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1 Answer to Referee 1

1.1 General Remarks

First of all, we would like to thank the referee for the careful second review of
our manuscript. Before we address the comments point by point, we will discuss
the main criticism, namely the decision criteria we use to reject or not reject
the respective null-hypotheses.

We would like to emphasize that we acknowledge the arguments brought up
against our decision criteria and that after a careful review we have refined the
explanation of the criteria based on the referees input. Here, for sake of clarity,
we will first summarize the status of the discussion. Subsequently, we repeat
the argument presented by referee 1 in favour of the criterion (1). We will then
examine this argument in detail and explain why we are still convinced that
the combination of the criteria (2) and (3) yields a more meaningful assessment
than criterion (1). Nonetheless, due to the comments of the referee, with respect
to the decision criteria we changed the manuscript as follows:

• We added a paragraph that motivates the propagation of uncertainties
with an example, where averaging out uncertainties yields undesired re-
sults. (l.282ff)

• We added two sentences on the interpretation of the criteria (2) and(3):
’Given the measurement uncertainty the quantity π(P̂ < α) indicates the
informed estimate of the observer that the true value of the measured
sample is in fact statistically significant with respect to the null hypothe-
sis. Thus, the first criterion assesses how ’strongly’ the uncertain sample
contradicts the null hypothesis and the second criterion evaluates the likeli-
hood of the uncertain sample to contradict the null hypothesis. Depending
315 on η, in many cases both criteria will yield the same decision. If not,
the specific situation determines which of the criteria is more convenient.’
(l.311)

• In the previous version of the manuscript, we referred to the criteria (2)
and (3) as ’criteria for significance’ in two instances. This was changed,
as the they consitute decision criteria rather, while the significance of the
sample cannot be ultimately assessed.

l.515: ’neither of the two criteria for significance’ was replaced by ’neither
of the two criteria for rejecting the null hypothesis’.

l.525: ’The first criterion for significance is hence not met by any of the
pairs. Also, the probabilityfor significance is below 60% for all pairs and
all tests as shown by the pie charts, so also the second criterion is missed.’
was replaced by

’Also, the probability for significance is below 60% for all pairs and all
tests as shown by the pie charts. Thus, for all proxy pairs and for all tests
the formulated decision criteria do not allow to reject the null hypothesis
of pairwise unbiased populations.’

2



• In the same sense, in line 102 we changed:

’This changes the results from significant to non-significant when com-
pared to averaging out these uncertainties at individual transition lags’

to

’If detection uncertainties are averaged out at the level of individual tran-
sition lags, temporal delays in the δ18O and Na+ transitions with respect
to their counterparts in Ca2+ and the annual layer thickness are indeed
pairwise statistically significant. In contrast, under rigorous propagation
of uncertainty several tests consistently fail to reject the null hypothesis
across all considered pairs of proxies.’

• We emphasize more clearly than before that not-rejecting the null-hypothesis
does not provide evidence against the alternative hypothesis, in particular
given the large uncertainties in the observations. l.561: ’ We emphasize
that our results must not be misunderstood as evidence against the alter-
native hypothesis of a systematic lag. In the presence of a systematic lag
(µ < 0) the ability of hypothesis tests to reject the null hypothesis of no
systematiclag ((H0 : µ = 0)) depends on sample size n, the ratio between
the mean lag |µ| and the variance of the population, and on the precision
of the measurement. Neither of these quantities is favourable in our case
and thus, it is certainly possible that we failed to reject the null hypothesis
despite the alternative being true.

1.2 Statistical Setting

We are given a sample of observed time lags ∆tp,q = ∆tp,q1 , ...,∆tp,qn between the
proxy variables p and q, where each observation stems from a different DO event.
We assume that the process which generated these time lags is qualitatively the
same, such that we can think of the variable ∆T as a random variable that
will assume a specific value ∆t when a DO event occurs, that is, when the
random experiment is performed. The random experiment is characterized by
its population P∆T . The sample ∆t = (∆t1, ...,∆tn) of observations enables us
to test hypothesis regarding P∆T .

