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Abstract The 4.2 kyr event is regarded as one of the largest and best documented abrupt climate disturbances of the Holocene. 

Drying across the Mediterranean and Middle East is well established and is linked to societal transitions in the Akkadian, 

Egyptian and Harappan civilizations. Yet the impacts of this regional drought are often extended to other regions and 15 

sometimes globally. In particular, the nature and spatial extent of the 4.2 kyr event in the tropics have not been established. 

Here, we present a new stalagmite stable isotope record from Anjohikely, northwest Madagascar. Growing between 5 and 2 

kyr BP, stalagmite AK1 shows a hiatus between 4.32 and 3.83 kyr BP, replicating a hiatus in another stalagmite from nearby 

Anjohibe, and therefore indicating a significant drought around the time of the 4.2 kyr event. This result is the opposite to wet 

conditions at 8.2 kyr BP, suggesting fundamentally different forcing mechanisms. Elsewhere in the south-east African 20 

monsoon domain dry conditions are also recorded in sediment cores in Lake Malawi and Lake Masoko and the Taros Basin 

on Mauritius. However, at the peripheries of the monsoon domain, drying is not observed. At the northern (equatorial East 

Africa) and eastern (Rodrigues) peripheries, no notable event is record. At the southern periphery a wet event is recorded in 

stalagmites at Cold Air Cave and sediment cores at Lake Muzi and Mkhuze Delta. The spatial pattern is largely consistent with 

the modern rainfall anomaly pattern associated with weak Mozambique Channel Trough and a northerly austral summer Inter 25 

Tropical Convergence Zone position. Within age error, the observed peak climate anomalies are consistent with the 4.2kyr 

event. However, outside Madagascar, regional hydrological change is consistently earlier than a 4.26 kyr BP event onset. 

Gradual hydrological change frequently begins at 4.6 kyr BP, raising doubt as to whether any coherent regional hydrological 

change is merely coincident with the 4.2 kyr event rather than part of a global climatic anomaly. 

1 Introduction 30 

The recent formal subdivision of the Holocene (Walker et al., 2018; Walker et al., 2018)  has proved controversial (Helama 

and Oinonen, 2019). In particular the middle to late Holocene (Northgrippian to Meghalayan) division defined at 4.20 kyr BP, 
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close to the onset of a significant Holocene climate anomaly occurred between 4.26 and 3.97 kyr BP, the so-called “4.2 kyr 

event”. The 4.2kyr event is an abrupt climate anomaly between 4.26 and 3.97 kyr BP (Carolin et al., 2019), well documented 

in the Mediterranean (Bini et al., 2019; Zanchetta et al., 2016) and Middle East (Kaniewski et al., 2018) as a widespread 35 

drought, contributing to societal change in the Akkadian civilization (Höflmayer, 2017; Weiss et al., 1993; Weiss, 1997; 

Höflmayer, 2017; Weiss et al., 1993; Weiss, 1997). However, both the spatial extent beyond the data-rich heartland of the 

northern hemisphere mid-latitudes, and the climate processes behind the 4.2 kyr event are uncertain. The 4.2 kyr event may be 

one of the smallest forced climate anomalies of the Holocene, perhaps through a freshwater input into the north Atlantic (Wang 

et al., 2013; Wang et al., 2013), akin to a smaller version of the 8.2 kyr event. Alternatively, it may be one of the largest 40 

unforced (i.e. natural variability) climate anomalies of the Holocene (Yan and Liu, 2019), driven by changes in the North 

Atlantic Oscillation. 

 

In particular, the impact of the 4.2 kyr event on the tropics and subtropics is unknown. The most often cited paper on the 

subject is Marchant and Hoogiemstra (Marchant and Hooghiemstra, 2004), which provides a compilation of records from 45 

Africa and South America. This paper does not mention the 4.2 kyr event once, instead referring to a series of climatic changes 

around 4.0 kyr event, potentially associated with changing tropical sea-surface temperatures. This 4 kyr BP shift in tropical 

climate is now widely documented in the literature and likely related to changes in the mean state of ENSO (Denniston et al., 

2013; Gagan et al., 2004; Giosan et al., 2018; Li et al., 2018; MacDonald, 2011; Toth and Aronson, 2019). No causal 

relationship between the 4.0 kyr BP tropical climate shift and the 4.2kyr event has been established. Distinguishing between 50 

these two climatic events is crucial in understanding the spatial extent of the 4.2 kyr event. 

