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Abstract. For previous glacial intervals, concomitant shifts in different proxy records from Greenland ice cores indicate re-

peated abrupt climate transitions comprising - among others - abrupt warming, sudden reorganization of the atmospheric

circulation, retreat of perannial sea ice, and increase in local precipitation. The physical mechanism underlying these so-called

Dansgaard-Oeschger (DO) events remains debated. In order to constrain potential triggering mechanisms former studies have

deduced the progression of the aforementioned changes at the onset of DO events by investigating the phasing of respective5

transitions in paleoclimate proxy records. A recent analysis of DO events evidenced in the 60 - 10kyr BP period of the NGRIP

and NEEM ice core proxy records found delayed transitions in Na+ concentrations and δ18O values compared to correspond-

ing transitions in Ca2+ concentrations and the annual layer thickness by about one decade. This is interpreted as a temporal lag

of sea ice retreat and Greenland warming with respect to a synoptic- and hemispheric-scale atmospheric reorganization at the

onset of DO-events. However, the explanatory power of these results is limited by the uncertainty of the transition onset detec-10

tion in noisy proxy records. Here, we extend previous work by testing the significance of the reported lags with respect to the

null hypothesis of simultaneous transitions in the different proxy variables. For this aim, we regard the identified transition lags

between each pair of proxies as outcomes of a repeated random experiment. If detection uncertainties are averaged out at the

level of individual transitions lags, temporal delays in the δ18O and Na+ transitions with respect to Ca2+ and the annual layer

thickness are indeed pairwise statistically significant. In contrast, under rigorous propagation of uncertainties the samples are15

not significant across all considered pairs of proxies. We thus confirm the previously reported tendency of delayed transitions

in the δ18O and Na+ concentration records. Yet, substantial uncertainties in the determination of the transition onsets prevent

to rule out that this tendency arises by chance. Hence, under the assumption that all DO events followed the same physical

mechanism and that the interpretations of the different climate proxies hold true, the analyzed set of DO events cannot serve

as evidence for systematic lead-lag relationships. Our results highlight the importance of rigorous uncertainty treatment in the20

analysis of paleoclimate records.
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1 Introduction

In view of anthropogenic global warming, concerns have been raised that several subsystems of the earth’s climate system

may undergo abrupt and fundamental state transitions if temperatures exceed corresponding critical thresholds (Lenton and25

Schellnhuber, 2007; Lenton et al., 2008, 2019). Under sustained warming, the Atlantic Meridional Overturning Circulation

(AMOC), the Amazon rainforest, or the Greenland ice sheet are, among others, possible candidates to abruptly transition to

new equilibrium states that may differ strongly from their current states (Lenton et al., 2008). Understanding the physical

mechanisms behind abrupt shifts in climatic subsystems is crucial for assessing the associated risks and for defining safe oper-

ating spaces in terms of cumulative greenhouse gas emissions. To date, empirical evidence for abrupt climate transitions only30

comes from paleoclimate proxy records encoding climate variability in the long-term past. First discovered in the δ18O records

from Greenland ice cores, the so-called Dansgaard-Oeschger (DO) events are considered the archetype of past abrupt climate

changes (see Fig. 1) (Johnsen et al., 1992; Dansgaard et al., 1993; Bond et al., 1993; Andersen et al., 2004). These events

constitute a series of abrupt regional warming transitions that punctuated the last and previous glacial intervals at millennial re-

currence periods. Amplitudes of these decadal-scale temperature increases reach from 5°C to 16.5°C over Greenland (Kindler35

et al., 2014; Huber et al., 2006; Landais et al., 2005). The abrupt warming is followed by gradual cooling over centuries to mil-

lennia, before the climate abruptly transitions back to cold conditions. The relatively cold (warm) intervals within the glacial

episodes have been termed Greenland stadials (GS) (Greenland interstadials (GI)). GS typically persist over millennial time

scale, before another abrupt warming starts a new cycle (Rasmussen et al., 2014; Ditlevsen et al., 2007). Despite being less

pronounced, a global impact of DO events on climate and ecosystems is evident in manifold proxy records (e.g. Moseley et al.,40

2020; Buizert et al., 2015; Lynch-Stieglitz, 2017; Kim et al., 2012; Fleitmann et al., 2009; Voelker, 2002; Cheng et al., 2013).

Apart from δ18O, other Greenland ice core proxy variables such as Ca2+ and Na+ concentrations as well as the annual layer

thickness λ also bear the signature of DO cycles, as can be seen in Fig. 1 (e.g., Erhardt et al., 2019; Fuhrer et al., 1999; Ruth

et al., 2007). While δ18O is interpreted as a qualitative proxy for ice core site temperatures (e.g. Gkinis et al., 2014; Jouzel

et al., 1997; Johnsen et al., 2001), changes in Ca2+ concentrations – or equivalently dust – are believed to reflect changes in45

the atmospheric circulations (Ruth et al., 2007; Erhardt et al., 2019). Na+ concentration records indicate past sea-salt aerosol

concentrations and are thought to negatively correlate with the North Atlantic sea ice cover (Erhardt et al., 2019; Schüpbach

et al., 2018). The annual layer thickness depends on past accumulation rates at the drilling site and hence indicates local pre-

cipitation driven by synoptic circulation patterns (Erhardt et al., 2019). According to this proxy variable interpretation, DO

events are found to comprise not only sudden warming, but also sudden increase in local precipitation amounts, retreat of50

the North Atlantic sea ice cover, and changes of hemispheric circulation patterns. In the search for the triggering mechanism,

several attempts have been made to deduce the relative temporal order of these abrupt changes by analyzing the phasing of

corresponding abrupt shifts detected in multi-proxy time series from Greenland ice cores (Erhardt et al., 2019; Thomas et al.,

2009; Steffensen et al., 2008; Ruth et al., 2007). While Thomas et al. (2009) and Steffensen et al. (2008) report delayed Green-

land warming with respect to atmospheric changes for the onsets of GI-8 and GI-1 and the Holocene, Ruth et al. (2007) find55

no systematic lead or lag between NGRIP dust concentration and δ18O changes across the onsets of GI-1 to GI-24. However,
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Figure 1. Time series of δ18O (blue), annual layer thickness λ (cyan), Ca2+ (orange), and Na+ (green) from the NGRIP ice core, together

with time series of Ca2+ (red) and Na+ (light green) from the NEEM ice core on the GICC05 timescale in ky b2k, at 10-year resolution.

Light blue vertical lines mark the timings of DO events. The δ18O data and the GICC05 timescale are due to Andersen et al. (2004); Gkinis

et al. (2014); Vinther et al. (2006); Rasmussen et al. (2006); Andersen et al. (2006, 2008). All other time series are retrieved from Erhardt

et al. (2019) and for the DO event timings and Greenland Interstadial (GI) notation we followed Rasmussen et al. (2014).

the comprehensive study conducted by Erhardt et al. (2019) concludes that on average changes in both, terrestrial dust aerosol

concentrations (Ca2+) and local precipitation (λ) have preceded the changes in local temperatures (δ18O) and sea salt aerosol

concentrations (Na+) by roughly one decade across the DO events during the last glacial cycle.

These observation-based studies are complemented by numerous conceptual theories and modeling studies that explore a60

variety of mechanisms to explain the DO events. Many studies emphasize the role of the AMOC in the emergence of DO events

(Broecker et al., 1985; Clark et al., 2002; Ganopolski and Rahmstorf, 2001; Henry et al., 2016). In this context, Vettoretti and

Peltier (2018) identified a self-sustained sea-salt oscillation mechanism to initiate transitions between stadials and interstadials

in simulations of a comprehensive general circulation model run, while Boers et al. (2018) proposed a coupling between sea-ice

growth, subsurface-warming, and AMOC changes to explain the DO cycles. Moreover, Li and Born (2019) draw attention to65

the subpolar gyre, a sensitive region that features strong interactions between atmosphere, ocean and sea ice. In line with the

empirical studies that suggest a delayed Greenland warming with respect to atmospheric changes, Kleppin et al. (2015) and

Zhang et al. (2014) find DO-like transitions in model studies triggered by an abrupt reorganization of atmospheric circulation

patterns.

This study refines the investigation of a potential pairwise lead-lag relationship between the four climate proxies Ca2+, Na+,70

δ18O, and the annual layer thickness λ at DO transition onsets, as previously presented by Erhardt et al. (2019). We use the

same data and the same probabilistic transition onset detection method as provided by Erhardt et al. (2019). The data comprises

piece-wise high resolution (7 years or higher) multi-proxy time series around 23 major DO events for the later half of the last

glacial cycle, from the NEEM and the NGRIP ice cores (Erhardt et al., 2019). The fact that high-frequency internal climate
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variability blurs abrupt transitions limits the ability to precisely detect their onset in the proxy data and thereby constitutes75

the main obstacle for the statistical analysis of the succession of events. The method designed by Erhardt et al. (2019) very

conveniently takes this into account and instead of returning scalar estimators it quantifies the transition onsets in terms of

Bayesian posterior probability densities that indicate the plausibility for a transition onset at a certain time in view of the data.

This gives rise to a set of uncertain DO transition onset lags for each pair of proxies under study, whose statistical interpretation

is the goal of this study.80

In contrast to Erhardt et al. (2019), we restrict our investigation to the transition onset points, since we consider the leads and

lags between the initial changes in the different proxy records to be the relevant quantity for a potential identification of the

physical trigger of the DO events. We extend the previous work by interpreting the sets of uncertain lags as samples generated

in a random experiment from corresponding unknown populations - each proxy pair is associated with its own population of

lags. This allows to investigate whether the reported average lags (Erhardt et al., 2019) are a systematic feature or whether they85

might have emerged by chance in a random process that does in fact not favour any of the transition orders. In order to review

the statistical evidence for a potential systematic lags, we formalize the notion of a ’systematic lag’: We call a lag systematic

if it is enshrined in the random experiment in form of a population mean different from zero. Samples generated from such

a biased population would systematically (and not by chance) exhibit sample means different from zero. Accordingly, we

formulate the null hypothesis of a pairwise unbiased transition sequence, that is, a population mean equal to zero. A rejection90

of this null hypothesis would statistically corroborate the interpretation that transitions in δ18O and Na+ systematically lag

their counterparts in λ and Ca2+. On the other hand, acceptance of the hypothesis would prevent us from ruling out that the

observed lag tendencies are not a systematic feature but rather a coincidence. We have identified three different statistical tests

suitable for this task, which all rely on slightly different assumptions. Therefore, in combination they yield a robust assessment

of the observations. Most importantly, we propagate the uncertainties that arise from the transition onset detection to the p-95

values of the different tests. This changes the results from significant to non-significant when compared to averaging out these

uncertainties at the level of individual transition lags. We thus argue that the uncertainties in the transition onset detection are

too large to infer a bias in the underlying lag population, which in turn prevents the attribution of the observed lead-lag relations

to a fundamental mechanism underlying the DO events. We discuss the difference between our approach and the one followed

by Erhardt et al. (2019) in detail below. In addition to the quantitative uncertainty discussed here, there is always qualitative100

uncertainty about the interpretation of climate proxies. Clearly, there is no one-to-one mapping between proxy variables and

the climate variables they are assumed to represent.

