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Abstract. For previous glacial intervals, concomitant shifts in different proxy records from Greenland ice cores indicate re-

peated abrupt climate transitions comprising - among others - abrupt warming, a sudden reorganization of the atmospheric

circulation, and a retreat of perannial sea ice. The physical mechanism underlying these so-called Dansgaard-Oeschger (DO)

events remains debated. Former studies have made an effort to deduce the progression of temperature, circulation, and sea-ice

changes at the onset of DO events from paleoclimate proxy records to constrain potential triggering mechanisms. In this con-5

text, recent research reports on systematically delayed transitions in Na+ concentrations and δ18O values compared to Ca2+

concentrations and the annual layer thickness by about one decade. This is interpreted as a temporal lag of sea ice retreat and

Greenland warming with respect to atmospheric reorganization at the onset of DO-events. Here, we present a comprehensive

statistical analysis of the relative phasing of DO transitions in Ca2+ and Na+ concentration records from the NGRIP ice core

for the period 60 - 10kyr BP. Regarding the time lags identified in this period as a sample generated from an unknown popula-10

tion, we derive probability density functions for the sample and population mean and test the null-hypothesis of a simultaneous

transition. Special attention was paid to the uncertainties inherent to the transition onset detection in noisy data. Their rigorous

propagation changes the test results from significant to non-significant and therefore a purely stochastic origin of the observed

tendency for Ca2+ to lead the transition cannot be ruled out. In fact, we show that the data is very likely to comprise both: DO

events that were led by a Ca2+ transition, as well as events led by a Na+ transition. Together, these findings clearly contradict15

a systematic lead or lag between the DO transitions in the two proxies, and the apparent Ca2+ lead should therefore not be

interpreted as indication of a causal relationship. Under the assumption that all DO events followed the same physical mech-

anism and that the proxy interpretation holds true, the we conclude that at DO transition onsets, neither was the atmospheric

reorganization caused by sea ice retreat, nor was the sea ice retreat triggered by atmospheric reorganization.
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Figure 1. Time series of δ18O (blue), Ca2+ (orange) and Na+ (green) from the NGRIP ice core on the GICC05 timescale in ky BP, at

10-year resolution. Light blue vertical lines mark the timings DO events. Data retrieved from Erhardt et al. (2018) and DO event timings are

according to Rasmussen et al. (2014).

1 Introduction

In view of anthropogenic global warming, concerns have been raised that several subsystems of the earth’s climate system may

undergo abrupt and fundamental changes of state if temperatures are to exceed corresponding critical thresholds (Lenton and

Schellnhuber, 2007; Lenton et al., 2008, 2019). Under sustained warming, the Atlantic Meridional Overturning Circulation

(AMOC), the Amazon rainforest, or the Greenland ice sheet are possible candidates among others to abruptly transition to25

new equilibrium states that may differ strongly from their current states (Lenton et al., 2008). Understanding the physical

mechanisms behind abrupt shifts in climatic subsystems is crucial for assessing the associated risks and for defining safe

operating spaces in terms of cumulative greenhouse gas emissions. To date, empirical evidence for abrupt climate transitions

only comes from paleoclimate proxy records encoding climate variability in the long-term past. First discovered in the δ18O

records from Greenland ice cores, the so-called Dansgaard-Oeschger (DO) events are considered the archetype of past abrupt30

climate changes (see Fig. 1) (Johnsen et al., 1992; Dansgaard et al., 1993; Bond et al., 1993; Andersen et al., 2004). These events

constitute a series of abrupt regional warming transitions that punctuated the last and previous glacial intervals at millennial

recurrence periods. Amplitudes of the decadal-scale temperature increases reach from 5°C to 16.5°C over Greenland (Kindler

et al., 2014; Huber et al., 2006; Landais et al., 2005). The abrupt warming is followed by gradual cooling over centuries or even

a few millennia, before the climate abruptly transitions back to cold conditions. The relatively cold (warm) intervals within the35

glacial episodes have been termed Greenland stadials (GS) (Greenland interstadials (GI)). GS typically persist over millennial

time scale, before another abrupt warming starts a new cycle (Rasmussen et al., 2014). Despite being less pronounced, a global

impact of DO events on climate and ecosystems is evident in manifold proxy records (e.g., Moseley et al., 2020; Buizert et al.,

2015; Lynch-Stieglitz, 2017; Kim et al., 2012; Fleitmann et al., 2009; Voelker, 2002; Cheng et al., 2013). Apart from δ18O,
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other Greenland ice core proxy variables such as Ca2+ and Na+ also bear the signature of DO cycles as can be seen in Fig. 140

(e.g., Erhardt et al., 2019; Fuhrer et al., 1999; Ruth et al., 2007). While δ18O is interpreted as a qualitative proxy for ice core

site temperatures (Gkinis et al., 2014, and references therein), changes in Ca2+ – or equivalently dust – are believed to reflect

changes in global atmospheric circulations (Ruth et al., 2007; Erhardt et al., 2019). Na+ proxy records indicate past sea-salt

aerosol concentrations and are thought to negatively correlate with the North Atlantic sea ice cover (Erhardt et al., 2019;

Schüpbach et al., 2018). With the trigger mechanism for DO events still under debate, there have been several attempts to45

investigate the relative temporal order of the Greenland warming, the potential reorganization of the atmospheric circulation,

sea-ice retreat, and increasing precipitation across the DO transitions, by analyzing the phasing of abrupt shifts detected in

corresponding multi-proxy time series from Greenland ice cores (Erhardt et al., 2019; Thomas et al., 2009; Steffensen et al.,

2008; Ruth et al., 2007). While Thomas et al. (2009) and Steffensen et al. (2008) report delayed Greenland warming with

respect to atmospheric changes for the onsets of GI-8 and GI-1 and the Holocene, Ruth et al. (2007) find no systematic50

lead or lag between NGRIP dust concentration changes and δ18O changes across the onsets of GI-1 to GI-24. However, the

comprehensive study conducted by Erhardt et al. (2019) concludes that on average, changes in both terrestrial dust aerosol

concentrations (Ca2+) and local precipitation have preceded the changes in local temperatures (δ18O) and sea salt aerosol

concentrations (Na+) across the DO events during the last glacial cycle. These observation-based studies are complemented

by numerous conceptual theories and modeling studies that explore a variety of mechanisms to explain the DO events. Many55

authors emphasize the role of the AMOC in the emergence of DO events (Broecker et al., 1985; Clark et al., 2002; Ganopolski

and Rahmstorf, 2001; Henry et al., 2016). In that context, Vettoretti and Peltier (2018) observed a self-sustained sea-salt

oscillation mechanism to initiate the transitions between stadials and interstadials in a GCM model run, while Boers et al.

(2018) proposed a coupling between sea-ice growth, subsurface-warming, and AMOC changes to explain the DO cycles.

Moreover, Li and Born (2019) draw attention to the subpolar gyre, a sensitive region that features strong interactions between60

atmosphere, ocean and sea ice. In line with the empirical studies that suggest a delayed Greenland warming with respect to

atmospheric changes, Kleppin et al. (2015) and Zhang et al. (2014) find DO like transitions in model studies triggered by an

abrupt reorganization of atmospheric circulation patterns.

This study systematically refines the investigation of a potential Ca2+ lead with respect to Na+ at DO transition onsets.

Our work is based on piece-wise high-resolution multi-proxy time series around 16 DO-transitions from the second half of65

the last glacial, retrieved from the NGRIP ice core, and a probabilistic transition detection method, both presented by Erhardt

et al. (2019). We present a statistical framework for the stringent treatment of uncertainties that arise from the transition

detection in paleoclimate time series and investigate the significance of the postulated lag between Ca2+ and Na+. Generally,

threefold uncertainty makes the study of abrupt transition in paleoclimate records challenging (Goswami et al., 2018). First,

the proxy data is subject to ordinary measurement uncertainty. Second, dating uncertainties in each individual record (Boers70

et al., 2017; Breitenbach et al., 2012) mostly prevent any meaningful cross-archive intercomparison on the time scale relevant

for abrupt events (and sometimes even within the same archives, for example when gas proxies are compared to solid proxies

in ice cores). Third, high-frequency internal climate variability blurs abrupt transitions. Taking the perspective of stochastic

differential equations, drift and diffusion can in most practical cases not be separated unequivocally and therefore, the onset
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Table 1. List of DO events (Greenland Interstadial onsets) for which high-resolution Ca2+ and Na+ concentration data for windows centered

at the transition are available. Bold print indicates those events for which the stochastic, MCMC-based method successfully detected empirical

density distributions for transition onset. 〈∆t〉 indicates the expected time lag between the Ca2+ and the Na+ transition onsets. P (∆t > 0)

gives the probability for events to exhibit a positive Ca2+–Na+ lag, i.e., a sodium lead at the transition onset. Dates are according to

Rasmussen et al. (2014).