 

An increasing number of tropical paleoclimate records now have the sampling resolution and dating precision to distinguish 

between the 4.2 kyr event and the 4.0kyr BP tropical climate shift. In this study we investigate the impacts of the 4.2 kyr event 

on the south-west Indian Ocean monsoon domain. We present a new stalagmite 18O record of monsoon variability from north-55 

west Madagascar, alongside other climate records from the region. 

2 Climatology 

The South-East African Monsoon (SEAfM), including the Malagasy Summer Monsoon (MSM), is driven by the annual 

southwards migration of the Inter-Tropical Convergence Zone during austral summer (Jury and Pathack, 1991; Jury et al., 

1995). The mountains of eastern Madagascar block the prevailing easterlies (Barimalala et al., 2018), allowing the cyclonic 60 

Mozambique Channel Trough (MCT) to form in the Mozambique Channel as the Mascarene High retreats to the south-west 

in the austral summer (Barimalala et al., 2020). As a result, between 30° and 50°E the summer rainfall band pushes down to 

20°S, following the centre of convergence rather than peak regional sea-surface temperatures (SST) (Koseki and Bhatt, 2018), 
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but with local SST still playing a role in the mean state of the MCT (Barimalala et al., 2018). The rainfall band is almost 

discontinuous from the rainfall band to the east and west beyond bounding meridional mountain ranges (Koseki and Bhatt, 65 

2018). Winds originate from the Indian Winter Monsoon and Gulf of Oman moving south-west over the equatorial Indian 

Ocean before curving round to the south-east (i.e. northwesterlies) towards Madagascar. Moisture is likely derived from the 

equatorial west Indian Ocean and local sources (Scroxton et al., 2017). 

 

Further south, moisture transport is driven by Tropical Temperate Troughs. Upper level mid-latitude baroclinic instabilities 70 

combined with low-latitude moist convection create a band of rainfall running north-west, south-east across southern Africa 

(Macron et al., 2014; Macron et al., 2014), with the Mature and Late Phases influencing rainfall on Madagascar (Macron et 

al., 2016). South of 25°S and the moisture blocking influence of the mountains of Madagascar, rainfall in southeast Africa is 

derived from the southeasterly trade winds, and while rainfall is still seasonal enough to considered monsoonal, there is no 

seasonal wind reversal (Figure 1). 75 

 

Interannual rainfall variability in northwest Madagascar is associated with changes in the strength of the MCT. Stronger 

cyclonic conditions lead to stronger westerlies in the Mozambique Channel towards Madagascar, greater onshore transport of 

moisture and increased rainfall. This pattern leads to a rainfall dipole between Madagascar and South Africa. A stronger MCT 

is associated with a more southerly position of the Inter Tropical Convergence Zone (ITCZ) (Barimalala et al., 2020). 80 

 

Unlike much of the circum-west Indian Ocean basin, tropical zonal atmospheric circulation variability such as the Indian 

Ocean Dipole plays a relatively weak role in MSM rainfall amount. The Indian Ocean Dipole is seasonally locked and, by 

definition, is terminated by the wind reversal at the onset of the austral monsoons. Similarly, for tropical zonal oceanic 

variability, maximum interannual western Indian Ocean SST variability is between September and November (Schott and 85 

McCreary Jr., 2001), before the MSM. These SST anomalies can persist, and there is a statistically significant relationship 

between monthly SST and monthly rainfall in northern Madagascar in December (r=0.377, p=0.021), but the relationship does 

not persist into later monsoon months (Scroxton et al., 2017). At longer timescales MSM rainfall variability appears to respond 

to both SST variability and meridional atmospheric variability (Scroxton et al., 2017; Scroxton et al., 2019; Voarintsoa et al., 

2019; Zinke et al., 2004) with variability in the spatial teleconnections of El Niño-Southern Oscillation potentially driving 90 

subtropical SSTs which influence rainfall (Zinke et al., 2004). 

