST signal. Moreover, the absence of co-variance between TEXss and indices for
overprint suggest the high variability in TEXss also represents a pelagic signal. TEXss values range from 0.44 to
0.55. Using the linear calibration of Kim et al. (2010) (Fig. 4c), SSTs vary between 10—17°C (£5.2°C) throughout
the record, with noticeable variability. Below 342 mbsf, reconstructed SSTs are relatively high, and variable (10—
16°C). Between 335-248 mbsf SSTs are lower and display lower variability (10-13°C) at the same sample
resolution as above. An increase in SST of ~6°C at 248 mbsf marks the onset of a second interval with high

variability in SST.

4.3 Palynomorphs and dinocyst assemblages

came from the top of the studied record (186.66-155.68 mbsf), and were discarded, Samples showed varying

abundance of four palynomorph groups: reworked dinocysts, in situ dinocysts, terrestrial palynomorphs and
acritarchs and prasinophytes (Fig. 4a). The sediments below 352.5 mbsf are dominated by reworked dinocysts,
which decrease in abundance above this depth. From 352.5 mbsf to the top of the record, in situ dinocysts
constitute the most abundant palynomorph group, followed by acritarchs, which slightly increase upcore. Pollen
and spores remain low throughout the entire record (<6%). Furthermore, our palynological samples contain a

varying amount of pyritized microfossils and amorphous organic material.

4.3.1 Dinocyst taxonomy

Identification of dinocysts on a species level was possible in most cases (Table S3). However, some dinocysts

were only defined on a genus level when distinctive features were lacking. Brigantedinium spp. includes all round-
brown specimens. Batiacasphaera spp. includes sub- spherical cysts with an angular, apical
archeopyle . Pyxidinopsis spp. have, similar features to Batiacasphaera
but is smaller, has a thicker, slightly darker wall, and is less folded with a

precingular archeopyle. Dinocysts, with a smooth, spherical, psilate, hyaline wall and a free, angular- rounded

operculum, 5-6 sides, generally found within the cyst are hereby informally named Dinocyst sp. 1. The saphopylic
archeopyle of Dinocyst sp. 1, resembles that of Brigantedinium spp. and Protoperidinium spp._and for this reason

we consider Dinocyst sp. 1 as belonging to the (heterotrophic) Protoperidinioid (P) cysts.
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4.3.2 Reworked dinocyst assemblages

The lowermost 60 m of the sediment record, below 352.5 mbsf, yield abundant and diverse dinocysts, that are
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4.3.4 Other palynomorphs: Pollen, acritarchs and prasinophyte algae

The consistently sparse pollen assemblages from DSDP Site 274 suggest a shrubby tundra landscape with low-
growing Nothofagaceae and Podocarpaceae. The offshore and off-path location to the wind patterns from the

continent,

terrestrial ecology. The relative abundance of acritarchs and prasinophytes seems to increase upcore. Transparent

chorate acritarchs is the most dominant throughout the record. Leiosphaeridia spp. is only sporadically present

and most common in the lowermost sediments (>390 mbsf). Prasinophyte algae Cymatiosphaera spp. is found

throughout the record, but more abundantly around 285 mbsf, and above 224 mbsf.

4.4 Correspondence analysis

The CA on our palynological results (Fig. 3, Table S4) resulted in the first twq, axes explaining 46% of the total

(Deleted: value
CDeleted: multidimensionality of the

(Deleted: Terrestrial palynomorphs )

= [Deleted: constitutes for )

CDeleted: 2
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(64%). Those taxa that do not have a negative score on axis 2, have generally low total counts or relative
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reworked and in situ taxa on the first CA axis gives us confidence that our a priori assumption,of in situ and

CD leted: in our

Jyeworked is correct (Table 1).

5. Discussion

5.1 Updated age model

The age model for DSDP Site 274 is updated with four additional biostratigraphic datums and five

Jnagnetostratigraphic datums. Specifically, age constraints in the bottom (early Oligocene, 33.7 Ma, 404.66 mbsf) -

and top (late Oligocene, 24.4, Ma, 181.23 mbsf) of the studied interval (408.5—174.2 mbsf) have, been improved.