Event age [yr BP] 〈∆t〉 [yr] P (∆t > 0)

Holocene 11703 4.83 0.65

GI-1e 14692 -10.67 0.27

GI-2.1 23020

GI-2.2 23340

GI-3 27780 2.02 0.56

GI-4 28900

GI-5.1 30840

GI-5.2 32500 -5.76 0.37

GI-6 33740

GI-7c 35480 -4.09 0.34

GI-8c 38220 -0.53 0.48

GI-9 40160

GI-10 41460 -2.64 0.38

GI-11 43340 32.50 0.85

GI-12c 46860 -12.88 0.21

GI-13c 49280 -4.45 0.38

GI-14e 54220 -2.49 0.39

GI-15.1 55000 -18.11 0.23

GI-15.2 55800 -16.1 0.29

GI-16.1c 58040

GI-16.2 58280 -15.89 0.10

GI-17.1c 59080 -21.30 0.03

GI-17.2 59440 -14.36 0.18

of any abrupt change in the data can be determined only with limited precision (see Fig. 2(a)). Besides these quantitative75

uncertainties, interpretation of proxy data is always subject to qualitative uncertainty, since there is no exact mapping from the

proxy variable to the climate variable that the proxy is supposed to represent.

We follow the lines of (Erhardt et al., 2019) and use a Bayesian Markov-Chain-Monte-Carlo (MCMC)-based algorithm

to infer posterior probability distributions for the DO transition onset time t0 in the set of Ca2+ and Na+ time series. This

approach captures the uncertainties in the transition onset determination most conveniently and allows for the derivation of a80

stochastic sample of Ca2+–Na+ lags. Given this stochastic sample, we propose a method to estimate the mean of an underlying

population that is assumed to have generated the small observed sample of lags. Additionally, we use standard tests to assess

the significance of leads or lags between Ca2+ and Na+ transition onsets. A comparison is given between the application

4
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of the tests to the expected sample, where uncertainties in the representation of lags have been averaged out, and a rigorous

propagation of the uncertainties to the resulting p-values. Finally, we derive the probabilities for nCa2+ out of the 16 events85

under study to feature a leading Ca2+ transition. Together, these methods form a comprehensive statistical analysis and allow

to interpret the data with regard to the question of relative phasing and potential causality between atmospheric reorganization

and sea ice retreat.

This article is structured as follows: First, the data used for the study is briefly described. Second, we generically introduce

our methods, in order to facilitate potential adaptation to structurally similar problems. Attention has been paid to their sound90

mathematical formulation. This is followed by the presentation of our results together with their statistical interpretation. We

underpin and extend our interpretation in the subsequent discussion. The last section consicely summarizes the key conclusion

that can be drawn from our analysis.

2 Data

Recently, Erhardt et al. (2018) published 24 highly resolved Ca2+ and Na+ time series from the NGRIP ice core for time95

intervals of 250 to 500 years centered around DO events from the period 60-10kyr BP. The data set covers all interstadial

onsets from GI-17.2 to the Holocene, as determined by Rasmussen et al. (2014) (see Tab. 1). The time resolution decreases

from 2 to 4 years with increasing depth in the NGRIP ice core due to the compression of the core. With Ca2+ deposition

rates reflecting the state of the atmospheric circulation and Na+ concentrations being related to the sea ice extent in the North

Atlantic, the comparison of these two proxies from the same archive gives insights into the sequence of events leading to DO100

events (Erhardt et al., 2019, and references therein). Exact co-registration of the ion concentrations guarantees the absence of

any relative dating uncertainties that would impede the approach. For details on the measurement process we refer to Erhardt

et al. (2019).

3 Methods

Here, we present a generic yet detailed description of the methods we use to infer characteristics of a generating population from105

a sample which is subject to uncertainty. First, we introduce the stochastic transition onset detection algorithm that by design

returns an uncertain transition onset t0 in form of a posterior probability density distribution. Application of this algorithm to

the DO events present in the data from Sec. 2 yields an uncertain sample of transition onset lags ∆t = (∆t1, ...,∆t16) between

the calcium and the sodium transition - the starting point for our statistical analysis. Second, a statistical perspective on the

series of DO events is presented, with special emphasize on the particularity of two levels of randomness being involved. This110

is followed by some remarks on the numerical treatment of high dimensional probability densities. Subsequently, inference of

the population mean and application of hypothesis tests are discussed under rigorous propagation of the samples’ uncertainties.

We highlight that situations similar to ours, where a small-to-medium-size sample generated from an underlying population

is subject to uncertainty, may occur in many different disciplines and the content of this section may be adapted to such

5
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Figure 2. (a) Posterior probability distribution ρ(t0) for the onset of Ca2+ and Na+ transitions associated with the onset of GI-12c, derived

from Ca2+ (orange) and Na+ (green) values around the GI-12c onset at 2-year resolution, using the probabilistic ramp-fitting shown in

(b). The black lines in (b) indicates the mean of the ramps sampled in the MCMC process and the gray shaded area indicates the 5th-95th

percentiles of these ramps. (c) Histogram associated with the empirical density of transition onset lags ∆t between the two proxies (violet),

together with the corresponding Gaussian kernel density estimate (blue).

problems. For example, consider a drug study that is meant to test the effect of a medicine against fever. The difference in the115

body temperature of the probands before and after the treatment can however be measured only with finite precision. Hence,

the sample of temperature differences is uncertain in the very same sense as the sample of time lags between DO transition

onsets of different proxies. In most practical cases the relative sample uncertainty may be small and correspondingly omitted.

Also, the same shape of uncertainty on each sample member typically allows for application of hierarchical models. It is the

individuality in the sample members uncertainty that prevents the application of hierarchical methods in our case.120

3.1 Transition onset detection

Given intervals of Ca2+ and Na+ concentration time series centered around DO events, application of an MCMC-based

Bayesian ramp-fitting method developed by (Erhardt et al., 2019) yields posterior probability densities ρt0(t0) for the tran-

sition onset time t0. The approach is based on modeling the transition present in the data as a linear ramp between two constant

levels (see Fig. 2 a and b). Tab. 1 lists the 24 DO transitions for which data is available, with bold font indicating the 16 events125

for which ρt0(t0) was successfully derived for both proxies simultaneously. The probability densities for the transition onsets

of both proxies during individual events allow to compute corresponding probability densities for the lag between them:

ρ(∆t) =
∫ ∫

δ(tCa2+

0 − tNa+

0 −∆t)ρCa2+

t0 (tCa2+

0 )ρNa+

t0 (tNa+

0 )dtCa2+

0 dtNa+

0 . (1)
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In the following, ρi(∆ti) denotes the probability distribution for the lag of the i-th event under study. The index skips those

events for which the transition detection method failed. Fig. 2 shows the transitions to GI-12c for Ca2+ and Na+, together130

with the derived probability distributions for the transition onsets (panel a and b) and the corresponding distribution of lags

between the two (panel c). An overview of all probability density functions ρi(∆ti) for the transition onset lags of the 16 DO

events is given in Fig. 4. In Tab. 1 the probability for each transition to be lead by Ca+ is listed. Importantly, there is a clear

tendency for Ca2+ to lead the transition for many of the events, as already reported by Erhardt et al. (2019). The sample of

lags ∆t = (∆t1,∆t2, ...,∆t16) constitutes the data basis for this study. Due to its stochastic character, we refer to the sample135

as an ’uncertain sample’. In the statistical analysis all of these events are treated equally even though some transitions might

be more pronounced than others and the quality of the fit differs between the events. The ramp-fitting method does of course

not return continuous probability densities but rather empirical densities

ρemp
i (∆ti) =

1
6000

6000∑

j=1

δ(∆ti−∆temp
i,j ) (2)

based on a representative set of 6000 values {∆temp
i,j } sampled by the MCMC algorithm for each event. In general, empirical140

densities approximate their continuous counterparts such that
∫
f(x)ρX(x)dx'

∫
f(x)ρemp

X (x)dx=
1
m

m∑

j=1

f(xj) (3)

for large enough m and any well behaved function f . The densities ρi(∆ti) are derived from the empirical densities by means

of a Gaussian kernel density estimator.

