

1 Temperate Oligocene surface ocean conditions offshore Cape 2 Adare, Ross Sea, Antarctica

3 Frida S. Hoem¹, Luis Valero², Dimitris Evangelinos³, Carlota Escutia³, Bella Duncan⁴, Robert
4 M. McKay⁴, Henk Brinkhuis^{1,5}, Francesca Sangiorgi¹, and Peter K. Bijl¹

5 ¹Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands, ²Department of Earth Sciences,
6 University of Geneva, Geneva, Switzerland, ³Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla,
7 Spain, ⁴Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand, ⁵Royal
8 Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands

9 Correspondence to: Frida S. Hoem (f.s.hoem@uu.nl)

10

11 **Abstract.** Antarctic continental ice masses fluctuated considerably during the Oligocene “coolhouse”, at elevated
12 atmospheric CO₂ concentrations of ~600–800 ppm. To assess the role of the ocean on the Oligocene ice sheet
13 variability, reconstruction of past ocean conditions in the proximity of the Antarctic margin are needed. While
14 relatively warm ocean conditions have been reconstructed for the Oligocene offshore Wilkes Land, the
15 geographical extent of that warmth is unknown. In this study, we reconstruct past surface ocean conditions from
16 glaciomarine sediments recovered from Deep Sea Drilling Project (DSDP) Site 274, offshore the Ross Sea
17 continental margin. This site, located offshore Cape Adare is ideally situated to characterise Oligocene regional
18 surface ocean conditions, as it is situated between the colder, higher-latitude Ross Sea continental shelf, and the
19 warm-temperate Wilkes Land Margin in the Oligocene. We first improve the age model of DSDP Site 274 using
20 integrated bio- and magnetostratigraphy. Subsequently, we analyse organic walled dinoflagellate cyst
21 assemblages and lipid biomarkers (TEX₈₆) to reconstruct surface paleoceanographic conditions during the
22 Oligocene (33.7–24.4 Ma). Both TEX₈₆-based sea surface temperature (SST) and microplankton results show
23 temperate (10–17°C ± 5.2°C) surface ocean conditions at Site 274 throughout the Oligocene. Oceanographic
24 conditions between offshore Wilkes Land margin and Cape Adare became increasingly similar towards the late
25 Oligocene (26.5–24.4 Ma), inferred to be the consequence of the widening of the Tasmanian Gateway, which
26 resulted in more interconnected ocean basins and frontal systems. To maintain marine terminations of terrestrial
27 ice sheets in a proto-Ross Sea with as warm offshore SSTs as our data suggests, requires a strong ice flux fed by
28 intensive precipitation in the Antarctic hinterland during colder orbital states, but with extensive surface melt of
29 terrestrial ice during warmer orbital states.

30 1. Introduction

31 The Southern Ocean plays a crucial role in global ocean circulation, stability of the Antarctic ice sheet and the
32 carbon cycle. At present, strong temperature gradients isolate Antarctica from the influence of warmer surface
33 water from lower latitude regions. Despite its crucial role, still little is known about the evolution of Southern
34 Ocean, Southern Ocean surface conditions cooled during the mid-Eocene (<49 Ma; Bijl et al., 2009; 2013), which
35 culminated with the initiation of Antarctic continental-scale glaciation at the Eocene-Oligocene transition
36 (EOT~33.7 Ma; Zachos et al., 1994; Coxall et al., 2005; Bohaty et al., 2012). The overall higher bedrock elevation

Deleted: fluctuated
Deleted: in size
Deleted: the elevated atmospheric CO₂ concentrations (~600–800 ppm) of t
Deleted: the
Deleted: ”.
Deleted: evaluate
Deleted: conditions to
Deleted: requires understanding of
Deleted: around the
Deleted: ice sheet
Deleted: .
Deleted: region
Deleted: questions arise on
Deleted: Currently, we lack data on surface ocean conditions from circum-Antarctic locations, and ice-proximal to ice-distal temperature gradients are poorly documented.
Deleted: the
Deleted: located
Deleted: the
Deleted: ice-proximal
Deleted: existing
Deleted: 5.
Deleted: Increasingly similar o
Deleted: oceanographic
Deleted: developed
Deleted: 5.
Deleted: likely in
Deleted: during colder orbital states
Deleted: ,
Deleted: warm
Deleted: conditions
Deleted: dle

70 and larger subaerial area of Antarctica during the Oligocene (33.9–23.0 Ma; Gradstein et al., 2012) (Wilson et al.,
71 2013; Paxman et al., 2019) allowed for the occupation of large terrestrial ice caps. Antarctic ice-proximal records
72 suggest that these ice sheets extended onto the coast, forming ice margins with marine terminations (Escutia et
73 al., 2011; Scher et al., 2011; Galeotti et al., 2014). Apparently, Southern Ocean temperatures at the earliest
74 Oligocene oxygen isotope step (EOIS) cooled sufficiently to sustain the marine-terminating ice sheets. Following
75 the EOIS, gradually deep-sea $\delta^{18}\text{O}$ rebounded (Zachos et al., 2008), suggesting long-term loss of Antarctic ice,
76 and/or gradual deep-sea warming. Indeed, the Oligocene remained a relatively warm time interval globally
77 (O'Brien et al., 2020). However, on orbital time scales, Oligocene Antarctic ice volume underwent major
78 fluctuations in size (e.g., Pálike et al., 2006; Galleotti et al., 2016; McKay et al., 2016; Liebrand et al., 2017; Levy
79 et al., 2019), and as of yet the role Southern Ocean sea surface temperature (SST) conditions played in these
80 fluctuations remains poorly understood, mostly because of a sparse geographic coverage of reconstructions of
81 Oligocene SSTs.

82 Warm-temperate Oligocene SSTs (13–25°C) and frontal system reconstructions at the Wilkes Land margin were
83 derived from organic walled dinoflagellate cyst (dinocyst) assemblages at Deep Sea Drilling Project (DSDP) Site
84 269 (Evangelinos et al., 2020) and Integrated Ocean Drilling Program (IODP) Site U1356 (Bijl et al., 2018b).
85 These were corroborated with quantitative SSTs based on organic biomarkers (TEX₈₆; Hartman et al., 2018), and
86 sedimentological and lithological interpretations (Salabarnada et al., 2018; Evangelinos et al., 2020). Data seem
87 to indicate a southward displacement of the (proto-) Southern Ocean fronts, perhaps favoured by the still
88 constricted, narrow Tasmanian Gateway (Scher et al., 2015), and consequent southward deflection of warm ocean
89 currents (Fig. 1b). The relative absence of iceberg-rafted debris in most of the Oligocene sedimentary record of
90 IODP Site U1356 (Escutia et al., 2011; Salabarnada et al., 2018; Passchier et al., 2019) suggests that the East
91 Antarctic Ice Sheet (EAIS) at the Wilkes Land sector may have been predominately land-based, indicating limited
92 ice sheet-ocean interaction in this sector of the EAIS. Sedimentary records recovered from cores located near the
93 Transantarctic Mountain outlet glaciers, such as DSDP Site 270 (Kulhanek et al., 2019) CIROS-1 (Barrett et al.,
94 1989) and Cape Roberts Project (CRP) (Naish et al., 2001; Prebble et al., 2006; Houben et al., 2013) have provided
95 important insights into widespread advances of both East and West Antarctic Ice Sheet terminating into the
96 western Ross Sea. TEX₈₆-based SST records indicate lower temperatures (6–14°C) in the Ross Sea during the
97 Oligocene (Levy et al., 2016; Duncan, 2017) than offshore the Wilkes Land margin (Hartman et al., 2018),
98 suggesting a large (~7°C), much larger than present, (sub-)surface ocean temperature difference between the two
99 sectors. However, it remains unknown whether the warm conditions offshore the Wilkes Land margin were unique
100 or whether similar temperatures existed close to the Ross Sea continental shelf in the Oligocene.

101 To this end, we investigated sediments recovered during DSDP Leg 28 at Site 274, located on the continental rise
102 offshore the Ross Sea, ~250 km northwest of Cape Adare (Hayes et al., 1975), which is at an intermediate location
103 between the aforementioned sites in the Ross Sea and offshore Wilkes Land (Fig. 1). DSDP Leg 28 retrieved
104 valuable sedimentary records from the continental shelf and rise regions of the Ross Sea, but poor age control has
105 long hampered their use in reconstructing past ocean conditions. Moreover, the archives were devoid of calcareous
106 foraminifers, denying the use of their wall geochemistry, typically used for the reconstruction of ocean conditions.
107 Studies based on dinocysts have however allowed both age control and paleoceanographic interpretations, as e.g.

Deleted: ,
Deleted: imply
Deleted: Oligocene
Deleted: into
Deleted:
Deleted: 8)
Deleted: stage
Deleted: Oi-1
Deleted: Oi-1
Deleted: s
Deleted: s
Deleted: Moreover
Deleted: it is poorly understood what
Deleted: sea (sub-)surface temperatures
Deleted: SSTs,
Deleted: are
Deleted: s
Deleted: s
Deleted:
Deleted: These
Deleted: Sangiorgi et al., 2018;
Deleted: :
Deleted: ; ANtarctic geological DRILLing project (ANDRILL; Harwood et al., 2008; Naish et al., 2009; McKay et al., 2016),
Deleted: ,
Deleted: ,
Deleted: marine based
Deleted: in
Deleted: colder
Deleted: Sangiorgi et al., 2018;
Deleted: gradient
Deleted: to that deep-water continental rise sector of Antarctica,
Deleted: from
Deleted: the
Deleted: deep-water continental rise DSDP Site 274
Deleted: before
Deleted:
Deleted: the moremost standard
Deleted: inorganic
Deleted: cal classic tools
Deleted: recent progress in

152 a result of the [established connection](#) between dinocyst assemblage composition and surface water conditions of
153 present-day Southern Ocean (Prebble et al., 2013; [Zonneveld et al., 2013](#); [Marret et al., 2019](#)). [Recent](#) dinocyst
154 records from the Ross Sea region (notably CRP (Clowes et al., 2016) and DSDP Site 270 (Kulhanek et al., 2019)),
155 and from Wilkes Land (IODP Site U1356 (Sangiorgi et al., 2018; Bijl et al., 2018a, b) [and DSDP Site 269](#)
156 ([Evangelinos et al., 2020](#)) provided new biostratigraphic constraints. We used these [constraints, alongside](#) new
157 biostratigraphic and magnetostratigraphic analyses to improve the age model of DSDP Site 274. [We then](#) interpret
158 paleoceanographic conditions with dinocyst assemblages, and generate quantitative SST reconstructions with
159 lipid biomarkers (TEX₈). By comparing these results with available reconstructions from the Ross Sea and Wilkes
160 Land in selected time slices, we evaluate how surface oceanographic conditions changed and latitudinal heat
161 transport developed through the Oligocene.

Deleted: strong links

Deleted: New

Deleted: , together with

Deleted: ,

Deleted: s

Deleted: d

162 **2. Material**

163 **2.1 Site description**

164 DSDP Site 274 (68°59.81'S; 173°25.64'E; 3326 m water depth, Fig. 1a), is located on the lower continental rise
165 in the northwestern Ross Sea, about 250 km north-northeast of Cape Adare (Hayes, 1975). Sediments were
166 collected using punch core-rotary drilling on the *Glomar Challenger* in February 1973 (Hayes, 1975). Currently,
167 the region is seasonally covered by sea ice (Fetterer et al., 2020) and present-day mean annual SST is ~ -1°C
168 (Locarnini et al., 2019). The site is in the vicinity [of the southern upwelling margin of](#) the Antarctic Divergence
169 and currently located in the path of a major outflow for Antarctic Bottom Water, spilling out over the [western](#)
170 Ross Sea continental shelf where it is deflected westward (Orsi and Wiederwohl, 2009). The location of [DSDP](#)
171 Site 274 is ideal for studying the [Oligocene](#) oceanic properties offshore the Ross Sea (Fig. 1b), which we compare
172 to documented Antarctic ice sheet and ocean conditions from proximal Ross Sea records (Fig. 1a).

Deleted: ,

Deleted: south of the upwelling at

173 **2.2 Lithology and depositional settings**

174 Drilling at DSDP Site 274 penetrated 421 meters below the sea floor (mbsf) and recovered a total of 43 cores
175 containing 275.5 meters of sediment. We focus our study on the interval between 174.2 and 408.5 mbsf (Cores
176 19-43)(Fig. 2a). Sediment within this interval is mainly composed of (i) diatom-rich detrital silty clay with varying
177 [abundances](#) of diatoms, from trace amounts to up to 80% (diatom ooze) (174.2–328 mbsf); and (ii) silty claystones
178 and interbedded chert layers (328–408.5 mbsf). Scattered iceberg-rafted debris (IRD; pebbles, granules) have
179 been documented between 152 and 323 mbsf. Below 323 mbsf, chert layers compromised core recovery and at
180 415 mbsf the basalt basement was reached (Hayes et al., 1975). The sediment cores are rather homogenous and
181 lack strong sedimentary structures. The strong biscuiting and fracturing of lithified sediment testifies [to](#) drilling
182 disturbance due to the rough nature of rotary drilling, and may have obscured depositional sedimentary structures.
183 Downslope transport of sediment from the Ross Sea continental shelf to the site potentially complicates the
184 reconstruction of local pelagic-derived ocean conditions. The lithology and the seismic patterns (Hayes et al.,
185 1975) suggest that sediment in the Oligocene was transported and deposited within the Adare Basin through a
186 combination of downslope gravity currents and subsequent reworking by bottom currents (Hayes et al., 1975).

Deleted: amounts

196 **3. Methods**197 **3.1 Age model**

198 The shipboard age model (Hayes et al., 1975), based on few biostratigraphic (diatom, radiolarian and calcareous
199 nannofossils) age tie points, initially dated the DSDP Site 274 sedimentary record overlying the basalt to late
200 Eocene – Quaternary. More recently, Cande et al. (2000) dated the ocean crust underneath DSDP Site 274, using
201 paleomagnetic data, to chron 13, ~33.5 Ma, which is 200 kyr younger than the EOT, and 5–7 Myrs younger than
202 dated during the expedition (Hayes et al., 1975). Granot et al. (2010) formulated seismic stratigraphic units, and
203 correlated these units onto the Ross Sea continental shelf. The lowermost regional unconformity (328 mbsf) above
204 the basement (Hayes et al., 1975) corresponds to a Ross Sea unconformity (RSU) found in the Northern Basin,
205 RSU6, estimated to be of early Oligocene age (34–26.5 Ma; De Santis et al., 1995; Granot et al., 2010; Kulhanek
206 et al., 2019). The major unconformity at 180.5 mbsf, between Cores 19 and 20 (Hayes et al., 1975) is tied to
207 seismic reflectors RSU4 and RSU4a (Granot et al., 2010), aged middle Miocene, ~15.8–14.6 Ma and ~17/16.9
208 Ma respectively (Pérez et al., 2021). To further improve the age model, we generated new age tie points based on
209 dinocyst biostratigraphy and magnetostratigraphy to better constrain the age of the sedimentary record (Core 43–
210 17). Dinocyst biostratigraphy follows Bijl et al. (2018a) who reassessed dinocyst species first and last occurrence
211 datums calibrated against the international geological time scale GTS 2012 (Gradstein et al., 2012). Magnetic
212 reversals on the sediment samples were identified through stepwise demagnetization experiments performed using
213 the 2G magnetometer with an inline alternating fields (AF) demagnetiser attached to an automatic sample handler
214 in Fort Hoofddijk (Utrecht University), and the 2G-SRM750 Superconducting Rock Magnetometer housed at the
215 Paleomagnetic Laboratory of Barcelona (CCiTUB-CSIC). As core orientation is not reconstructed, magnetic
216 declinations are discarded and only magnetic inclinations are used to determine polarities. Recently, Jovane et al.,
217 (2020) carried out a paleomagnetic study at the DSDP Site 274, focusing on magnetic properties and magnetic
218 mineralogy characterization, and by means of a review of the available biostratigraphic constraints they also
219 propose a new age model. Here, we compare their age model with ours and we discuss the differences.