In classical hypothesis testing, the realizations of the random variable ∆ti
are assumed to be measured (or observed) with infinite precission. That is, each
∆ti is assigned a scalar value in the observation process. However, in our case
each ∆ti can be estimated only with limited precission. Instead of scalar values
we characterize the ∆ti by means of probability density distribution ρ∆ti(∆t

∗
i )

induced by the linear ramp model.
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Notation

Due to the uncertainty in the measurement process the true value ∆ti
must be regarded as a random variable whose probability is characterized
by ρ∆ti(∆t

∗
i ). We denote with ∆t∗i possible values for the true value. The

randomness encoded in ∆ti has nothing to do with the initial random
experiment P∆T any more, but is only due to measurement uncertainty.
We therefore introduced the term ’uncertain variable’ in the manuscript
and called ρ∆ti an uncertainty distribution.

ρ∆ti(∆t
∗
i ) quantifies the uncertainty about the individual ∆ti in a Bayesian

sense, indicating how plausible or probable a certain value ∆t∗i for ∆ti is in
view of the data. Importantly, the measurement of the ∆ti cannot be repeated.
Therefore, the ρ∆ti(∆t

∗
i ) must really be understood as a measure of plausibility

in view of the data and not as the probability to obtain a value ∆t∗i in a re-
peated process. To distinguish between PDF’s that characterize a true random
experiment in a frequentist understanding and those that quantify uncertainty
(in the Bayesian sense), in the manuscript we introduced the term uncertainty
distribution for the latter ones.

This being said, one needs to find a way how to incorporate this uncertainty
in the assessment of an hypothesis on the population P∆T , and in particular
in corresponding statistical hypothesis tests. Three different approaches are
discussed in our manuscript.

1. Averaging out the uncertainty of the measurement at the level of the
individual ∆ti’s yields a sample comprised of scalars.

E(∆T) = (

∫
∆t∗1ρ∆t1(∆t∗1) d∆t∗1, ...,

∫
∆t∗16ρ∆t16(∆t∗16) d∆t∗16). (1)

Classical hypothesis tests can be applied to such an expected sample with-
out any further ado. However, this approach is associated with a loss of
information. Furthermore, it is insensitive to the degree of uncertainty
involved in the problem and would thus likely lead to overconfidence and
to too easy rejection of null hypotheses. We argue that a setup to test sta-
tistical significance must account for uncertainties of the kind treated in
our manuscript. In particular it must at least in principle be possible that
the uncertainties are so large, that the null-hypothesis cannot be rejected
anymore.

The other possibilities rely on the propagation of the uncertainty to the p-value
based on the general notion that any function of a random variable constitutes
a random variable itself:

Y = f(X)→ ρY (y) =

∫
δ(f(x)− y) ρX(x) dx. (2)

This allows to compute an uncertain p-value, whose plausibility is indicated by

Pval(∆T) ∼ ρPval
(p∗val) =

∫
δ(pval(∆t)− p∗val)ρ∆T(∆t) d∆t, (3)
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where we use the notation Pval(∆T) ∼ ρPval
(p∗val) to indicate that the random

variable Pval(∆T) follows the distribution induced by the density ρPval
(p∗val).

Note that in Eq. 3 we omitted the intermediate step of propagating the uncer-
tainty to the test statistic. In order to decide between acceptance and rejection
of the null-hypothesis based on the uncertain p-value given by the random vari-
able Pval, we formulated two criteria:

2. If the probability for the uncertain Pval to be less than the chosen signif-
icance level α exceeds a certain threshold η,

P (Pval < α)
!
> η, (4)

the null-hypothesis shall be rejected (α = 5% and η = 90% were chosen
in the manuscript). As explained above, we emphasize here that the PDF
ρPval

(pval) quantifies the uncertainty that we have about the p-value due
to the inability to measure the individual realizations ∆ti precisely. One
could therefore also say that, in order to reject the hypothesis, we want to
at least be certain to a level of 90% that the true value of the uncertain
sample in fact significantly contradicts the null-hypothesis and thus, that
the true p-value is less than α. Otherwise, we prefer not to reject the
hypothesis. We would also like to emphasize that a statement on the
level of certainty about the significance of the sample with respect to the
null hypothesis does not violate the notion of a p-value and its typical
interpretation.