 

Of relevance to the 4.2kyr event, the response of the MSM to abrupt North-Atlantic cold events appears to be towards wetter 

conditions, as seen in the response of stalagmite 18O in northwest Madagascar during the 8.2 kyr event (Voarintsoa et al., 

2019), and in the growth phases of stalagmites in southwest Madagascar during Heinrich stadial 1 and the Younger Dryas 95 

(Scroxton et al., 2019). This response fits with the idea of southerly shifts in mean ITCZ position from a cooler Northern 
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Hemisphere and/or reduced Atlantic thermohaline circulation (Broccoli et al., 2006; McGee et al., 2014; Zhang and Delworth, 

2005; Broccoli et al., 2006; McGee et al., 2014; Zhang and Delworth, 2005). A 4.2kyr event forced from a cool North Atlantic 

(Wang et al., 2013) would therefore predict wet conditions in the MSM and SEAfM more broadly. 

 100 

 

Figure 1: Location map of south-west Africa. Blue dots indicate the southern hemisphere summer monsoon regime, defined as where 

the summer (NDJAM) to winter(MJJAS) rainfall range is greater than 300mm and Monsoon Precipitation Index (summer to winter 

range/annual precipitation) is greater than 0.5 (Wang and Ding, 2008). Black dots indicate locations of paleoclimate records. 

3 New samples and methodology 105 

Anjohikely (15.56°S, 46.87°E) is located in the Narinda karst in northwest Madagascar. Sitting in Eocene limestone topped 

with dolomite, and just 2km SSW of the larger, well-documented Anjohibe, Anjohikely has 2.1km of decorated passages, 

typically between collapsed dolines but with some well-decorated chambers with more restricted airflow (Laumanns and 

Gebauer, 1993). From Anjohikely, stalagmite AK1 was extracted in 2014. AK1 is a thin, 830mm tall, candlestick-style, 

aragonite stalagmite (Figure 2). 110 

 

The age model for AK1 was determined from 12 U-Th ages (Table 1). U-Th samples weighing 140–190 mg were prepared 

and analyzed at the Massachusetts Institute of Technology. Samples were combined with a 229Th-233U-236U tracer, digested, 

purified via iron coprecipitation and ion exchange chromatography. U and Th were analyzed on separate aliquots using a Nu 

Plasma II-ES multi-collector ICP-MS equipped with a CETAC Aridus II desolvating nebulizer. U-Th ages were calculated 115 

using the half-lives of 75,584 ±110 for 230Th, 245,620 ±260 for 234U (Cheng et al., 2013), 1.55125 x 10-10 yr-1 for 238U (Jaffey 
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et al., 1971) and an initial 230Th/232Th ratio of 4.4(±2.2)x10-6. Age models was constructed using OxCal (Bronk Ramsey, 2008) 

using a P-Sequence Poisson process depositional model, with a k0 parameter of 0.1. An additional prior of a hiatus was 

included at 707mm. 

 120 

AK1 was sampled for stable isotopes (13C and 18O) at increments ranging from 0.25 to 5mm to achieve an approximately 5-

year resolution (min: 13.3 years per sample, max: 0.9, average: 4.5, standard deviation 2.2) (Figure 2). Lower sampling rate 

sections were drilled, and higher sampling rate sections were milled, both with a 1mm diameter drill bit. A total of 645 samples 

were analyzed for stable oxygen and carbon isotope ratios using a Thermo Scientific Gas Bench II for sample preparation and 

a Thermo Delta V Advantage isotope ratio mass spectrometer at the University of Massachusetts Amherst. Reproducibility of 125 

the standards is typically better than 0.04‰ for 13C and 0.06‰ for 18O (1). 
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Figure 2: Photographs of stalagmite AK1 with scalebar length of 100mm. Red shading denotes U-Th sampling locations, dark blue 

dots show stable isotope drill holes, light blue lines show stable isotope milling trench. 130 
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4 Results 

4.1 AK1 and the local response in Madagascar 

Stalagmite AK1 from Anjohikely grew from 5.38 to 1.92 kyr BP with a hiatus between 4.31 and 3.83 kyr BP (Table 1, Figure 

3). The 18O record is relatively stable before 3.0 kyr BP, with 1 to 2‰ range in centennial scale variability (Figure 2). A 

decline in 18O between 3.0 and 2.5 kyr BP leads to two significant negative anomalies at 2.65 and 2.4 kyr BP before a return 135 

to the least negative 18O values at the cessation of growth at 1.9 kyr BP. To the first order we interpret stalagmite 18O in 

northwest Madagascar as a proxy for regional monsoonal strength, likely highly correlated to local rainfall amount, through a 

combination of the “amount effect” and strength of atmospheric convection (Scroxton et al., 2017; Voarintsoa et al., 2017; 