220 **3.2 Organic geochemistry**

221 To reconstruct sea (sub-) surface temperature (SST) we applied the TEX₈₆ (TetraEther indeX of 86 carbon atoms)
222 proxy (Schouten et al., 2002), based on the temperature-dependent cyclization of isoprenoidal glycerol dialkyl
223 glycerol tetraethers (GDGTs) produced by thaumarchaeotal membrane lipids. GDGTs were extracted from
224 powdered and freeze-dried sediments using an accelerated solvent extractor. Lipid extracts were then separated
225 into an apolar, ketone and polar fraction by Al₂O₃ column chromatography using hexane:DCM (9:1, v:v),
226 hexane:DCM (1:1) and DCM:MeOH (1:1) as respective eluents. Of a synthetic C₄₆ (mass-to-charge ratio, m/z
227 = 744) 99 ng GDGT standard was added to the polar fraction, which subsequently was dissolved in
228 hexane:isopropanol (99:1, v/v) to a concentration of ~3 mg ml⁻¹ and filtered over a 0.45-μm
229 polytetrafluoroethylene filter. The dissolved polar fractions were injected and analysed by high-performance
230 liquid chromatography–mass spectrometry (HPLC–MS), using double-column separation (Hopmans et al., 2016).
231 GDGT peaks in the HPLC chromatograms were integrated using ChemStation software.

Deleted: was

Deleted: using paleomagnetic data

Deleted:

Deleted:

Deleted: .

Deleted: lower

Deleted:) (

Deleted:

Deleted: (

Deleted: 8.34

Deleted: –

Deleted: 5

Deleted: ;

Deleted: Brancolini et al., 1995; Granot et al., 2010

Deleted:

Deleted: s

248 **3.2.1. TEX_{86} calibrations**

249 Several calibrations exist to convert TEX_{86} values into SSTs based on modern core-top datasets (Kim et al., 2010).
250 We follow the discussion by Hartman et al. (2018), and used the linear calibration by Kim et al. (2010) to calculate
251 the TEX_{86} -SST relations which include the high-latitude core-top values. As we present peak areas of individual
252 GDGTs in the supplements (Table S2), other calibrations can be plotted as well.

253 **3.2.2 TEX_{86} overprints and bias**

254 We use ratios of GDGTs as proxies to detect potential overprinting factors that may bias the pelagic signature of
255 the sedimentary GDGTs. The relative contribution of terrestrial GDGT input has been reconstructed using the
256 branched and isoprenoid tetraether (BIT) index (Hopmans et al., 2004). Samples with BIT index values >0.4 may
257 be biased by soil- and river-derived GDGTs (Bijl et al., 2013). However, we do note that the validity of this proxy
258 for soil organic matter input is questioned, now that it becomes clear that branched GDGTs may also be produced
259 in the marine realm (Peterse et al., 2009; Sinnighe Damsté, 2016), and terrestrial ecosystems that also contain
260 crenarchaeol (Pearson et al., 2004). The methane index (Zhang et al., 2011) flags overprint by sedimentary
261 methanogenic activity, GDGT-2/GDGT-3 ratio (Taylor et al., 2013) signals overprint by archaeal communities
262 dwelling deeper into the water column and GDGT-0/Crenarchaeol ratio (Blaga et al., 2009; Sinnighe Damsté et
263 al., 2009; Taylor et al., 2013) flags overprint by in situ production of isoprenoidal GDGTs in lakes and rivers, and
264 contribution from Euryarchaeota. The ring index (Zhang et al., 2016), can detect deviations from a pelagic
265 character in the GDGT assemblage. Samples which had overprinting values in these biasing indices were marked
266 as unreliable. High-latitude TEX_{86} -SST reconstructions are believed to be skewed towards summer temperatures
267 (Schouten et al., 2013; Ho et al., 2014), but studies around Antarctica, have found archaea appear most abundantly
268 in winter and early spring, with maximum abundances in the subsurface at around 100 m (e.g., Church et al.,
269 2003; Kalantra et al. 2009; Massana et al. 2009). However, there is a general agreement that TEX_{86} captures the
270 relative SST trend (Richey and Tierney, 2016) remarkably well despite these uncertainties, and this will be our
271 main focus when interpreting the results.

Deleted: for
Deleted: different
Deleted: species
Deleted: within the TEX_{86} index
Deleted: to

272 **3.3 Palynology**

273 **3.3.1 Palynological processing and taxonomy**

274 A total of 50 samples, 2 per core (Core 43–17), were processed for palynology by using palynological processing
275 and analytical procedures of the Laboratory of Palaeobotany and Palynology, published previously (e.g., Bijl et
276 al., 2018a). Freeze-dried or oven-dried sediment was crushed and weighed (on average 10 g, SD: <1 g). A tablet
277 of a known amount of *Lycopodium clavatum* spores (a marker grain) was added prior to palynological processing
278 to allow for quantification of the absolute number of dinocysts per sample. In order to digest carbonates and
279 silicates, the sediment was treated with 30% HCl overnight first to remove calcium carbonate, 38% HF overnight
280 to digest silicates, 30% HCl was then added to remove fluoride gels, and subsequently centrifuged and decanted.
281 Organic residues were isolated between 250 μm and 10 μm sieve meshes, with the help of an ultrasonic bath to
282 break down and clear out agglutinated organic particles. Residues were mounted on glass slides using glycerine
283 jelly. Palynomorphs were counted using a Leica DM2500 LED transmitted light optical microscope. While the
284 main focus was on dinocysts, terrestrial palynomorphs, acritarchs and prasinophyte algae (unicellular planktonic

Deleted: and

291 autotrophs) were quantified as well, and the presence and relative abundance of other organic remains were noted.
292 Dinocyst taxonomy follows Williams et al. (2017), Clowes et al. (2016) and informal species as presented in Bijl
293 et al. (2018a). Specimens were identified to a species level when possible. A minimum of 200 identifiable
294 dinocysts were counted per slide at 400x magnification, while the remainder of the slide was scanned at 200x
295 magnification to identify rare taxa not observed during the regular count. Samples with counts of <50 in situ
296 specimens were discarded for qualitative assessment. All slides are logged in the collection of the Laboratory of
297 Palaeobotany and Palynology, Utrecht University.

298 3.3.2 Dinocyst paleoecological affinity

299 Present-day surface sediment distribution of dinocysts depends mostly on surface water temperature, but also on
300 nutrient availability, salinity, primary productivity and sea-ice cover (Dale, 1996; Prebble et al., 2013; Zonneveld
301 et al., 2013). We assume that habitat affinities and trophic levels of modern dinoflagellate species remained similar
302 throughout the Oligocene and Neogene, although for a very limited number of species (e.g., *Impagidinium*
303 *pallidum*) shifts in environmental preferences have been demonstrated (de Schepper et al., 2011). Here we use the
304 modern relationship between dinocyst occurrence and properties of the overlying water to infer oceanographic
305 conditions in the past for extant species (Bijl et al., 2013; Prebble et al., 2013). To determine the habitat affinities
306 and trophic level of extinct dinoflagellates, we rely on previously published papers where a link to
307 paleoceanographic proxies for temperature, runoff/fresh water input, and nutrient conditions was demonstrated
308 (Bijl et al., 2011; 2018a; Frielin and Sluijs, 2018; Egger et al., 2018). We separate the dinocyst assemblages into
309 Gonyaulacoid (G) and Protoperidinioid (P) cysts. In the Southern Ocean, G-cysts generally include phototrophic
310 temperate dinocysts, associated with warm oligotrophic, open water conditions (Prebble et al., 2013). At present,
311 G-cysts are rare in close proximity of the Antarctic ice sheet (Prebble et al., 2013). An exception is *Impagidinium*
312 *pallidum* which today is found in low percentages in Antarctic environments in the vicinity of the polar front
313 (Zonneveld et al., 2013). The extant *Operculodinium* spp., *Pyxidinopsis* spp., *Corrudinium* spp., *Impagidinium*
314 spp. and *Nematospaeropsis labyrinthus* are absent or represent a minor component of the polar assemblages. P-
315 cysts are produced by heterotrophic dinoflagellates and are usually found in nutrient-rich environments: river
316 outlets, upwelling areas, and sea-ice zones (Zonneveld et al., 2013). In the Southern Ocean today, where the
317 Antarctic Divergence upwelling favours a dominance of P-cysts, species such as *Brigantedinium* spp.,
318 *Selenopemphix* spp., especially *S. antarctica*, are common (Prebble et al., 2013). *S. antarctica* is a species that
319 shows affinity to sea-ice conditions (Zonneveld et al., 2013; Marret et al., 2019).

320 3.3.3 Reworked versus in situ dinocysts

321 One issue of studying sediment records in the proximity of glaciated margins is separating reworked from in situ
322 species, which is needed for obtaining reliable biostratigraphic constraints and paleoceanographic signals
323 (Macphail, 2021). In turn, quantifying the history of reworked material through time may yield information about
324 the depositional conditions on the Ross ice shelf. In this study, we follow the interpretations of Bijl et al. (2018a)
325 and a priori separated dinocyst species into an assumed reworked and an in situ group (Table 1). We applied
326 statistical analysis to test a priori assumptions (Bijl et al., 2018a) on in situ or reworked dinocyst species and to
327 quantitatively measure co-variability between environmental variables and palynological data. Our palynological
328 data were analysed using Correspondence analysis (CA), a linear ordination method to explore the differences in

Deleted: flagellate
Deleted: s and their
Deleted: bottom water oxygen,
Deleted: For extant dinoflagellates, w
Deleted: believe
Deleted: have remained similar
Deleted: their evolutionary range
Deleted:
Deleted: the
Deleted: PPP
Deleted: Usually, greater tolerance for higher temperatures in the past has been derived.
Deleted: and w
Deleted: e therefore apply existing and established models, which
Deleted: utilizes
Deleted: s
Deleted: as a
Deleted: pale
Deleted: proxy
Deleted: comparison
Deleted: other
Deleted: Bijl et al.,
Deleted: Based on the notion that habitat affinities and feeding strategies of most dinoflagellates can be extrapolated to the fossil assemblages, while keeping in mind that most Oligocene dinocyst species and genera are extant, we can utilize 'deep-time' dinocysts assemblages as a paleoceanographic proxy (Sluijs et al., 2005; Bijl et al., 2013; Prebble, 2013; Crouch et al., 2014; Egger et al., 2018; Kulhanek et al., 2019).
Deleted: link modern ecological affinities to Oligocene dinocyst taxa in the Pacific sector of the Southern Ocean, following Prebble et al. (2013) and
Deleted: s
Deleted: s
Deleted: -cyst
Deleted: -cyst
Deleted: r
Deleted: generally
Deleted: favour
Deleted: *Lejeuneacysta* spp., and
Deleted: ..
Deleted: *Selenopemphix*

373 assemblages between samples. The palynological data (relative abundance) were plotted in the C2 software
374 program (Juggins, 2007) using square root transformation.

375 **4. Results**

376 **4.1 Revised age model**

377 Based on four new dinocyst-based first occurrence (FO) and last occurrence (LO) datums found in the DSDP Site
378 274 record we provide additional age constraints to the age model upon which we correlate five new
379 paleomagnetic reversal results to specific magnetic chronos (based on Gradstein et al., 2012, Table 2).
380 Paleomagnetic results are generally of low quality (Fig. 2b). We interpret this to result from both a low natural
381 remnant magnetization (NRM) intensity (typically between $10\text{--}50 \text{ A/m}^2$) and the likely growth of iron sulfides
382 during ~ 50 years storage of the cores, which probably are the cause of magnetic noise as well as the partial
383 isolation of the characteristic component in some samples (Fig. S1; Table S1). Because the low quality of results,
384 we are cautious and only confident in those magnetozones with at least 3 adjacent samples sharing similar polarity
385 values. Cores 23 to 19 express a well-defined polarity pattern. Below, the interval encompassing cores 26 to 28
386 (269.12–214.43 mbsf, in grey Fig. 2b) does not show a definite pattern and consequently was not considered for
387 paleomagnetic correlation. The lower part, cores 35 to 43, has a very low recovery and is prone to normal polarity
388 directions. Magnetostratigraphic results for the upper Oligocene generally agree with those recently published by
389 Jovane et al. (2020; Fig. 2). For the lower part of the record, our biostratigraphic results provide new tie-points
390 that indicate lower Oligocene age, instead of the previously published upper Eocene age (Hayes et al., 1975;
391 Jovane et al., 2020).

392 The presence of marker dinocyst *Malvinia escutiana* (FO = 33.7 Ma; Houben et al., 2011; Houben et al., 2019) in
393 the lowermost sediment sample (Core 43, 404.66 mbsf) directly overlying the basement, Indicates an Early
394 Oligocene age of the lowermost sediment that was also suggested from the age of the underlying ocean crust
395 (Cande et al., 2000). Thus, we correlated the normal magnetozone in Core 43 (400.7 mbsf) with magnetic chron
396 C13n. A few sections above we find the FO of *Stoveracysta ornata* (32.5 Ma) at 396.62 mbsf. The FO of
397 *Operculodinium eirikianum* (31.56 Ma) 352.78 mbsf, the FO of *Corrudinium labradori* (30.92 Ma) at 362.42
398 mbsf and the LO of *Stoveracysta ornata* (30.8 Ma) is found at 323.6 mbsf. Thus we suggest, the reversal at the
399 lower part of Core 34 (321.2 mbsf) to correlate with the top of C11n.1n (29.18 Ma) and the normal magnetozone
400 found in Cores 29 and 30 (277 mbsf), to correlate with chron C9n (Table 2). Core 21 (~ 190.8 mbsf) contain one
401 isolated calcareous nannofossil horizon (Burns, 1975) dominated by *Chiasmolithus altus*, which marks an oldest
402 age of 25.44 Ma (Chron C8n, Gradstein et al., 2012). Cores 34–20 are included in the diatom *Pyxilla Prolungata*
403 zone (Hayes et al., 1975), which also suggests an early Oligocene age (> 25 Ma), however the last occurrence of
404 *Pyxilla Prolungata* is discussed to go on until Oligocene – Miocene boundary (23 Ma) (Gombos et al., 1977).
405 Based on these initial report biostratigraphic observations (Hayes et al., 1975), we here correlate the base of
406 normal magnetozone of Core 21 (199.47 mbsf) with the base of chron C7n.2n (24.4 Ma). A few biostratigraphic
407 constraints, including middle Miocene radiolaria species in Core 19 (Hayes et al., 1975) indicate that the latest
408 Oligocene and Oligocene – Miocene transition is missing in a large hiatus of ~ 7 Myr between Cores 19 and 20
409 (181.23 mbsf). We abstain from correlating the normal magnetozone of Core 19 to a specific chron, due to the

Deleted:)
Deleted: (
Deleted: in general
Deleted: -
Deleted: Most of the samples of
Deleted: the upper
Deleted: t
Deleted: he uppe
Deleted: well defined
Deleted: r part show reversed
Deleted: , except for five normal magnetozones that we consider reliable
Deleted: The upper Oligocene section of the core
Deleted: The central part of the site
Deleted: does
Deleted: es
Deleted: of the site
Deleted: core
Deleted:
Deleted: (
Deleted:)
Deleted: in
Deleted: (
Deleted: confirms
Deleted: c
Deleted: mbsf
Deleted: longest
Deleted: 33
Deleted: 32
Deleted: 2
Deleted: 307.1
Deleted: 7
Deleted: .
Deleted: ; according to Kulhanek et al., (2019) at nearby Site 270
Deleted: this has
Deleted: its highest occurrence (HO) at
Deleted:
Deleted: .
Deleted: C8n
Deleted: , and the normal magnetozone of Core 20 (182.6 mbsf) as the second last normal chron of the Oligocene, C7n
Deleted: tying

453 limited biostratigraphic markers, and thus we here support Jovane et al., (2020), who suggested Langhian to
454 Burgalian ages. Extrapolating linearly between chrono- and biostratigraphic tie points (Fig. 2b; Table 2) we
455 calculate the average sedimentation rate in the Oligocene to be 2.4 cm/kyr.