We consider the empirical densities generated with the Bayesian MCMC-based ramp fit algorithm most convenient to capture145

the uncertainty in the detection of an abrupt transition onset. Further details of this method can be found in Erhardt et al. (2019).

In view of the different signal-to-noise levels in the calcium and sodium records, we carried out a performance test by applying

the algorithm to synthetically generated time series of abrupt transitions perturbed by Gaussian noise of different amplitude.

As expected, the larger the noise amplitude, the less precise is the transition onset detection. Importantly, however, there is no

systematic bias of the detected transition onset in the one or the other direction. For details, see Appendix A.150

3.2 Statistical setting

Despite their diversity in terms of temperature amplitude, duration, and frequency across the last glacial, the reoccurring

patterns and their common manifestation in different proxies suggest that the DO events follow a common physical mechanism.

Provided this is the case, the relative phasing between Ca2+ and Na+ transitions still involves randomness due to climate

variability. From a frequentist perspective, each DO warming is drawn from a hypothesized, infinitely large population of155

reoccurring DO events and the realization of a Ca2+–Na+ lag can thus be regarded as a random experiment (Ω,F ,P∆t) on

the sample space Ω = R. Here, F is a σ-algebra defined on Ω and may be taken as the Borel algebra with P∆t denoting a

probability measure with respect to F that is called population. This said, the reasoning behind our statistical analysis is as

follows: If the Ca2+ transition was to trigger the Na+ transition, the population P∆t would not ascribe any probability to

7
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Figure 3. (a) Schematic representation of the two-level randomness inherent to the measurement of a continuous random variable. The blue

line indicates the probability density associated with the generating population P . A certain sample realized from P is illustrated by the gray

lines. Measuring the sample necessarily introduces a new level of uncertainty, such that true values can at best be approximated by probability

density functions depicted in purple. Depending on the measurement process, the uncertainty distributions of the sample members may all

exhibit individual shapes or they may share a common one. (b) Distribution of the test statistic φ derived from the uncertain sample (purple)

together with the corresponding value derived from the certain sample (gray). In blue, the distribution of φ under the null hypothesis is

shown. The dotted red line separates the rejection region (left) from the acceptance region in the one-sided test setup. (c) Distribution of

the uncertain p-value corresponding to the uncertain sample. In gray, the p-value of the certain sample is marked. The red line indicates the

significance threshold η.

lags ∆t > 0. In particular the population mean µ∆t would necessarily be less than zero. If we fail to exclude a population160

mean µ∆t ≥ 0 based on the sample ∆t, it cannot be guaranteed that this necessary criterion is fulfilled and, therefore, the

data cannot serve as evidence for a Ca2+ transition lead, let alone a causality between the two transitions. Thus, we focus on

deriving qualified statistical statements on the population mean µ∆t in view of the sample ∆t.

A population P is by itself not observable, but random samples Xn = (X1,X2, ...,Xn) of independently and identically

distributed random variables may be generated from P , where the randomness of each component of Xn is determined by the165

populations probability density ρP :

P(Xi ∈ [a,b]) =

b∫

a

ρP(xi)dxi. (4)

Inferring properties of P from a finite-size sample Xn (which we call an n-sample in the following) is a well-studied problem

in statistics and a broad range of methods is available. The sample of lags ∆t = (∆t1, ...∆t16) introduced above can be

regarded as such a sample generated from P∆t. However, this description does not account for the uncertainty inherent to170

each individual sample member ∆ti. Whenever a random sample is realized on a continuous sample space, its measurement

necessarily involves uncertainty and adds a second level of randomness. In our case, this is due to the uncertainty quantified in

the MCMC-based transition detection. Instead of a sample xn = (x1,x2, ...,xn) comprised of scalar entries, one obtains what

we call an uncertain sample Yn = (Y1,Y2, ...Yn) of random variables Yi. The generation of a sample from a population and

8
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the corresponding two-fold randomness is illustrated in Fig. 3. We emphasize that the randomness of Yn is not the same as175

the randomness of the stochastic process under study, but instead originates from the imprecise measurement process. In this

section we use capital letters to denote random variables and lower-case letters to denote realizations. A realized sample xn

free of measurement uncertainty will be referred to as a certain sample in the following to avoid confusion. The components

of Yn are independently, but not necessarily identically distributed. Therefore, all sample members require an individual

representation ρi(yi), giving rise to the distribution of Yn in Rn:180

ρY(y) =
n∏

i=1

ρi(yi). (5)

The sample ∆t falls into the class of uncertain samples, with each component ∆ti being a realization of the same random

process, yet carrying its individual measurement uncertainty represented by ρi(∆ti). Surprisingly there seems to be a lack

of literature on how to treat these uncertainties when inferring the properties of P , as soon as the uncertainty of each sample

member has its individual shape and hierarchical distributional models cannot be invoked. An obvious approach is to work with185

expected values 〈Yi〉=
∫
yiρ(yi)dyi to obtain a scalar valued sample, which allows for immediate application of the typical

statistical toolkit. However, we will show in the following that this approach is too simplistic and important information may

be hidden by the averaging process. Before we discuss how the uncertainties may be treated and inference on the population

from uncertain samples can be realized, we need to clarify how the high-dimensional probability distribution can be treated

numerically.190

3.3 Numerical treatment of high dimensional probability densities

Given empirical densities ρemp
i (yi) = 1

m

∑m
j=1 δ(yi−y

emp
i,j ) of the members Yi of an uncertain n-sample based on representative

sets {yemp
i,j } of size m, formally the empirical density in Rn reads

ρemp
Y (y) =

n∏

i=1

ρemp
i (yi) =

n∏

i=1

1
m

m∑

j=1

δ(yi− yemp
i,j ). (6)

However, this results in a sum with mn terms or in a vectorial representation ρemp
Y (y) = 1

mn

∑mn

k=1 δ(y−yemp
k ) with a repre-195

sentative set {yemp
k } with mn members. Since in our case m= 6000 and n= 16, mn exceeds the computational memory by

far. Therefore, we reduced the size of the representative set from 600016 to 6000 values by setting

ρemp
Y (y) =

1
m

m∑

j=1

n∏

i=1

δ(yi− yemp
i,j ). (7)

To check that Eq. 3 is not violated, we have carried out our analysis with a control group of 10 alternative realizations

of ρemp
Y (y). The representative sets for the control group densities have been realized by randomly selecting 6000 vectors200

{y1, ...,y6000} from the total possible 600016 vectors. Since all final results reported in the main text of this article fall inside

the two standard deviation uncertainty environment of the control group, we consider our chosen approximation of ρY(y) to

be justified. The results for the control group are presented in Appendix C.
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3.4 Inference of the population mean from an uncertain sample

As explained above, we are interested in the mean µ∆t of the population P∆t that presumably has generated the given sample205

∆t. In this section, we derive a way to directly infer a probability distribution for a population mean from an uncertain

sample. First, consider an n-sample xn generated from a population P with the probability density ρP(x). Without any further

knowledge, the mean u= 1
n

∑n
i=1xi of the sample is the best point estimate for the mean of its generating population. Let

U =
1
n

∑

i

Yi (8)

denote the mean of a corresponding uncertain sample. Being a function of random variables makes U(Y) a random variable210

itself, with a probability density function given by

ρU (u) =

∞∫

−∞

...