Voarintsoa et al., 2019; Wang et al., 2019b). However, the precise mechanisms controlling stalagmite 18O response to 

hydroclimate changes varies and are discussed in section 5.1. 140 

 

<Table 1 here, currently at end of manuscript as will need to be horizontal format> 

 

A positive 18O excursion at the top of stalagmite AK1 coincides with a change in stalagmite diameter, shape and location of 

the drip axis, which are indicative of a change in the drip hydrology or cave ventilation regime. This increases the likelihood 145 

of either non-equilibrium deposition and/or enhanced in-karst fractionation. As such, while the positive change in 18O is likely 

indicative of drying conditions, we suggest that the magnitude of 18O change in the top 99 mm of AK1 (younger than 2.33 

kyr BP) is not directly comparable with the rest of the record. 

 

Between 4.30 and 3.84 kyr there is a growth hiatus, replicated in stalagmite ANJ-94 from Anjohibe at (4.20–3.99) (Wang et 150 

al., 2019b). A replicated hiatus likely indicates dry conditions and potentially the driest conditions of the mid/late Holocene. 

The 4.2 kyr event therefore appears at least locally remarkable in northwest Madagascar. A dry anomaly is the opposite to the 

wet conditions recorded at 8.2 kyr BP (Voarintsoa et al., 2019), a Holocene climatic anomaly often viewed as a greater 

magnitude version of the 4.2 kyr event (Bond et al., 2001; Wang et al., 2013). 

 155 

The largest 18O excursions in the AK1 record are two negative (wet) anomalies at 2.65 and 2.40 kyr BP. Both excursions are 

replicated, within dating errors, as dry events in the Dongge and (to a lesser extent) Sanbao speleothem records from China 

(Dong et al., 2010; Dykoski et al., 2005) and the Huagapo record from Peru (Kanner et al., 2013). The 2.65 kyr excursion is a 

dry event in the Sahiya speleothem record of western India (Kathayat et al., 2017). These abrupt hydroclimate anomalies have 

received little attention despite being replicable across the tropics and of much greater magnitude there than more frequently 160 

studied Holocene climatic events such as the 4.2 kyr event. They are deserving of more thorough investigation in the future. 
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Figure 3: a) Results from stalagmite AK1 from Anjohikely, northwest Madagascar, showing top: U-Th ages (red error bars), OxCal 

age model (blue lines) and associated 95% confidence interval (blue shading), and bottom: stalagmite d18O. Data from the top 99mm 165 
are shown in a lighter blue. b) comparison with other monsoon influenced speleothem d18O records. From top to bottom: Sanbao 

and Dongge caves in China, Sahiya cave in India and Huagapo cave in Peru. 

 

4.2 Regional variability in the African monsoons 

In the southern hemisphere of East Africa, the Kilimanjaro ice core 18O shows a gradual drying, accelerating at 3.65 kyr BP 170 

(Thompson et al., 2002)(Figure 4). An increase in dust occurs at 4.2 kyr BP but the isotopes indicate only a gradual change 

from warmer and wetter conditions to dry and cooler. A pollen-based estimate of precipitation from multiple sites in Burundi 

suggest a transition from relatively stable conditions to higher-amplitude swings between low and high precipitation around 
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3.6 kyr BP, but no abrupt 4.2 kyr event (Bonnefille and Chalie, 2000; Bonnefille and Chalie, 2000) . It is questionable whether 

the Lake Challa leaf wax D and BIT index have the resolution to record an abrupt 4.2 kyr event. The low-resolution BIT 175 

record shows a peak in wet conditions between 4.2 and 3.7 kyr BP, but this is part of a long-term millennial scale trend lasting 

1.5 kyr (Verschuren et al., 2009). The leaf wax D is inverse, indicating peak dry conditions between 4.2 and 3.7 kyr BP, again 

part of a longer millennial scale trend. The authors reconcile these differences suggesting that the D likely records moisture 

transport processes than local rainfall amount (Tierney et al., 2011; Tierney et al., 2011) , and attribute changes to tropical 

zonal reorganisation. In all cases observed change fit with tropical reorganisation at 4.0 kyr BP better than an abrupt, 300 year 180 

long 4.2 kyr event. We interpret all four East African monsoon records as showing no sign of an abrupt 4.2 kyr event. 