456 4.2 Lipid biomarkers

457 Thirty-nine of the 42 samples processed for lipid biomarkers showed no indication of overprints by biasing indices
458 (Fig. S2). The low BIT index value (<0.08, with one exception at 361 mbsf; Fig. S2) suggests low terrestrial
459 organic material influence, relative to marine GDGT production. The normal Ring index values (Fig. S3), with
460 only two outliers, suggests normal pelagic contributions to the sedimentary GDGTs. Thus overall, TEX₈₆ values
461 represent an in situ pelagic SST signal. Moreover, the absence of co-variance between TEX₈₆ and indices for
462 overprint suggest the high variability in TEX₈₆ also represents a pelagic signal. TEX₈₆ values range from 0.44 to
463 0.55. Using the linear calibration of Kim et al. (2010) (Fig. 4c), SSTs vary between 10–17°C (±5.2°C) throughout
464 the record, with noticeable variability. Below 342 mbsf, reconstructed SSTs are relatively high, and variable (10–
465 16°C). Between 335–248 mbsf SSTs are lower and display lower variability (10–13°C) at the same sample
466 resolution as above. An increase in SST of ~6°C at 248 mbsf marks the onset of a second interval with high
467 variability in SST.

Deleted: <0.4 throughout

468 4.3 Palynomorphs and dinocyst assemblages

469 Forty-three of the 50 samples analysed contain sufficient dinocysts. All samples that were too low in dinocysts
470 came from the top of the studied record (186.66–155.68 mbsf), and were discarded. Samples showed varying
471 abundance of four palynomorph groups: reworked dinocysts, in situ dinocysts, terrestrial palynomorphs and
472 acritarchs and prasinophytes (Fig. 4a). The sediments below 352.5 mbsf are dominated by reworked dinocysts,
473 which decrease in abundance above this depth. From 352.5 mbsf to the top of the record, in situ dinocysts
474 constitute the most abundant palynomorph group, followed by acritarchs, which slightly increase upcore. Pollen
475 and spores remain low throughout the entire record (<6%). Furthermore, our palynological samples contain a
476 varying amount of pyritized microfossils and amorphous organic material.

Deleted: Seven

Deleted: ,

Deleted: a

Deleted: did not contain sufficient dinocysts

Deleted: for our analyses

Deleted: The remaining 43 s

477 4.3.1 Dinocyst taxonomy

478 Identification of dinocysts on a species level was possible in most cases (Table S3). However, some dinocysts
479 were only defined on a genus level when distinctive features were lacking. *Brigantedinium* spp. includes all round-
480 brown specimens. *Batiacasphaera* spp. includes small, sub-spherical cysts with an angular, likely apical
481 archeopyle, and if any, minute surface ornamentation. *Pyxidinopsis* spp. have similar features to *Batiacasphaera*
482 spp., but is typically (even) smaller, has a thicker, slightly darker wall, and is less folded with a single plate
483 precingular archeopyle. Dinocysts with a smooth, spherical, psilate, hyaline wall and a free, angular-rounded
484 operculum, 5–6 sides, generally found within the cyst are hereby informally named Dinocyst sp. 1. The saphopylic
485 archeopyle of Dinocyst sp.1, resembles that of *Brigantedinium* spp. and *Protoperidinium* spp. and for this reason
486 we consider Dinocyst sp. 1 as belonging to the (heterotrophic) Protoperidinioid (P) cysts.

Deleted:),

Deleted: however

Deleted: light,

Deleted: s

Deleted: ,

Deleted: normally

Deleted: smaller

Deleted: Unidentifiable d

Deleted: dinocysts

Deleted: heterotrophic

Deleted: p

Deleted: -

506 **4.3.2 Reworked dinocyst assemblages**

507 The lowermost 60 m of the sediment record, below 352.5 mbsf, yield abundant and diverse dinocysts, that are
508 common in Eocene Southern Ocean sediments (Bijl et al., 2013; Cramwinckel et al., 2020; Crouch et al., 2020)
509 including *Vozzhenikovia apertura*, *Deflandrea antarctica*, *Enneadocysta* spp. and *Phthanoperidinium* spp. These
510 species are found throughout the entire record, but their relative abundance decreases upsection. We note good
511 preservation of some of the more delicate dinocysts, which have known biostratigraphic ranges that predate the
512 age of the ocean crust underneath DSDP Site 274, therefore we still regard them to be reworked. However, we
513 cannot rule out that these typical late Eocene dinocysts were still present in the early Oligocene and therefore in
514 situ deposited in the record (Bijl et al., 2018a).

515 **4.3.3 In situ dinocyst assemblages**

516 In the lowermost 15 m of the record, below 390.4 mbsf, the (apparent) in situ assemblage (Fig. 4b) is dominated
517 by P-cyst species *Dinocyst* sp.1 and *Brigantedinium* spp., indicating high nutrient levels in open ocean settings.
518 Given that *Brigantedinium* spp. has preference for open ocean conditions, often with proximity to upwelling areas
519 both in the modern and the ancient ocean (Zonneveld et al., 2013; Sluijs et al., 2005), we render it unlikely that it
520 was transported from the continental shelf and reworked. *Brigantedinium* spp. and *Dinocyst* sp. 1 have not been
521 reported from CRP-3 (Clowes et al., 2016) or the Eocene erratics (Levy and Harwood, 2000) from the Ross Sea
522 area. The good preservation state of the delicate species *Dinocyst* sp.1 and *Brigantedinium* spp., argues for in situ
523 production. The extinct P-cyst species *Malvinia escutiana* occurs throughout the record: its relative abundance
524 increases from the bottom of the record towards its peak interval from 224 mbsf to the top of the record. At about
525 335 mbsf, the dinocyst assemblages change significantly. Above this depth, G-cysts associated with open,
526 possibly warmer and oligotrophic waters dominate the assemblages. This shift in the dinocyst assemblage does
527 not coincide with any remarkable change in the lithology. Hence, we are confident that the assemblage shift is a
528 real feature in the record and not a result of the selective preservation of P and G cysts. It is known that P-cysts
529 are more sensitive than G-cysts to oxidation (e.g., Zonneveld et al., 2010), and any mechanism (bottom currents,
530 mixing, sediment starvation) which favours sediment oxygenation, would decrease the probability of finding P-
531 cysts preserved in the record relatively to G-cysts. *Batiacasphaera* spp., *Pyxidinopsis* spp. and *Cerebrocysta* spp.
532 compose the majority of the G-cysts. *Spiniferites* spp. is relatively abundant (~10–20% of the total in situ dinocyst
533 counts) in the interbedded chert layers below 352.5 mbsf and again, but less prominent, at 221.4 mbsf, while it
534 remains low (<4%) in the rest of the record. *Operculodinium* spp. is common (10–20%) between 201–221 mbsf.
535 The highest amount of *Operculodinium* spp. (27%) was found at 239.16 mbsf. *Nematosphaeropsis labyrinthus* is
536 only registered between 361–352 mbsf (green line Fig. 4b). *Impagidinium* spp. remain low (< 7%) in all samples.
537 Throughout the record, cold water indicative dinocyst species are rare. *Selenopemphix antarctica*, a major
538 component of the modern Antarctic-coastal assemblages (Zonneveld et al., 2013), is never abundant, and present
539 only in few samples (between 390.44–333 mbsf, and at 302 mbsf). *I. pallidum*, a dinocyst abundant in polar areas
540 of the modern ocean (Zonneveld et al., 2013; Marret et al., 2019), but known for its tolerance to higher
541 temperatures in the past (de Schepper et al., 2011), has a scattered low presence throughout the record.

Deleted: Although
Deleted: an in situ presence of
Deleted: protoperidinoid ()
Deleted:)
Deleted: both
Deleted: Sluijs et al., 2005
Deleted: now-
Deleted: The large abundance of *M. escutiana* (30–70% of the total in -situ assemblages) mainly coincide with lower $TEX_{86\text{-SST}}$ (10–12°C, Fig. 4b, c).
Deleted: oligotrophic ()
Deleted:) dinocyst species
Deleted: W
Deleted: hence
Deleted:
Deleted:
Moved (insertion) [1]:
Deleted: ()
Deleted: Zonneveld
Deleted: ,
Deleted: favors
Deleted: probability
Deleted:
Deleted:
Deleted:
Deleted: The absence of any signs of oxidation state changes of the sediments, argues against selective preservation mechanisms as explanation for the higher abundance of G-cysts
Moved up [1]: (Zonneveld et al., 2010).
Deleted:
Deleted: ($TEX_{86\text{-SST}}$ of ~ ??)
Deleted: , coinciding with elevated temperatures,
Deleted: ($TEX_{86\text{-SST}}$: 14.5°C)
Deleted: they
Deleted: remain
Deleted: for
Deleted: where reconstructed temperature are 12–16°C
Deleted: , where $TEX_{86\text{-SST}}$ is 16.2°C
Deleted: , notably in samples with high temperatures (~15°C).
Deleted: polar
Deleted: tempeartures
Deleted:)

585

4.3.4 Other palynomorphs: Pollen, acritarchs and prasinophyte algae

The consistently sparse pollen assemblages from DSDP Site 274 suggest a shrubby tundra landscape with low-growing Nothofagaceae and Podocarpaceae. The offshore and off-path location to the wind patterns from the continent, ~~may be an explanation for the low pollen numbers, and we cannot make further interpretations to the terrestrial ecology. The relative abundance of acritarchs and prasinophytes seems to increase upcore. Transparent chorate acritarchs is the most dominant throughout the record. *Leiosphaeridia* spp. is only sporadically present, and most common in the lowermost sediments (>390 mbsf). Prasinophyte algae *Cymatosphaera* spp. is found throughout the record, but more abundantly around 285 mbsf, and above 224 mbsf.~~

593 4.4 Correspondence analysis

594 The CA on our palynological results (Fig. 3, Table S4) resulted in the first ~~two~~ axes explaining 46% of the total
 595 variance (31% for axis 1 and 15% for axis 2), ~~which is high, given the multidimensionality of the high dinocyst~~
 596 ~~diversity. Most of the dinocysts assumed reworked a priori (purple in Fig. 3) show negative scores on axis 2~~
 597 (64%). Those taxa that do not ~~have a negative score on axis 2~~, have generally low total counts or relative
 598 abundances (small circles in Fig. 3). Overall, the species we consider to be definitely in situ (see also Bijl et al.,
 599 2018a) have negative scores on axis 1, and reworked taxa tend to cluster on the positive side of axis 1. Terrestrial
 600 palynomorphs (pollen and spores) plot in the same area as the reworked dinocyst taxa. The overall separation of
 601 reworked and in situ taxa on the first CA axis gives us confidence that our a priori assumption of in situ and
 602 reworked is correct (Table 1).

603 5. Discussion

604 5.1 Updated age model

605 The age model for DSDP Site 274 is updated ~~with four additional biostratigraphic datums and five~~
 606 ~~magnetostratigraphic datums. Specifically, age constraints in~~ the bottom (early Oligocene, 33.7 Ma, 404.66 mbsf)
 607 and top (late Oligocene, 24.4 Ma, 181.23 mbsf) of the studied interval (408.5–174.2 mbsf) ~~have~~ been improved.
 608 However, the few existing age constraints for the middle part (mid Oligocene, 307.1–199.5 mbsf) do not allow a
 609 significant improvement of the existing age model for this interval (Fig. 2b, Table 2). Jovane et al., (2020)
 610 ~~presented an update of the biostratigraphic constraints of Site 274, and afterwards guided their~~
 611 ~~magnetostratigraphic correlation with these constraints. Like ours, their polarity pattern alone is not sufficient to~~
 612 ~~provide an independent chronology. Our obtained polarity pattern is similar to Jovane et al., (2020) for the upper~~
 613 ~~part of our study, i.e. late Oligocene (Fig. 2b). This is also true for the unclear polarity zone between cores 29 and~~
 614 ~~25 where Jovane et al., (2020) also find inclinations that produce a uncertain polarity pattern. Our correlation with~~
 615 ~~the time scale however differs in the lower part of the section, below 320 mbsf, where we provide new~~
 616 ~~magnetostratigraphic data and biostratigraphic age constraints, and implement the most recent insights on the age~~
 617 ~~of the ocean crust underlying the site (Cande et al., 2010). This results in younger ages for the lower part of the~~
 618 ~~section, which are propagated upwards, altogether indicating younger ages for DSDP Site 274 than the study of~~
 619 ~~Jovane et al. (2020) and the initial report.~~ We acknowledge that although our new constraints have improved the
 620 age model, large uncertainties remain, due to moderate recovery, reworked material, weak NRM intensities (Table

Deleted: Terrestrial palynomorphs

Deleted: constitutes for

Deleted: 2

Deleted: value

Deleted: multidimensionality of the

Deleted: .

Deleted: assumed reworked

Deleted: taxa have

Deleted: sensu

Deleted: assumed

Deleted: thus

Deleted: in our

Deleted: s

Deleted: in what is

Deleted: what is

Deleted: by

Deleted: magnetostratigraphy

Deleted: tie-points

Deleted: to correlate sedimentary strata to the geological time scale (Gradstein et al., 2012). The age model

Deleted: of

Deleted: 5

Deleted: s

Deleted: 2, Table 2).

Deleted: made

Deleted: data and new

Deleted: crust

Deleted: 1

Deleted: the

Deleted: Site

Deleted: For the lowestmost sedimentary section, we provide new biostratigraphic constraints based on dinocyst assemblages that reveal early Oligocene ages instead of late Eocene ages (Jovane et al., 2020; Hayes et al., 1975). This change in the age model is supported by new dates for the underlying ocean crust (Cande et al., 2000) which also points to an early Oligocene age. As a consequence, upwards, our correlation results in younger ages than Jovane et al., (2020) and the initial report.

Deleted: for the top and bottom of the study interval

661 S1) and limited occurrence of age-diagnostic microfossils. This means that between tie points, sedimentation rates
662 may vary and hiatuses could be present. We therefore plot the data in the depth domain, and indicate the age tie
663 points next to the depth scale (Fig. 2; Fig. 4). Notwithstanding these age model uncertainties, the proxy data we
664 present provides a rare glimpse into early to middle Oligocene surface water conditions.↓

Deleted: we simply ...ndicate the age tie points next to the depth scale (Fig. 2; Fig. 4). Notwithstanding these age model uncertainties, the proxy data we present provides a rare glimpse into early to middle Oligocene surface water conditions over a period of several million years ... [1]

665 5.2 Paleotemperature and paleoenvironment in the Oligocene at DSDP Site 274

666 Temperature, in situ- and reworked palynomorph results together provide integrated paleoceanographic
667 configurations offshore the Ross Sea margin during the Oligocene (33.7–24.4 Ma) (Fig. 4). Furthermore, we
668 combine our reconstruction with those available around the East Antarctic margin from the Western Ross Sea and
669 the Wilkes Land to obtain a regional perspective.