∞∫

−∞

n∏

i=1

ρi(yi)δ(u−
1
n

n∑

i=1

yi) dy1 dy2 ...dyn . (9)

In the above equation the δ-function selects the probability weight allocated to those y that are mapped to u. If ρP is jus-

tifiably assumed or known to be normal, the estimation of the population mean can be refined one step further by draw-

ing on the t-distribution. First, consider an n-sample Xn with sample mean U = 1
n

∑n
i=1Xi and sample standard deviation215

S =
√

1
n−1

∑n
i=1(Xi−U)2, to be realized from a normal population N (µ,σ) with population mean µ and population stan-

dard deviation σ. The quantity Z = U−µ
S/
√
n

is then distributed according to the t-distribution with n−1 degrees of freedom (the

proof is originally due to Student (1908) and can for example be found in Rice (2007)):

P (a < Z < b) =

b∫

a

tn−1(z)dz , (10)

irrespective of the precise values for µ and σ. Here, P (A) is an informal - though widely used - way to denote the probability220

for the outcome A of a random experiment without previous definition of the sample space and the sigma-algebra. For a given

pair (u,s) derived from a sample xn we can therefore interpret tn−1(z) as the probability density that the n-sample originates

from a normal population with mean µ. Substituting z = u−µ
s/
√
n

and dz =− 1
s/
√
n
dµ in Eq. (10) yields

P (a < z < b) = P (a <
u−µ
s/
√
n
< b) = P (as/

√
(n)< (u−µ)< bs/

√
n) = P (u− bs/√n < µ < u− as/√n) (11)

and225

b∫

a

tn−1(z)dz =

u−as/√n∫

u−bs/√n

tn−1(
u−µ
s/
√
n

)
√
n

s︸ ︷︷ ︸
=ρµ(µ,u,s)

dµ. (12)

The integrand on the right constitutes a probability density function for µ for any given (u,s). Since a and b can be freely

chosen, one can replace u− as/√n and u− bs/√n with β and α, respectively. Combining these results we obtain

P (α < µ < β|u,s) =

β∫

α

ρµ(µ,u,s) dµ , (13)
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with ρµ(µ,u,s) = tn−1

(
u−µ
s/
√
n

) √
n
s . Eq. (13) relies on an uncertainty-free tuple (u,s) and is in this form not suited to capture230

uncertainties in the sample. Just as the mean U(Y), the standard deviation S(Y) of a random vector Y is a random variable

itself. In general, for a given probability density ρY(y), the statistics U and S are not independently distributed and their joint

probability density reads

ρ(U,S)(u,s) =
∫
ρY(y) δ

(
u−

n∑

i=1

yi/n

)
δ

(
s− 1

n− 1

n∑

i=1

(yi−u)2

)
dy. (14)

Based on ρ(U,S) an expected distribution 〈ρ〉µ(µ) can be computed, such that any pair (u,s) contributes to 〈ρ〉µ(µ) according235

to its probability density:

〈ρ〉µ(µ) =

∞∫

−∞

∞∫

−∞

ρµ(µ,u,s)ρ(U,S)(u,s) du ds. (15)

Eq. (15) takes account of all uncertainties inherent to Y. Replacing the continuous density with the empirical density defined

in Eq. 7 leads to

ρemp
(U,S)(u,s) =

∫
1
m

m∑

j=1

n∏

i=1

δ(yi−yemp
i,j )δ

(
u−

n∑

i=1

yi/n

)
δ

(
s− 1

n− 1

n∑

i=1

(yi−u)2

)
dy =

1
m

m∑

j=1

δ
(
u−uemp

j

)
δ
(
s− semp

j

)
,

(16)240

with uemp
j = 1

n

∑n
i=1 y

emp
i,j and semp

j = 1
n−1

∑n
i=1(yemp

i,j −uemp
j )2 and correspondingly:

〈ρ〉emp
µ (µ) =

∞∫

−∞

∞∫

−∞

ρµ(µ,u,s)ρemp
(U,S)(u,s)duds=

1
m

m∑

j=1

ρµ(µ,uj ,sj) =
1
m

m∑

j=1

tn−1

(
uj −µ
sj/
√
n

)√
n

sj
. (17)

3.5 Bootstrapping the distribution of the population mean

Given a certain n-sample xn, bootstrapping constitutes a complementary approach to derive a distribution for the population

mean µ (e.g., Lehmann and Romano, 2006). The great advantage of the non-parametric bootstrapping method is that it does not245

rely on any assumptions on P (such as normality). Generally speaking, the method assesses the uncertainty of statistics such as

the sample mean computed from a certain sample. Here, we make use of the fact that the sample mean is the best point estimate

of the population mean and hence an uncertainty distribution of the sample mean can equivalently be interpreted as an uncertain

estimate for the population mean. In short, bootstrapping works as follows: a set of κ synthetic samples {xbs
k | 1≤ k ≤ κ} is

generated from the original sample xn by drawing n values with replacement from xn. Next, the mean ubs
k = 1

n

∑n
i=1x

bs
k,i of250

each synthetic sample is calculated. The set of the κ means ubs
k generates an empirical bootstrapped probability density for the

population mean

ρbs
µ (µ) =

1
κ

κ∑

k=1

δ(ubs
k −µ). (18)
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Given an uncertain sample Y represented by the empirical density ρemp
Y (y) = 1

m

∑m
j=1 δ(y−yemp

j ) instead of a certain sample,

the bootstrapping technique can be applied to all yemp
j comprised in the empirical density, giving rise to m synthetic boot-255

strapped samples {ubs
k,j |1≤ j ≤m}, each inducing a distribution ρbs

µ,j(µ) according to Eq. 18. Averaging over these yields the

general expression

〈ρ〉bs
µ =

1
m

m∑

j=1

ρbs
µ,j =

1
mκ

m,κ∑

j,k

δ(ubs
j,k −µ) (19)

for the population mean distribution, where ubs
j,k denotes the the k-th bootstrapped mean from the j-th member of the empirical

density’s representative set {yi}.260

3.6 Hypothesis testing with uncertain samples

In order to identify a causal relationship between the transitions in the atmospheric circulation as indicated by Ca2+, and

transitions in the sea-ice extent represented by Na+, we must be able to discriminate stochastic from systematic features in

the data. In our case, this translates into ruling out that the given sample of time lags between the two proxy variables was

generated from a population with mean equal to zero, corresponding to a simultaneous transition. In view of the apparent265

tendency of Ca2+ to lead the transition across most of the analyzed DO events (see Fig. 4 and previous work by Erhardt et al.

(2019)) one-sided hypothesis tests addressing the population mean constitute a convenient method to provide evidence for a

population mean less than zero and therefore a systematic time lag. The other way round, not being able to preclude population

means equal to or greater than zero implies that causality cannot be evidenced in the data sample, though it does not prove the

absence of causality between the two proxy variables.270

Numerous statistical hypothesis tests have been designed to systematically rule out distributions which are unlikely to have

generated a given sample. As noted above, the classic literature deals with certain samples, while we discuss the application

of three different tests – all targeting the population mean – to an uncertain sample of the previously described kind. First,

we present our approach how hypothesis tests can in general be applied to uncertain data samples. In short, we propose

a propagation of the uncertainties to the p-value and introduce two potential decision criteria to map the resulting p-value275

distribution ρp(p(Y)) to a binary decision between rejection and acceptance of the null hypothesis. Subsequently, we discuss

our choice of tests. Generally speaking, we wish to test how the populations of the transition onsets in Ca2+ and Na+ compare

and, in particular, whether the transition onset of Na+ lags the onset of Ca2+. Since we are given only relative data, that is, the

difference ∆t in the transition onset times of the two proxies, we must rely on tests that can be applied to what are called paired

samples or paired comparisons. This said, we find the paired t-test, the Wilcoxon-signed-rank (WSR) test, and a bootstrap test280

suited for our purpose.

3.7 Testing uncertain data

Typically, a statistical hypothesis test draws on a test statistic φ(X):

φ : Rn→ R; X 7→ φ(X),
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whose distribution ρH0(φ) is known under the so-called null-hypothesis H0. The null-hypothesis constitutes a set of assump-285

tions on the population P . Given a statistic of a certain sample realization φ(x0) = φ0, a p-value is calculated which indicates

the cumulative probability for obtaining a more extreme φ1(X1) from a second sample X1, provided H0 was true:

p(φ0) =
∫

ω

ρH0(φ)dφ, ω = {φ : ρφ(φ)< ρφ(φ0)}. (20)

The hypothesis H0 is then rejected at a significance level α if the p-value is below the predefined significance threshold α.