 

Further south in the SEAfM, at Lake Masoko drying begins around 4.6 kyr BP, peaking around 4.3 kyr BP (Garcin et al., 

2006). A possible short hiatus occurs between 4.0 and 3.9 kyr BP. At Lake Malawi drying begins around 4.65 kyr BP. Between 

4.4 and 3.95 kyr BP there is only a single datapoint, which given surrounding deposition rates, we interpret as an interpolated 185 

point through an unrecognised hiatus (Johnson et al., 2002). 

 

In the Indian Ocean pollen counts (ln(Latania/Eugenia)) from the Taros Basin in Mauritius suggest dryer conditions between 

4.5 and 4.1 kyr BP, while sediment core ln(Ca/Ti) ratios indicate brief centennial wet events at 4.38 and 4.15 kyr BP, all on a 

background shift from wetter to dryer conditions at 4.8 kyr BP (de Boer et al., 2014). Further east on Rodrigues, speleothem 190 

18O values from La Vierge show no change in conditions at the 4.2 kyr event but do show a gradual drying beginning around 

3.9 kyr, interpreted as part of the widespread tropical climatic changes at this time (Li et al., 2018). 

 

In South Africa, at Cold Air Cave there is little change in speleothem 18O over the 4.2 kyr event (Holmgren et al., 2003), with 

slightly wetter conditions between 4.6 and 4.05 kyr BP and slightly dry conditions between 4.05 to 3.8 kyr BP. A growth phase 195 

of stalagmite T5 between 4.35 and 3.95 kyr BP suggests wetter conditions during the Middle to Late Holocene transition but 

could be a coincident change in drip hydrology (Repinski et al., 1999). Sediment cores from Lake Muzi (Humphries et al., 

2019) and Mkhuze Delta (Humphries et al., 2020) in eastern South Africa both indicate periods of wet conditions between 

4.25 and 3.8 kyr BP. 
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 200 

Figure 4: Regional hydroclimate changes in southeast Africa between 5 and 3 kyr BP. For each record proxy z-score is calculated \ 

between 2.5 and 5.5 kyr BP to reduce the influence of orbital scale changes. Circles indicate datapoints. Lines without circles are at 

https://doi.org/10.5194/cp-2020-137
Preprint. Discussion started: 3 November 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

 

higher resolution so circles have been omitted for clarity. Blue bars indicate the duration of the 4.2kyr event and a regional 

hydroclimatic change at 4.6 kyr BP. Records are plotted so that wet conditions are up. 

5 Discussion 205 

5.1 Replication of stalagmites of mid-late Holocene climate in northwest Madagascar 

Replication of results from the same or nearby caves is considered the gold standard for producing reliable climate records 

from stalagmite proxy time series (Dorale and Liu, 2009). Two speleothem 18O records from northwest Madagascar record 

the 5000 to 3000-year BP interval: AK1 from Anjohikely (this study) and ANJ94-5 from Anjohibe (Wang et al., 2019b). 

Anjohibe is 2.3km northeast of Anjohikely. Both have hiatuses at the 4.2 kyr event: 4.3–3.8 in AK1, 4.2–4.0 in ANJ94-5. 210 

ANJ94-5 shows a slightly later cessation of growth and a positive excursion into the event, potentially due to progressive 

enrichment of a dwindling karst water store. AK1 also shows minor 18O enrichment (0.7‰ over 1.5mm or 13 years) just 

before the hiatus. The positive excursions seen in both stalagmites leading into the hiatus is evidence that the hiatus was caused 

by dry rather than wet conditions. Therefore, the primary result of this paper is replicated. 

 215 

However, the 18O records of speleothems ANJ94-5 and AK1 do not overlie each other and do not initially appear to replicate. 

Here we discuss where 18O records disagree, where 18O records might agree with other hydroclimate indicators such as 

growth rate, and what might be the possible causes. ANJ94-5 is a mixed mineralogy stalagmite, whereas AK1 is aragonitic. 

The aragonitic sections of ANJ94-5 at 4.8–4.6 kyr BP and 4.0kyr BP onwards have 18O values comparable to those of AK1. 