) [Deleted: to correlate sedimentary strata to the geological time

However, the few existing age constraints for the middle part (mid Oligocene, 307.1-199.5 mbsf) do not allow a

significant improvement of the existing age model for this interval (Fig. 2b. Table 2). Jovane et al., (2020)
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provide an independent chronology. Our obtained polarity pattern is similar to Jovane et al., (2020) for the upper

part of our study, i.e. late Oligocene (Fig. 2b). This is also true for the unclear polarity zone between cores 29 and

25 where Jovane et al., (2020) also find inclinations that produce a uncertain polarity pattern. Our correlation with

the time scale however differs in the lower part of the section, below 320 mbsf, where we provide new

magnetostratigraphic data and biostratigraphic age constraints, and implement the most recent insights on the age |

of the ocean gcrust underlying the site (Cande et al., 2000). This results in younger ages for the lower part of the

section, which are propagated upwards, altogether indicating younger ages for DSDP Site 274 than the study of

Jovane et al. (2020) and the initial report, We acknowledge that although our new constraints have improved the ,/f

age model, large uncertainties remain, due to moderate recovery, reworked material, weak NRM intensities (Table
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S1) and limited occurrence of age-diagnostic microfossils. This means that between tie points, sedimentation rates

points next to the depth scale (Fig. 2; Fig. 4). Notwithstanding these age model uncertainties, the proxy data we

present provides a rare glimpse into early to middle Oligocene surface water conditions, |

5.2 Paleotemperature and paleoenvironment in the Oligocene at DSDP Site 274

Temperature, in situ- and reworked palynomorph results together provide integrated paleoceanographic

configurations offshore, the Ross Sea margin during the Oligocene (33.7-24.4 Ma) (Fig. 4). Furthermore, we |

depth scale (Fig. 2; Fig. 4). Notwithstanding these age model
uncertainties, the proxy data we present provides a rare
glimpse into early to middle Oligocene surface water
conditions over a period of several million years L1
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combine our reconstruction with those available around the East Antarctic margin from the Western Ross Sea and

the Wilkes Land to obtain a regional perspective.

5.2.1 Surface oceanographic conditions

Both dinocyst, assemblages and TEXse- based SST results (Fig. 4b, c) consistently suggest temperate surface-

ocean conditions. High variability in the dinocyst; and TEXs6-SST reconstructions reflects highly dynamic

surface-ocean conditions. Although P-cyst species are abundant in the top and bottom of the record suggesting | -

nutrientyich conditions, the middle part of the record isdominated by high abundance of G-cyst species indicating ;

that oligotrophic and warm conditions prevailed (Fig. 4b). The dominance of G-cysts implies, that upwelling @the

protosAntarctic Divergence) was greatly reduced or located far away from the site. Above, 265 mbsf, the more

frequent_shifts between P-cyst dominated and G-cyst dominated assemblages,, yeflects strongly varying

oceanographic conditions, perhaps as a result of shifting frontal system locations or dynamics (as offshore Wilkes

Land; Salabarnada et al., 2018: Bijl et al., 2018; Hartman et al., 2018), The scarcg, presence of typical sea-ice

affiliated dinocysts suggests that sea ice was absent or the sea ice seasonal coverage was strongly reduced (Bijl et

al., 2018) compared to the present-day (Fetterer et al., 2020). The dinocyst assemblages mostly contain known

marine species, indicative of normal ocean salinities, However. Dinocyst sp. 1 (turquoise in Fig. 4b), abundant in

sediments > 335 mbsf, morphologically yesembles the peridinioid Senegalinium spp., a genus known for itghigh
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tolerance to low surface water salinities (Sluijs et al., 2009). If morphology is indicative of environmental
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early Oligocene, The overall abundance of reworked (Eocene) dinocysts suggests erosion of marine sediments on
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the Ross Sea continental shelf, and transport thereof towards the abyssal plain by wind-driven transport of surface
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Oligocene dinocyst assemblages found at DSDP Site 274, are similar to present-day dinocyst assemblages living
between the Subantarctic and Subtropical front, where temperatures range from 0-15°C (Prebble et al., 2013).