In that case one also speaks of a statistically significant result. For a comprehensive description of hypothesis testing see290

for example Lehmann and Romano (2006). While the application of hypothesis tests to a certain sample x is in general

straightforward, for an uncertain sample it is not. A distribution of sample values ρY(y) first translates into a distribution for

the test statistic ρφ(φ) and from there to a distribution of p-values ρp(p) as depicted in Fig. 3 with ρp(p) featuring probabilities

for both, p < α and p > α. One might be tempted to boil down the uncertain sample to its expected value 〈Y〉 before the

application of the test to obtain a scalar p-value. In general, however, the p-value of the samples expectation does not equal the295

expected p-value,

p

(∫
yρY(y)dy

)
6=
∫
p(y)ρY(y)dy, (21)

due to the non-linearities in both the statistic φ and in the mapping of φ to a p-value. In other words, the significance of a

sample may change if its uncertainties are propagated into the space of the test statistic or the p-value. So what is a convenient

and sound way to project a distribution of p-values derived from an uncertain sample Y to a scalar in order to take a meaningful300

decision on the significance by comparing it to α?

We argue that the uncertainties should be propagated to the p-values, before any projection to a scalar is applied. The reason

for this is that a distribution ρY(y) might assign finite probabilities for y-values that strongly differ from the expectation. Such

values do not find any consideration if a test was applied to the expectation of Y. Consider the case of a bimodal distribution

of Y with both bulks of the distribution lying in the rejection region of the hypothesis H0. The expected 〈Y〉 might yield305

a non-significant test result as it is located somewhere between the two bulks while a propagation of the uncertainty would

potentially indicate the significance of the uncertain sample. Given a distribution of p-values ρp(p) that incorporates the original

uncertainties, the following two criteria can be invoked to decide between acceptance and rejection of the Hypothesis:

– The hypothesis shall be rejected at the significance level α if and only if the expected p-value is less than α, that is

1∫

0

ρp(p)dp < α. (22)310

– The hypothesis shall be rejected at the significance level α if and only if the probability for p to be less than α is greater

than a predefined threshold η (we propose η = 90%), that is

P (p < α) =

α∫

0

ρp(p)> η . (23)
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As the expected p-value constitutes a convenient measure of the overall extremeness of an uncertain sample Y with respect

to H0, its comparison to the significance threshold is meaningful. However, in some situations one might want to guarantee315

that in fact the probability to achieve a significant test result is high – e.g. when mistakenly attested significance is associated

with high costs. In these cases the second criterion is more appropriate even though it does not imply that the first criterion is

fulfilled.

In the following we draw on the empirical density representation of Y in order to rigorously propagate the uncertainties to

the space of p-values. A corresponding empirical density for the p-values may be obtained by320

ρemp
p (p) =

∫
1
m

m∑

j=1

p(y)δ(y−yj)dy =
1
m

m∑

j=1

δ(p− pj), (24)

with pj = p(yj).

3.7.1 t-test

The t-test can be applied to a sample of differences {di} derived from a paired sample {(xi,yi)} (Rice, 2007). The hypothesis

H0 in this case states that both xi and yi were generated from normal populations with the same mean µx = µy . This implies325

that the population of differences is normally distributed as well, but with mean µ0 = 0. Note that the standard deviations σx

and σy may differ. For large samples, deviations from normality in the original populations can be tolerated and the hypothesis

reduces to the equality of means. With n= 16 our sample constitutes an intermediate case. This is one reason why we use the

WSR and bootstrap tests in addition to the t-test.

Recall the definition of z, which constitutes the test statistic for the t-test:330

z(d) =
u(d)−µ0

s(d)/
√
n
, d = (d1, ...,dn). (25)

The distribution of z under the null-hypothesis is given by the t-distribution tn−1(z) of n−1 degrees of freedom. Setting µ0 = 0

in the above equation and calculating the p-value pz from the left hand side only allows us to effectively test the hypothesis

H0 : µ0 ≥ 0. The p-value

pz =

z∫

−∞

tn−1(z′)dz′ (26)335

may be compared to the chosen significance threshold.

3.7.2 Wilcoxon-signed-rank

Given a set of pairs {(xi,yi)} the Wilcoxon-signed-rank test (Wilcoxon, 1945) was originally introduced to test whether

x = (x1, ...,xn) and y = (y1, ...,yn) stem from the same population (Rice, 2007). The test relies on the set of differences

{di = xi− yi} , i ∈ {1,2, ..n} , (27)340
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and the hypothesis H0 states that the population of differences is symmetrically distributed around zero. We apply the test

in a one-sided way, such that we can reject distributions centered around any value greater than zero in case of a significant

outcome. The test statistic w(d = (d1, ...,dn)) for the Wilcoxon-signed-rank test is defined as

w(d) =
n∑

i=1

R(|di|) Θ(di), (28)

where R(di) denotes the rank of |di| within the sorted set of the absolute values of differences {|di|}. The Heaviside function345

Θ guarantees that exclusively di > 0 are summed. Note that a significant w-value does not preclude an asymmetric distribution

with mean zero but higher portions of probability located below zero. The corresponding one-sided p-value pw is given by the

cumulative probability that the null hypothesis assigns to w′-values smaller than a given w:

pw(w) =
n∑

i=1

P (w′i) Θ(w−w′). (29)

3.7.3 Bootstrap test350

Given a sample of differences d = (d1, ...,dn), a bootstrap test constitutes a third option to test the compatibility of the sample

with the hypothesis that the population of differences features a mean equal to or greater than zero: H0 := {µ0 ≥ 0} . The

advantage of the bootstrap test lies in its independence from assumptions regarding the distributions shape. Guidance for the

construction of a bootstrap hypothesis test can be found in Lehmann and Romano (2006) and Hall and Wilson (1991). For our

test, we bootstrap from the set of differences {di−u(d)} shifted by the sample mean u(d) = 1
n

∑n
i=1 di. We denote the arising355

empirical distribution by

ρ̂bs
0 (u) = ρbs

U (u)−u(d) =
1
κ

κ∑

k=1

δ(u− ûbs
k ), (30)

where ûbs
k are the bootstrapped means shifted by the samples’ mean value. This distribution can be regarded as a data-derived

empirical distribution for the test statistic U compatible with the null-hypothesis. The bootstrap p-value pbs for the sample d is

then given by the fraction of shifted bootstrap means that are smaller than the mean of the sample u(d):360

pbs(d) =

u(d)∫

−∞

ρ̂bs
0 (u) du=

1
κ

κ∑

k=1

Θ(u(d)− ûbs
k ). (31)

In order to generalize this test to the case of an uncertain sample Y the uncertain quantity U(Y) should be compared to a

bootstrapped distribution that is consistent with the null hypothesis and simultaneously captures the uncertainties. The applica-

tion of the shifted bootstrapping scheme to all samples yi comprised in the empirical density ρemp
Y (y) = 1

m

∑m
j=1 δ(y−yemp

j )

yields a convenient empirical distribution of the test statistic compatible with the null hypothesis:365

〈ρ̂〉bs
0 (u) =

1
m

m∑

j=1

ρbs
u,j(u)−uemp

j︸ ︷︷ ︸
=ρ̂bs

u,j(u)

=
1
κm

κ,m∑

k,j=1

δ(u− ûbs
k,j), (32)
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with uemp
j = u(yj) as before. Subsequently, each uj shall be compared to the distribution of shifted bootstrap means to compute

a corresponding p-value:

pbs(uj) =

uj∫

−∞

〈ρ̂〉bs
0 (u)du=

1
κm

κ,m∑

k,j

Θ(uj − ûbs
k,j), (33)

giving rise to the empirical p-value distribution370

ρbs
p (p) =

1
m

∑

j

δ(p− pbs
j ) (34)

with pbs
j = pbs(uj). The test scheme for the certain sample could also be applied to all yi individually. However, combining

the shifted bootstrapped distributions ρ̂bs
u,j(u) to one overarching null hypothesis distribution for the test statistic 〈ρ̂〉bs

0 (u)

constitutes the more conservative approach for uncertainty propagation.