Deleted: , a period when proxies suggest atmospheric CO₂ generally exceeded 600 ppm (Zhang et al., 2013).

670 5.2.1 Surface oceanographic conditions

671 Both dinocyst assemblages and TEX₈₆-based SST results (Fig. 4b, c) consistently suggest temperate surface-
672 ocean conditions. High variability in the dinocyst and TEX₈₆-SST reconstructions reflects highly dynamic
673 surface-ocean conditions. Although P-cyst species are abundant in the top and bottom of the record, suggesting
674 nutrient-rich conditions, the middle part of the record is dominated by high abundance of G-cyst species indicating
675 that oligotrophic and warm conditions prevailed (Fig. 4b). The dominance of G-cysts implies that upwelling (the
676 proto-Antarctic Divergence) was greatly reduced or located far away from the site. Above 265 mbsf, the more
677 frequent shifts between P-cyst dominated and G-cyst dominated assemblages reflects strongly varying
678 oceanographic conditions, perhaps as a result of shifting frontal system locations or dynamics (as offshore Wilkes
679 Land; Salabarnada et al., 2018; Bijl et al., 2018; Hartman et al., 2018). The scarce presence of typical sea-ice
680 affiliated dinocysts suggests that sea ice was absent or the sea ice seasonal coverage was strongly reduced (Bijl et
681 al., 2018) compared to the present-day (Fetterer et al., 2020). The dinocyst assemblages mostly contain known
682 marine species, indicative of normal ocean salinities. However, Dinocyst sp. 1 (turquoise in Fig. 4b), abundant in
683 sediments > 335 mbsf, morphologically resembles the peridiniod *Senegalinum* spp., a genus known for its high
684 tolerance to low surface water salinities (Sluijs et al., 2009). If morphology is indicative of environmental
685 conditions, the region could have been under the influence of meltwater and/or increased precipitation during the
686 early Oligocene. The overall abundance of reworked (Eocene) dinocysts suggests erosion of marine sediments on
687 the Ross Sea continental shelf, and transport thereof towards the abyssal plain by wind-driven transport of surface
688 water or through density-driven bottom water flow cascading down the continental slope. In general, the
689 Oligocene dinocyst assemblages found at DSDP Site 274, are similar to present-day dinocyst assemblages living
690 between the Subantarctic and Subtropical front, where temperatures range from 0–15°C (Prebble et al., 2013).
691 This is in line with the high TEX₈₆-SSTs (10–17°C), which indicates much warmer surface waters with lower
692 nutrient levels than today where currently, the site is located in an area with average SSTs ~ 1°C (Locarnini et
693 al., 2019).

Deleted: off

Deleted: 5

Deleted: s

Deleted: s... and TEX₈₆-SST reconstructions reflects highly dynamic surface-ocean conditions. Although P-cyst species are abundant in the top and bottom of the record indicating [2]

Deleted:

Deleted: is

Deleted: shows dominant to

Deleted: occurred at the time...revailed (Fig. 4b). The dominant presence...omiance of G-cysts implies...that upwelling (in ...he proto-the ...ntarctic Divergence) was greatly reduced or located distal to...ar away from the site. The stronger fluctuation between oligotrophic and heterotrophic dinocyst species a...boveabove ... [3]

Deleted: ...yst ...ominated and G- ...yst-...dd...minated assemblages are more frequent...? ... [4]

Deleted: could reflect strong migrations of frontal systems if they were in place

Deleted: systems

Deleted: .

Deleted: absence or

Deleted: s

Deleted: res

Deleted: Furthermore,...he dinocyst assemblages mostly contain known marine species, indicative of normal ocean salinities, and therefore we find no indications of large meltwater input... However, However, if the unidentified... [5]

Moved (insertion) [2]

Deleted: genera ...enegaliniun spp., a group...en which known for itsshows...a ...igh tolerance to low surface water salinities (Sluijs et al., 2009). If morphology is indicative of environmental conditions, ,4b) during the early Oligocene (depth > 335 mbsf) ... [6]

Moved up [2]: resembles the peridiniod genera *Senegalinum* spp., a group which shows a high tolerance to low surface water salinities (Sluijs et al., 2009),

Deleted: could the region be under the influence

Deleted: of ...eltwater and/or increased precipitation during the early Oligocene.... The overall abundance of reworked... [7]

Deleted: Whether(LO) truly late Eocene still ofand ... [8]

Deleted: also

Deleted: the influence of

Deleted: protoperidiniod dinocysts

Deleted: ...ossibly, fresh ... [9]

836 of upwelling, we suggest that strong surface-water mixing stimulated ocean primary productivity at the site,
837 perhaps with additional nutrient sources through melting from the Ross Sea continental margin. Rifting of the
838 Western Ross Sea shelf since 60 Ma (Huerta and Harry, 2007) created thick Eocene sedimentary successions on
839 the Ross Sea shelf. Glacial-isostatic adjustments as a response of the Antarctic ice sheet build-up (~48–34 Ma)
840 caused reorganisation of shelf sedimentation (Stocchi et al., 2013), notably increases in sedimentation rates due
841 to the accumulation space created by higher sea level and bedrock subsidence in some regions, and erosion due
842 to bedrock uplift at others. Strata drilled at DSDP Site 270 on the Ross Sea continental shelf indicate periods of
843 early Oligocene glacimarine deposition derived from local ice caps nucleated on elevated highs prior to tectonic
844 subsidence in that region (De Santis 1999; Kulhanek et al., 2019). Turbid meltwater derived from the margins of
845 these marine terminating ice caps, and from glacio-marine/fluvial systems at the margins of outlet glacier along
846 the Transantarctic Mountain front (Fielding et al., 2000), would also allow for transport via a suspended sediment
847 load or downslope processes towards the continental rise at DSDP Site 274, similar to the Wilkes Land continental
848 rise (Bijl et al., 2018b; Salabarnada et al., 2018). The high abundance of reworked late Eocene dinocysts testifies
849 to the influence of continental shelf-derived surface water towards the site, which brings nutrients and promotes
850 productivity (increase in P-cysts). This high amount of reworked dinocysts could further argue for a reworked
851 TEX₈₆-SST signal. However, the near-shore character of the Eocene reworking (abundant pro-deltaic, marginal-
852 marine peridinoid cysts) would have increased the branched, soil-derived GDGTs. This sharply contradicts with
853 the low (<0.08) BIT values (Fig. S2). After ~29 Ma (335 mbsf), the relatively high TEX₈₆-based SSTs (10–17°C)
854 and abundant offshore, temperate dinocyst species *Operculodinium* spp., *Spiniferites* spp., and
855 *Nematosphaeropsis labyrinthus* (Fig. 5b, c) indicate a long period of temperate conditions at DSDP Site 274. The
856 covarying trend between dinocyst species and the SSTs indicates that SST has a strong influence on the biotic
857 response.

858 For the first time *Malvinia escutiana* is found in mid Oligocene sediment (<265 mbsf), which extends the LO of
859 this species relative to previous reports (Bijl et al., 2018a). Its high abundance suggests that conditions were
860 favourable for this species, and makes it unlikely that its occurrence in the mid Oligocene represents a reworked
861 signal. The CA plot (Fig. 3) shows that *Malvinia escutiana* co-varies with oligotrophic and temperate dinocyst
862 groups as well as with acritarchs. This suggests that *Malvinia* favours open water and low nutrient conditions. A
863 conundrum in our data is the increase in the G-cysts groups in the mid-Oligocene: *Batiacasphaera* spp.,
864 *Pyxidinopsis* spp. and *Cerebrocysta* spp., and a decrease in P-cyst abundances synchronous with declining SST
865 starting at ~29 Ma (335.3 mbsf). At present, these G-cysts are associated with more northerly Subantarctic and
866 Subtropical front zone regions (Prebble et al., 2013), with temperate ocean conditions. Although, in general,
867 temperate dinocyst and lipid biomarker signals are consistent in the record, between ~29 Ma and 26.8 Ma (335.3–
868 252.2 mbsf) an increase in warm-affiliated G-cyst assemblages corresponds to a decrease in SST. We here argue
869 that decreasing nutrient levels cause P-cyst to be replaced by G-cysts. Throughout the record, variability in nutrient
870 conditions rather than temperature seems to be the driving factor in dinocyst distribution.

871 Abundance of transparent chorate acritarchs at DSDP Site 274 generally follows warmer SSTs, similarly to what
872 was found in the record of Site U1356 offshore Wilkes Land (Bijl et al., 2018b). The CA analysis showed little
873 co-variance between acritarchs and reworked cysts, thus suggesting that the acritarchs are in situ. At ~26.5 Ma

Deleted: Early ...early Oligocene glacimarine deposition derived from local ice caps nucleated on elevated highs prior to tectonic subsidence in that region (De Santis 1999; Kulhanek et al., 2019). Turbid meltwater derived from the margins of these marine terminating ice caps, and from glacio-marine/fluvial systems at the margins of outlet glacier along the Transantarctic Mountain front (Fielding et al., 2000), would also allow for transport via a suspended sediment load or downslope processes towards the continental rise at DSDP Site 274, similar to the Wilkes Land continental rise (Bijl et al., 2018b; Salabarnada et al., 2018). The abundance ...high abundance of reworked late Eocene dinocysts is thus testament to ... [10]

Deleted: -

Deleted: in turn ...rings with it ...utrients that ...nd promotes productivity (increase in promote...peridinoid ...dino...sts).... This high amount of reworked dinocysts could further argue for a reworked TEX₈₆-SST signal. However, the near-shore character of the Eocene reworking (abundant pro-deltaic, marginal-marine peridinoid cysts) would have made the reworked GDGT pool enriched in ... [11]

Deleted:08XX... BIT values ((Suppl. ...ig.ure...S...:p12)

Deleted:

Deleted: GDGTs, which is not what we see in our record.

Deleted: This argues against the TEX₈₆ results being influenced by reworked GDGTs from the Eocene.

Deleted: warm ...high TEX₈₆-based SSTs (10–17°C) and abundance ...bundant ... [13]

Deleted: s...a long period of temperate conditions with less variations over...t DSDP Site 274. The covariance covarying trend between the ...inocyst species and the SSTsSST ...shows the ...ndicates that strong link between...SST variability and...as a strong influence on the biotic/oceanographic ... [14]

Deleted: The persistent presence in high abundance of... [15]

Deleted: to a younger age than...relative to ... [16]

Deleted: Its large numbers...ts high abundance seems to... [17]

Deleted: , potentially influenced by meltwater input

Deleted: in our record the ...temperate dinocysts...and lipid [18]

Deleted: dino

Deleted: s

Deleted: taxa

Deleted: while ...to a decrease in while ... [19]

Deleted: s

Deleted: drop... The warm-affiliated dinocysts are all G... [20]

Deleted: disappear

Deleted: , and the assemblages have relative high ... [21]

Deleted: study

Deleted: Therefore, the shift in dinoflagellate assemblage [22]

Deleted: N

Deleted: nutrient

Deleted: ...driving factor in dinocyst distribution. ... [23]

Deleted: of ...etween acritarchs and reworked assemblag... [24]

1026 (239.2 mbsf) the acritarchs peak is synchronous with a peak in temperate dinocyst species *Opercudominium* spp.
1027 *Acritarchs as well as Operculodinium* spp. *a pioneer species, is known to be opportunist (e.g., Dale, 1996).*
1028 Previous studies on Antarctic proximal records, *from the CIROS-1 core (Hannah, 1997) and DSDP Site 270*
1029 (*Kulhanek et al., 2019*), have associated the presence of acritarchs *(Leiosphaeridia spp.) and prasinophytes*
1030 (*Cymatiosphaera spp.*) with episodes of sea ice melting. We did not find abundant *Leiosphaeridia* spp. *Thus we*
1031 *interpret that the melt-water influence was reduced at DSDP Site 274, compared to sites on the Ross Sea*
1032 *continental shelf that were more proximal to the glaciated margin.*

1033 5.3 *Regional perspective*

1034 We compare our Oligocene paleoceanographic reconstructions from DSDP Site 274 with records from off the
1035 Wilkes Land margin (Site U1356 (Hartman et al., 2018; Salabarnada et al., 2018; Bijl et al., 2018a, b; Sangiorgi
1036 et al., 2018)) and the Ross Sea; (Houben et al., 2013; Clowes et al., 2016; Kulhanek et al., 2019; Duncan, 2017)
1037 (Fig. 5). Published TEX₈₆ data from Wilkes Land margin (Hartman et al., 2018) and the Ross Sea (Duncan, 2017)
1038 have for this comparison been converted to SSTs using linear calibration of Kim et al. (2010) (calibration error:
1039 $\pm 5.2^{\circ}\text{C}$).

1040 Early Oligocene (32.3–29.2 Ma, 391–335 mbsf)

1041 DSDP Site 274 TEX₈₆-SST results suggest *a slightly lower average temperature offshore the Ross Sea* ($\sim 4^{\circ}\text{C}$)
1042 than at *Wilkes Land* (Site U1356), but *higher temperatures ($\sim 6^{\circ}\text{C}$)* than at ice proximal Ross Sea site (CIROS-1;
1043 Fig. 5c). This observation is consistent with the position of DSDP Site 274, which *was at higher paleo-latitudes*
1044 compared to Site U1356, and *but lower latitudes and offshore the ice proximal sites within the Ross Sea*. Indeed,
1045 evidence from the CRP cores in the Ross Sea showed continental-scale ice sheets first expanded towards the Ross
1046 Sea around 32.8 Ma (Galeotti et al., 2016). Prior to 31 Ma (350 mbsf), the SST record from DSDP Site 274 shows
1047 some of its highest temperatures, while SSTs at Site U1356 *decrease*. One important consideration is whether
1048 these sites in the Ross Sea and Wilkes Land can be compared as belonging to a latitudinal transect, given that they
1049 are separated by *an evolving Tasmanian Gateway, a conduit that separates the eastern Indian and southwestern*
1050 *Pacific oceans*. Although a *deep-water connection in the Tasmanian Gateway was established in the Oligocene,*
1051 *the passageway was still restricted* (Stickley et al., 2004; Bijl et al., 2013). *Studies of the paleobathymetry and*
1052 *sedimentary mechanisms in the Southern Ocean through the Cenozoic (e.g., Scher et al., 2015; Hochmuth et al.,*
1053 *2020) do show the Tasmanian Gateway as well as the Pacific sector of the Southern Ocean deepen between 34*
1054 *Ma and 27 Ma, allowing easier throughflow and exchange between the different ocean sectors. The limited co-*
1055 *variability between the Adare Basin and Wilkes Land margin, and the different SSTs might signal the*
1056 *disconnection between the two sites, perhaps by a still restricted Tasmanian Gateway. While synchronous SST*
1057 *variability and changes therein between the sectors after 31 Ma suggests connection between the ocean basins, in*
1058 *line with other studies (Scher et al., 2015), a SST difference between both sectors remains. The abundance of low*
1059 *nutrient/temperate-affiliated dinocyst taxa (G-cyst) is higher at DSDP Site 274 than at the Wilkes Land margin*
1060 *and within the Ross Sea continental shelf, implying that nutrient input was lower at the offshore Ross Sea location*
1061 *than at more proximal sites with a higher degree of melt water input.*