To give an example, changes in the atmospheric circulation will simultaneously impact the transport efficiency of sea-salt

aerosols to Greenland. Schüpbach et al. (2018) discuss in detail the entanglement of transport efficiency changes and source

emission changes for aerosol proxies measured in Greenland ice cores. We restrict our analysis to those proxy pairs that have105

been found to show decadal-scale time lags by Erhardt et al. (2019).

This article is structured as follows: First, the data used for the study is described. Second, we introduce our methodology

in general terms, in order to facilitate potential adaptation to structurally similar problems. Within this section, we pay special

attention to clarifying the differences between the approaches chosen in this study and by Erhardt et al. (2019). This is followed
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Figure 2. DO events (Greenland Interstadial onsets) for which Erhardt et al. (2019) provide high-resolution proxy data (Ca2+,Na+,and λ)

for windows centered around the transitions. δ18O data for the corresponding windows was retrieved from continuous δ18O time series

measured in 5cm-steps in the NGRIP ice core (see Fig.1). The probability density estimates for the transition onsets with respect to the

timing of the DO event according to Rasmussen et al. (2014) are shown in arbitrary units for all proxies. The uncertain transition onsets are

only shown for those transitions investigated in this study - the selection is adopted from Erhardt et al. (2019) to guarantee comparability.

by the presentation of our results including a comparison to previous results. In the subsequent discussion, we give a statistical110

interpretation and explain how the two lines of inference lead to different conclusions. The last section summarizes the key

conclusions that can be drawn from our analysis.

2 Data

In conjunction with their study, Erhardt et al. (2019) published 23 highly resolved time series for Ca2+ and Na+ concentrations

from the NGRIP and NEEM ice cores for time intervals of 250 to 500 years centered around DO events from the later half of115

the last glacial. The data set covers all major interstadial onsets from GI-17.2 to the Holocene, as determined by Rasmussen

et al. (2014). The time resolution decreases from 2 to 4 years with increasing depth in the ice cores due to the thinning of

the core. In addition, Erhardt et al. (2019) derived the annual layer thickness from the NGRIP aerosol data and published

these records likewise for the time intervals described above. Furthermore, continuous 10-year resolution versions of the proxy

records were published, which cover the period 60-10kyr BP, shown in Fig. 1 (Erhardt et al., 2019). Finally, the NGRIP δ18O120

record at 5 cm resolution (corresponding to 4-7 years for the respective time windows) (Andersen et al., 2004) completes the

dataset used in the study by Erhardt et al. (2019) and correspondingly in our study.

While Ca2+ and Na+ mass concentrations are interpreted as indicators of the past state of the atmospheric large-scale cir-

culation and the past North Atlantic Sea ice extent, respectively, the annual layer thickness and δ18O records give qualitative
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measures of the local precipitation and temperature, respectively (Erhardt et al., 2019, and references therein). The high res-125

olution and the shared origin of the time series makes them ideally suited to study the succession of events at the beginning

of DO transitions. On top of that, the aerosol data have been co-registered in a continuous flow analysis allowing for highest

possible comparability (Erhardt et al., 2019).

For their analysis, Erhardt et al. (2019) only considered time series around DO events that do not suffer from any data gaps.

For the sake of comparability, we adopt their selection. From Fig. 2 it can be inferred which proxy records around which DO130

events have been included in this study. For details on the data and the proxy interpretations we refer to Erhardt et al. (2019)

and the manifold references therein.

3 Methods

We first briefly review the probabilistic method that we adopted from Erhardt et al. (2019) in order to estimate the transition

onset time t0 of each proxy variable for each DO event comprised in the data (see Fig. 3). The Bayesian method accounts for135

the uncertainty inherent to the determination of t0 by returning probability densities ρT0
(t0) instead of scalar estimators. From

these distributions, corresponding probability distributions for the pairwise time lags between two proxies can be derived for all

DO events. Second, a statistical perspective on the series of DO events is established. For a given proxy pair, the set of transition

onset lags from the different DO events is treated as a sample of observations from an unknown underlying population. In this

very common setup, naturally one would use hypothesis tests to constrain the population. In particular, the question whether140

any lag tendencies observed in the data are a systematic feature or whether they have instead occurred by chance can be

assessed by testing the null hypothesis of a population mean lag equal to zero. However, the particularity that the individual

observations that comprise the sample are themselves subject to uncertainty requires a generalization of the hypothesis tests.

We propagate the uncertainty of the transition onset timings to the p-values of the tests and hence obtain uncertain p-values in

terms of probability densities (see Fig. 4). While in common hypothesis tests the scalar p-value is compared to a predefined145

significance level, here we propose two criteria to project the p-value distribution onto the binary decision between acceptance

and rejection of the null hypothesis.

3.1 Transition onset detection

Consider a fluctuating time series D = {x(ti)}i=1,...,n with n data points, which includes one abrupt transition from one level

of values to another. For this setting, Erhardt et al. (2019) have designed a method to estimate the transitions onset time t0 in150

a probabilistic, Bayesian sense (see Fig. 3). Instead of a point estimate, their method returns a so-called posterior probability

density that indicates the plausibility of the respective onset time in view of the data. For technical reasons, this probability

density cannot be derived in form of a continuous function but only in form of a representative set of values generated from it

by means of a Markov-Chain-Monte-Carlo (MCMC) algorithm (Goodman and Weare, 2010). The application of the method

to NGRIP Ca2+ and Na+ concentration data around the onset of GI-12c is illustrated in Fig. 3.155
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Figure 3. (a) Posterior probability distribution ρT0(t0) for the onset of NGRIP Ca2+ and Na+ transitions associated with the onset of GI-12c,

derived from Ca2+ (orange) and Na+ (green) values around the GI-12c onset at 2-year resolution, using the probabilistic ramp-fitting shown

in (b). The black lines in (b) indicate the expected ramp, i.e., the average overall ramps determined by the posterior distributions of the ramp

parameters. The grey shaded area indicates the 5th-95th percentiles of these ramps. (c) Histogram sampled from the posterior distribution for

the transition onset lag ∆t between the two proxies (violet), together with the corresponding Gaussian kernel density estimate (KDE, blue).

The key idea is to model the transition as a linear ramp L(ti) perturbed by Gaussian red noise ε(ti):

y(ti) =


y0 ti ≤ t0

y0 + ∆y ti−t0
τ t0 < ti < t0 + τ

y0 + ∆y t≥ ti + τ︸ ︷︷ ︸
liner ramp L(ti)

+ AR(1)σ,α︸ ︷︷ ︸
red noise ε(ti)

. (1)

This model is fully determined by the four ramp parameters {t0,y0, τ,∆y}, the amplitude σ, and the autoregressive coefficient

α of the AR(1) process. For a given configuration θ of these six parameters, the probability for this stochastic model to exactly

reproduce the data D reads160

π(D|θ) := π(y(ti) = x(ti)∀i ∈ {1, . . . ,n}|θ) =
1

(2πσ2)n

n∏
i=1

exp

(
−1

2

(δi−αδi−1)2

σ2

)
, (2)

where δi = x(ti)−L(ti) denote the residuals between the linear ramp and the observations and δ0 = 0. Bayes’ Theorem

immediately yields the posterior probability density for the model parameters π(θ|D) upon introduction of convenient priors

π(θ):

π(θ|D) =
π(D|θ) π(θ)

π(D)
, (3)165
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where the normalization constant π(D) =
∫
π(D|θ)π(θ)dθ is the a priori probability for the observations. Since the parameter

space is six-dimensional, Eq. 3 cannot be evaluated explicitly on a grid with reasonably fine spacing. Instead, an MCMC-

algorithm is used to sample a representative set {θ1, ...,θm} of parameter configurations from the posterior distribution that

approximates the continuous distribution in the sense that for smooth functions f∫
f(θ)ρΘ(θ) dθ '

∫
f(θ)ρ̄Θ(θ) dθ =

1

m

m∑
j=1

f(θj), (4)170

where the notion of a so-called empirical distribution ρ̄Θ(θ) = 1
m

∑m
i=1 δ(θ− θi) has been used. The use of the MCMC algo-

rithm further allows to omit the normalization constant π(D). The number m of individuals comprised in the sample must be

chosen large enough to ensure a good approximation in Eq. 4. The marginal distribution for the parameter t0 relevant for our

study can be obtained by integration over the remaining parameters θ̂:

ρT0|D(t0) =

∫
π(θ|D) dθ̂, (5)175

which reads

ρ̄T0
(t0) =

1

m

m∑
j=1

δ(t0− t0,j) (6)

in terms of the empirical density induced by the MCMC sample.

Given the probability densities for the transition onsets of two proxy variables at a chosen DO event, the probability density

for the lag between them reads180

ρ∆Tp,q
i

(∆tp,qi ) =

∫ ∫
δ(tp,i0 − t

q,i
0 −∆tp,qi )ρp,iT0

(tp,i0 ) ρq,iT0
(tq,i0 ) dtp,i0 dtq,i0 , (7)

where p and q indicate the different proxy variables and i labels the DO event. ∆T was chosen for the notation of an un-

certain time lag, while ∆t refers to a corresponding realization. The set of probability densities {ρ∆Tp,q
i

(∆tp,qi )}i derived

from the different DO events conveniently describes the random vector of uncertain DO onset lag observations ∆Tp,q =

(∆T p,q1 , ...,∆T p,qn ) for the (p,q) proxy pair in the sense that185

ρ∆Tp,q (∆tp,q) =

n∏
i=1

ρ∆Tp,q
i

(∆tp,qi ). (8)

Note that the entries ∆T p,qi of the random vector ∆Tp,q are indipendent from each other and follow their individual dis-

tributions ρ∆Tp,q
i

(∆tp,qi ), such that the joint distribution is given by the product of the individual distributions. A cross-core

comparison is not possible, because the relative dating uncertainties between the cores exceed the magnitude of the potential

time lags.190

For sake of simplicity, we omit the difference between the posterior density distribution and the empirical posterior density

distribution. It is shown in Appendix A that all methods can be equivalently formulated in terms of the empirical posterior

density distribution. The numerical computations themselves have of course been carried out with the empirical densities
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obtained from the MCMC sampler. Appendix B discusses the construction of numerically manageable empirical densites

ρ̄∆Tp,q (∆tp,q). Since substantial reduction of the available MCMC sampled data is required, a control group of alternative195

realizations of ρ̄∆Tp,q (∆tp,q) is introduced. The high agreement of the results obtained from the control group with the results

discussed in the main text confirms the validity of the initial ρ̄∆Tp,q (∆tp,q) construction.