The three tests are applied in combination in order to compensate their individual deficits. If the population P∆t was truly375

Gaussian, the t-test would be the most powerful test, i.e., its rejection region would be the largest across all tests on the

population mean (Lehmann and Romano, 2006). Since normality of P∆t cannot be guaranteed, the less powerful Wilcoxon-

signed-rank test constitutes a meaningful supplement to the t-test, relying on the somewhat weaker assumption that P∆t is

symmetric around zero. Finally, the bootstrap test is non-parametric and in view of its independence from any assumptions

adds a valuable contribution.380

4 Results

The statistical methods formulated in Sec. 3 provide a sound framework for the statistical analysis of the data described

in Sec. 2. From application of the Bayesian MCMC ramp-fit method introduced by Erhardt et al. (2019), we obtained the

empirical densities ρemp
i (∆ti) = 1

6000

∑6000
j=1 δ(∆ti−∆temp

i,j ) for the uncertain transition onset lag between Ca2+ and Na+ of

the 16 DO events indicated in Tab. 1. Each empirical density is based on a representative set of size m= 6000. Additionally,385

continuous densities ρi(∆ti) were generated with a Gaussian kernel density estimator. We derived a 16-dimensional joint

empirical density ρ∆t (∆t = (∆t1, ...,∆t16)) = 1
6000

∑6000
j=1 (∆t−∆temp

j ) according to Sec. 3.3, drawing on representative

sets of 6000 vectors ∆temp
j . Hence, the sample vector ∆t can be regarded as an uncertain sample as introduced in Sec. 3.2,

generated from a populationP∆t with mean µ∆t which is assumed to describe an hypothesized infinitely large pool of DO onset

lags. The correspondence between ∆t and the generic uncertain sample Y = (Y1, ...,Yn) allows for the immediate application390

the statistical framework developed in Sec. 3.

4.1 Distribution of the population mean

With U∆t = 1
16

∑16
i=1 ∆ti denoting the mean of the uncertain sample ∆t and µ∆t denoting the mean of the population P∆t,

we derived distributions for the stochastic sample mean ρU∆t
(u∆t) and the population mean 〈ρ〉emp

µ∆t(µ∆t) according to Eq. 9

16

https://doi.org/10.5194/cp-2020-136
Preprint. Discussion started: 10 November 2020
c© Author(s) 2020. CC BY 4.0 License.



−40 −30 −20 −10 0 10 20

∆t[yr]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

[1
/
yr
]

〈ρµ∆t
〉emp(µ∆t)

ρU∆t
(u∆t)

ρbsµ∆t
(µ∆t)

0

0.02

0

0.02

ρ
(∆

t)
[1
/
yr
]

0

0.02

−
5
0

−
2
5 0

2
5

0

0.02

−
5
0

−
2
5 0

2
5

−
5
0

−
2
5 0

2
5

∆t[yr]

−
5
0

−
2
5 0

2
5

Figure 4. Distribution of the sample mean ρU∆t(u∆t) (green) derived from the Gaussian kernel density estimates of the individual lag

distributions ρi(∆ti) (see inset) according to Eq. 9 together with the distribution for the population mean 〈ρ〉emp
µ∆t(µ∆t) (blue) computed

according to Eq. 15 and the bootstrapped distribution of the population mean 〈ρ〉bs
µ∆t(µ∆t) (orange) according to Eq. 18. Clearly, the sample

mean as well as the population are likely to be less than zero. The inset displays the probability densities ρi(∆ti) of the transition onset lags

for all DO events under study, as listed in Tab. 1, with the index increasing along the rows. Most of the individual events feature elevated

probabilities for a negative lag.

Table 2. Statistical features of the distributions ρU∆t(u∆t) for the sample mean of the uncertain sample ∆t, the population mean

〈ρ〉emp
µ∆t(µ∆t) derived by means of the t-distribution and the bootstrapped distribution for the population mean 〈ρ〉bs

µ∆t(µ∆t). q5,q50 and

q95 denote the 5th, 50th and 95th percentiles of the distributions. The columns 〈 · 〉 and P ( · < 0) denote the expectation and the probability

to be less than zero of the corresponding stochastic variable.

q5 q50 q95 〈 · 〉 P ( · < 0)

ρU∆t(u∆t) -13.53 -5.63 2.63 -5.56 0.87

〈ρ〉emp
µ∆t(µ∆t) -17.50 -5.80 6.90 - 5.66 0.78

〈ρ〉bs
µ∆t(µ) -17.36 -5.91 6.95 -5.65 0.79
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Figure 5. Histograms associated with the empirical densities ρemp
p (p) = 1

6000

∑6000
j=1 δ(p−pj) of p-values derived by application of the t-test

(blue), the WSR-test (orange), and a bootstrap test (green) to the distribution ρemp
∆t(∆t) of the uncertain sample of transition onset lags ∆t

according to Eq. 24. The dotted red line indicates the significance threshold α= 0.05.

and Eq. 17, respectively. The distributions are displayed in Fig. 4 together with the bootstrapped distribution 〈ρ〉bs
µ∆t

(µ∆t) ac-395

cording to Eq. 19, which reproduces the population mean distribution accurately. ρU∆t
appears to be a symmetrically squeezed

version of the other two distributions. The expectations of these distributions are listed in Tab. 2 together with the 5th, 50th

and 95th percentiles and the probabilities for U∆t and µ∆t to exceed zero. All three distributions exhibit almost the same

mean value 〈U∆t〉 ' 〈µ∆t〉 ' −5.6 yr and a high degree of symmetry around this value. The equality of their expectations is

consistent with the fact that the sample mean U∆t is the best point estimate for the population mean µ∆t. The observation400

that 〈ρ〉emp
µ∆t(µ∆t) is much broader than ρU∆t

(u∆t) can be explained by the fact that any sample mean u0 is associated with

an interval (a,b) allowing a normal distributionN (µ0,σ) with µ0 ∈ (a,b) to generate u0 with finite probability. A distribution

of U consequently must be associated with an even broader distribution of µ. The strong agreement between 〈ρ〉emp
µ∆t(µ∆t) and

〈ρ〉bs
µ∆t

(µ∆t) makes us confident that our approach is justified and robust. The probabilities for U∆t and µ∆t to exceed 0 are

13% and 22%, respectively.405

4.2 Significance of the Ca2+ lead

In addition to estimating the population mean µ∆t, we applied the t-test, the Wilcoxon-signed-rank test, and the bootstrap

test to the uncertain sample of Ca2+–Na+ lags ∆t to eventually rule out a generating population with mean greater than

or equal to zero which would correspond to a Na+ transition onset lead or a simultaneous transition, respectively. Tab. 3

summarizes the results obtained by application of the tests under full consideration of the uncertainty, together with the p-410

values associated with the expected sample of time lags 〈∆t〉= (〈∆t1〉, ...,〈∆t16〉) with 〈∆ti〉=
∫

∆tiρi(∆ti)d∆ti. The

corresponding expected lags for each DO-event are listed in Tab. 1. Strikingly, all tests yield significant results at a significance
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Table 3. Results from the application of the t-test, the WSR test and a bootstrap (BS) test to the uncertain sample of DO transition onset lags

∆t. 〈p〉 denotes the expected p-value, derived from the uncertainty-propagated p-value distribution. The probability for a significant test

results associated with the same distribution is indicated by P (p < 0.05). For comparison, the p-values from the application of the tests to

the expected sample 〈∆t〉=
∫
ρ∆t(∆t)∆td∆t are shown in the bottom row.

t-test WSR BS

〈p〉 0.219 0.168 0.220

P (p < 0.05) 0.258 0.325 0.256

p(〈∆t〉) 0.044 0.009 0.018

level of α= 0.05 if applied to the expectation of ∆t. In contrast, the same tests yield non-significant results, if uncertainties are

rigorously propagated to the p-values. Neither of the two criteria formulated in Sec. 3.7 is fulfilled at a significance of α= 0.05

and a required probability for significance of η = 90% The mean p-values range between 0.17 and 0.22 and the probability for415

a significant test result does not exceed 32% across all tests. This said, the null hypothesis cannot be rejected. In other words,

in view of the data we cannot rule out that the observed tendency for Ca2+ to lead the transition is a purely stochastic feature

and that the population of lags is actually centered around zero or even a value greater than zero. The histograms associated

with the empirical p-value distributions are displayed in Fig. 5. We find broad ranges of p-values spanning from 0 to 1 for all

three tests with elevated frequencies below the significance threshold of α= 0.05 that decay towards the higher p-values. The420

probability for a significant result is highest for the WSR test (32%) and equally low for the t-test and the bootstrap test (26%).