This is in line with the high TEXse-SSTs (10-17°C), ghich jndicates much warmer surface waters with lower

nutrient levels than today where currently, the site is located in an area with average SSTs ~ -1°C (Locarnini et

Deleted: genera linium spp., a group...enus which
known for itsshows...a ...igh tolerance to low surface water
salinities (Sluijs et al., 2009). If morphology is indicative of
environmental conditions, ,)4b) during the early Oligocene
(depth > 335 mbsf) ... [6]

{ Moved up [2]: resembles the peridinioid genera
Senegalinium spp., a group which shows a high tolerance to
low surface water salinities (Sluijs et al., 2009),

al., 2019).

5.2.2 Oligocene oceanography and climate evolution at DSDP Site 274 in a regional context

The generally warm SSTs throughout the Oligocene, suggest that the recorded high productivity at the site was

probably not the result of cold upwelled waters. Yet, in the early Oligocene (404.66—-335.34 mbsf) the relative

abundant P-cysts do indicate high nutrient and, possibly, Jow salinity surface-water conditions (Fig. 4b). Instead ’{Delete a:
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of upwelling, we suggest that strong surface-water mixing stimulated ocean primary productivity at the site,
perhaps with additional nutrient sources through melting from the Ross Sea continental margin. Rifting of the
Western Ross Sea shelf since 60 Ma (Huerta and Harry, 2007) created thick Eocene sedimentary successions on
the Ross Sea shelf. Glacial-isostatic adjustments as a response of the Antarctic ice sheet build-up (~48-34 Ma)
caused reorganisation of shelf sedimentation (Stocchi et al., 2013), notably increases in sedimentation rates due
to the accumulation space created by higher sea level and bedrock subsidence in some regions, and erosion due
to bedrock uplift at others. Strata drilled at DSDP Site 270 on the Ross Sea continental shelf indicate periods of

garly Oligocene glacimarine deposition derived from local ice caps nucleated on elevated highs prior to tectonic

subsidence in that region (De Santis 1999; Kulhanek et al., 2019). Turbid meltwater derived from the margins of
these marine terminating ice caps, and from glacio-marine/fluvial systems at the margins of outlet glacier along
the Transantarctic Mountain front (Fielding et al., 2000), would also allow for transport via a suspended sediment
load or downslope processes towards the continental rise at DSDP Site 274, similar to the Wilkes Land continental

rise (Bijl et al., 2018b; Salabarnada et al., 2018). The high abundance of reworked late Eocene dinocysts festifies

to the influence of continental shelf-derived surface water towards the site, which prings nutrients and promotes

productivity (increase in,P £ysts), This high amount of reworked dinocysts could further argue for a reworked

. . . . |
TEXGs6-SST signal. However, the near-shore character of the Eocene reworking (abundant pro-deltaic, marginal- //
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(239.2 mbsf) the acritarchs peak is synchronous with a peak in temperate dinocyst species Operculodinium spp.
Acritarchs as well as Operculodinium spp. a pioneer species, is known to be opportunist (e.g., Dale, 1996).

Previous studies on Antarctic proximal records, from, the CIROS-1 core (Hannah, 1997) and DSDP Site 270

(Kulhanek et al., 2019), have associated the presence of acritarchs (Leiosphaeridia spp.) and prasinophytes
Cymatiosphaera spp.) with episodes of sea ice melting. We did not find abundant Leiosphaeridia spp..Thus we
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5.3 Regional perspective

We compare our Oligocene paleoceanographic reconstructions from DSDP Site 274 with records from off the
Wilkes Land margin (Site U1356 (Hartman et al., 2018; Salabarnada et al., 2018; Bijl et al., 2018a, b; Sangiorgi
et al., 2018)) and the Ross Sea; (Houben et al., 2013; Clowes et al., 2016; Kulhanek et al., 2019; Duncan, 2017)
(Fig. 5). Published TEXss data from Wilkes Land margin (Hartman et al., 2018) and the Ross Sea (Duncan, 2017)

have for this comparison been converted to SSTs using linear calibration of Kim et al. (2010) (calibration error:
+5.2°C).