However, the isotopic difference between calcite and aragonitic sections of ANJ94-5 of ~2‰ is far larger than the expected 220 

offset between calcite and aragonite of ~0.8‰ determined from laboratory studies (Kim et al., 2007), theoretical calculations 

(Tarutani et al., 1969), and in stalagmites from Anjohibe (Scroxton et al., 2017). 

 

The discrepancies between 18O records could be explained by differences in cave conditions. ANJ94-5 was collected from a 

chamber open to the atmosphere, with atmospheric CO2 concentrations (Wang et al., 2019b). ANJ94-5 was therefore likely 225 

subject to considerable kinetic fractionation during speleothem growth (Mickler et al., 2006). Anjohikely has more restricted 

chambers and a greater areal coverage of precipitated calcite, especially on the walls and floor. Therefore, while additional 

evidence from ANJ94-5 suggests that isotopic variability may still be climatic in origin (Wang et al., 2019a), the absolute 18O 

values are likely not comparable with AK1, sourced from a more restricted chamber in a ‘wetter’ cave. 

 230 

With this in mind, a comparison of more positive and negative periods of 18O in both stalagmites does show good 

reproducibility interpreted as broad-scale climatic changes in the hydrological cycle. Both stalagmites show a gradual positive 
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(drying) trend between 5500 and 4200 kyr BP with modest centennial scale variability indicated by more negative 18O 

(wetter)(5.3–5.2,5.1–4.9, around 4.5 kyr BP) and more positive 18O (drier)(4.9–4.7, 4.5–4.3 kyr BP) values. 

 235 

After (above) the hiatus there is agreement between the growth rate of ANJ94-5 and the isotopes of AK1. Between 3.15 and 

2.4 kyr BP there is a 0.7‰ 18O decrease in AK1, suggesting wetter conditions (3.5 to 3.15 kyr BP: -3.7‰, 3.15 to 2.4 kyr 

BP: -4.4‰). ANJ94-5 also has a negative 18O excursion, but it is smaller at around 0.3‰ (3.5 to 3.15 kyr BP: -4.0 ‰, 3.15 

to 2.4 kyr BP: -4.3‰). An increased growth rate in ANJ94-5 is also likely indicative of wetter conditions, either through greater 

transport of calcium ions by reduced PCP or enhanced flow rate, or enhanced vegetative activity increasing soil pCO2 and the 240 

dissolution of the karst host rock. 

 

Both stalagmites return to higher 18O (drier conditions) at 2.4kyr BP. AK1: 3.15 to 2.4 kyr BP: -4.4‰, 2.4 to 2.0 kyr BP: -

3.0‰. ANJ94-5: 3.15 to 2.4 kyr BP: -4.3‰, 2.4 to 2.0 kyr BP: -3.9‰. However, at this point AK1 undergoes a shape change, 

becoming thinner and less cylindrical. We suggest that from 2.4 kyr BP onwards, AK1 may also be subject to enhanced 245 

disequilibrium effects, perhaps related to changes in cave ventilation regime, and/or a progressive drying of the drip prior to 

the termination of growth. We suggest that the isotopic values during this section (younger than 2.4 kyr BP) are not directly 

comparable to those elsewhere in the stalagmite. 

 

In addition to isotopic differences caused by kinetic fractionation, it is also possible that different drip pathways contribute to 250 

different isotopic responses in the two stalagmites. For example, differences in storage and mixing and in-karst evaporation 

during the dry season (Markowska et al., 2020) might lead to different sensitivities to different parts of the hydrologic system: 

extreme events, seasonal vs long-term mean etc. 

 

The consequences of different cave conditions, karst storage and drip pathways on stalagmite 18O remains a working 255 

hypothesis. More efforts are needed focusing on replicating northwest Madagascar speleothem 18O and understanding the 

local hydrology at a drip rather than cave level. 
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Figure 5: Comparison of speleothems from Anjohikely (AK1, blue colors, this study) and Anjohibe (ANJ94-5, red colors 36), two 

caves less than 2 km apart in northwest Madagascar. a) speleothem 18O during the period of overlap. b-e) 1000-year close-up of 260 
events around the 4.2 kyr BP event indicating the contemporaneous hiatus in both speleothems. b,d) Age depth model, circles indicate 

individual stable isotope data points linked by line. Shading denotes 2 age model error for stalagmite AK1. Light colored error 

bars show individual dates with 2s error. c,e) individual 18O measurements for each stalagmite. 
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5.2 Middle to Late Holocene hydroclimate changes in the southeast African monsoon? 