In the following all probability densities that represent uncertainties with origin in the transition onset observation will be re-

ferred to as uncertainty distributions or uncertainty densities. This facilitates to differentiate these from probability distributions

that generically characterize random experiments. The random variables described by uncertainty distributions will be termed200

uncertain variables. Generally, we denote all random (including uncertain) variables by capital letters X , while realizations

will be denoted with lower case letters x. Furthermore, distributions will always be subscripted with the random variables that

they characterize, e.g. ρX(x). For sake of readability, sometimes we omit the index p,q when it is clear that a quantity refers

to a pair of proxies (p,q).

3.2 Statistical setting205

Despite their diversity in terms of temperature amplitude, duration, and frequency across the last glacial, the reoccurring pat-

terns and their common manifestation in different proxies suggests that the DO events follow a common physical mechanism.

If this assumption holds true, this mechanism prescribes a fixed pattern of causes and effects for all DO events. However,

natural variability will randomly delay or advance the individual parts of the event chain of the DO mechanism in each single

realization, without violating the mechanistic causality. The observed pairwise transition onset lags should thus be regarded as210

realizations of independent and identically distributed (i.i.d.) random variables generated in a random experiment (Ω,F ,Pp,q∆T )

on the sample space Ω = R. Here, F is a σ-algebra defined on Ω and may be taken as the Borel algebra. Pp,q∆T – the so-called

population – denotes a probability measure with respect toF and fully characterizes the random lag ∆T p,q between the proxies

p and q. Importantly, if any of the proxy variables investigated here was to represent a climate variable associated with the DO

event trigger, we would expect an advanced initial change in the record of this proxy with respect to other proxies at DO event215

onsets. In turn, a pronounced delay of a proxy record’s transition onset contradicts the assumption that the proxy represents

a climate variable associated with the trigger. Therefore, the identification of leads and lags between the transition onsets in

the individual proxy time series may help in the search for the trigger of the DO events. Here, we formalize these arguments

by testing whether the observed samples of transition lags are significant in a statistical sense. If the observations supported

the hypothesis of a systematic lag, this would be a strong hint for the leading climate proxy to be bear the imprint of the DO220

trigger.

According to the data selection by Erhardt et al. (2019) as explained in Sec. 2, for all studied pairs of proxies we compute

either 16 or 20 transition lags from the different DO events, which we interpret as samples ∆tp,q = (∆tp,q1 , ...,∆tp,qn ) from

their respective populations Pp,q∆T .1 Studying these samples, Erhardt et al. (2019) deduced a decadal-scale delay in the transition

1In fact, the pairwise lags between the different proxies of the NGRIP ice core are certainly correlated and one could formulate the random experiment in

terms of a multi-dimensional population where each component represents the time lag of a different proxy pair. Associating each time lag ∆T p,q with its

individual population technically corresponds to an investigation of the marginal distributions of P∆T.
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Figure 4. (a) Schematic representation of an uncertain observation of a sample (purple) generated from a population (blue) in a random

experiment. The blue line indicates the probability density of the generating population PX . A sample x = (x1, ...,x6) realized from PX is

indicated by the turquoise lines. If the observational process involves uncertainty a second level of randomness is introduced and the values

can at best be approximated by probability density functions depicted in purple. Depending on the measurement process, the uncertainty

distributions of the sample members may all exhibit individual shapes or they may share a common one. (b) Distribution of the test statistic

φ derived from the uncertain sample (purple) together with the corresponding value derived from the true sample (turquoise). In olive, the

distribution of φ under the null hypothesis is shown. The dotted red line separates the rejection region (left) from the acceptance region in a

one-sided test setup. (c) Distribution of the uncertain p-value corresponding to the uncertain sample. In turquoise, the p-value of the certain

sample is marked. The red line indicates the significance level α.

onsets in Na+ and δ18O records with respect to their counterparts in Ca2+ and λ. In order to test if the data supports evidence225

for this lag to be systematic in a statistical sense, as explained above first the notion of a ’systematic lag’ requires mathematical

formalization. We argue that a physical process that systematically delays one of the proxy variable transitions with respect to

another must in the random experiment framework be associated with a population that exhibits a mean different from zero

µp,q = E(∆T p,q) 6= 0, i.e., a biased population Pp,q∆T . The outcomes of such a random experiment will be systematically biased

in accordance. In contrast, outcomes of an unbiased random experiment may as well appear to be biased. However, this bias is230

not systematic but rather a coincidence. Given a limited number of observations, hypothesis tests provide a consistent, yet not

unambiguous way to distinguish systematic from random biases.

If the mean of the observed sample up,q(∆tp,q) = 1
n

∑
∆tp,qi indicates an apparent lag between the proxies p and q, testing

if the sample statistically contradicts an unbiased (µp,q = 0) or even reversely biased (sign(µp,q) 6= sign(up,q)) generating

population can provide evidence for a systematic lag at a chosen significance level. However, as long as the hypothesis of an235

unbiased population cannot be rejected, there is no statistical evidence for a systematic lag and the observed average sample

lag could be the result of an unbiased random process associated with a popoluation with mean value µp,q equal to zero.

Before we introduce the tests deployed for this study, we discuss the particularity that the individual observations of the i.i.d

variables that comprise our samples are themselves subject to uncertainty and hence are represented by probability densities

instead of scalar values. The common literature on hypothesis tests assumes that an observation of a random variable yields a240
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scalar value. Given a sample of n scalar observations

x = (x1,x2, ...,xn) . (9)

the application of hypothesis tests to the sample is in general straight forward and has been abundantly discussed (e.g. Lehmann

and Romano, 2005). In short, a test statistic φx = φ(x) is computed from the observed sample, where

φ : Rn→ R, x 7→ φ(x) (10)245

denotes the mapping from the space of n-dimensional samples to the space of the test statistic and φx denotes the explicit value

of the function when applied to the observed sample x. Subsequently, integration of the so-called null distribution over all

values φ′, which under the null hypothesis H0 are more extreme than the observed φx, yields the test’s p-value. In this study,

an hypothesis on the lower limit of a parameter will be tested. In this one-sided left-tailed application of hypothesis testing, the

p-value explicitly reads250

px =

φx∫
−∞

ρ0
Φ(φ′) dφ′. (11)

Analogous expressions may be given for one-sided right-tailed and two-sided tests. The null distribution ρ0
Φ(φ′) is the theoret-

ical distribution of the random test statistic Φ(X) under the assumption that the null hypothesis on the population PX holds

true. If px is less than a predefined significance level α, the observed sample heavily contradicts the null hypothesis, which in

turn must be rejected.255

In contrast to this setting, the DO transition onset lags between the proxies p and q, which are thought to have been generated

from the population Pp,q∆T , are observed with uncertainty. Hence, the entries in the vector of observations in our case are

uncertain variables themselves, which are characterized by the previously introduced uncertainty distributions ρ∆Tp,q
i

(∆tp,qi ).

Omitting the (p,q) notation, we denote an uncertain sample of time lags as

∆T = (∆T1,∆T2, ...,∆Tn) , with (12a)260

ρ∆T(∆t) =

n∏
i=1

ρ∆Ti
(∆ti). (12b)

Note that the uncertainty represented by the uncertain sample originates from the observation process - the sample no longer

carries the generic randomness of the population P∆T it was generated from. The ∆Ti are no longer identically but yet

independently distributed.

A simplistic approach to test hypothesis on an uncertain sample would be to average over the uncertainty distribution and265

subsequently apply the test to the resulting expected sample

E(∆T) = (E(∆T1),E(∆T2), ...,E(∆Tn)) =

(∫
∆t1 ρ∆T1

(∆t1) d∆t1, ... ,

∫
∆tn ρ∆Tn

(∆tn) d∆tn

)
. (13)

However, we argue that propagation of the uncertainty inherent to the observations into the domain of the tests’ p-values

is more meaningful and averaging beforehand hides the effect of the uncertainties. Uncertainty propagation gives rise to an
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uncertainty distribution of the p-value, which indicates the plausibility of a certain p-value in view of the data and in view of270

the limitations in the transition onset detection. The propagation of the uncertainties from the level of observation to the test

statistic and finally to the p-value is illustrated in Fig. 4.

The uncertainty propagation relies on the recognition that any function evaluation G= f(X) of a random variable X is

again a random variable and its distribution is given by

ρG(g) =

∫
δ (f(x)− g) ρX(x) dx. (14)275

Analogously, the uncertain test statistic Φ(∆T) follows the distribution

ρΦ(φ′) =

∫
δ(φ(∆t)−φ′) ρ∆T(∆t) d∆t. (15)

In general, primes are used to distinguish scalar values from functions, when necessary. Repeated application of Eq. 14 yields

the uncertainty distribution of a given test’s p-value P (Φ(∆T)):
280

ρP (p′) =

∫
δ (p(φ′)− p′) ρΦ(φ′) dφ′ =

∫ ∫
δ (p(φ′)− p′) δ (φ(∆t)−φ′) ρ∆T(∆t) d∆t dφ′

=

∫
δ (p(φ(∆t))− p′) d∆t. (16)

In the example shown in Fig. 4 the initial uncertainty in the observation translates into an uncertain p-value that features both,

probability for significance and probability for non-significance. This illustrates the need for a criterion to project the uncertain

p-value onto a binary decision space comprised of rejection and acceptance of the null hypothesis. We propose to consider the285

following criteria to facilitate an informed decision:

– The hypothesis shall be rejected at the significance level α if and only if the expected p-value is less than α, that is

1∫
0

p ρP (p) dp < α. (17)

– The hypothesis shall be rejected at the significance level α if and only if the probability for p to be less than α is greater

than a predefined threshold η (we propose η = 90%), that is290

PP (p < α) =

α∫
0

ρP (p) dp > η . (18)

While the p-value of a certain sample indicates its extremeness with respect to the null distribution, we consider the expected

p-value as a convenient measure for the extremeness of the uncertain sample. However, in some situations one might want to

guarantee that in fact the probability to achieve a significant test result is high – e.g. when mistakenly attested significance is

associated with high costs. In these cases the second criterion is more appropriate even though it does not imply that the first295

criterion is fulfilled.
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3.3 Hypothesis tests

We have introduced the notion of uncertain samples and its consequences for the application of hypothesis tests. Here, we

shortly introduce the tests used to test our null hypothesis that the observed tendency for delayed transition onsets in Na+ and

δ18O with respect to Ca2+ and λ has occurred by chance and that the corresponding populations Pp,q∆T that characterize the300

random pairwise lags ∆T p,q do in fact not favour the tentative transition orders apparent from the observations. Mathematically,

this can be formulated as follows:

– Let ρp,q∆T (∆t) be the probability density associated with the popuplation of DO transition onset lags Pp,q∆t between the

proxy variables p and q and let the observations ∆Tp,q suggest a delayed transition of the proxy q - that is, we observe

high uncertainty probabilities for negative ∆Ti across the sample according to Eq. 7. We then test the hypothesis H0 :305

’The mean value µp,q =
∫
ρp,q∆T (∆t) d∆t of the population Pp,q∆T is equal or greater than zero.’