Early Oligocene (32.3-29.2 Ma, 391-335 mbsf)
DSDP Site 274 TEXss-SST results suggest a slightly lower average temperature offshore the Ross Sea, (~4°C)

than at Wilkes Land (Site U1356), but higher temperatures (~6°C) than at ice proximal Ross Sea site,(CIROS-1;

/

Fig. 5¢). This observation is consistent with the position of DSDP Site 274, whichgvas at higher paleo-latitudes |

compared to Site U1356, and but lower latitudes and offshore the ice proximal sites within the Ross Sea, Indeed,

evidence from the CRP cores in the Ross Sea showed continental-scale ice sheets first expanded towards the Ross
Sea around 32.8 Ma (Galeotti et al., 2016). Prior to 31 Ma (350 mbsf), the SST record from DSDP Site 274 shows

some of its highest temperatures, while SSTs at Site U1356 decrease. One important consideration is whether

these sites in the Ross Sea and Wilkes Land can be compared as belonging to iven that the

latitudinal transect,

are separated by an evolving Tasmanian Gateway, a conduit that separates the eastern Indian and southwestern

Pacific oceans. Although a,deep-water connection jn the Tasmanian Gateway was established in the Oligocene.

the passageway was still yestricted (Stickley et al., 2004; Bijl et al., 2013). Studies of the paleobathymetry and

sedimentary mechanisms in the Southern Ocean through the Cenozoic (e.g., Scher et al., 2015; Hochmuth et al.,
2020) do show the Tasmanian Gateway as well as the Pacific sector of the Southern Ocean deepen between 34

Ma and 27 Ma, allowing easier throughflow and exchange between the different ocean sectors. The Jimited co-

variability between the Adare Basin and Wilkes Land margin, and the different SSTs might signal the
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line with other studies (Scher et al., 2015), a SST difference between both sectors remains. The abundance of low

nutrient/temperate-affiliated dinocyst taxa (G-cyst) is higher at DSDP Site 274 than at the Wilkes Land margin

and within the Ross Sea continental shelf, implying that nutrient input was lower atfhe offshore Ross Sea location

than at more proximal gites, with a higher degree of melt water input. )
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In the “mid Oligocene”, the absolute SST average values disparity between DSDP Site 274, the Ross Sea and

decrease towards the late Oligocene.

Late Oligocene (26.5 — ~24.4,Ma, 239-192.7 mbsf)

Wilkes Land margin is the strongest, Both Wilkes Land margin and the Ross Sea have high P-cyst content (Fig. CDeleted: within our studied interval
5b). Palynomorphs from Ross Sea shelf deposits from Oligocene, dominated by Lejeunecysta spp. and brackish
water prasinophyte,Cymatiosphaera (CRP: Prebble et al., 2006; Clowes et al., 2016), suggest meltwater input,in (Deleted: P
the Ross Sea region through this time interval (Prebble et al., 2006). In contrast, our dinocyst assemblages suggest (Deleted: a
pelagic, low nutrient, marine conditions while the low numbers of terrestrial palynomorphs point to limited fresh- CDeleted: and
water or melt-water input at DSDP Site 274. Similar to the Wilkes Land margin SST record, DSDP Site 274 SSTs CDeleted: acritarch species
(Deleted: cooling
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The average TEXss-based SST results (Fig. 5a) for Site U1356 and DSDP Site 274 shows large, (>6°C) (Deleted: melt water input
temperature variability (Hartman et al., 2018). At DSDP Site 274, we can exclude the known non-thermal biases (Deleted: 4
as cause for the strong variability (Fig. S2), and therefore also interpret stronger SST variability in the late . (Deleted: !
(Deleted: ; Hartman et al., 2018