The discrepancy between the p-values of the expected samples p(〈∆t〉) and the expectation of the uncertainty propagated

p-value
∫
pρemp
p (p)dp is due to the non-linearities in both, the mapping of ∆t to the test statistic and the mapping of the test

statistic to the p-value.

5 Discussion425

Following Erhardt et al. (2019) we derived an uncertain sample ∆t of the Ca2+−Na+ lags at the DO transition onset from 16

events. There is an apparent tendency for the transition onset in Ca2+ to lead the transition in Na+. Application of the t-test,

Wilcoxon-signed-rank test and a bootstrap test to the expected sample of lags 〈∆t〉 confirms the impression of a significant

lag between the two proxies. However, if the uncertainties from the determination of transition onset timings are rigorously

propagated to the corresponding p-values, the picture becomes more ambiguous with higher probability for non-significant430

than for significant results across all employed tests. In fact, the proposed approach to project the p-value distributions to

a binary decision fails to reject the hypothesis of a population with zero lag for all tests. Applied in combination, the tests

compensate individual weaknesses and thus confer credibility to the conclusion that a population mean equal to zero – that is,

a simultaneous transition of the two proxies – cannot be excluded. The derived shape of the distribution ρU∆t
(u∆t) is in line

with the results of the hypothesis tests. The tendency for a calcium lead at the transition onset remains, but with a probability435
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Figure 6. Probability distribution for nCa2+ out of the 16 DO events under study to exhibit a calcium lead at the onset of the abrupt transition

(blue) together with the cumulative probability of nCa2+ or more DO transitions to be lead by calcium (orange) according to Eq. 35 and

Eq. 36, respectively .

of 13% the sample features a Na+ lead on average. The probability of the sample to stem from a population P∆t with mean

µ∆t greater than zero was calculated to be 22%. This said, the analyzed data cannot serve as an unambiguous evidence for a

significant Ca2+ lead at the DO transition onset with respect to Na+. The rigorous propagation of uncertainties qualitatively

changes the interpretation of the data and the observed tendency towards a Ca2+ lead might simply be a stochastic feature. As

already metioned, we cannot infer an absence of causality from the fact that we cannot identify a systematic lag in the data.440

Therefore, in the following we present an important argument that contradicts the idea that either of the two – atmospheric

change and sea ice change – is an exclusive trigger of the other.

While the discussion has focused on the population mean µ∆t so far, for the search of a DO trigger mechanism it is important

to note that the order of causes and consequences should be preserved across all studied DO events, provided they were driven

by the same physics. Hence, if atmospheric circulation changes (indicated by a Ca2+ change) were to trigger the North Atlantic445

sea ice retreat (corresponding to a Na+ decrease), the changes in Na+ should lag the changes in Ca2+ across all analyzed DO

events. If instead both, DO events with negative and positive lags between the two proxy variables can be evidenced, this

would suggest that neither of the two exclusively triggers the other, or that the physical mechanism is not the same across all

DO events. Following this thought, we calculated the probability for nCa2+ out of the 16 events to feature a Ca2+ lead at the

transition onset given by450

P (N∆ti<0 = nCa2+) =
n∑

i=1
j>i
k>j
...

∏

l 6=i,j,k,...
P (∆tk < 0)

︸ ︷︷ ︸
nCa2+ terms

P (∆ti > 0)P (∆tj > 0)P (∆tk > 0)...︸ ︷︷ ︸
16−nCa2+ terms

, (35)
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where N∆ti<0 denotes the number of events with negative time lag. Since this probability is indifferent to the choice of the

events with a Ca2+ lead, we have to sum over all constellations with a Ca2+ lead in nCa2+ events. Fig. 6 shows the results for

P (N∆ti<0 = nCa2+) together with the probabilities for the number of events with a Ca2+ lead being greater or equal to nCa2+ ,

given by the cumulative probability:455

P (N∆ti<0 ≥ nCa2+) =
16∑

n=nCa2+

P (N∆ti<0 = n). (36)

The probability for all (but one) events to be led by calcium is as small as 0.03%(0.39%). Only configurations with 8 to 13

transitions being led by Ca2+ are associated with probabilities higher than 5%, with a maximum of 22% likelihood for the

configuration with 10 or 11 events being led by Ca2+ and 6 or 7 events being led by Na+, respectively. Also the cumulative

probability surpasses 5% only at nCa2+ = 13, implying that the probability that at least 14 events are led by Ca2+ is still below460

5%. For nCa2+ = 10 the cumulative probability exceeds 50%. Hence, it is more likely than not that at least 10 events exhibit a

calcium transition lead. Finally, the probability for a minimum of 7 transitions with a Ca2+ lead is already above 95%. These

results corroborate the conclusion that there is a tendency yet no guarantee for Ca2+ to transition first across the DO events

under study. The fact that there is only a 10% chance that 13 or more transitions are led by Ca2+ can be regarded as evidence

for the presence of transitions with a Na+ lead. Therefore, in terms of a physical interpretation, we can state that this data465

contradicts the hypothesis that atmospheric changes exclusively trigger the North Atlantic sea ice retreat.

The question arises, which DO events are the ones that exhibit a Na+ lead. However, since we are dealing with stochastic

lags it cannot be answered ultimately based on the empirical data alone. In Tab. 1 the probability for Na+ to lead the transition

is listed for all events under study. A first review of the events with high probability does not reveal any systematic pattern, yet

this topic merits further investigation.470

6 Conclusions

We regarded the Ca2+– Na+ transition onset lag distributions ρi(∆ti) for 16 DO events, derived from the data set provided by

Erhardt et al. (2019), as an uncertain sample generated from a population P∆t. Within this framework, we have shown that the

data does not significantly contradict the hypothesis that the mean µ∆t of a generating population equals or even exceeds zero

when taking into account the uncertainties involved in the transition detection. Three different hypothesis tests, all targeting the475

population mean, consistently yield non-significant results under the proposed decision criterion for application to uncertain

samples. In agreement with this result, the derived distribution ρµ∆t(µ∆t) features a probability of 22% for the population

mean to exceed zero under the assumption of normality. Even for the stochastic sample mean U∆t we find a probability of

13% to be larger than zero, as indicated by the distribution 〈ρ〉U∆t
(u∆t). Despite the non-significance, our results confirm the

tendency observed by Erhardt et al. (2019) of calcium to lead the transition. However, we must state that this tendency cannot480

be discriminated from a purely stochastic feature and therefore – provided the physical proxy interpretation holds true – cannot

serve as evidence for atmospheric changes to trigger sea ice retreat during DO events. In fact, by calculating the likelihood

of lead-lag configurations across the 16 events under study, we find evidence for the data to comprise both, transitions led
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by Ca2+ and transitions led by Na+. This finding implies that atmospheric changes cannot be viewed as an exclusive trigger

mechanism for the North Atlantic sea ice retreat during DO events, because such a causal relationship would require the485

temporal sequence to be preserved across all events. In the one-mechanism framework, our results could still be explained

by an external trigger not represented by Ca2+ nor Na+, which drives both atmospheric changes and sea ice retreat, with the

atmosphere simply responding faster. Other than that, our findings question the assumption that all DO events followed the

same physical pattern of causes and consequences. In order to gain more insight in the temporal order of events we suggest the

following: First, studies similar to this one should be carried out targeting the phasing of other proxy variables. The stochastic490

ramp fit introduced by Erhardt et al. (2019) already constitutes a sound approach for the derivation of transition leads and lags

in proxy time series. Second, the interpretation of proxy variables requires further refinement. Especially the interpretation of

Na+ as a sea ice proxy remains debated and new results are on their way. Third, effort in conducting model studies should

be sustained. Especially proxy enabled modeling bears the potential to improve comparability between model results and

paleoclimate records. Together, these lines of research are promising to further constrain the sequence of events that have495

caused the abrupt climate changes during the last glacial.