We identified three tests that are suited for this task, namely the t-test, the Wilcoxon-signed-rank (WSR) test, and a bootstrap

test. The WSR and the t-test are typically formulated in terms of paired observation {xi,yi} that give rise to a sample of differ-

ences {di = xi− yi} which correspond to the time lags {∆T p,qi } observed for the different DO events (Rice, 2007; Lehmann

and Romano, 2005, e.g.). The null distributions of the tests rely on slightly different assumptions on the populations. Since we310

cannot guarantee the compliance of these assumptions, we apply the tests in combination to obtain a robust assessment.

3.3.1 t-test

The t-test (Student, 1908) relies on the assumption that the population of differences PD is normally distributed with mean µ

and standard deviation σ. For a random sample D = (D1, ...,Dn) the test statistic

Z(D) =
U(D)−µ
S(D)/

√
n

(19)315

follows a t-distribution tn−1(z) with n− 1 degrees of freedom. Here, U = 1
n

∑
Di is the sample mean and S = 1

n−1

∑
(U −

Di)
2 is the samples’ standard deviation. This allows to test whether an observed sample d = (d1, ...,dn) contradicts an hy-

pothesis on the mean µ. To compute the p-value for the hypothesis H0 : µ≥ 0 (left handed application) the null distribution is

integrated from −∞ to the observed value z(d):

pz(z(d)) =

z(d)∫
−∞

tn−1(z′)dz′. (20)320

The resulting p-value must then be compared to the predefined significance level α.

The t-test can be generalized for application to an uncertain sample of the form ∆T = (∆T1, ...,∆Tn) as follows: Let

ρ∆T(∆t) denote the uncertainty distribution of ∆T. Then according to Eq. 14 the distribution of the uncertain statistic

Z(∆T) reads

ρZ(z′) =

∫
δ

(
u(∆t)

s(∆t)/
√
n
− z′

)
ρ∆T(∆t) d∆t. (21)325
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Finally, the distribution of the uncertain p-value may again be computed according to Eq. 14

ρPz
(p′z) =

∫
δ (pz(z)− p′z) ρZ(z′) dz′ =

∫
δ

 z′∫
−∞

tn−1(z′′) dz′′− p′z

 ρZ(z′) dz′ (22)

and then be evaluated according to the two criteria formulated above.

3.3.2 Wilcoxon-signed-rank

Compared to the t-test, the WSR test (Wilcoxon, 1945) allows to relax the assumption of normality imposed on the generating330

population PD, and replaces it by the weaker assumption of symmetry with respect to its mean µ in order to test the null

hypothesis H0 : µ≥ 0. The test statistic W for this test is defined as

W (D) =

n∑
i=1

R(|Di|) Θ(Di), (23)

where R(|Di|) denotes the rank of |Di| within the sorted set of the absolute values of differences {|Di|}. The Heaviside

function Θ(Di) guarantees that exclusivelyDi > 0 are summed. The derivation of the null distribution is a purely combinatoric335

problem and its explicit form can be be found in lookup tables. Because W ∈ N[0,n(n+1)/2] we denote the null distribution by

P0
W (w) to signal that this is not a continuous density. Explicitly, the null distribution can be derived as follows: First, the

assumption of symmetry around zero (for the hypothesis H0 : µ≥ 0 the relevant null distribution builds on µ= 0) guarantees

that the chance for Di to be positive is equal to 1
2 . Hence, the number of positive outcomes m follows a symmetric binomial

distribution π(m) =
(
n
m

)
( 1

2 )n. For m positive observations, there are
(
n
m

)
different sets of ranks {r1, ..., rm} that they may340

assume, and which are again due to the symmetry of PD equally likely. Hence, for a given number of positive outcomes m

the probability to obtain a test statistic w is given by the share of those
(
n
m

)
configurations that yield a rank sum equal to w.

Summing these probabilities over all possible values of m yields the null distribution for the test statistic w.

For a given sample d we test the hypothesis H0 : µ≥ 0 by computing the corresponding one-sided p-value pw, which is

given by the cumulative probability that the null distribution assigns to w′ values smaller than the observed w(d):345

pw(w(d)) =

n∑
i=1

P0
W (w′i) Θ(w(d)−w′i). (24)

Since W ∈ N[0,n(n+1)/2] it follows that pw assumes only discrete values in [0,1] with the null distribution determining the

mapping between these two sets.

The generalization of the WSR-test to the uncertain sample ∆T can be carried out almost analogously to the t-test. However,

the fact that W ∈ N[0,n(n+1)/2] makes it inconvenient to use a continuous probability density distribution. We denote the350

distribution for the uncertain W (∆T) by

PW (w) =

∫
δ

(
n∑
i=1

R(|∆ti|) Θ(∆ti)−w

)
ρ∆T(∆t) d∆t. (25)
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Given the one-to-one map from all w ∈ N[0,n(n+1)/2] to the set of discrete potential values pw for Pw in [0,1] determined by

equation Eq. 24, the probability to obtain pw is already given by the probability to obtain the corresponding w. Hence, we find

PPw(Pw(W ) = pw) = PW (w). (26)355

3.3.3 Bootstrap test

Given an observed sample of differences d = (d1, ...,dn), a bootstrap test constitutes a third option to test the compatibility of

the sample with the hypothesis that the population of differences features a mean equal to or greater than zero: H0 := µ0 ≥ 0.

Guidance for the construction of a bootstrap hypothesis test can be found in Lehmann and Romano (2005) and Hall and

Wilson (1991). The advantage of the bootstrap test lies in its independence from assumptions regarding the distributions shape.360

The sample mean u(d) = 1
n

∑n
i=1 di assumes the role of the test statistic. However, its null distribution is – in contrast to

the previous tests – directly constructed from the data. For our test, we bootstrap sample means from the set of differences

d∗ = d−u(d) shifted by the original sample mean u(d). That is, we randomly draw n values from d∗ with replacement and

compute the corresponding sample mean ũ of this synthetically generated sample. Note that the mean of the shifted sample d∗

is equal to zero. Repeating this procedurem times yields a set of synthetic sample means {ũi} that in turn induces an empirical365

density distribution

ρ0
U (u) =

1

m

m∑
i=1

δ(u− ũi), (27)

which may be regarded as a data-derived distribution of the test statistic under the null hypothesis. Given that in this study n is

either 16 or 20, we setm= 100 for all applications. The p-value of this bootstrap test is then computed as before in a one-sided

manner370

pb(u(d)) =

u(d)∫
−∞

ρ0
U (u) du=

1

m

m∑
i=1

Θ(u(d)− ũi) , (28)

where the right hand side equals the fraction of synthetic means that are smaller than the mean of the original sample u(d).

In the case where the sample of differences is uncertain, as for ∆T = (∆T1, ...,∆Tn), the construction scheme for ρ0
U needs

to be adjusted to conveniently reflect these uncertainties. Let U(∆T) denote the uncertain mean distributed according to

ρU (u′) =

∫
δ

(
u′− 1

n

n∑
i=1

∆ti

)
ρ∆T(∆t) d∆t. (29)375

The shifted sample ∆T∗ = ∆T−U(∆T) can still be defined equivalently, but is now comprised of uncertain quantities. In

turn, the bootstrapped synthetic samples will as well be comprised of uncertain individuals, which results is uncertain synthetic

means Ũi whose distributions ρŨi
(ũi) can be derived in the sense of Eq. 14.

The empirical null distribution for the test statistic u may then be defined analogously to Eq. 27, with the difference that

ρ0
U (u) is now uncertain itself, and is thus distributed with respect to the synthetic ũi:380

ρ0
U (u, ũ1, ..., ũm) =

1

m

m∑
i=1

δ(u− ũi)ρŨi
(ũi). (30)
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Integration over the synthetic dimensions then yields a marginal data-derived distribution that complies with the null hypothesis

and simultaneously reflects the uncertainties in the original sample:

ρ0
U (u) =

∫
ρ0
U (u, ũ) dũ =

1

m

m∑
i=1

ρŨi
(u). (31)

After the uncertainty of ∆T has been taken into account in the construction of a null distribution, it enters the test again in form385

of an uncertain test statistic U(∆T). As previously, the uncertainty distribution for the p-values is computed by integrating the

null distribution up to the uncertain test statistic and weighing this expression by ρU (u′):

ρPb
(pb) =

∫
δ

 u∫
−∞

ρ0
U (u′) du′− pb

ρU (u) du. (32)

The three tests are applied in combination in order to compensate their individual deficits. If the population P∆T was truly

Gaussian, the t-test would be the most powerful test, i.e., its rejection region would be the largest across all tests on the390

population mean (Lehmann and Romano, 2005). Since normality of P∆T cannot be guaranteed, the less powerful Wilcoxon-

signed-rank test constitutes a meaningful supplement to the t-test, relying on the somewhat weaker assumption that P∆T is

symmetric around zero. Finally, the bootstrap test is non-parametric and in view of its independence from any assumptions

adds a valuable contribution.

3.4 Comparison to the ’combined evidence’ reported by Erhardt et al. (2019)395

For the derivation of the transition lag uncertainty distributions ρ∆Tp,q
i

(∆tp,qi ) of the i-th DO event between the proxies p and

q, we have directly adopted the methodology designed by Erhardt et al. (2019). However, our statistical interpretation of the

resulting sets of uncertainty distributions {ρp,q∆t1
(∆t1), ... ,ρp,q∆tn

(∆tn)} derived from the set of DO events differs from the one

proposed by Erhardt et al. (2019). In this section we explain the subtle yet important differences between the two statistical

perspectives.400

Given a pair of variables (p,q), Erhardt et al. (2019) define what they call ’combined estimate’ ρ∗∆T (∆t) as the product over

all corresponding lag uncertainty distributions:

ρ∗∆T (∆t)∝
n∏
i=1

ρ∆Ti
(∆t). (33)

This implicitly assumes that all DO events share the exact same time lag ∆t between the variables p and q. This is realized

by inserting a single argument ∆t into the different distributions ρ∆Ti
(·). Hence, the product on the right hand side of Eq. 33405

in fact indicates the probability that all DO events assume the time lag ∆t, provided that they all assume the same lag:

ρ∗∆T (∆t) = ρ∗∆T (∆t|∆t1 = ... = ∆tn = ∆t) =

∏
ρ∆Ti

(∆t)∫
Ω

∏
ρ∆Ti

(∆ti) d∆ti
, Ω = {∆t : ∆ti = ∆tj ∀i, j}. (34)

The denominator on the right hand side equals the probability that all DO events share a common time lag. Eq. 33 strongly

emphasizes those regions where all uncertainty distributions ρ∆Ti
(∆ti) are substantially larger than zero. The ’combined
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evidence’ answers the question: Provided that all DO events exhibit the same lag between the transition onsets of p and q, then410

how likely is it that this lag is given by ∆t. Drawing on this quantity, (Erhardt et al., 2019) conclude that δ18O and Na+ ’on

average’ lag Ca2+ and λ by about one decade.