Oligocene. Noteworthy, in the beginning of this interval at 26.5 Ma (239 mbsf) we see a temperature peak at
DSDP Site 274 similar to what was reconstructed at the Wilkes Land margin, (Hartman et al., 2018). This

temperature peak coincides with a rapid decrease in the §'*0 isotope records that may be linked to the deglaciation
of large parts of the Antarctic ice sheet following a large transient glaciation centered on ~26.8 Ma (Pilike et al.,
2006). The increase in abundance of Operculodinium spp. at all three sites (DSDP Sites 270, 274 and IODP Site
U1356) is a testament to the temperate conditions and/or lower nutrient availability at the time. The DSDP Site

274 sediment record is virtually barren of palynomorphs <192.7 mbsf (~24,4,Ma), 1 1.7 m below the hiatus (181

mbsf") in the record, with the sediments above estimated to be of middle Miocene age (Hayes et al., 1975). Since

our SST reconstructions exclude continuous sea ice cover as possible explanation, we interpret that oxic

degradation consumed palynomorphs at the sea floor. Three reasons for increased oxygen delivery at the sea floor

are proposed; 1. Strengthening of the Antarctic Circumpolar Current (ACC) increased deep ventilation. This is
unlikely given that ocean frontal systems would progressively move northward while the Tasmanian Gateway

widens, which would also displace ACC flow northwards, away from the site. 2. Winnowing ocean bottom

currents and decreased sedimentation rates could cause the oxic conditions we propose, and was the reason behind

the disappearance of dinocysts. However, winnowing would not erode palynomorphs only and would result in

coarsening of sediments, which we do not see. The lithology of the 192.7—181 mbsf interval where dinocyst are

barren, is diatom rich silty-clay, Decreased sedimentation rates would prolong, oxygen exposure time of

palynomorphs once at the sea floor. Although our age model has Jimitations, a decrease in sedimentation rates (to

1.8 cm/kyr) is observed above 192.7 mbsf. 3. Bottom water formation on the Ross Sea continental margin
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delivered increased oxygen-rich bottom waters to the site. Heightened obliquity sensitivity has been jnterpreted

to be associated with enhanced oceanic-influence mass balance controls on marine terminating ice sheets, with
limited sea ice extent (Levy et al., 2019). Levy et al. (2019) interpreted a prominent increase in the sensitivity of
benthic oxygen isotope variations to obliquity forcing (termed “obliquity sensitivity””) between 24.5 and 24 Ma,

synchronous with the first occurrence of ice-proximal glaciomarine sediments at DSDP Site 270, disconformities

in CRP-2/2A, and a large turnover in Southern Ocean phytoplankton. The major expansion of the ice sheet close
to the Oligocene — Miocene boundary in the Ross Sea (Levy et al., 2019; Kulhanek et al., 2019; Evangelinos et

al., in review) argues in favour of Ross Sea bottom water strengthening, Jeading to the slow-down of the
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5.4 Implications for ice-proximal conditions, hydrology and ice sheets: a hypothesis,

Warm and generally oligotrophic conditions, relatively proximal fo the Antarctic margin during the Oligocene, /

/
imply that the Southern Ocean oceanography was fundamentally different from modern (e.g., Deppeler and /

Davidson, 2017). Although our data suggest pcean conditions were colder inshore than further offshore, they

remain warm considering their proximity to marine-terminating outlet glaciers and ice caps in the Ross Sea area
(De Santis et al 1999; Galeotti et al., 2016; Levy et al., 2019; Kulhanek et al., 2019; Evangelinos et al., in review).
Levy etal. (2019) provided a model for ice-proximal to ice-distal oceanographic conditions in the Ross Sea during
the Oligocene. In that model, Transantarctic Mountain outlet glaciers draining the EAIS, or local marine-

terminating ice caps in the Ross Sea were particularly affected by the wind-driven, southward advection of warmer

subsurface waters onto the Ross Sea shelf, similar to how Circumpolar Deep Water is being transported pnto some