A hydroclimate event synchronous to the 4.2 kyr event appears to have some local significance in the SEAfM domain, 265 

particularly around northern Madagascar and Lakes Malawi and Masoko. Peak dry conditions occur 4.5–4.1 kyr BP at Lake 

Masoko, 4.4–4.0 kyr BP at Lake Malawi, 4.2–4.0 kyr BP at Anjohibe, 4.3–3.8 kyr BP at Anjohikely, and 4.5–4.1 kyr BP at 

Taros Basin. Peak wet conditions occur at 4.4–3.95 at Cold Air cave (based on stalagmite T5), 4.2–3.8 kyr BP at Lake Muzi 

and 4.2–3.9 kyr BP at Mkuze Delta. The age errors for most records are around ±600 years (2) for the stalagmite records and 

±200 years (2) for most other records. Therefore, these hydroclimate anomalies are all potentially synchronous with the 4.2 270 

kyr event (4.26–3.97 kyr BP). 

 

The spatial pattern of hydroclimate anomalies at the 4.2 kyr event approximates the spatial pattern of hydroclimate anomalies 

during weak MCT years. In the modern climate, weak MCT years (1981, 1990, 2006, 2017)(Figure 6a) result in dry conditions 

in northern Mozambique, Madagascar and Mauritius, wet conditions over South Africa, weakly dry conditions over Malawi 275 

and weakly wet conditions over Burundi, and Tanzania (Barimalala et al., 2020; Xie and Arkin, 1997). This suggests that the 

4.2 kyr event may be locally expressed as a period of more frequent weak Mozambique Channel Trough events. Further 

comparison with ERA-Interim reanalysis of the 850hPa specific humidity (Figure 6b) shows a similar pattern, indicating the 

rainfall anomalies are associated with decreased moisture convergence over the northern Mozambique channel (Barimalala et 

al., 2020; Dee et al., 2011). Some mismatches occur at Rodrigues and possibly Lake Muzi and Mkhuze Delta. SST anomalies 280 

suggest decreased rainfall is associated with higher subtropical SSTs to the south-east of Madagascar, and cooler tropical SSTs 

to the north-east of Madagascar (Barimalala et al., 2020). Local SSTs in the source regions of the northern Mozambique 

Channel and equatorial West Indian oceans show a slight but non-significant cooling. 

 

We suggest the 4.2 kyr event is associated with a period of more frequent weak Mozambique Channel Trough events, where 285 

reduced cyclonic conditions, atmospheric convergence and recurving of moisture bearing winds over the Mozambique Channel 

and onto Madagascar leads to reduced rainfall in the MSM. Weak MCT years are associated with a northerly location of the 

summer ITCZ relative to its climatological mean in the west Indian Ocean (Barimalala et al., 2020; Barimalala et al., 2020). 

Therefore, we hypothesize that the southern hemisphere summer ITCZ over the western Indian Ocean was further north during 

the 4.2 kyr event. 290 
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Figure 6: Combined modern and paleo- climate anomaly maps. Coloured circles indicate wet (green), dry (brown) or no (white) 

anomaly during the 4.2 kyr event at individual sites. Map colours indicate a) CMAP precipitation anomaly (Xie and Arkin, 1997; 

Xie and Arkin, 1997) and b) ERA-Interim (1980-2017) reanalysis specific humidity anomaly at 850hPa (Dee et al., 2011) for weak 295 
Mozambique Channel Trough years: 1981, 1990, 2006, 2017. Figures based on (Barimalala et al., 2020). 
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5.3 Timing of the middle to late Holocene climate shifts in the SEAfM 

While peak anomalies overlap within age uncertainty of the 4.2 kyr event, a causal relationship should not automatically be 

inferred. In most of the paleoclimate records in this compilation the Middle to Late Holocene hydroclimate anomaly begins 

around 4.6 kyr BP and is frequently gradual. This is earlier than, and in contrast to the abrupt 4.26 kyr BP onset of the 4.2 kyr 300 

event in the Mediterranean and Middle East. Drying begins around 4.6 kyr BP at Lake Masoko, Lake Malawi, and the Taros 