Thinking of the DO transition onset lags as i.i.d. random variables of a repeatedly executed random experiment takes into

account the natural variability between different DO events and hence, it removes the restricting a priori assumption ∆t1 =

... = ∆tn. In our approach we have related the potentially systematic character of lags to the population mean. Since the415

sample mean is the best point-estimate of a population mean, we consider it to reasonably indicate potential leads and lags,

whose significance should be tested in a second step. Thus, we ascribe the sample mean a similar role as Erhardt et al. (2019)

ascribe to the ’combined estimate’ and therefore, we present a comparison of these two quantities in Sec. 4.1.

The mean of an uncertain sample is again an uncertain quantity and its distribution has already been introduced in Eq. 29.

While the ’combined estimate’ multiplies the distributions ρ∆Ti(∆t), the uncertain sample mean convolutes them pairwise (see420

Appendix C). We thus expect the distributions for uncertain sample means to be broader than the corresponding distributions

for the ’combined estimate’. This can be motivated by considering the simple example of two Gaussian variables X and Y .

According to the convolution their sample mean U = X+Y
2 is normally distributed with variance σ2

x∗y =
σ2
x+σ2

y

4 . In contrast,

a combined estimate would yield a normal distribution with variance σ2
xy =

σ2
x+σ2

y

σ2
xσ

2
y

. Thus, the convolution will appear broader

for all σ2
xσ

2
y > 4, which is the case for the distributions considered in this study.425

4 Results

In the following we apply the above methodology to the different pairs of proxies that Erhardt et al. (2019) found to exhibit

a decadal-scale time lag, based on an assessment of the ’combined estimate’; namely (Ca2+,Na+), (λ,Na+), (Ca2+, δ18O)

and (λ,δ18O) from the NGRIP ice core, and (Ca2+,Na+) from the NEEM ice core. For each individual proxy we estimate the

uncertain transition onsets relative to the timing of the DO events as given by Rasmussen et al. (2014) (see Fig. 2). From these430

uncertain transition onsets, the uncertainty distributions for the sets of uncertain lags ∆Tp,q between the proxies p and q are

derived according to Eq. 7. As mentioned previously, we study the same selection of transitions evidenced in the multi-proxy

records as Erhardt et al. (2019). This selection yields sample sizes of either 16 or 20 lags per pair of proxies, but not 23, which

is the total number of DO events present in the Data.

We first study the uncertain sample means. As already mentioned, the sample mean is the best available point estimate for435

the population mean. Hence, sample means different from zero may be regarded as first indications for potential systematic

lead-lag relationships and thus motivate the application of hypothesis tests. We compare the results obtained for the uncertain

sample means with corresponding results for the ’combined estimate’. Both quantities indicate a tendency towards a delayed

transition in Na+ and δ18O. Accordingly, in the subsequent section we apply the generalized hypothesis tests introduced above

to the uncertain samples of transition lags to test the null hypothesis of pairwise unbiased transition sequences.440
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Figure 5. Comparison between the uncertain sample means (this study) and ’combined estimates’ according to Erhardt et al. (2019). The

probability densities for the ’combined estimate’ are derived from the samples of uncertain time lags according to Eq. 33. Correspondingly,

the uncertain sample means are computed according to Eq. 29. The numbers in the plots indicate the mean, the 5th and the 95th percentile of

the respective quantity. Both computations use Gaussian kernel density estimates of the MCMC-sampled transition onsets lags. Panels (a-d)

refer to proxy pairs from the NGRIP ice core and panel (e) shows results from the NEEM ice core. The distributions for both the combined

estimate and the uncertain sample mean point towards a delayed transition onset in δ18O and Na+ with respect to λ and Ca2+.
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4.1 Uncertain sample mean and combined estimate

Based on their assessment of the ’combined estimate’, Erhardt et al. (2019) concluded that on average, transitions in Ca2+ and

λ started approximately one decade earlier than their counterparts in Na+ and δ18O. Fig. 5 shows a reproduction of their results

together with the uncertainty distributions of the sample means for all proxy pairs under study ((Ca2+, δ18O) and (λ,δ18O)

are not shown in Erhardt et al. (2019)). For an uncertain sample of lags ∆Tp,q between the proxies p and q, the ’combined445

estimate’ and the uncertain sample mean are computed according to Eq. 34 and Eq. 29, respectively. The reproduction of the

’combined estimate’ deviates from the original publication by no more than 1 year with respect to the mean and the 5th and

95th percentiles across all pairs. These deviations might originate from the stochastic MCMC-sampling process used for the

analysis.

With the sample mean being the best point estimator of the population mean, it serves as a suitable indicator for a potential450

bias of the population. The expectations

E(U) =

∫
u ρU (u) du (35)

for the sample means of all proxy pairs do in fact suggest a bias towards negative values in all distributions, i.e., a delay of

the Na+ and δ18O transition onsets with respect to Ca2+ and λ. This indication is weakest for (Ca2,Na+) and (Ca2+, δ18O)

from NGRIP, since for these pairs we find non-zero probability for a positive sample mean. For the other pairs the indication455

is comparably strong, with the 95th percentiles of the uncertainty distributions for the sample mean still being less than zero.

Overall, the results for the uncertain mean confirm the previously reported tendencies and in very rough terms, the distributions

qualitatively agree with those for the ’combined estimate’. In agreement with the heuristic example from Sec. 3.4, we find the

sample mean distributions to be broader than the ’combined estimate’ distributions in all cases. The expected sample means

indicate less pronounced lags for (Ca2,Na+) (panel (a)) and (Ca2+, δ18O) (panel (c)) from the NGRIP ice core compared to460

the expectations of the corresponding ’combined estimate’. In combination with the broadening of the distribution, this yields

considerable probabilities for U > 0 of 12% and 14%, respectively, indicating a delayed transition of Ca2+ in the sample mean

with respect to Na+ or δ18O. Contrarily, for (λ,Na+) (NGRIP, panel (b)) and (Ca2+,Na+) (NEEM, panel(e)) the expected

sample means point towards more distinct lags than reported by Erhardt et al. (2019) based on the ’combined estimate’. For

(λ,δ18O) (NGRIP, panel (d)) the sample mean and the ’combined estimate’ are very close. Note that the analysis of the465

uncertain sample values yields a more inconsistent picture with regard to the (Ca2+,Na+) lag in the two different cores. While

the distribution is shifted to less negative (less pronounced lag) for the NGRIP data, it tends to more negative values in the case

of NEEM (stronger lag), suggesting a slight discrepancy between the cores.

Both quantities, the uncertain sample mean and the ’combined estimate’ point towards delayed transition onsets in Na+ and

δ18O with respect to Ca2+ and λ, with major fractions of their uncertainty densities being allocated to negative values. This470

motivates to test whether the observations significantly contradict the hypothesis of a population mean equal or greater than

zero, corresponding to an unbiased or reversely biased population. Accordingly, the subsequent section presents the results

obtained from the application of three different hypothesis test that target the population mean. As discussed in Sec. 3, the tests
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Figure 6. Exemplary application of the analysis to the proxy pair (Ca2+,Na+) from the NGRIP ice core. Panel (a) shows 16 uncertain

time lags ∆Ti derived from the proxy data around DO events. The continuous densities have been obtained via a Gaussian kernel density

estimate from the corresponding MCMC samples (see Sec. 3.1). In panel (b) the uncertain test statistics induced by the uncertain sample

are shown for the t-test (blue), the WSR-test (orange) and a bootstrap test (green). The values that comprise the histograms are immediately

derived from the MCMC samples. Panel (c) shows the empirical uncertainty distribution for the p-values of the three tests, following from

the uncertain test statistics in panel (b). Dotted red lines seperate rejection from acceptance regions in panels (b) and (c). For the other proxy

pairs investigated in this study, corresponding plots would appear structurally similar.

have been modified to allow for a rigorous uncertainty propagation and return uncertainty distribution for their corresponding

p-values, rather than scalars.475

4.2 Statistical significance of the proposed lead-lag relations

Above, we identified three tests for testing the hypothesis that the samples ∆Tp,q were actually generated from populations

that on average feature no or even reversed time lags compared to what the sign of the corresponding uncertain sample mean

suggests. Mathematically, this is equivalent to testing the hypothesis that the mean µp,q of the population Pp,q∆T is greater or

equal to zero: H0 : µp,q ≥ 0. A rejection of this hypothesis would confirm that the assessed sample is very unlikely to stem480

from a population with µp,q ≥ 0, and would thereby provide evidence for a systematic lag. Under the constraints indicated

above this would in turn yield evidence for an actual lead of the corresponding climatic process. We have chosen a significance

level of α= 0.05, which is a typical choice. Fig. 7 summarizes the final uncertainty distributions of the three tests for all proxy

pairs under study. Corresponding values are given in Tab. 1.
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Figure 7. Results of the hypothesis tests applied to the uncertain samples of transition onset lags ∆Tp,q
i . The violin plots show the Gaussian

kernel density estimates of the empirical uncertainty distributions for p-values (see Fig. 6) obtained for all tests and for all proxy pairs

investigated. Pink bars indicate the corresponding expected p-values E(p) and yellow bars indicate the p obtained from testing the expected

samples E(∆T). All expected p-values are above the significance level α= 0.05 (red dotted line), while the expected samples apper to be

significant consistently across all proxy pairs and all tests. The pie charts indicate the probability for the respective p-values to be less then

α.