1062 Latest early Oligocene to earliest late Oligocene: “Mid Oligocene” (29.1–26.6 Ma, 333.6 – 239 mbsf)

Deleted: ... previous studies on Antarctic proximal records, like ... roman ... the CIROS-1 core (Hannah, 1997) and DSDP Site 270 (Kulhanek et al., 2019), have associated the presence of acritarchs ((predominantly *Cymatiosphaera* spp. and *Leiosphaeridia* *Leiosphaera* ... [25]

Deleted: *Cymatiosphaera* spp. and

Deleted: *Leiosphaeridia* ... pp. This is interpreted as indicating [26]

Deleted: fresh

Deleted: ¶

Deleted: Broader ...r

... [27]

Deleted: for the entire study record ... slightly lower average temperature offshore the Ross Seas ... ($\sim 4^{\circ}\text{C}$) than at Wilkes Land (Site U1356), but markedly ... higher temperatures ($\sim 6^{\circ}\text{C}$) than at ice proximal Ross Sea sites ... (CIROS-1; Fig. 5c). This observation is consistent with the position of DSDP Site 274, which is ... [28]

Deleted: at slightly ... as at higher paleo-latitudes compared to Site U1356, and but lower latitudes and offshore from ... [29]

Deleted: Ross Sea

Deleted: cooler ... oss Sea catchment... Indeed, evidence from the CRP cores in the Ross Sea showed continental-scale ice sheets first expanded towards the Ross Sea around 32.8 Ma (Galeotti et al., 2016). Prior to 31 Ma (350 mbsf), the SST record from DSDP Site 274 shows some of its highest temperatures of the record... while SSTs at Site U1356 were already decreasing... increase. One important consideration is whether these sites in the Ross Sea and Wilkes Land can be adequately ... compared as belonging to into ... latitudinal transect, given that they are separated by an evolving the Tasmanian Gateway, a nan evolving ... oduit that separates the eastern Indian and southwestern Pacific oceans. Although an ... [30]

Deleted: ocean crustal

Deleted: through ...n the Tasmanian Gateway was just established in the Oligocene, the passageway was still quite restricted (Stickley et al., 2004; Bijl et al., 2013), ... and a question remains on how well connected these two ocean basins were at this time. ...tudes of the paleobathymetry and sedimentary mechanisms in the Southern Ocean through the Cenozoic (e.g., Scher et al., 2015; Hochmuth et al., 2020) do show the Tasmanian Gateway as well as the Pacific sector of the Southern Ocean deepen between 34 Ma and 27 Ma, allowing easier through ...low and exchange between the different ocean sectors. The little ... [31]

Deleted: scarce

Deleted: disparate ...ifferent SSTs might signal the disconnection between both ...he two sites, perhaps by the ... [32]

Deleted: offshore the Ross Sea

Deleted: those

Deleted: this ...he offshore Ross Sea location the nutrient input was lower ... [33]

Deleted: to the study sites

Deleted: that

Deleted: to the continent

1|168 In the “mid Oligocene”, the absolute SST average values disparity between DSDP Site 274, the Ross Sea and
1|169 Wilkes Land margin is the strongest. Both Wilkes Land margin and the Ross Sea have high P-cyst content (Fig.
1|170 5b). Palynomorphs from Ross Sea shelf deposits from Oligocene, dominated by *Lejeuneacysta* spp. and brackish
1|171 water *prasinophyte*, *Cymatiosphaera* (CRP: Prebble et al., 2006; Clowes et al., 2016), suggest meltwater input in
1|172 the Ross Sea region through this time interval (Prebble et al., 2006). In contrast, our dinocyst assemblages suggest
1|173 pelagic, low nutrient, marine conditions while the low numbers of terrestrial palynomorphs point to limited fresh-
1|174 water or melt-water input at DSDP Site 274. Similar to the Wilkes Land margin SST record, DSDP Site 274 SSTs
1|175 decrease towards the late Oligocene.

1|176 Late Oligocene (26.5 – ~24.4 Ma, 239–192.7 mbsf)

1|177 The average TEX₈₆-based SST results (Fig. 5a) for Site U1356 and DSDP Site 274 shows large (>6°C)
1|178 temperature variability (Hartman et al., 2018). At DSDP Site 274, we can exclude the known non-thermal biases
1|179 as cause for the strong variability (Fig. S2), and therefore also interpret stronger SST variability in the late
1|180 Oligocene. Noteworthy, in the beginning of this interval at 26.5 Ma (239 mbsf) we see a temperature peak at
1|181 DSDP Site 274 similar to what was reconstructed at the Wilkes Land margin (Hartman et al., 2018). This
1|182 temperature peak coincides with a rapid decrease in the $\delta^{18}\text{O}$ isotope records that may be linked to the deglaciation
1|183 of large parts of the Antarctic ice sheet following a large transient glaciation centered on ~26.8 Ma (Pálike et al.,
1|184 2006). The increase in abundance of *Operculodinium* spp. at all three sites (DSDP Sites 270, 274 and IODP Site
1|185 U1356) is a testament to the temperate conditions and/or lower nutrient availability at the time. The DSDP Site
1|186 274 sediment record is virtually barren of palynomorphs <192.7 mbsf (~24.4 Ma), 11.7 m below the hiatus (181
1|187 mbsf) in the record, with the sediments above estimated to be of middle Miocene age (Hayes et al., 1975). Since
1|188 our SST reconstructions exclude continuous sea ice cover as possible explanation, we interpret that oxic
1|189 degradation consumed palynomorphs at the sea floor. Three reasons for increased oxygen delivery at the sea floor
1|190 are proposed: 1. Strengthening of the Antarctic Circumpolar Current (ACC) increased deep ventilation. This is
1|191 unlikely given that ocean frontal systems would progressively move northward while the Tasmanian Gateway
1|192 widens, which would also displace ACC flow northwards, away from the site. 2. Winnowing ocean bottom
1|193 currents and decreased sedimentation rates could cause the oxic conditions we propose, and was the reason behind
1|194 the disappearance of dinocysts. However, winnowing would not erode palynomorphs only and would result in
1|195 coarsening of sediments, which we do not see. The lithology of the 192.7–181 mbsf interval where dinocyst are
1|196 barren, is diatom rich silty-clay. Decreased sedimentation rates would prolong oxygen exposure time of
1|197 palynomorphs once at the sea floor. Although our age model has limitations, a decrease in sedimentation rates (to
1|198 1.8 cm/kyr) is observed above 192.7 mbsf. 3. Bottom water formation on the Ross Sea continental margin
1|199 delivered increased oxygen-rich bottom waters to the site. Heightened obliquity sensitivity has been interpreted
1|200 to be associated with enhanced oceanic-influence mass balance controls on marine terminating ice sheets, with
1|201 limited sea ice extent (Levy et al., 2019). Levy et al. (2019) interpreted a prominent increase in the sensitivity of
1|202 benthic oxygen isotope variations to obliquity forcing (termed “obliquity sensitivity”) between 24.5 and 24 Ma,
1|203 synchronous with the first occurrence of ice-proximal glaciomarine sediments at DSDP Site 270, disconformities
1|204 in CRP-2/2A, and a large turnover in Southern Ocean phytoplankton. The major expansion of the ice sheet close
1|205 to the Oligocene – Miocene boundary in the Ross Sea (Levy et al., 2019; Kulhanek et al., 2019; Evangelinos et
1|206 al., in review) argues in favour of Ross Sea bottom water strengthening, leading to the slow-down of the
1|207 sedimentation rates above 192.7 mbsf and the formation of the >7 Myr duration hiatus at ~181 mbsf.

Deleted: within our studied interval

Deleted: P

Deleted: a

Deleted: and

Deleted: acritarch species

Deleted: cooling

Deleted: , with

Deleted: varying amounts of fresh

Deleted: melt water input

Deleted: 4

Deleted: r

Deleted: ; Hartman et al., 2018

Deleted: , related to orbital cyclicity, at ~26.5 Ma

Deleted: 5

Deleted: 5

Deleted: approximately ~1 Ma before

Deleted: (~24.5 Ma)

Deleted: 2.

Deleted: e

Deleted: is

Deleted: limited

Deleted: limited

Deleted: we see

Deleted: for this time interval

Deleted: 43

Deleted: was

Deleted: therefore

Deleted: in the

Deleted: , but this also potentially enhanced winnowing at the site,

1238 **5.4 Implications for ice-proximal conditions, hydrology and ice sheets: a hypothesis**

1239 Warm and generally oligotrophic conditions relatively proximal to the Antarctic margin during the Oligocene, imply that the Southern Ocean oceanography was fundamentally different from modern (e.g., Deppeler and Davidson, 2017). Although our data suggest ocean conditions were colder inshore than further offshore, they remain warm considering their proximity to marine-terminating outlet glaciers and ice caps in the Ross Sea area (De Santis et al 1999; Galeotti et al., 2016; Levy et al., 2019; Kulhanek et al., 2019; Evangelinos et al., in review). Levy et al. (2019) provided a model for ice-proximal to ice-distal oceanographic conditions in the Ross Sea during the Oligocene. In that model, Transantarctic Mountain outlet glaciers draining the EAIS, or local marine-terminating ice caps in the Ross Sea were particularly affected by the wind-driven, southward advection of warmer subsurface waters onto the Ross Sea shelf, similar to how Circumpolar Deep Water is being transported onto some regions of the continental shelf today (e.g., Wouters et al., 2015; Shen et al., 2018). The subsurface waters in that conceptual model were indicated as warmer than the overlying low salinity surface waters derived from glacial melts during glacial maxima, but this stratification is broken down during interglacials. The sample resolution of our dataset is too low to capture the full amplitude of orbital variability. However, since each 2 cm sample represents 800 yrs, the variability we see in our record could be the result of strong environmental variability on orbital time scales. Hence, the high variability in our data support the interpretation of Levy et al., 2019, with temperate surface waters at DSDP Site 274 on the continental rise of the Ross Sea margin suggesting a well-mixed water column as it would be difficult to envisage intermediate waters warmer than the surface waters. In this scenario, colder stratified surface water due to (sea ice) melting would be largely restricted to coastal Ross Sea sites of DSDP Site 270, CRP and CIROS-1. Temperate surface waters offshore the Ross Sea shelf would provide a source of heat that limits the advance of marine terminating glacial systems into the Ross Sea and Wilkes Land continental shelves. Pollen assemblages and high SSTs at DSDP Site 274, supported by terrestrial palynomorphs found at CRP-2 (Askin and Raine, 2000), suggest that climate was warm enough to allow atmospheric melt to be the dominant control on the ice mass balance and potential driver of deglaciation during warm orbital configurations. In addition, the warm ocean could have promoted an intensification of the hydrological cycle and consequent moisture delivery to the Antarctic hinterland, similar to what has been hypothesised for the Miocene Climatic Optimum (Feakins et al., 2012). Enhanced intense precipitation in the Antarctic hinterland would favour ice accumulation during cold orbital states to sustain a marine termination for the predominately terrestrial ice sheets. In a warmer-than-present climate of the early to mid Oligocene, precipitation and glaciation on the hinterlands could be further promoted by high elevation and larger Antarctic landmass size (Paxman et al., 2019). Indeed, General Circulation Models (GCMs) for the ice-free Eocene do suggest enhanced precipitation delivery to the Antarctic continent (e.g., Huber and Caballero, 2011; Baatsen et al., 2018). If part of the source of that precipitation was the warm Southern Ocean proximal to the ice sheet, Rayleigh distillation would be reduced, leading to relatively enriched Oligocene ice sheet $\delta^{18}\text{O}$ compared to that of today, and thereby, relatively depleted sea water $\delta^{18}\text{O}$. The calculation of ice volumes from benthic foraminiferal oxygen isotope records (e.g., Lear et al., 2000; Bohaty et al., 2012; Liebrand et al., 2017) do consider a variety of values for the isotopic composition of Oligocene Antarctic ice sheet. We argue that the warm oceanographic conditions, invoking strong precipitation and possible more local source of precipitation than today (Speelman et al., 2010), would explain how $\delta^{18}\text{O}$ of Antarctic ice was on the less depleted end of previous assumptions. This increases the calculated Antarctic ice mass that was installed during the EOIS (Bohaty et al., 2012), and the Antarctic ice volume that fluctuated over

Deleted: n...hypothesis

... [34]

Deleted: at a...relatively proximal location...o the Antarctic margin during the Oligocene, imply that the Southern Ocean oceanography was fundamentally different from modern during the Oligocene ...e.g., Deppeler and Davidson, 2017Deppeler et al., 2017.... Although our data suggest ice-proximal ...cean conditions were likely ... [35]

Deleted: inshore ...han further offshore in our reconstruction [36]

Deleted:

Deleted: ; Wouters et al., 2015.... The subsurface waters in that conceptual model were indicated as warmer than the overlying low salinity surface waters derived from glacial melts during glacial maxima, but this stratification is broken down during interglacials. The sample resolution of our dataset is too low to capture the full amplitude of orbital variability. However, since each 2 cm sample represents 800 yrs, the variability we see in our record could be the result of strong environmental variability on orbital time scales. Hence, the high variability in our data support the interpretation of Levy et al., 2019, with temperate surface waters at DSDP Site 274 on the continental rise of the Ross Sea margin suggesting a well-mixed water column as it would be difficult to envisage intermediate waters warmer than the surface waters. In this scenario, colder stratified surface water due to (sea ice) melting would be largely restricted to coastal Ross Sea sites of DSDP Site 270, CRP and CIROS-1.¶

Although our age model hampers resolving the record of Site 274 at accurate orbital configuration, Our our data could support this interpretation. with tThe temperate surface waters at Site 274 over on the continental rise of the Ross Sea margin suggesting a well mixed water column as it would be difficult to envisage , intermediate waters warmer than the surface waters. In this scenario, cooler stratified surface water due to (seice) melting would be largely restricted to coastal Ross Sea sites of DSDP Site 270, CRP and CIROS-1.¶

Deleted: , with cool stratified meltwater influences largely restricted to coastal Ross Sea sites of DSDP Site 270, CRP and CIROS-1. Our results imply that intermediate waters at Site 274 could hardly have been warmer than the surface waters. Having t...emperatetemperate...surface waters just offshore the Ross Sea shelf would provides ...another means... source of to deliver...this ...eat that restricted ... [38]

Deleted: surface temperatures

Deleted: mass balance ...ontrol on the ice mass balance and potentialand...driver of deglaciation during warm orbital configurations. In addition, the warm ocean conditions offshore the Antarctic ice sheet ...ould have promoted an intensification of the the hydrological cycle and consequent moisture delivery in ...oin... the Antarctic hinterland, similar to what has been hypothesised for the middle ...iocene Climatic Optimum (Feakins et al., 2012). Consequently... [39]

Deleted: incorporate ... variety of values for the isotopic composition of Oligocene Antarctic ice sheet. We argue that the warm oceanographic conditions, invoking strong precipitation and possible more local source of precipitation than today (Speelman et al., 2010), would argue ...xplain that

Deleted: ...which ...his increases the calculated Antarctic ice volume ... [41]

Deleted: Oi-1 isotope stage

1441 strong Oligocene orbital cycles (Liebrand et al., 2017). This idea could in the future be further tested through
1442 higher resolution reconstructions, δ D reconstructions on plant matter and isotope-enabled paleoceanographic and
1443 ice sheet modelling studies. In any case, future isotope-enabled ice sheet modelling should factor in warm
1444 Southern Ocean conditions for realistic estimates of Antarctic ice volume. This may imply an even higher
1445 sensitivity of Antarctic ice sheets to orbitally forced climate variability than previously assumed, and assigns a
1446 large role of mass balance controlled by surface melt and oceanography in ice sheet stability during past warm
1447 climates, through both hydrological and basal and surface melt processes.