Basin. Wet conditions begin around 4.6 kyr BP at the Mkhuze Delta. At Anjohibe, Anjohikely and Lake Muzi, the three records 

with hydroclimatic changes very close to 4.26 kyr BP, there is also a hydroclimate change at 4.6 kyr BP, but these changes 

exhibit the opposite sign to the 4.2 kyr BP changes. Therefore, it should not yet be concluded that these hydroclimate anomalies 

are part of the 4.2 kyr event without further evidence as to the climatic mechanisms behind the event, which are currently 305 

lacking. Further, even if the 4.2 kyr BP event is present, other hydrological changes during the same millennium (notably 

around 4.6 kyr BP) seem to have similar or even stronger regional coherence. 

 

Finally, it is worth noting the general lack of expression of the 4.0 kyr tropical climate shift in the MSM, especially when 

compared with the more equatorial East African Monsoon records that indicate a reorganisation of tropical zonal climate 310 

(Gagan et al., 2004; Marchant and Hooghiemstra, 2004). Modern tropical zonal variability also has reduced influence on the 

MSM due to its atmospheric isolation from the impacts of the Indian Ocean Dipole by the seasonally locked IOD atmospheric 

anomalies (Schott and McCreary Jr., 2001). The MSM is also likely responsive to changing sea-surface temperatures (Koseki 

and Bhatt, 2018; Scroxton et al., 2019). Together, this would suggest that the 4.0 kyr BP tropical climate shift was not 

associated with changing west Indian Ocean sea-surface temperatures, but rather was forced by a change in eastern Indian 315 

Ocean or Pacific SSTs, leading to an atmosphere only response in the western Indian Ocean and limited impact on rainfall 

amount in the MSM. High resolution eastern Indian Ocean SST records are not yet available to test this hypothesis. 

6 Conclusions 

Stalagmites from Anjohibe (Wang et al., 2019b; Wang et al., 2019b) and Anjohikely (this study) caves show replicated hiatuses 

beginning near  4.2kyr BP, indicating likely dry conditions in northwest Madagascar. Alongside dry conditions at Lake Masoko 320 

and Lake Malawi, this observation provides evidence for a locally significant hydroclimate anomaly coincident with the 4.2 

kyr event. The response on Madagascar is opposite to the local response to 8.2 kyr event (Voarintsoa et al., 2019) indicating a 

fundamentally different climate mechanism. The spatial pattern of peak hydroclimate anomalies around 4.2 kyr BP matches 

the conditions seen in years with a weak Mozambique Channel Trough (MCT), suggesting the 4.2 kyr event may have been a 

time with more frequent weak MCT occurrences. Weak MCT years are associated with a northerly position of the summer 325 

west Indian Ocean ITCZ. 
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However, many regional hydroclimate anomalies fail to provide evidence of an abrupt 4.2 kyr event. Hydroclimate changes 

in the middle to late Holocene are typically gradual and begin earlier than the abrupt 4.2 kyr event, casting doubt as to whether 

the 4.2 kyr event could be the cause of regional hydroclimate anomalies at this time. Assuming causality of the entire regionally 330 

coherent hydroclimate anomaly pattern would be an overinterpretation without further understanding of the mechanistic 

processes behind the 4.2 kyr event. 
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Table 1: U-Th dating table for stalagmite AK1 

a Reported errors for 238U and 232Th concentrations are estimated to be ±1% due to uncertainties in spike concentration; analytical 

uncertainties are smaller. 

b 234U = ([234U/238U]activity - 1) x 1000. 535 

c [230Th/238U]activity = 1 - e-230T + (234Umeasured/1000)[ 230/( 230 - 234)](1 - e-( 230 - 234) T), where T is the age. "Uncorrected" indicates 

that no correction has been made for initial 230Th. 

d Ages are corrected for detrital 230Th assuming an initial 230Th/232Th of (4.4±2.2) x 10-6. 

e 234Uinitial corrected was calculated based on 230Th age (T), i.e., 234Uinitial = 234Umeasured X e234*T, and T is corrected age. 

f B.P. stands for “Before Present” where the “Present” is defined as the January 1, 1950 C.E. 540 
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