Fig. 6 exemplarily illustrates the application of the three tests to the empirical densities obtained for ∆T(Ca2+,Na+)485

(NGIRP). In Fig. 6 the initial uncertainty in the observations – i.e., the uncertainty encoded by the distributions of transition

onset lags – is propagated to an uncertain test statistic according to Eq. 15. In turn, the uncertain test statistic yields an uncertain

p-value (see Eq. 16). Since the numerical computation is based on empirical densities as generated by the MCMC sampling,

we show the corresponding histograms instead of continuous densities - for the ρ∆Ti(∆ti). Gaussian kernel density estimates

are presented only for the sake of visual clarity. On the level of the test statistics the red dashed line separates the acceptance490

from the rejection region, based on the null distributions given in black. Qualitatively, the three tests yield the same results. The

histograms clearly indicate non-zero probabilities for the test statistic in both regions. Correspondingly, the histograms for the

p-values stretch well across the significance threshold. The shapes of the histograms resemble an exponential decay towards

higher p-values. This results from the non-linear mapping of the test statistics to the p-values. Despite the pronounced bulk

of empirical p-values below the significance level, the probability for non-significant p-values is still well above 50% for the495

three tests (see Tab. 1). Also, the expected p-value exceeds the significance level for all tests. Hence, neither of the two criteria

for significance formulated in Sec. 3.2 is met for the proxy pair (Ca2+,Na+). In contrast, if the observational uncertainties are

averaged out on the level of the transition onset lags, all tests yield p-values below the significance level, which would indicate

that the lags would indeed be significant. Hence, the rigorous propagation of uncertainties qualitatively changes the statistical

assessment of the uncertain sample of lags ∆T(Ca2+,Na+) (NGRIP). While the expected sample rejects the null hypothesis,500

rigorous uncertainty propagation leads to acceptance. This holds true for all tests.

Fig. 7 summarizes the results obtained for all proxy pairs under study. Qualitatively, our findings are the same for the other

pairs as for the (Ca2+,Na+) (NGRIP) case discussed in detailed above. All expected p-values, as indicated by the pink bars,

are above the significance level. The first criterion for significance is hence not met by any of the pairs. Also, the probability
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Table 1. Results from the application of the t-test, the WSR test and a bootstrap test to uncertain samples of DO transition onset lags ∆Tp,q .

E(p) denotes the expected p-value, derived from the uncertainty-propagated p-value distribution. The probability for a significant test results

associated with the same distribution is indicated by PP (p < 0.05). For comparison, the p-values from the application of the tests to the

expected sample E(∆T) =
∫
ρ∆t(∆t)∆t d∆t are given in the bottom row.

NGRIP NEEM

(Ca2+,Na+) (λ,Na+) (Ca2+, δ18O) (λ,δ18O) (Ca2+,Na+)

t-test WSR BS t-test WSR BS t-test WSR BS t-test WSR BS t-test WSR BS

E(p) 0.22 0.17 0.22 0.09 0.09 0.09 0.23 0.18 0.23 0.13 0.11 0.13 0.08 0.08 0.07

P (p < 0.05) 0.26 0.32 0.25 0.47 0.48 0.51 0.24 0.31 0.22 0.37 0.44 0.39 0.57 0.58 0.59

p(E(∆t)) 0.04 0.01 0.02 0.02 0.02 0.02 0.04 0.01 0.04 0.02 0.01 0.01 0.01 0.01 0.01

for significance is below 60% for all pairs and all tests as shown by the pie charts, so also the second criterion is missed. In505

contrast, all expected samples are significant across all tests with according p-values being indicated by the yellow bars. The

proxy pairs with the lowest expected p-values and the highest probability for p < α are (λ,Na+) from NGRIP and (Ca2+,Na+)

from NEEM, as already suggested by the analysis of the uncertain sample mean. For the NGRIP ice core the delay of Na+ and

δ18O with respect to Ca2+ has a very low probability to be significant of approximately one third. The pair (λ,δ18O) ranges in

between these two.510

5 Discussion

Erhardt et al. (2019) have reported an average time lag between the transition onsets in Na+ and δ18O proxy values and their

counterparts in Ca2+ and λ at the onset of DO events of about one decade. This statement is based on the assessment of the

’combined estimate’ derived from uncertain samples of time lags ∆Tp,q . The samples were obtained by applying a well-suited

Bayesian transition onset detection to high resolution time series of the different proxies. The ’combined estimate’ indicates515

leads of the Ca2+ and λ transition onsets with respect to Na+ and δ18O by approximately one decade, with the 90% confidence

interval ranging from 0 to approximately 15 years.

The analysis presented here is based on the same data and transition onset detection, but we give a different statistical

interpretation of the uncertain lag samples. The ’combined estimate’ implicitly assumes that for a given proxy pair all DO

events share a common time lag (∆T p,qi = ∆T p,qj ). In order to relax this constraint, we regard the samples of lags as outcomes520

of random experiments which are characterized by corresponding populations. This approach allows the lags from different

events to assume different values and thus reflects the fact that natural variability will cause different expressions of the same

mechanism across different DO events. We have identified a physically systematic lag with a biased population, that is, a

population with mean less than zero – the sign in the formulation of the null hypothesis must be chosen according to the

definition of the lag between the proxies. This enabled us to formulate a mathematically sound null hypothesis of unbiased525

(or reversely biased) populations and test whether the observations in fact contradict this null hypothesis. First, we derived

22



uncertainty distributions for the sample mean, because it is the best point estimate for the population mean and its statistical

interpretation is related to that of the ’combined evidence’. In fact, qualitatively the computed distributions for the uncertain

sample means agree with the ’combined estimate’ for the five proxy pairs under review. On this level we can confirm that this

summary statistic points towards a delayed transition in Na+ and δ18O with respect to the transitions in λ and Ca2+.530

However, within the chosen random experiment framework, evidence for a hypothesis is achieved by ruling out the contrary

null hypothesis with respect to the population. Hence, evidence for the systematic lag would require the rejection of the null

hypothesis that the population mean is in fact equal or greater than zero. Here, generalized versions of three different hypothesis

tests consistently fail to reject the null hypothesis under rigorous propagation of the observational uncertainties originating from

the transition onset detection. This holds true for all proxy pairs. The fact that the tests rely on different assumptions on the535

population’s shape, but nonetheless qualitatively yield the same results, makes our assessment robust. We conclude that the

presented data is not sufficient to provide evidence for a systematic time lag between the transition onsets of Ca2+ and λ on

the one hand and Na+ and δ18O on the other hand, at the beginning of DO events. In other words, the possibility that the

observed tendencies towards advanced transitions in Ca2+ and λ have occurred simply by chance, cannot be excluded. If the

common physical interpretation of the studied proxies holds true, our results imply that the hypothesis that the trigger of the540

DO events is associated directly with the North Atlantic sea-ice cover rather than the atmospheric circulation - be it on synoptic

or hemispheric scale - cannot be ruled out.

We argue that the variability across different DO events cannot be ignored in the assessment of the data. Although the DO

events are likely caused by the same physical mechanism, changing boundary conditions and other natural climate fluctuations

will lead to deviations in the exact timings of the different processes involved from one DO event to the next. Fig. 2 clearly545

shows that the different events exhibit different time lags. Provided that the DO events were driven by the same process,

physically they constitute different realizations and they exhibit great variability also in other variables such as the amplitude

of the temperature change (Kindler et al., 2014) or the waiting times with respect to the previous event (Ditlevsen et al., 2007;

Boers et al., 2018). The random experiment framework presented here moreover relates potential systematic leads and lags

in the physical process that drives DO events to a bias in the corresponding population of lags between proxy variables. This550

allows for the physically meaningful formulation of a statistical hypothesis and a corresponding null hypothesis. By applying

different hypothesis tests we have followed a well-established line of statistical inference.

Our main purpose was the consistent treatment of observational uncertainties and we have largely ignored the vibrant debate

on the qualitative interpretation of the proxies. Surprisingly, we could not find any literature on the application of hypothesis

tests to uncertain samples of the kind discussed here. We have proposed to propagate the uncertainties to the level of the555

p-values and to then consider the expected p-values and the share of p-values which indicate significance, in order to decide

between rejection and acceptance. The p-value measures the extremeness of a sample with respect to the null distribution and

we hence regard the expected p-value to be a suitable measure for the uncertain samples’ extremeness. The probability of the

uncertain sample to be significant at a given level is also a reasonable indicator, which can be invoked in addition. In cases of

high cost for a wrongly rejected null hypothesis, one might want to have a high degree of certainty that the uncertain sample560

actually contradicts the null hypothesis and hence a high probability for the uncertain p-value to be smaller than α. In contrast,
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if the observational uncertainties are averaged out in the beginning, information is lost. The expected sample may either be

significant or not, but the uncertainty about the significance can no longer be accurately quantified.

The potential of the availability of data from different sites has probably not been been fully leveraged in this study. Naively

one could think of the NEEM and NGRIP (Ca2+,Na+) lag records as two independent observations of the same entity.565

However, the discrepancy in the corresponding sample mean uncertainty distributions opens up the question how changes in

the climatic features such as sea-ice cover and atmospheric circulation are actually recorded by the proxies at different sites,

and how important regional geographic differences are. Proxy-enabled modeling studies as presented by Sime et al. (2019)

could shed further light on the question to what extent the NEEM and NGRIP sites record the same signal after an abrupt

change of the climatic conditions. Also, a comparison of the NGRIP and NEEM records on an individual event level could570

provide further insights how to combine these records statistically.

Alternatively to computing the sample mean or the ’combined estimate’, it may seem attractive to simply ’add’ the distri-

butions ρ∆Tp,q
i

(∆tp,qi obtained from the different events for one pair of proxies. This impression may be supported by the fact

that the practical computation is carried out in terms of empirical densities ρ̄∆Ti
(∆ti) = 1

m

∑m
j=1 δ(∆ti−∆ti,j), comprised of

6000 values {∆ti,j} obtained via MCMC sampling. Given these n times m values, with n denoting the number of DO events575

for the proxy pair and m the number of MCMC sampled values for each pair, one might be tempted to pool them all together

and call them a somewhat combined probability density estimate. In terms of continuous uncertainty densities, this pooling

corresponds to averaging over ρ∆Ti(∆ti) with respect to the index i. This would ignore the fact that the different uncertainty

distributions aim to represent different quantities, namely the transition lags from physically different DO event realizations.

Most importantly, the average over the ρ∆Ti
(∆ti) or alternatively the combined set of MCMC samples does not correspond to580

any mathematical object and hence its interpretation remains unclear.

6 Conclusions

We have presented a statistical reinterpretation of the high-resolution proxy records provided and analyzed by Erhardt et al.

(2019). The probabilistic transition onset detection also designed by Erhardt et al. (2019) very conveniently quantifies the

uncertainty in the transition onset estimation by returning probability densities instead of scalar estimates. While the statisti-585

cal quantities ’combined estimate’ (Erhardt et al., 2019) and ’uncertain sample mean’ (this study) indicate a tendency for a

pairwise delayed transition onset in Na+ and δ18O proxy values with respect to Ca2+ and λ, a more rigorous treatment of

the involved uncertainties shows that these tendencies do not significantly contradict the hypothesis of an unbiased transition

process. Thus, a pairwise systematic lead-lag relation cannot be evidenced for any of the proxies studied here. We have shown

that if uncertainties on the level of transition onset lags are averaged out beforehand, the sample lags indeed appear to be590

significant, which underpins the importance of rigorous uncertainty propagation in the analysis of paleoclimate proxy data.