regions of the continental shelf today (e.g., Wouters et al., 2015; Shen et al., 2018). The subsurface waters in that

conceptual model were indicated as warmer than the overlying low salinity surface waters derived from glacial

melts during glacial maxima, but this stratification is broken down during interglacials. The sample resolution of

our dataset is too low to capture the full amplitude of orbital variability. However, since each 2 ¢cm sample

represents 800 yrs, the variability we see in our record could be the result of strong environmental variability on

orbital time scales. Hence, the high variability in our data support the interpretation of Levy et al., 2019, with

temperate surface waters at DSDP Site 274 on the continental rise of the Ross Sea margin suggesting a well-mixed

water column as it would be difficult to envisage intermediate waters warmer than the surface waters. In this

scenario, colder stratified surface water due to (sea ice) melting would be largely restricted to coastal Ross Sea |

sites of DSDP Site 270, CRP and CIROS-1. Temperate, surface waters offshore the Ross Sea shelf would provide,

& source ofheat that Jimits the advance of marine terminating glacial systems into the Ross Sea and Wilkes Land

continental shelfs. Pollen assemblages and high SSTs at DSDP Site 274, supported by terrestrial palynomorphs

found at CRP-2 (Askin and Raine, 2000), suggest that climate was warm enough to allow atmospheric melt to be

the dominant control on the ice mass balance and potential, driver of deglaciation during warm orbital
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Climatic Optimum (Feakins et al., 2012). Enhanced,intense precipitation in the Antarctic hinterland gvould favour

ice accumulation during cold orbital states to sustain @ marine termination,for the predominately terrestrial ice

sheets. In a warmer-than-present climate of the early to mid Oligocene, precipitation and glaciation on the
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Table captions

Table 1: List of palynomorphs and their abbreviated codes found in the CA-plot (Figure 5). Assumed in

situ and reworked dinoflagellate cyst taxa are assigned to Protoperidinioid (P-cyst) taxa and Gonyaulacoid

(G-cyst) taxa.

Table 2: Improved age model for the Oligocene of DSDP Site 274 determined by dinocysts biostratigraphy

indicators (FO = First occurrence, LO = Last occurrence) and paleomagnetic reversals (chrons).

Figure captions

Figure 1: (a) Ross Sea to Wilkes Land margin bathymetry with present-day locations of DSDP/IODP/CRP,
drill sites included in this study (red dots). The new data generated for this study comes from DSDP Site
274, marked by yellow dot. The base map is from Quantarctica GIS package, Norwegian Polar Institute.
The insert shows the Antarctic continent and the surrounding oceans (divided by gray dotted lines) to give
a broader regional context to the study area. (b) A synthesis of paleoceanographic settings at 27 Ma. The
paleogeographic position is generated with G-plates (http://www.gplates.org), based on the global plates
geodynamic motion model from Miiller et al., (2018). Light grey indicates the continental lithosphere. The

inferred ocean currents are drawn after reconstructions by Stickley et al., (2004). TC = Tasman current,
PLC = Proto-Leeuuwin Current and ACountC = Antarctic Counter Current. Blue arrows indicate cooler
ocean currents and red indicate warmer ocean currents. Relative current strength is indicated by arrow

size.

Figure 2: (a) Core numbers, core recovery and lithological description of the cores based on the initial
DSDP reports (Hayes et al., 1975). (b) Magnetic correlation for Site 274 with comparison to Jovane et al.,
(2020) (dotted lines). Inclination values define local magnetic polarity zones. Magnetostratigraphic

correlation is firstly guided by new dinocyst constraints, biostratigraphic markers from shipboard report
and subsequently by correlation between local polarity zones and the GTS2012 timescale (Gradstein et al.,
2012). Low intensity, shifting directions, and low recovery precludes magnetozone identification for some
intervals. Characteristic orthoplots showing demagnetization steps is included in Supplementary Figure
S1. Arrows indicate age (Ma) biostratigraphic tie points according to the age model described in Table 2.
Extrapolations has been made between the age tie points (stippled lines) with sedimentation rates indicated

in between. LO = Last occurrence, FO = First occurrence.