1448 6. Conclusion

1449 We show that temperate (TEX_{8.6}-SST: $10-17^{\circ}\text{C} \pm 5.2^{\circ}\text{C}$) and relatively oligotrophic surface ocean conditions
1450 prevailed off the Ross Sea margin during the Oligocene (33.7–24.4 Ma). This agrees with the warm SSTs recorded
1451 offshore Wilkes Land, and demonstrates that warm surface waters influenced the East Antarctic Ice Sheet margin
1452 in both the Ross Sea and Wilkes Land during the Oligocene. The warm surface ocean temperatures at DSDP Site
1453 274 and colder SST in the Ross Sea continental shelf with evidence of temporary marine termination of ice caps
1454 and glaciers demonstrate a strong inshore to offshore temperature gradient at the Ross Sea. We posit that the warm
1455 surface ocean conditions near the continental shelf break during the Oligocene may have promoted increased heat
1456 delivery and precipitation transport towards the Antarctic hinterlands that lead to highly dynamic terrestrial ice
1457 sheet volumes in the warmer climate state of the Oligocene. During cold orbital phases, enhanced precipitation
1458 may have sustained high ice flux and advance of terrestrial ice sheet and ice caps into shallow marine settings.
1459 During warm orbital configurations of the Oligocene, the heat delivery may have resulted in widespread surface
1460 melt and retreat of the terrestrial ice sheets into the hinterland.

1461 Acknowledgements

1462 This work used Deep Sea Drilling Project archived samples and data provided and curated by the International
1463 Ocean Discovery Program and its predecessors. This study was funded by NWO polar programme grant number
1464 ALW.2016.001. DE acknowledges funding through the Alexander S. Onassis Public Benefit Foundation Ph.D.
1465 research grant: F ZL 016-1/2015-2016. DE and CE acknowledge funding through the Spanish Ministry of
1466 Economy, Industry and Competititvity (grant CTM2017-89711-C2-1-P/ CTM2017-89711-C2-2-P), co-funded by
1467 the European Union through FEDER funds. [We thank the Paleomagnetic Laboratory CCiTUB-ICTJA CSIC for](#)
1468 [the support on paleomagnetic analysis.](#) We thank Natasja Welters and Giovanni Dammers for technical support
1469 [at the Utrecht University GeoLab.](#)

1470 Author contributions

1471 PKB and FS designed the research. PKB, CE and DE collected the samples. CE and DE described the cores. LV
1472 collected and analysed paleomagnetic samples. FSH processed samples for palynology and organic geochemistry,
1473 FSH, PKB and FS interpreted the data. FSH wrote the paper with input from all authors.

Deleted: the
Deleted: in benthic $\delta^{18}\text{O}$
Deleted: F
Deleted: include
Deleted: (precession driven top down melting)
Deleted: +/-
Deleted: matches
Deleted: relatively
Deleted: temperatures
Deleted: settings
Deleted: off
Deleted: the
Deleted: margin
Deleted: were proximal
Deleted: bathed
Deleted: to
Deleted: Comparing o
Deleted: urour
Deleted: results
Deleted: with
Deleted: surface
Deleted: ocean
Deleted: records and
Deleted: in the Ross Sea continental shelf
Deleted: , we show that a
Deleted: the Ross Sea
Deleted: difference
Deleted: prevailed from inshore to offshore the Ross Sea margin
Deleted: We improved the age model of Site 274 record, but the low recovery still hamperes accurate reconstruction at [42]
Deleted: However, We w
Deleted: We
Deleted: ice sheet
Deleted: variable oscillation of
Deleted: ,
Deleted: while d
Deleted: during
Deleted: summer
Deleted: ,
Deleted: widespread
Deleted: and
Deleted: analysed the
Deleted: and
Deleted: ¶

1524 **References**

1525 Askin, R. and Raine, J.: Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-
1526 2/2A, Victoria Land Basin, Antarctica, *Terra Antarctica*, 7, 493-501, 2000.

1527 Barrett, P. J.: Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound, DSIR Pub., 1989.

1528 [Bijl, P. K., Pross, J., Warnaar, J., Stickley, C. E., Huber, M., Guerstein, R., Houben, A. J., Sluijs, A., Visscher, H., and Brinkhuis, H.: Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography](#), *Paleoceanography*, 26, 2011.

1529

1530

1531 Bijl, P. K., Bendle, J. A., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., and Olney, M.: Eocene cooling linked to early flow across the Tasmanian Gateway, *Proceedings of the National Academy of Sciences*, 110, 9645-9650, 2013.

1532

1533 Bijl, P. K., Houben, A. J., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene-Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, *Journal of Micropalaeontology*, 37, 105-138, 2018a.

1534 Bijl, P. K., Houben, A. J., Hartman, J. D., Pross, J., Salabarnada, A., Escutia, C., and Sangiorgi, F.:
1535 Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica-Part 2: Insights from
1536 Oligocene-Miocene dinoflagellate cyst assemblages, *Climate of the Past*, 14, 1015-1033, 2018b.

1537 Baatsen, M., von der Heydt, A., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: Equilibrium
1538 state and sensitivity of the simulated middle-to-late Eocene climate, *Clim. Past Discuss*, 2018, 1-49,
1539 2018.

1540 Blaga, C. I., Reichart, G.-J., Heiri, O., and Damsté, J. S. S.: Tetraether membrane lipid distributions in water-
1541 column particulate matter and sediments: a study of 47 European lakes along a north-south transect,
1542 *Journal of Paleolimnology*, 41, 523-540, 2009.

1543 Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Foraminiferal Mg/Ca evidence for southern ocean cooling
1544 across the eocene–oligocene transition, *Earth and Planetary Science Letters*, 317, 251-261, 2012.

1545 Burns, D. A.: Nannofossil biostratigraphy for Antarctic sediments, Leg 28, *Deep Sea Drilling Project*, 1975.

1546 Cande, S. C., Stock, J. M., Müller, R. D., and Ishihara, T.: Cenozoic motion between east and west Antarctica,
1547 *Nature*, 404, 145, 2000.

1548 Church, M. J., DeLong, E. F., Ducklow, H. W., Karner, M. B., Preston, C. M., and Karl, D. M.: Abundance and
1549 distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. *Limnology
1550 and Oceanography*, 48(5), 1893-1902, 2003.

1551 Clowes, C. D., Hannah, M. J., Wilson, G. J., and Wrenn, J. H.: Marine palynostratigraphy and new species from
1552 the Cape Roberts drill-holes, Victoria land basin, Antarctica, *Marine Micropaleontology*, 126, 65-84,
1553 2016.

1554 Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation
1555 and deeper calcite compensation in the Pacific Ocean, *Nature*, 433, 53-57, 2005.

1556 Cramwinckel, M. J., Woelders, L., Huurdeman, E. P., Peterse, F., Gallagher, S. J., Pross, J., Burgess, C. E.,
1557 Reichart, G. J., Sluijs, A., and Bijl, P. K.: Surface-circulation change in the southwest Pacific Ocean
1558 across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker
1559 paleothermometry, *Clim. Past*, 16, 1667-1689, 2020.

1560

1561

1562

Deleted: Brancolini, G., Cooper, A. K., and Coren, F.: Seismic facies and glacial history in the western Ross Sea (Antarctica), *Geology and Seismic Stratigraphy of the Antarctic Margin*, 68, 209-233, 1995.¶

1567 Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S. J.: A revised Paleocene (Teurian) dinoflagellate
1568 cyst zonation from eastern New Zealand, *Review of Palaeobotany and Palynology*, 202, 47-79, 2014.

1569 Crouch, E., Shepherd, C., Morgans, H., Naafs, B., Dallanave, E., Phillips, A., Hollis, C., and Pancost, R.: Climatic
1570 and environmental changes across the early Eocene climatic optimum at mid-Waipara River, Canterbury
1571 Basin, New Zealand, *Earth-Science Reviews*, 200, 102961, 2020.

1572 Dale, B.: Dinoflagellate cyst ecology: modeling and geological applications, *Palynology: principles and*
1573 *applications*, 1996. 1249-1275, 1996.

1574 Deppeler, S. L. and Davidson, A. T.: Southern Ocean phytoplankton in a changing climate, *Frontiers in Marine*
1575 *Science*, 4, 40, 2017.

1576 De Santis, L., Anderson, J. B., Brancolini, G., and Zayatz, I.: Seismic record of late Oligocene through Miocene
1577 glaciation on the central and eastern continental shelf of the Ross Sea, in *Geology and Seismic*
1578 *Stratigraphy of the Antarctic Margin*, *Antarct. Res. Ser.*, vol. 68, edited by A. K. Cooper, P. F. Barker,
1579 and G. Brancolini, AGU, Washington, D. C, pp. 235-260, 1995.

1580 De Santis, L., Prato, S., Brancolini, G., Lovo, M., and Torelli, L.: The Eastern Ross Sea continental shelf during
1581 the Cenozoic: implications for the West Antarctic ice sheet development, *Global and Planetary Change*,
1582 23, 173-196, 1999.

1583 [De Schepper, S., Fischer, E. I., Groeneveld, J., Head, M. J., and Matthiessen, J.: Deciphering the palaeoecology](#)
1584 [of Late Pliocene and Early Pleistocene dinoflagellate cysts, Palaeogeography, Palaeoclimatology,](#)
1585 [Palaeoecology, 309, 17-32, 2011.](#)

1586 Duncan, B.: Cenozoic Antarctic climate evolution based on molecular and isotopic biomarker reconstructions
1587 from geological archives in the Ross Sea region, 2017.

1588 Egger, L. M., Bahr, A., Friedrich, O., Wilson, P. A., Norris, R. D., Van Peer, T. E., Lippert, P. C., Liebrand, D.,
1589 and Pross, J.: Sea-level and surface-water change in the western North Atlantic across the Oligocene–
1590 Miocene Transition: a palynological perspective from IODP Site U1406 (Newfoundland margin), *Marine*
1591 *Micropaleontology*, 139, 57-71, 2018.

1592 Escutia, C., Brinkhuis, H., and Klaus, A.: IODP Expedition 318: From Greenhouse to Icehouse at the Wilkes
1593 Land Antarctic Margin, *Scientific Drilling*, 2011.

1594 Evangelinos, D., Escutia, C., van de Flierdt, T., Valero L., Hoem, F., Bijl, P., Flores, J.A., Harwood, D.M.,
1595 Etourneau J., Katharina, Kreissig, K., Nilsson-Kerri, K., Holder, L., López-Quirós, A., Salabarnada, A.:
1596 Absence of a strong, deep-reaching Antarctic Circumpolar Current zonal flow across the Tasmanian
1597 Gateway during the Oligocene-early Miocene. *Earth and Planetary Science Letters* (submitted). 2020.

1598 Evangelinos D., Escutia C., Etourneau J., Hoem F., Bijl P., Boterblom W., van de Flierdt T., Valero L., Flores J-
1599 A., Rodriguez-Tovar F.J., Jimenez-Espejo F.J., Salabarnada A., López-Quirós A.: Late Oligocene-
1600 Miocene proto-Antarctic Circumpolar Current dynamics off the Wilkes Land margin, East Antarctica.
1601 *Global and Planetary Change*, 103221. 2020

1602 Feakins, S. J., Warny, S., and Lee, J.-E.: Hydrologic cycling over Antarctica during the middle Miocene warming,
1603 *Nature Geoscience*, 5, 557-560, 2012.

1604 Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A.: Updated daily. Sea ice index, version 3.
1605 Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, 2020.

1606 Fielding, C.R., Naish, T.R., Wolfe, K.J., Lavelle, M.: Facies analysis and sequence stratigraphy of CRP-2/2A,
1607 Victoria Land basin, Antarctica. *Terra Antarctica* 7, 323–338, 2000.

1608 [Frieling, J. and Sluijs, A.: Towards quantitative environmental reconstructions from ancient non-analogue](#)
1609 [microfossil assemblages: Ecological preferences of Paleocene–Eocene dinoflagellates, Earth-Science](#)
1610 [Reviews, 185, 956-973, 2018.](#)

1611 Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., Barrett, P., Bohaty, S. M., Lanci, L.,
1612 and Pollard, D.: Antarctic Ice Sheet variability across the Eocene–Oligocene boundary climate transition,
1613 *Science*, 352, 76-80, 2016.

1614 Gombos, A. M. and AM JR, G.: Paleogene and Neogene diatoms from the Falkland Plateau and Malvinas Outer
1615 Basin: Leg 36, Deep Sea Drilling Project, 1977.

1616 Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The geologic time scale 2012, elsevier, 2012.

1617 Granot, R., Cande, S., Stock, J., Davey, F., and Clayton, R.: Postspreading rifting in the Adare Basin, Antarctica:
1618 regional tectonic consequences, *Geochemistry, Geophysics, Geosystems*, 11, 2010.

1619 Hammer, Ø., Harper, D., and Ryan, P.: PAST—PAleontological STatistics, ver. 3.15, <https://folk.uio.no/hammer/past/> Acesso em, 23, 2017, 2001.

1620 Hannah, M.: Climate controlled dinoflagellate distribution in late Eocene-earliest Oligocene strata from CIROS-
1621 1 Drillhole, McMurdo Sound, Antarctica, *Terra Antarctica*, 4, 73-78, 1997.

1622 Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J., Schouten, S., Brinkhuis, H., Escutia,
1623 C., and Bijl, P. K.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica-Part 3:
1624 Insights from Oligocene-Miocene TEX86-based sea surface temperature reconstructions, *Climate of the*
1625 *Past*, 14, 1275-1297, 2018.

1626 Hayes, D. E., Frakes, L.A., Bar, P.J., Derek A Burns, Pei-hsin Chen, The Shipboard Scientific Party, et al., : 10.
1627 SITE 274 The Shipboard Scientific Party 1 SITE DATA, 28, 1975.

1628 Ho, S. L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K., Méheust, M.,
1629 Rosell-Melé, A., and Stein, R.: Appraisal of TEX86 and TEX86L thermometries in subpolar and polar
1630 regions, *Geochimica et Cosmochimica Acta*, 131, 213-226, 2014.

1631 Hochmuth, K., Gohl, K., Leitchenkov, G., Sauermilch, I., Whittaker, J. M., Uenzelmann-Neben, G., Davy, B.,
1632 and De Santis, L.: The evolving paleobathymetry of the circum-Antarctic Southern Ocean since 34 Ma—
1633 a key to understanding past cryosphere-ocean developments, *Geochemistry, Geophysics, Geosystems*,
1634 2020.

1635 Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Damsté, J. S. S., and Schouten, S.: A novel proxy for
1636 terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, *Earth and*
1637 *Planetary Science Letters*, 224, 107-116, 2004.

1638 Hopmans, E. C., Schouten, S., and Damsté, J. S. S.: The effect of improved chromatography on GDGT-based
1639 palaeoproxies, *Organic Geochemistry*, 93, 1-6, 2016.

1640 Houben, A. J., Bijl, P. K., Guerstein, G. R., Sluijs, A., and Brinkhuis, H.: *Malvinia escutiana*, a new
1641 biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean, *Review of*
1642 *Palaeobotany and Palynology*, 165, 175-182, 2011.