This study has focused on the quantitative uncertainties and has largely ignored qualitative uncertainty stemming from the

climatic interpretation of the proxies. However, if the common proxy interpretations hold true, our findings suggest that the
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hypothesis of an atmospheric trigger - either of hemispheric or synoptic scale - for the DO events should not be favoured over

the hypothesis that a change in the North Atlantic sea-ice cover initiates the DO events.595

Even though we find that the uncertainty of the transition onset detection combined with the small sample size prevents the

deduction of statistically unambiguous statements on the temporal order of events, we believe that multi-proxy analysis is a

convenient approach to investigate the sequential order at the beginning of DO events. In this study, we refrained from analyzing

the lags between the different proxies in a combined approach and focused on the marginal populations. However, a combined

statistical evaluation - that is, treating the transition onsets of all proxy variables as a four-dimensional random variable - merits600

further investigation. Also, we propose to statistically combine measurements from NEEM and NGRIP (and potentially further

ice cores) of the same proxy pairs. Finally, hierarchical models may be invoked to avoid switching from a Bayesian perspective

in the transition onset estimation to a frequentist perspective in the statistical interpretation of the uncertain samples.

Furthermore, the interpretation of proxy variables requires further refinement. Especially the interpretation of Na+ as a sea

ice proxy remains debated. Potentially, other proxies could be included in analyses similar to ours. Finally, effort in conducting605

modelling studies should be sustained. Especially proxy-enabled modeling bears the potential to improve comparability be-

tween model results and paleoclimate records. Together, these lines of research are promising to further constrain the sequence

of events that have caused the abrupt climate changes during the last glacial.

Code and data availability. 10-year resolution time series of Na+ and Ca2+ concentrations and δ18O values from the NGRIP ice core

shown in Fig. 1 are retrieved from PANGAEA (Erhardt et al., 2018, https://doi.org/10.1594/PANGAEA.896743). The high-resolution Na+610

and Ca2+ concentration time series centered around DO transitions which were used to derive the time lags between the transition onsets

of the two proxies can be found in the same PANGAEA archive. The code used to generate the empirical densities of transition onsets is

available at https://github.com/terhardt/DO-progression (last access: 21 October 2020). The code used to carry out the statistical analysis of

the sample of empirical transition onset distributions is available from the authors upon request and will be published once the manuscript is

accepted.615
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Appendix A: Numerical treatment of high dimensional probability densities

In Sec.3.1 we introduced the probabilistic transition onset detection designed by Erhardt et al. (2019). Given a single time

series the formulation of a stochastic ramp model induces a posterior probability density for the set of model parameters Θ in760

a Bayesian sense

π(Θ|D) =
π(D|Θ) π(Θ)

π(D)
. (A1)

However, a classical numerical representation of this density on a discretized grid is inconvenient. Due to its high dimension-

ality for a reasonable grid spacing the number of data points easily overloads the computational power of ordinary computers.

E.g. representing each dimension with a minimum of 100 points would amount to a total of 1012 data points. On top of that,765

the application of any methods to such a grid is computationally very costly. Here, the MCMC sampler constitutes an efficient

solution. By sampling a representative set {θj}j from the posterior probability density it may be used to construct an empirical

density in the sense of Eq. 4. For sake of simplicity in the main text we have formulated the methods in terms of continuous

probability densities, although all computations in fact rely on empirical densities obtained from MCMC samples. Here, we

show that all steps in the derivation of the methods can be performed equivalently under stringent use of the empirical density.770

With regards to hypothesis tests, the use of empirical densities for the uncertain transition lag samples ∆Tp,q
i essentially boils

down to an application of the tests to each individual value comprised in the respective empirical density.

For a given proxy and a given DO event, in a first step the MCMC algorithm samples from the joint posterior probability

density for the models parameter configuration θ = (t0, τ,y0,∆y,α,σ), giving rise to the empirical density ρ̄Θ(θ) = 1
m

∑
δ(θ−

θj). Integration over the nuisance parameters then yields the marginal empirical density for the transition onset775

ρ̄p,iT0
(tp,i0 ) =

1

m

m∑
j=1

δ(tp,i0 − t
p,i
0,j), (A2)

where the index i indicates the DO event and p denotes the proxy variable while j runs over the MCMC sampled values. We

use bars to mark empirical densities in contrast to continuous densities. The uncertainty distribution for the lag ∆T p,qi between

the variables p and q as defined by Eq. 7 may then be approximated as follows (ommitting the index i):
780

ρp,q∆T (∆tp,q) =

∫ ∫
δ(tp0− t

q
0−∆tp,q)ρpT0

(tp0) ρqT0
(tq0) dtp0 dt

q
0

'
∫ ∫

δ(tp0− t
q
0−∆tp,q)ρ̄pT0

(tp0) ρ̄qT0
(tq0) dtp0 dt

q
0 =

∫ ∫
δ(tp0− t

q
0−∆tp,q)

1

m

m∑
j=1

δ(tp0− t
p
0,j)

1

m

m∑
k=1

δ(tp0− t
q
0,k) dtp0 dt

q
0 =

1

m2

m∑
j,k=1

δ(tp0,j − t
q
0,k −∆tp,q) = ρ̄p,q∆T (∆tp,q). (A3)

Thus, the empirical uncertainty distribution for the time lag is induced by the set of all possible differences between members

of the two MCMC samples for the respective transition onsets785

{∆tp,qj }j∈[1,m2] = {tp0,k − t
q
0,l}p,q∈[1,m]. (A4)
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For this study m= 6000 values have been sampled with the MCMC algorithm for each transition under study. This yields

m2 = 36 ·106 potential values for the empirical ∆T uncertainty distribution. To keep the computation efficient, the sets of lags

were restricted to combinations k = l and thus to 6000 empirical values. We thus approximate

ρ̄p,q∆T (∆tp,q)' 1

m

m∑
j=1

δ(tp0,j − t
q
0,j −∆tp,q). (A5)790

This drastic reduction of values certainly requires justification, which we give later by comparing final results of the analysis

to those obtained from control runs. The control runs analogously construct the empirical densities for the transition onset lags

from 6000 out of the 36 · 106 possible values, but use randomly shuffled versions of the original sets of transition onset times

for the variables p and q:

ρ̄p,q,ctrl∆T (∆tp,q)' 1

m

m∑
j=1

δ(tp0,s(j)− t
q
0,s′(j)−∆tp,q). (A6)795

Here, s and s′ denote randomly chosen permutations of the set {1,2, ....,m}.
For a given proxy pair the starting point for the statistical analysis however, is the uncertain sample ∆Tp,q = (∆T p,q1 , ...,∆T p,qn )

characterized by the n dimensional uncertainty distribution ρp,q∆T(∆tp,q) =
∏
ρ∆Tp,q

i
(∆tp,qi ). Its empirical counterpart is given

by

ρ̄p,q∆T(∆tp,q) =

n∏
i=1

ρ̄∆Tp,q
i

(∆tp,qi ) =
1

mn

n∏
i=1

m∑
j=1

δ(∆tp,qi −∆tp,qi,j ). (A7)800

This empirical density is comprised ofmn possible values for the n dimensional random vector ∆Tp,q and again, a substantial

reduction of the representing set is required for practical computation. Defining the reduced empirical density for ∆Tp,q as

ρ̃p,q∆T(∆tp,q) =
1

m

m∑
j=1

n∏
i=1

δ(∆tp,qi −∆tp,qi,j ) =
1

m

m∑
j=1

δ(∆tp,q −∆tp,qj ) (A8)

constrains the set that determines ρ̃p,q∆T(∆tp,q) tom values, where those values from different DO events with the same MCMC

index j are combined. Again, the validity is checked by randomly permuting the sets {∆tp,qi,j } for the individual DO events805

with respect to the index j before the set reduction in the control runs.

Having found a numerically manageable expression for the empirical uncertainty distribution of the sample ∆Tp,q it remains

to be shown how the hypothesis tests can be formulated on this basis. If {∆tj}j denotes the set of n dimensional vectors

forming the empirical uncertainty distribution for the sample of lags obtained from n DO events, then the naive intuition

holds true and the corresponding set {φj = φ(∆tj)}j represents the empirical uncertainty distribution of the test statistic and810

correspondingly {pφ(φj)}j characterizes the uncertain p-value. In the following, we examplarily derive this relation for the

t-test - the derivations for the WSR and the bootstrap test are analogue.

Recall the statistic of the t-test

z(d) =
u(d)−µ
s(d)/

√
(n)

. (A9)
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The empirical uncertainty distribution for a sample ∆T induces a joint uncertainty distribution for the samples mean and815

standard deviation

ρ̄U,S(u,s) =

∫
δ

(
u− 1

n

n∑
i=1

∆ti

)
δ

(
s− 1

n− 1

n∑
i=1

(u−∆ti)
2

)
1

m

m∑
j=1

n∏
i=1

δ(∆ti−∆ti,j) d∆t1 ... d∆tn

=
1

m

m∑
j=1

δ

(
u− 1

n

n∑
i=1

∆ti,j

)
δ

(
s− 1

n− 1

n∑
i=1

(u−∆ti,j)
2

)
. (A10)

Let uj = 1
n

∑n
i=1 ∆ti,j , and sj = 1

n−1

∑n
i=1(uj−∆ti,j)

2. Then, the empirical uncertainty distribution for (U,S) can be written820

as

ρ̄U,S(u,s) =
1

m

m∑
j=1

δ (u−uj)δ (s− sj) (A11)

The (uj ,sj) that form the empirical uncertainty distribution are simply the mean and standard deviation of those ∆tj =

(∆t1,j ,∆t2,j , ...,∆tn,j) that form the vector valued empirical uncertainty distribution for ∆T. From ρ̄U,S(u,s), the empirical

uncertainty distribution for the test statistic Z can be computed as follows:825

ρ̄Z(z) =

∫
δ

(
z− u−µ

s/
√

(n)

)
ρU,S(u,s) du ds=

1

m

m∑
j=1

δ

(
z− uj −µ

sj/
√

(n)︸ ︷︷ ︸
=zj

)
. (A12)

This shows, that for a given empirical uncertainty distribution for a sample of time lags ρ̄∆T(∆t) = 1
m

∑m
i=1 δ (∆t−∆tj),

the corresponding distribution for the test statistic Z(∆T) is formed by the set {z(∆tj)|j ∈ [1,m]} where each ∆tj is a

vector in n dimensions. The uncertain (left-handed) p-value remains to be derived from ρ̄Z(z):

ρ̄Pz
(pz) =

∫
δ

pz − z∫
−∞

tn−1(z′) dz′

 ρ̄Z(z) dz =
1

m

m∑
j=1

δ

(
p−

zj∫
−∞

tn−1(z′)

︸ ︷︷ ︸
=pz,j

dz′

)
. (A13)830

Finally, the practical computation of the uncertain p-values boils down to an application of the test to all members of the set