Figure 3: Correspondence analysis (CA) of the dinocyst assemblage data from DSDP Site 274. The size of
the points indicates the total relative abundance of the specific species. The abbreviations of the dinocysts
species can be found in Table 1. The data were plotted in the C2 software program (Juggins, 2007). The

analysis scores are provided as Table S4.
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Figure 4: Lithological (the legend is the same as Figure 2), palynological and TEXsc-SST results from DSDP
Site 274 plotted against depth. Arrows indicate age (Ma) tie points according to the age model described in
Table 2. The dotted gray line indicated the time slices selected for Fig. 5.

(a) The cumulative relative abundance of palynomorph groups.

(b) The cumulative relative abundance (%) of selected dinocysts groups recorded in the studied interval.
Blue tones are P-cysts, red-tones are G-cysts.

(¢) TEXse-based SSTs (Linear calibration, Kim et al., (2010)), calibration error is £ 5.2°C, indicated by
black bar in bottom of the plot. The TEXss outliers are marked in red.

Figure 5: Synthesis of sea surface temperature and dinocysts assemblage changes between the early (c),
mid (b) and late Oligocene (a) in the Ross Sea (CRP, DSDP Site 270), offshore Cape Adare (This study,

DSDP Site 274) and Wilkes Land margin (Site U1356). The pie charts visualize the dinocyst assemblage
composition at respective sites (see legend). Dinocyst assemblage data from the Wilkes Land margin,
U1356, comes from Bijl et al., (2018a, b) for all panels (a-c). Dinocyst assemblage data from the Ross Sea is
gathered from DSDP Site 270 (Kulhanek et al., 2019) for panel a) and from CRP (Houben et al., 2013;
Clowes et al., 2016) for panel (b) and (c). The TEXs:-SST data from Wilkes Land, U1356 comes from
Hartman et al., (2018), 35 TEXs¢-data points were used; 7 in (a), 9 in (b) and 19 in (c). In the Ross Sea
there is a lack of TEXs6-SST data from the mid Oligocene, but Duncan (2017) presented unpublished
TEXGse-data from CIROS- (12 TEXse-data points), here displayed in panel (c), and from DSDP Site 270,
where only one data point matched our mid-early Oligocene time slice in panel (a). All TEXs¢ data have
been converted to the SST using linear calibration of Kim et al. (2010) (calibration error: £ 5.2°C). The
paleogeographic position is generated with G-plates (http://www.gplates.org), based on the global plates

geodynamic motion model from Miiller et al., (2018).

Supplementary Information

Supplementary Table S1: Table with a summary of demagnetization data results. Sample identification,
Core location indicating core, section and depth (mbsf), Declination, Inclination, Sample intensity (in
A/m2), MAD values and remarks including the steps used for interpretation. Resultant orthoplots are

depicted in Fig. S1.

Supplementary Table S2: Concentrations of GDGTs at Site 274. All samples and corresponding depths,
age of sample, GDGT peak area values, TEXss (Schouten et al., 2002) and BIT index values (Hopmans et
al., 2004), Methane Index (Methzhang) values (Zhang et al., 2011), GDGT2/Crenarchaeol ratios (Weijers
et al., 2011), GDGT-0/Crenarchaeol ratios (Blaga et al., 2009) and GDGT-2/GDGT-3 ratios (Taylor et al.,
2013), and RING index (Sinninghe Damsté, 2016). SST calibrations from Kim et al., 2010; Kim et al., 2012.
SSTK10L = linear calibration of Kim et al. (2010). Discarded samples (OUTLIER=TRUE) with outlier
values are based on BIT > 0.4, GDGT2/GDGT3" > 5, ' GDGT0/cren” > 2 and “Methzhang > 0.3.

Supplementary Table S3: Total palynomorph assemblage counts DSDP Site 274 cores 43-21.
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Supplementary Table S4: Correspondence analysis (CA) scores of the dinocysts assemblage data from

DSDP Site 274.