Deleted: Harwood, D., Florindo, F., Talarico, F., and Levy, R.: Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica, *Terra Antarctica*, 15, 1-235, 2008.¶

1647 Houben, A. J., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S., Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe,
1648 L., and van de Flierdt, T.: Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic
1649 glaciation, *Science*, 340, 341-344, 2013.

1650 Houben, A. J., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.: Late Eocene Southern Ocean cooling and
1651 invigoration of circulation preconditioned Antarctica for full-scale glaciation, *Geochemistry,
1652 Geophysics, Geosystems*, 2019.

1653 Huber M, Caballero R. The early Eocene equitable climate problem revisited. *Climate of the Past*, 2011.

1654 Huerta, A. D. and Harry, D. L.: The transition from diffuse to focused extension: Modeled evolution of the West
1655 Antarctic Rift system, *Earth and Planetary Science Letters*, 255, 133-147, 2007.

1656 [Jovane, L., Florindo, F., Wilson, G., Leone, S. d. A. P. S., Hassan, M. B., Rodelli, D., and Cortese, G.:
1657 Magnetostriatigraphic Chronology of a Cenozoic Sequence From DSDP Site 274, Ross Sea, Antarctica,
1658 Multi-Disciplinary Applications in Magnetic Chronostratigraphy, 2020.](#)

1659 Juggins, S.: C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version
1660 1.5), Newcastle upon Tyne: Newcastle University, 77, 2007.

1661 Kalanetra, K. M., Bano, N., and Hollibaugh, J. T.: Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic
1662 coastal waters. *Environmental Microbiology*, 11(9), 2434-2445, 2009.

1663 Kim, J.-H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and
1664 Damsté, J. S. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid
1665 tetraether lipids: Implications for past sea surface temperature reconstructions, *Geochimica et
1666 Cosmochimica Acta*, 74, 4639-4654, 2010.

1667 Kim, J. H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P., Schouten, S., and Simninghe Damsté, J.
1668 S.: Holocene subsurface temperature variability in the eastern Antarctic continental margin, *Geophysical
1669 Research Letters*, 39, 2012.

1670 Kulhanek, D. K., Levy, R. H., Clowes, C. D., Prebble, J. G., Rodelli, D., Jovane, L., Morgans, H. E., Kraus, C.,
1671 Zwingmann, H., and Griffith, E. M.: Revised chronostratigraphy of DSDP Site 270 and late Oligocene
1672 to early Miocene paleoecology of the Ross Sea sector of Antarctica, *Global and Planetary Change*, 178,
1673 46-64, 2019.

1674 Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., Von Eynatten, H., Gasson, E., Kuhn, G., Tripati,
1675 A., and DeConto, R.: Antarctic ice sheet sensitivity to atmospheric CO₂ variations in the early to mid-
1676 Miocene, *Proceedings of the National Academy of Sciences*, 113, 3453-3458, 2016.

1677 Levy, R. H., Meyers, S., Naish, T., Golledge, N., McKay, R., Crampton, J. S., DeConto, R., De Santis, L.,
1678 Florindo, F., and Gasson, E. G.: Antarctic ice-sheet sensitivity to obliquity forcing enhanced through
1679 ocean connections, *Nature Geoscience*, 12, 132-137, 2019.

1680 Liebrand, D., de Bakker, A. T., Beddow, H. M., Wilson, P. A., Bohaty, S. M., Ruessink, G., Pälike, H., Batenburg,
1681 S. J., Hilgen, F. J., and Hodell, D. A.: Evolution of the early Antarctic ice ages, *Proceedings of the
1682 National Academy of Sciences*, 114, 3867-3872, 2017.

1683 Locarnini, R.A., A.V. Mishonov, O.K. Baranova, T.P. Boyer, M.M. Zweng, H.E. Garcia, J.R. Reagan, D. Seidov,
1684 K.W. Weathers, C.R. Paver, and I.V. Smolyar. *World Ocean Atlas 2018, Volume 1: Temperature*. A.
1685 Mishonov, Technical Editor. NOAA Atlas NESDIS 81, 52pp, 2019.

1686 Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.-Y., Mudie, P., Penaud, A., Pospelova, V., Price, A. M.,
1687 and Radi, T.: From bi-polar to regional distribution of modern dinoflagellate cysts, an overview of their
1688 biogeography, *Marine Micropaleontology*, 2019. 101753, 2019.

1689 Massana, R., Taylor, L. T., Murray, A. E., Wu, K. Y., Jeffrey, W. H., and DeLong, E. F.: Vertical distribution and
1690 temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring.
1691 *Limnology and Oceanography*, 43(4), 607-617, 2009.

1692 [Macphail, M.: The Sabrina Microfloras of East Antarctica: Late Cretaceous Paleogene or reworked?, Palynology, 2021. 1-12, 2021.](#)

1693

1694 McKay, R., Barrett, P., Levy, R., Naish, T., Golledge, N., and Pyne, A.: Antarctic Cenozoic climate history from
1695 sedimentary records: ANDRILL and beyond, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 374, 20140301, 2016.

1696 [Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H., and Zahirovic, S.: GPlates: building a virtual Earth through deep time, *Geochemistry, Geophysics, Geosystems*, 19, 2243-2261, 2018.](#)

1697

1698 Naish, T. R., Wolfe, K. J., Barrett, P. J., Wilson, G. S., Atkins, C., Bohaty, S. M., Bücker, C. J., Claps, M.,
1699 Davey, F. J., and Dunbar, G. B.: Orbitally induced oscillations in the East Antarctic ice sheet at the
1700 Oligocene/Miocene boundary, *Nature*, 413, 719-723, 2001.

1701 O'Brien, C. L., Huber, M., Thomas, E., Pagani, M., Super, J. R., Elder, L. E., and Hull, P. M.: The enigma of
1702 Oligocene climate and global surface temperature evolution, *Proceedings of the National Academy of
1703 Sciences*, 117, 25302-25309, 2020.

1704 Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, *Deep Sea Research Part II: Topical Studies in
1705 Oceanography*, 56, 778-795, 2009.

1706 Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K.,
1707 and Wade, B. S.: The heartbeat of the Oligocene climate system, *science*, 314, 1894-1898, 2006.

1708 Passchier, S., Ciarletta, D. J., Henao, V., and Sekkas, V.: Sedimentary processes and facies on a high-latitude
1709 passive continental margin, Wilkes Land, East Antarctica, *Geological Society, London, Special
1710 Publications*, 475, 181-201, 2019.

1711 Paxman, G. J., Jamieson, S. S., Hochmuth, K., Gohl, K., Bentley, M. J., Leitchenkov, G., and Ferraccioli, F.:
1712 Reconstructions of Antarctic topography since the Eocene–Oligocene boundary, *Palaeogeography,
1713 palaeoclimatology, palaeoecology*, 535, 109346, 2019.

1714 Pearson, A., Huang, Z., Ingalls, A., Romanek, C., Wiegel, J., Freeman, K. H., Smittenberg, R., and Zhang, C.:
1715 Nonmarine crenarchaeol in Nevada hot springs, *Appl. Environ. Microbiol.*, 70, 5229-5237, 2004.

1716 Pérez, L. F., De Santis, L., McKay, R. M., Larter, R. D., Ash, J., Bart, P. J., Böhm, G., Brancatelli, G., Browne,
1717 I., and Colleoni, F.: Early and middle Miocene ice sheet dynamics in the Ross Sea: Results from
1718 integrated core-log-seismic interpretation, *GSA Bulletin*, 2021.

1719 Peterse, F., Kim, J.-H., Schouten, S., Kristensen, D. K., Koç, N., and Damsté, J. S. S.: Constraints on the
1720 application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway),
1721 *Organic Geochemistry*, 40, 692-699, 2009.

Deleted: 1

Deleted: Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., and Wilson, T.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, *Nature*, 458, 322-328, 2009. 1

1730 Prebble, J., Crouch, E., Carter, L., Cortese, G., Bostock, H., and Neil, H.: An expanded modern dinoflagellate
1731 cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations, *Marine*
1732 *Micropaleontology*, 101, 33-48, 2013a.

1733 Prebble, J., Hannah, M., and Barrett, P.: Changing Oligocene climate recorded by palynomorphs from two glacio-
1734 eustatic sedimentary cycles, Cape Roberts Project, Victoria Land Basin, Antarctica, *Palaeogeography,*
1735 *Palaeoclimatology, Palaeoecology*, 231, 58-70, 2006.

1736 Pritchard, H., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L.: Antarctic
1737 ice-sheet loss driven by basal melting of ice shelves, *Nature*, 484, 502-505, 2012.

1738 Richey, J. N. and Tierney, J. E.: GDGT and alkenone flux in the northern Gulf of Mexico: Implications for the
1739 TEX86 and UK'37 paleothermometers, *Paleoceanography*, 31, 1547-1561, 2016.

1740 Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R., Jiménez-Espejo, F., Bijl, P., Hartman, J.,
1741 Strother, S., and Salzmann, U.: Paleoceanography and ice sheet variability offshore Wilkes Land,
1742 Antarctica—Part 1: Insights from late Oligocene astronomically paced contourite sedimentation, *Climate*
1743 of the Past, 14, 991-1014, 2018.

1744 Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., Van De
1745 Flierdt, T., and Bohaty, S. M.: Southern Ocean warming and Wilkes Land ice sheet retreat during the
1746 mid-Miocene, *Nature communications*, 9, 317, 2018.

1747 Scher, H. D., Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Two-stepping into the icehouse: East Antarctic
1748 weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition, *Geology*, 39,
1749 383-386, 2011.

1750 Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Ko- rdesch, W. E. C., and Delaney, M. L.: Onset
1751 of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies,
1752 *Nature*, 523, 580–583, 2015.

1753 Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, *Journal of Geophysical*
1754 *Research: Earth Surface*, 112, 2007.

1755 Schouten, S., Hopmans, E. C., Rosell-Melé, A., Pearson, A., Adam, P., Bauersachs, T., Bard, E., Bernasconi, S.
1756 M., Bianchi, T. S., and Brocks, J. J.: An interlaboratory study of TEX86 and BIT analysis of sediments,
1757 extracts, and standard mixtures, *Geochemistry, Geophysics, Geosystems*, 14, 5263-5285, 2013.

1758 Schouten, S., Hopmans, E. C., Schefuß, E., and Damste, J. S. S.: Distributional variations in marine crenarchaeotal
1759 membrane lipids: a new tool for reconstructing ancient sea water temperatures?, *Earth and Planetary*
1760 *Science Letters*, 204, 265-274, 2002.

1761 Shen, Q., Wang, H., Shum, C., Jiang, L., Hsu, H. T., and Dong, J.: Recent high-resolution Antarctic ice velocity
1762 maps reveal increased mass loss in Wilkes Land, East Antarctica, *Scientific reports*, 8, 4477, 2018.

1763 Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched tetraethers in shelf systems: The
1764 geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia), *Geochimica et*
1765 *Cosmochimica Acta*, 186, 13-31, 2016.

1766 Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and Verschuren, D.: Fluxes and distribution of
1767 tetraether lipids in an equatorial African lake: constraints on the application of the TEX86
1768 palaeothermometer and BIT index in lacustrine settings, *Geochimica et Cosmochimica Acta*, 73, 4232-
1769 4249, 2009.

Deleted:

1771 Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse; organic-walled dinoflagellate cysts as
1772 paleoenvironmental indicators in the Paleogene, *Earth-Science Reviews*, 68, 281-315, 2005.

1773 Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene–Eocene Thermal
1774 Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey shelf, *Biogeosciences*, 6,
1775 1755-1781, 2009.

1776 [Speelman, E. N., Sewall, J. O., Noone, D., Huber, M., von der Heydt, A., Damsté, J. S., and Reichart, G.-J.:](#)
1777 [Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution](#)
1778 [of water isotopes in the Early/Middle Eocene, *Earth and Planetary Science Letters*, 298, 57-65, 2010.](#)

1779 Stickley, C. E., Brinkhuis, H., Schellenberg, S. a., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M.,
1780 Warnaar, J., and Williams, G. L.: Timing and nature of the deepening of the Tasmanian Gateway,
1781 *Paleoceanography*, 19, 1–18, 2004.

1782 Stocchi, P., Escutia, C., Houben, A. J., Vermeersen, B. L., Bijl, P. K., Brinkhuis, H., DeConto, R. M., Galeotti,
1783 S., Passchier, S., and Pollard, D.: Relative sea-level rise around East Antarctica during Oligocene
1784 glaciation, *Nature Geoscience*, 6, 380, 2013.

1785 Taylor, K. W., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R. D.: Re-evaluating modern
1786 and Palaeogene GDGT distributions: Implications for SST reconstructions, *Global and Planetary*
1787 *Change*, 108, 158-174, 2013.

1788 Williams, G., Fensome, R., and MacRae, R.: The Lentin and Williams index of fossil dinoflagellates, 2017 ed,
1789 AASP Contrib Ser0160-884348, American Association of Stratigraphic Palynologists Foundation.
1790 January, 2017. 2017.

1791 Wilson, D. S., Pollard, D., DeConto, R. M., Jamieson, S. S., and Luyendyk, B. P.: Initiation of the West Antarctic
1792 Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene, *Geophysical Research*
1793 *Letters*, 40, 4305-4309, 2013.

1794 Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R., Van den Broeke,
1795 M. R., and Bamber, J. L.: Dynamic thinning of glaciers on the Southern Antarctic Peninsula, *Science*,
1796 348, 899-903, 2015.

1797 Zachos, J. C., Stott, L. D., and Lohmann, K. C.: Evolution of early Cenozoic marine temperatures,
1798 *Paleoceanography*, 9, 353-387, 1994.

1799 Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and
1800 carbon-cycle dynamics, *Nature*, 451, 279-283, 2008.

1801 Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R.: A 40-million-year history of atmospheric
1802 CO₂, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering*
1803 *Sciences*, 371, 20130096, 2013.

1804 Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., and Noakes, J. E.: Methane Index: A tetraether
1805 archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates, *Earth and Planetary*
1806 *Science Letters*, 307, 525-534, 2011.

1807 Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to evaluate the integrity of TEX86
1808 paleothermometry, *Paleoceanography*, 31, 220-232, 2016.

1809 Zonneveld, K. A., Versteegh, G. J., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange,
1810 G. J., de Leeuw, J. W., and Middelburg, J. J.: Selective preservation of organic matter in marine
1811 environments; processes and impact on the sedimentary record, *Biogeosciences*, 7, 2010.
1812 Zonneveld, K. A., Marret, F., Versteegh, G. J., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal,
1813 A., Elshanawany, R., and Edwards, L.: Atlas of modern dinoflagellate cyst distribution based on 2405
1814 data points, *Review of Palaeobotany and Palynology*, 191, 1-197, 2013.
1815
1816

1817 Table captions

1818 Table 1: List of palynomorphs and their abbreviated codes found in the CA-plot (Figure 5). Assumed in
1819 situ and reworked dinoflagellate cyst taxa are assigned to Protoperidinoid (P-cyst) taxa and Gonyaulacoid
1820 (G-cyst) taxa.

Deleted: protoperidinoid

Deleted: g

1821 Table 2: Improved age model for the Oligocene of DSDP Site 274 determined by dinocysts biostratigraphy
1822 indicators (FO = First occurrence, LO = Last occurrence) and paleomagnetic reversals (chrons).