Code and data availability. 10-year resolution time series of Na+ and Ca2+ concentrations and δ18O values from the NGRIP ice core shown

in Fig. 1 are retrieved from PANGAEA (Erhardt et al., 2018, https://doi.org/10.1594/PANGAEA.896743). So are the high-resolution Na+ and

Ca2+ concentration time series centered around DO transitions which were used to derive the time lags between the transition onsets of the

two proxies. The code used to generate the empirical densities of transition onsets is available at https://github.com/terhardt/DO-progression500

(last access: 21 October 2020). The code used to carry out the statistical analysis of the sample of empirical transition onset distributions is

available from the author upon request and will be published once the manuscript is accepted.
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Figure A1. (a) Synthetically generated time series featuring a linear transition of fixed height ∆y. The time series are perturbed by Gaussian

white noise with different standard deviations σ and therefore exhibit different signal-to-noise ratios (SNR) ∆y
σ

. The black line is the mean

over the ensemble of 6000 ramps sampled with the MCMC ramp-fit algorithm, while the gray shaded area indicates the 5th to 95th percentiles

of the same ensemble. (b) Mean transition onsets 〈t0〉 =
∫
ρemp(t0) t0 dt0 derived from the ensembles sampled by the MCMC ramp-fit

algorithm for synthetically generated noisy ramps with different signal to noise ratios. The error bars indicate the 5th to 95th percentiles for

t0.

Appendix A: Sensitivity of the transition detection

Na+ transitions exhibit a lower signal to noise ratio than corresponding Ca2+ transitions for many of the events under study.

Therefore, we carried out a performance test for our stochastic transition detection by applying the algorithm to synthetically630

generated linear ramps disturbed by Gaussian white noise. To investigate the influence of the noise, we kept the ramp amplitude

∆y constant and step-wise increased the standard deviation σ of the perturbing noise. As can be seen in Fig. A1, the detection of

the transition onset becomes less precise with decreasing signal to noise ratio ∆y
σ . That is, the mean of the posterior distribution

ρemp
t0 (t0) may differ stronger from the true transition onset for lower signal to noise ratios while simultaneously the standard

deviation of ρemp
t0 (t0) increases. Importantly, there is no systematic bias of the detected transition onset in the one or the other635

direction. Also, we find that for most of the synthetic time series, the true transition onset lies inside the uncertainty interval of

the derived distributions ρemp
t0 (t0). Thus, the algorithm is suited for application to data with different signal-to-noise ratios. The

lower signal to noise ratio is reflected in the broader distribution for t0 computed by the algorithm.

Appendix B: Distribution of the uncertain statistics

In Sec. 3.6 we discuss the propagation of the sample uncertainty to the p-value of any given hypothesis test. Certainly, this640

relies on an intermediate propagation of the uncertainty to the corresponding test statistic. Fig. B1 shows the density histograms
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Figure B1. Density histograms of the uncertain test statistics Z (a), W (b) and U (c) associated with their empirical density distributions,

which were in turn derived from the empirical density ρemp
∆t(∆t) of the uncertain sample of transition lags. The statistics correspond to the

t-test, the WSR-test and the bootstrap test presented in Sec. 3.6. The distributions of the statistics under the null hypothesis are displayed for

comparison (black). In the case of the t-test, under the null hypothesis z follows the t-distribution with 15 degrees of freedom. The distribution

of the w-statistic under the null hypothesis is given by a lengthy analytical expression and is defined only for integer values. For the bootstrap

test, the null-hypothesis distribution is derived empirically. The red dotted lines separate the significant from the non-significant values in all

three panels.

associated with the empirical distributions for Z, W and U that result from the distribution ρemp
∆t (∆t) according to

ρemp
φ (φ) =

∫
ρemp

∆t (∆t)δ(φ(∆t)−φ)d∆t. (B1)

Here, φ(∆t) represents a test statistic as a function of the uncertain sample ∆t, while φ independent of any arguments denotes

possible values that φ(∆t) may assume. For comparison, the distribution of each test statistic under the null-hypothesis is645

displayed as well. The histograms are not supposed to coincide with the null distributions. Clearly, for all three tests, the

histograms of the uncertain test statistics empirical probability densities comprise both, significant and non-significant values

of the statistic.

Appendix C: Results of the analysis for the control group

As explained in Sec. 3.3, we drastically reduce the set of vectors considered in the representation of ρemp
∆t (∆t) = 1

6000

∑6000
i=1 δ(∆t−650

∆temp
i ) from 600016 theoretically available vectors to 6000 vectors ∆ti. To cross-check that the results obtained within the

limits of this approximation, we applied our analysis to a control group of 10 alternative realizations of the the probability den-

sity ρemp
∆t,j(∆t) = 1

6000

∑6000
i=1 δ(∆t−∆temp

i,j ), all drawing on different representative sets {∆temp
i }j with i ∈ {1,2, ...,6000}

and j ∈ {1,2, ...,10}. These sets have been generated by drawing 6000 vectors at random from the pool of the theoretically

available vectors. We find that all original results that rely on the empirical density ρemp
∆t (∆t) fall well into the uncertainty range655
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Table C1. Results obtained from the application of hypothesis tests to the control group. Reported are the mean p-values 〈p(∆t)〉 together

with the p-values of the expected samples p(〈∆t〉) and the probability of the uncertain sample to be significant P (p < 0.05) for all three

tests. All results were derived from the corresponding empirical densities ρemp
∆t,j(∆t) (labeled by rj). Also listed are the mean and the

standard deviation (std) for each quantity across the control group. For comparison, the results from the original analysis are given as well.

t-test WSR-test bootstrap test

no. 〈p(∆t)〉 p(〈∆t〉) P (p < 0.05) 〈p(∆t)〉 p(〈∆t〉) P (p < 0.05) 〈p(∆t)〉 p(〈∆t〉) P (p < 0.05)

r1 0.220 0.044 0.258 0.166 0.011 0.324 0.220 0.018 0.250

r2 0.219 0.041 0.252 0.167 0.011 0.317 0.218 0.026 0.244

r3 0.218 0.042 0.260 0.167 0.009 0.321 0.219 0.016 0.251

r4 0.216 0.042 0.249 0.164 0.009 0.319 0.214 0.019 0.244

r5 0.221 0.048 0.243 0.167 0.011 0.316 0.222 0.018 0.238

r6 0.217 0.043 0.256 0.164 0.011 0.318 0.216 0.027 0.252

r7 0.219 0.044 0.251 0.165 0.011 0.317 0.219 0.016 0.244

r8 0.216 0.042 0.257 0.165 0.011 0.322 0.216 0.017 0.251

r9 0.221 0.046 0.249 0.169 0.009 0.320 0.221 0.031 0.249

r10 0.221 0.043 0.254 0.169 0.009 0.314 0.220 0.019 0.250

mean 0.219 0.044 0.253 0.166 0.010 0.319 0.219 0.021 0.247

std 0.002 0.002 0.005 0.002 0.001 0.003 0.002 0.005 0.004

original 0.219 0.044 0.258 0.168 0.009 0.325 0.220 0.018 0.253

determined by the control group. Tab. C2 summarizes the results derived from the control group members for the population

mean, while Tab. C1 shows the results obtained by application of the hypothesis tests to the control group.
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Table C2. Expected values for the population mean derived from the control group probability densities together with the corresponding

probability for the population mean to be less than zero. The left part of the table refers population mean distributions obtained by inverting

the t-distribution, while the right part refers to population mean distributions obtained from bootstrapping sample means from the empirical

probability distribution of the uncertain sample. Also listed are the mean values and standard deviations across the control group and for

comparison the results from the original probability density as reported in the main part of this article.

〈ρ〉emp
µ (µ) 〈ρ〉bs

µ (µ)

no. 〈µ〉 p(µ < 0) 〈µ〉 p(µ < 0)

r1 -5.60 0.783 -5.61 0.788

r2 -5.66 0.784 -5.66 0.788

r3 -5.74 0.787 -5.75 0.793

r4 -5.63 0.784 -5.62 0.788

r5 -5.56 0.782 -5.56 0.787

r6 -5.66 0.785 -5.65 0.789

r7 -5.58 0.782 -5.56 0.786

r8 -5.67 0.786 -5.68 0.791

r9 -5.64 0.783 -5.65 0.788

r10 -5.75 0.788 -5.75 0.793

mean -5.65 0.784 -5.65 0.789

std 0.06 0.002 0.07 0.002

original -5.66 0.784 -5.66 0.789
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