∆tj that originates from the MCMC sampling used to approximate the posterior probability density for the ramp parameter

configuration Θ. For the WSR test the expression

ρ̄Pw
(pw) =

1

m

m∑
j=1

δ (pw − pw,j) with pw,j = pw(∆tj) (A14)

can be derived analogously. The bootstrap test bears the particularity, that the uncertainty of the sample gives rise to an uncer-835

tainty in the null distribution. But once the null distribution is established in terms of empirical densities according to Eq. 31

the mapping pb(∆t) is well defined and can be applied to the individual members of the set {∆tj}j .
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Table B1. Results obtained from the application of hypothesis tests to the control group. Reported are the mean p-values E(p(∆t)) together

with the probability of the uncertain sample to be smaller than the significance level P (p(∆t)< 0.05) and the p-values of the expected

samples p(E(∆t)) for all three tests. All results were derived from the corresponding empirical densities ρ̄∆Tp,q (∆tp,q). The results from

the original analysis are given as well by the p− q− 0 run for each proxy variable.

run E(P) P(P < 0.05) P (E(∆T))

z w bs z w bs z w bs

NGRIP

Ca2+-Na+-0 0.219 0.168 0.220 0.258 0.325 0.252 0.044 0.009 0.018

Ca2+-Na+-1 0.218 0.166 0.218 0.246 0.318 0.248 0.044 0.009 0.023

Ca2+-Na+-2 0.219 0.165 0.219 0.264 0.325 0.249 0.044 0.009 0.016

Ca2+-Na+-3 0.217 0.164 0.219 0.255 0.320 0.243 0.044 0.009 0.025

Ca2+-Na+-4 0.219 0.167 0.220 0.259 0.327 0.254 0.044 0.009 0.018

Ca2+-Na+-5 0.219 0.166 0.220 0.254 0.316 0.249 0.044 0.009 0.019

Ca2+-Na+-6 0.218 0.166 0.219 0.251 0.320 0.244 0.044 0.009 0.019

Ca2+-Na+-7 0.218 0.165 0.218 0.255 0.320 0.248 0.044 0.009 0.015

Ca2+-Na+-8 0.219 0.165 0.219 0.258 0.319 0.250 0.044 0.009 0.017

Ca2+-Na+-9 0.219 0.167 0.220 0.256 0.326 0.248 0.044 0.009 0.021

λ-δ18O-0 0.133 0.110 0.127 0.369 0.436 0.393 0.024 0.009 0.014

λ-δ18O-1 0.133 0.111 0.128 0.378 0.447 0.396 0.024 0.009 0.014

λ-δ18O-2 0.133 0.111 0.127 0.377 0.440 0.394 0.024 0.009 0.017

λ-δ18O-3 0.133 0.110 0.127 0.382 0.442 0.391 0.024 0.009 0.018

λ-δ18O-4 0.133 0.111 0.127 0.383 0.450 0.396 0.024 0.009 0.020

λ-δ18O-5 0.132 0.109 0.126 0.379 0.445 0.396 0.024 0.009 0.012

λ-δ18O-6 0.133 0.109 0.128 0.381 0.444 0.396 0.024 0.009 0.015

λ-δ18O-7 0.134 0.111 0.128 0.379 0.437 0.390 0.024 0.009 0.013

λ-δ18O-8 0.133 0.110 0.127 0.371 0.435 0.384 0.024 0.009 0.019

λ-δ18O-9 0.134 0.110 0.128 0.378 0.440 0.395 0.024 0.009 0.024

Ca2+-δ18O-0 0.234 0.182 0.234 0.235 0.306 0.219 0.042 0.015 0.040

Ca2+-δ18O-1 0.234 0.179 0.234 0.233 0.305 0.225 0.042 0.015 0.041

Ca2+-δ18O-2 0.233 0.181 0.234 0.233 0.300 0.216 0.042 0.015 0.031

Ca2+-δ18O-3 0.234 0.181 0.235 0.231 0.310 0.216 0.042 0.015 0.043

Ca2+-δ18O-4 0.234 0.181 0.235 0.225 0.305 0.222 0.042 0.015 0.028

Ca2+-δ18O-5 0.233 0.181 0.233 0.229 0.303 0.210 0.042 0.015 0.037

Ca2+-δ18O-6 0.234 0.181 0.234 0.228 0.305 0.218 0.042 0.015 0.034

Ca2+-δ18O-7 0.235 0.182 0.235 0.239 0.305 0.218 0.042 0.015 0.035

Ca2+-δ18O-8 0.233 0.180 0.233 0.235 0.308 0.219 0.042 0.015 0.038

Ca2+-δ18O-9 0.233 0.180 0.234 0.229 0.301 0.216 0.042 0.015 0.037
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Table B2. Continuation of Tab.B1.

run E(P) P(P < 0.05) P (E(∆T))

z w bs z w bs z w bs

λ-Na+-0 0.093 0.091 0.086 0.469 0.484 0.509 0.023 0.017 0.015

λ-Na+-1 0.093 0.091 0.086 0.468 0.489 0.508 0.023 0.017 0.016

λ-Na+-2 0.093 0.091 0.086 0.473 0.491 0.510 0.023 0.017 0.018

λ-Na+-3 0.092 0.090 0.085 0.470 0.486 0.511 0.023 0.017 0.016

λ-Na+-4 0.091 0.088 0.083 0.464 0.483 0.502 0.023 0.017 0.019

λ-Na+-5 0.092 0.091 0.085 0.467 0.495 0.504 0.023 0.017 0.021

λ-Na+-6 0.094 0.092 0.086 0.470 0.493 0.509 0.023 0.017 0.007

λ-Na+-7 0.092 0.090 0.084 0.464 0.485 0.510 0.023 0.017 0.017

λ-Na+-8 0.093 0.091 0.085 0.470 0.487 0.509 0.023 0.017 0.014

λ-Na+-9 0.092 0.091 0.086 0.467 0.493 0.504 0.023 0.017 0.016

NEEM

Ca2+-Na+-0 0.080 0.076 0.075 0.566 0.584 0.594 0.008 0.007 0.005

Ca2+-Na+-1 0.079 0.075 0.074 0.569 0.582 0.588 0.008 0.007 0.006

Ca2+-Na+-2 0.080 0.077 0.075 0.566 0.578 0.592 0.008 0.007 0.005

Ca2+-Na+-3 0.079 0.075 0.074 0.571 0.591 0.589 0.008 0.007 0.004

Ca2+-Na+-4 0.079 0.076 0.074 0.571 0.582 0.590 0.008 0.007 0.005

Ca2+-Na+-5 0.080 0.077 0.075 0.567 0.590 0.592 0.008 0.007 0.006

Ca2+-Na+-6 0.079 0.077 0.074 0.565 0.577 0.587 0.008 0.007 0.002

Ca2+-Na+-7 0.080 0.078 0.075 0.570 0.580 0.593 0.008 0.007 0.006

Ca2+-Na+-8 0.079 0.076 0.074 0.566 0.574 0.591 0.008 0.007 0.009

Ca2+-Na+-9 0.080 0.077 0.074 0.566 0.580 0.585 0.008 0.007 0.010

Appendix B: Results of the analysis for the control group

As explained in Sec. A, we drastically reduce the cardinality of the sets that form the empirical densities ρ̄p,q∆T(∆tp,q) at two

points in the analysis. First, for the representation of the uncertain time lag ∆T p,qi between the proxies p and q at a given840

DO event, only 6000 out of the 60002 possible values are utilized. Second, the set of vectors considered in the representation

of ρ̄∆Tp,q (∆t) = 1
6000

∑6000
j=1 δ(∆tp,q −∆tp,qj ) is comprised of only 6000 out of the 600016 theoretically available vectors.

To cross-check the robustness of the results obtained within the limits of this approximation, we applied our analysis to a

control group of 9 alternative realizations of the empirical uncertainty density for ∆Tp,q for each proxy pair. The control

group uncertainty densities are constructed as follows: First, the empirical uncertainty distributions for the event specific lags845

∆T p,qi are obtained via Eq. A6. In a second step, the joint empirical uncertainty distribution for ∆Tp,q is constructed from
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randomly shuffled empirical sets ∆tp,qi,si(j) of each DO event:

ρ̃p,q,ctrl∆T (∆tp,q) =
1

m

m∑
j=1

n∏
i=1

δ(∆tp,qi −∆tp,qi,si(j)). (B1)

Here si denotes an event specific permutation of the index set {1, ..., 6000}. Thus the empirical ∆tp,qi,j recombine between

events and give rise to a new set of 6000 vectors that constitute 6000 empirical realizations of the uncertain ∆Tp,q .850

The results obtained from the control runs show only minor deviations from the results presented in the main text and thus

confirm the validity of the reduction of the corresponding sets. Tab. B1 summarizes the results obtained by application of the

hypothesis tests to the control group.

Appendix C: Computation of the uncertain sample mean

In the main text, we stated that the uncertain sample mean is given by the pairwise convolution of the individual uncertainty855

distributions that describe the uncertain sample members. Here, we show how the uncertain sample mean can be computed if

the individual uncertainty distributions are known.

Consider n random variables which are independently, yet not identically distributed:

X = (X1, ...,Xn) with Xi ∼ ρXi
(xi) dxi. (C1)

Further, let860

U =
1

n

n∑
i=1

Xi (C2)

denote the mean of the sample of random variables, which is in turn a random variable by itself. In order to compute the

distribution ρU (u) du we introduce the variable V = nU and the sequence of variables

Vj =

j∑
i=1

Xi, (C3)

such that Vn = V . From C3 it follows that865

Vj+1 = Vj +Xj+1 (C4)

and hence

ρVj+1(vj+1) dvj+1 =

∞∫
−∞

∞∫
−∞

ρVj (vj) ρXj+1(xj+1) δ(vj+1− vj −xj+1) dxj+1 dvj dvj+1

=

∞∫
−∞

ρVj (vj) ρXj+1(vj+1− vj) dvj dvj+1. (C5)870
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Self-iteration of C5 yields

ρVj+1
(vj+1) dvj+1

=

∞∫
−∞

∞∫
−∞

ρVj−1
(vj−1) ρXj

(vj − vj−1) dvj−1

︸ ︷︷ ︸
=ρVj

(vj)

ρXj+1
(vj+1− vj) dvj dvj+1

= . . .

=

∞∫
−∞

...

∞∫
−∞

j+1∏
i=1

ρXi(vi− vi−1)dvi−1 dvj+1, (C6)

where v0 = 0. With Vn/n= U the distribution for the uncertain sample mean reads

ρVn(vn) dVn = ρVn(nu) n du= ρU (u) du (C7)

and thus875

ρU (u) du=

∞∫
−∞

n∏
i=1

ρXi(vi− vi−1)dvi−1 n du, (C8)

with v0 = 0 and vn = nu.

36