Deleted: , HO = Highest occurrence

1823 Figure captions

1824 Figure 1: (a) Ross Sea to Wilkes Land margin bathymetry with present-day locations of DSDP/IODP/CRP
1825 drill sites included in this study (red dots). The new data generated for this study comes from DSDP Site
1826 274, marked by yellow dot. The base map is from Quantarctica GIS package, Norwegian Polar Institute.
1827 The insert shows the Antarctic continent and the surrounding oceans (divided by gray dotted lines) to give
1828 a broader regional context to the study area. (b) A synthesis of paleoceanographic settings at 27 Ma. The
1829 paleogeographic position is generated with G-plates (<http://www.gplates.org>), based on the global plates
1830 geodynamic motion model from Müller et al., (2018). Light grey indicates the continental lithosphere. The
1831 inferred ocean currents are drawn after reconstructions by Stickley et al., (2004). TC = Tasman current,
1832 PLC = Proto-Leeuwin Current and ACountC = Antarctic Counter Current. Blue arrows indicate cooler
1833 ocean currents and red indicate warmer ocean currents. Relative current strength is indicated by arrow
1834 size.

Deleted: /ANDRILL

Deleted: 6

1835 Figure 2: (a) Core numbers, core recovery and lithological description of the cores based on the initial
1836 DSDP reports (Hayes et al., 1975). (b) Magnetic correlation for Site 274 with comparison to Jovane et al.
1837 (2020) (dotted lines). Inclination values define local magnetic polarity zones. Magnetostratigraphic
1838 correlation is firstly guided by new dinocyst constraints, biostratigraphic markers from shipboard report
1839 and subsequently by correlation between local polarity zones and the GTS2012 timescale (Gradstein et al.,
1840 2012). Low intensity, shifting directions, and low recovery precludes magnetozone identification for some
1841 intervals. Characteristic orthoplots showing demagnetization steps is included in Supplementary Figure
1842 S1. Arrows indicate age (Ma) biostratigraphic tie points according to the age model described in Table 2.
1843 Extrapolations has been made between the age tie points (stippled lines) with sedimentation rates indicated
1844 in between. LO = Last occurrence, FO = First occurrence.

Deleted: HO = Highest occurrence,

1845 Figure 3: Correspondence analysis (CA) of the dinocyst assemblage data from DSDP Site 274. The size of
1846 the points indicates the total relative abundance of the specific species. The abbreviations of the dinocysts
1847 species can be found in Table 1. The data were plotted in the C2 software program (Juggins, 2007). The
1848 analysis scores are provided as Table S4.

1849

1856 **Figure 4:** Lithological (the legend is the same as Figure 2), palynological and TEX₈₆-SST results from DSDP
1857 Site 274 plotted against depth. Arrows indicate age (Ma) tie points according to the age model described in
1858 Table 2. The dotted gray line indicated the time slices selected for Fig. 5.

1859 (a) The cumulative relative abundance of palynomorph groups.
1860 (b) The cumulative relative abundance (%) of selected dinocysts groups recorded in the studied interval.
1861 Blue tones are P-cysts, red-tones are G-cysts.
1862 (c) TEX₈₆-based SSTs (Linear calibration, Kim et al., (2010)), calibration error is $\pm 5.2^{\circ}\text{C}$, indicated by
1863 black bar in bottom of the plot. The TEX₈₆ outliers are marked in red.

1864
1865 **Figure 5:** Synthesis of sea surface temperature and dinocysts assemblage changes between the early (c),
1866 mid (b) and late Oligocene (a) in the Ross Sea (CRP, DSDP Site 270), offshore Cape Adare (This study,
1867 DSDP Site 274) and Wilkes Land margin (Site U1356). The pie charts visualize the dinocyst assemblage
1868 composition at respective sites (see legend). Dinocyst assemblage data from the Wilkes Land margin,
1869 U1356, comes from Bijl et al., (2018a, b) for all panels (a-c). Dinocyst assemblage data from the Ross Sea is
1870 gathered from DSDP Site 270 (Kulhanek et al., 2019) for panel a) and from CRP (Houben et al., 2013;
1871 Clowes et al., 2016) for panel (b) and (c). The TEX₈₆-SST data from Wilkes Land, U1356 comes from
1872 Hartman et al., (2018), 35 TEX₈₆-data points were used; 7 in (a), 9 in (b) and 19 in (c). In the Ross Sea
1873 there is a lack of TEX₈₆-SST data from the mid Oligocene, but Duncan (2017) presented unpublished
1874 TEX₈₆-data from CIROS- (12 TEX₈₆-data points), here displayed in panel (c), and from DSDP Site 270,
1875 where only one data point matched our mid-early Oligocene time slice in panel (a). All TEX₈₆ data have
1876 been converted to the SST using linear calibration of Kim et al. (2010) (calibration error: $\pm 5.2^{\circ}\text{C}$). The
1877 paleogeographic position is generated with G-plates (<http://www.gplates.org>), based on the global plates
1878 geodynamic motion model from Müller et al., (2018).

Deleted: ANDRILL,

Deleted: 6

1880 **Supplementary Information**

1881 **Supplementary Table S1:** Table with a summary of demagnetization data results. Sample identification,
1882 Core location indicating core, section and depth (mbsf), Declination, Inclination, Sample intensity (in
1883 A/m²), MAD values and remarks including the steps used for interpretation. Resultant orthoplots are
1884 depicted in Fig. S1.

1885
1886 **Supplementary Table S2:** Concentrations of GDGTs at Site 274. All samples and corresponding depths,
1887 age of sample, GDGT peak area values, TEX₈₆ (Schouten et al., 2002) and BIT index values (Hopmans et
1888 al., 2004), Methane Index (Methzhang) values (Zhang et al., 2011), GDGT2/Crenarchaeol ratios (Weijers
1889 et al., 2011), GDGT-0/Crenarchaeol ratios (Blaga et al., 2009) and GDGT-2/GDGT-3 ratios (Taylor et al.,
1890 2013), and RING index (Sinninghe Damsté, 2016). SST calibrations from Kim et al., 2010; Kim et al., 2012.
1891 SSTK10L = linear calibration of Kim et al. (2010). Discarded samples (OUTLIER=TRUE) with outlier
1892 values are based on BIT > 0.4, GDGT2/GDGT3 > 5, 'GDGT0/cren' > 2 and 'Methzhang' > 0.3.

1893
1894 **Supplementary Table S3:** Total palynomorph assemblage counts DSDP Site 274 cores 43–21.
1895

1898 **Supplementary Table S4: Correspondence analysis (CA) scores of the dinocysts assemblage data from**
1899 **DSDP Site 274.**

1900

1901 **Supplementary Figure S1: Orthogonal plots of representative samples. Most of the samples used for the**
1902 **correlation show two distinctive directions, both in normal samples and in reversed samples. Inclination**
1903 **values are also indicated. Open plots indicate inclinations (vertical projection). All calculated directions are**
1904 **available in Table S1. Samples were calculated by means of the Paldir and paleomagnetism.org (Koymans**
1905 **et al., 2016) programs.**

1906

1907 **Supplementary Figure S2: Relevant GDGT indices to filter out biased outliers (red crosses) in the generated**
1908 **GDGT data (Table S2), plotted against sample depth (mbsf). The red line marks the limit of reliable values.**
1909 **a) TEX_{86} (Schouten et al., 2002). b) BIT index values (Hopmans et al., 2004). c) Methane Index (Methzhang)**
1910 **values (Zhang et al., 2011). d) AOM index (GDGT2/Crenarchaeol ratios) (Weijers et al., 2011). e) Water**
1911 **column overprint values (GDGT-2/GDGT-3 ratios) (Taylor et al., 2013). f) Methanogenesis values (GDGT-**
1912 **0/Crenarchaeol ratios) (Blaga et al., 2009).**

1913

1914 **Supplementary Figure S3: Cross plot between the ring index and TEX_{86} values of samples from DSDP Site**
1915 **274. The lines mark the outer ranges of the ring index (Zhang et al., 2016), outside of which samples have**
1916 **outlying values (marked as crosses). The shade of blue indicates the sample depth (mbsf).**

1917

Page 11: [1] Deleted	Bijl, P.K. (Peter)	5/5/21 10:06:00 PM
Page 11: [1] Deleted	Bijl, P.K. (Peter)	5/5/21 10:06:00 PM
Page 11: [2] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [2] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [3] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:12:00 PM
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM

Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
▼		
▲		
Page 11: [4] Deleted	Frida S Hoem	5/5/21 12:52:00 PM
▼		
▲		
Page 11: [5] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:19:00 PM
▼		
▲		
Page 11: [5] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:19:00 PM
▼		
▲		
Page 11: [5] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:19:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [6] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:11:00 PM
▼		
▲		
Page 11: [7] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:26:00 PM
▼		
▲		
Page 11: [7] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:26:00 PM
▼		
▲		
Page 11: [7] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:26:00 PM
▼		
▲		
Page 11: [7] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:26:00 PM
▼		
▲		
Page 11: [7] Deleted	Sangiorgi, F. (Francesca)	5/4/21 4:26:00 PM
▼		
▲		
Page 11: [8] Deleted	Frida S Hoem	5/6/21 9:23:00 PM
▼		
▲		

Page 12: [14] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:25:00 PM
▼		
▲		
Page 12: [14] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:25:00 PM
▼		
▲		
Page 12: [15] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:34:00 PM
▼		
▲		
Page 12: [15] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:34:00 PM
▼		
▲		
Page 12: [15] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:34:00 PM
▼		
▲		
Page 12: [15] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:34:00 PM
▼		
▲		
Page 12: [15] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:34:00 PM
▼		
▲		
Page 12: [16] Deleted	Bijl, P.K. (Peter)	5/5/21 10:19:00 PM
▼		
▲		
Page 12: [16] Deleted	Bijl, P.K. (Peter)	5/5/21 10:19:00 PM
▼		
▲		
Page 12: [16] Deleted	Bijl, P.K. (Peter)	5/5/21 10:19:00 PM
▼		
▲		
Page 12: [16] Deleted	Bijl, P.K. (Peter)	5/5/21 10:19:00 PM
▼		
▲		
Page 12: [17] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:31:00 PM
▼		
▲		
Page 12: [17] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:31:00 PM
▼		
▲		
Page 12: [17] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:31:00 PM
▼		
▲		
Page 12: [17] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:31:00 PM
▼		
▲		
Page 12: [18] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:37:00 PM
▼		
▲		
Page 12: [18] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:37:00 PM

Page 12: [18] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:37:00 PM
▼		
▲		
Page 12: [18] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:37:00 PM
▼		
▲		
Page 12: [18] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:37:00 PM
▼		
▲		
Page 12: [19] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:39:00 PM
▼		
▲		
Page 12: [19] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:39:00 PM
▼		
▲		
Page 12: [20] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:41:00 PM
▼		
▲		
Page 12: [20] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:41:00 PM
▼		
▲		
Page 12: [21] Deleted	Frida S Hoem	5/6/21 10:27:00 PM
▼		
▲		
Page 12: [22] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:46:00 PM
▼		
▲		
Page 12: [23] Deleted	Frida S Hoem	5/5/21 2:17:00 PM
▼		
▲		
Page 12: [23] Deleted	Frida S Hoem	5/5/21 2:17:00 PM
▼		
▲		
Page 12: [24] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:53:00 PM
▼		
▲		
Page 12: [24] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:53:00 PM
▼		
▲		
Page 13: [25] Deleted	Frida S Hoem	5/6/21 11:28:00 PM
▼		
▲		
Page 13: [25] Deleted	Frida S Hoem	5/6/21 11:28:00 PM
▼		
▲		
Page 13: [25] Deleted	Frida S Hoem	5/6/21 11:28:00 PM
▼		
▲		
Page 13: [25] Deleted	Frida S Hoem	5/6/21 11:28:00 PM

Page 13: [25] Deleted	Frida S Hoem	5/6/21 11:28:00 PM
▼		
▲		
Page 13: [26] Deleted	Frida S Hoem	5/6/21 11:24:00 PM
▼		
▲		
Page 13: [26] Deleted	Frida S Hoem	5/6/21 11:24:00 PM
▼		
▲		
Page 13: [27] Deleted	Frida S Hoem	5/14/21 4:23:00 PM
▼		◀
▲		
Page 13: [27] Deleted	Frida S Hoem	5/14/21 4:23:00 PM
▼		◀
▲		
Page 13: [28] Deleted	Frida S Hoem	3/9/21 3:49:00 PM
▼		
▲		
Page 13: [28] Deleted	Frida S Hoem	3/9/21 3:49:00 PM
▼		
▲		
Page 13: [28] Deleted	Frida S Hoem	3/9/21 3:49:00 PM
▼		
▲		
Page 13: [28] Deleted	Frida S Hoem	3/9/21 3:49:00 PM
▼		
▲		
Page 13: [28] Deleted	Frida S Hoem	3/9/21 3:49:00 PM
▼		
▲		
Page 13: [29] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:57:00 PM
▼		
▲		
Page 13: [29] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:57:00 PM
▼		
▲		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
▲		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
▲		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
▲		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
▲		

Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
Page 13: [30] Deleted	Sangiorgi, F. (Francesca)	5/4/21 5:58:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [31] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:02:00 PM
▼		
Page 13: [32] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:03:00 PM
▼		
Page 13: [32] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:03:00 PM
▼		
Page 13: [32] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:03:00 PM
▼		
Page 13: [33] Deleted	Frida S Hoem	5/7/21 12:14:00 AM
▼		
Page 13: [33] Deleted	Frida S Hoem	5/7/21 12:14:00 AM
▼		

Page 15: [34] Deleted	Frida S Hoem	5/16/21 1:16:00 PM
▼		◀
▲		
Page 15: [34] Deleted	Frida S Hoem	5/16/21 1:16:00 PM
▼		◀
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [35] Deleted	Frida S Hoem	5/14/21 7:20:00 PM
▼		
▲		
Page 15: [36] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:36:00 PM
▼		
▲		
Page 15: [36] Deleted	Sangiorgi, F. (Francesca)	5/4/21 6:36:00 PM
▼		
▲		
Page 15: [37] Deleted	Frida S Hoem	5/14/21 4:30:00 PM
▼		
▲		
Page 15: [37] Deleted	Frida S Hoem	5/14/21 4:30:00 PM
▼		
▲		
Page 15: [38] Deleted	Sangiorgi, F. (Francesca)	5/5/21 9:01:00 AM
▼		
▲		
Page 15: [38] Deleted	Sangiorgi, F. (Francesca)	5/5/21 9:01:00 AM
▼		
▲		
Page 15: [38] Deleted	Sangiorgi, F. (Francesca)	5/5/21 9:01:00 AM
▼		
▲		
Page 15: [38] Deleted	Sangiorgi, F. (Francesca)	5/5/21 9:01:00 AM
▼		
▲		

Page 15: [40] Deleted	Frida S Hoem	5/14/21 7:01:00 PM
▼		
▲		
Page 15: [40] Deleted	Frida S Hoem	5/14/21 7:01:00 PM
▼		
▲		
Page 15: [40] Deleted	Frida S Hoem	5/14/21 7:01:00 PM
▼		
▲		
Page 15: [41] Deleted	Bijl, P.K. (Peter)	5/5/21 10:28:00 PM
▼		
▲		
Page 15: [41] Deleted	Bijl, P.K. (Peter)	5/5/21 10:28:00 PM
▼		
▲		
Page 15: [41] Deleted	Bijl, P.K. (Peter)	5/5/21 10:28:00 PM
▼		
▲		
Page 16: [42] Deleted	Frida S Hoem	5/7/21 12:50:00 AM
▼		
▲		