Supplementary Figure S1: Orthogonal plots of representative samples. Most of the samples used for the
correlation show two distinctive directions, both in normal samples and in reversed samples. Inclination
values are also indicated. Open plots indicate inclinations (vertical projection). All calculated directions are
available in Table S1. Samples were calculated by means of the Paldir and paleomagnetism.org (Koymans

et al., 2016) programs.

Supplementary Figure S2: Relevant GDGT indices to filter out biased outliers (red crosses) in the generated
GDGT data (Table S2), plotted against sample depth (mbsf). The red line marks the limit of reliable values.
a) TEXs6 (Schouten et al., 2002). b) BIT index values (Hopmans et al., 2004). ¢) Methane Index (Methzhang)
values (Zhang et al., 2011). d) AOM index (GDGT2/Crenarchaeol ratios) (Weijers et al., 2011). e) Water
column overprint values (GDGT-2/GDGT-3 ratios) (Taylor et al., 2013). f) Methanogenesis values (GDGT-
0/Crenarchaeol ratios) (Blaga et al., 2009).

Supplementary Figure S3: Cross plot between the ring index and TEXs6 values of samples from DSDP Site

274. The lines mark the outer ranges of the ring index (Zhang et al., 2016), outside of which samples have

outlying values (marked as crosses). The shade of blue indicates the sample depth (mbsf).
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| Page 13: [33] Deleted Frida S Hoem 5/7/21 12:14:00 AM




Page 15: [34] Deleted Frida S Hoem 5/16/21 1:16:00 PM
A4

A

Page 15: [34] Deleted Frida S Hoem 5/16/21 1:16:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [35] Deleted Frida S Hoem 5/14/21 7:20:00 PM
A4

A
| Page 15: [36] Deleted Sangiorgi, F. (Francesca) 5/4/21 6:36:00 PM
A4

A
| Page 15: [36] Deleted Sangiorgi, F. (Francesca) 5/4/21 6:36:00 PM
A4

A
| Page 15: [37] Deleted Frida S Hoem 5/14/21 4:30:00 PM
A4

A
| Page 15: [37] Deleted Frida S Hoem 5/14/21 4:30:00 PM
A4

A
| Page 15: [38] Deleted Sangiorgi, F. (Francesca) 5/5/21 9:01:00 AM
A4

A
| Page 15: [38] Deleted Sangiorgi, F. (Francesca) 5/5/21 9:01:00 AM
A4

A
| Page 15: [38] Deleted Sangiorgi, F. (Francesca) 5/5/21 9:01:00 AM

: [38] Deleted

Sangiorgi, F. (Francesca)

5/5/21 9:01:00 AM




[38] Deleted

Sangiorgi, F. (Francesca)

5/5/21 9:01:00 AM

[38] Deleted

Sangiorgi, F. (Francesca)

5/5/21 9:01:00 AM

[38] Deleted

Sangiorgi, F. (Francesca)

5/5/21 9:01:00 AM

[38] Deleted

Sangiorgi, F. (Francesca)

5/5/21 9:01:00 AM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM




[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM

[39] Deleted

Sangiorgi, F. (Francesca)

5/4/21 6:50:00 PM




| Page 15: [40] Deleted Frida S Hoem 5/14/21 7:01:00 PM
A4
A
| Page 15: [40] Deleted Frida S Hoem 5/14/21 7:01:00 PM
A4
A
| Page 15: [40] Deleted Frida S Hoem 5/14/21 7:01:00 PM

A4

A

| Page 15

: [41] Deleted

Bijl, P.K. (Peter)

5/5/21 10:28:00 PM

A4

A

| Page 15

: [41] Deleted

Bijl, P.K. (Peter)

5/5/21 10:28:00 PM

A4

A

| Page 15

: [41] Deleted

Bijl, P.K. (Peter)

5/5/21 10:28:00 PM

A4

A

| Page 16

: [42] Deleted

Frida S Hoem

5/7/21 12:50:00 AM

A4

A