3. As a second option we proposed to compare the expected p-value

E(Pval) =

∫
ρPval

(p∗val) p
∗
val dp

∗
val, (5)

to the a priori chosen significance level. In general, the p-value associated
with a sample is a measure for the extremeness of the sample with respect
to the null-hypothesis. Thus, the expected p-value reflects the overall
extremeness of the uncertain sample with respect to the null hypothesis.
P (Pval < α) only gives information about how likely the sample is to
contradict the null-hypothesis at the chosen significance-level. E(Pval)
takes into account how strongly potential values for ∆T that are assigned
probability larger than zero contradict or support the null hypothesis.
Therefore, these two quantities should be considered in combination. We
proposed to reject the null-hypothesis if the expected p-value is less than
α

E(Pval)
!
< α. (6)

1.3 Argument by the referee in favour of criterion (1)

The referee criticizes that the criteria (2) and (3) do not comply with the general
meaning and common understanding of the significance level: ’In the textbook
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meaning of the significance level α, α denotes the probability that the signifi-
cance test falsely rejects the null-hypothesis given that it is in fact true. Which
is the meaning that almost all readers of the study will be familiar with.’

First, we would like to clarify that the criteria we introduced are ’decision’
criteria, they are not significance criteria. The significance of any possible value
for ∆t is decided based on the comparison of the corresponding p-value pval(∆t)
with the significance level α. Propagating the uncertainty associated with ∆t we
obtain probabilities for both, the sample being significant and the sample being
non-significance w.r.t. to the null-hypothesis. A decision must hence be taken
between rejecting or not rejecting the hypothesis, even though the significance of
the sample cannot be assessed unambiguously. It seems appealing to place the
same requirement on the decision criteria as on the significance criterion itself.
Namely, that the decision criteria should reject the hypothesis with probability
equal to the significance level, as formulated by the referee.

This being said, we would like to clarify that the interpretation of the p-value
given by the referee is in our view not precise. The statement that α indicates
the rate of wrongly rejecting the null-hypothesis may hold in many cases, but
it does not hold if a hypothesis on a parameter of a population is formulated
in terms of an inequality. E.g. in our manuscript the null hypothesis assumes
a population mean µ ≥ 0. If µ happens to be as large as, say, µ = 3, the
null-hypothesis is obviously fulfilled. Nevertheless, the chances for rejection are
smaller than the significance level. Only in the ’least favourable’ case that still
complies with the null hypothesis, namely µ = 0, the probability for rejection
is equal to the significance-level. The significance level α thus constitutes an
upper limit for the probability of wrongly rejecting the null-hypothesis.

Given an uncertain sample, can one formulate a decision criterion that de-
cides between rejection and acceptance of the null hypothesis and that rejects
wrongly at most with a probability of the significance level? The referee argues
that the first decision criterion would posses these characteristics. We will show
in the following why this is not the case and why instead the assessment of the
null-hypothesis should be based on the criteria (2) and (3) in cases where the
sample is uncertain (in the sense defined above).

1.4 Arguments against criterion (1)

Whenever one averages out quantification of uncertainty, information is obvi-
ously lost. Consider a goalkeeper that knows that an opponent player always
shoots the ball either in the left or right corner, but never in the middle. If the
keeper averaged over this uncertainty distribution, he would always stay in the
middle of the goal but never save the ball. Especially when dealing with bimodal
or multimodal distributions, averaging can lead to very misleading results.

1.4.1 Illustrative example

To give an example more closely related to the situation in our manuscript,
consider the following:
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• Let x = (x1, ..., xn) denote the true value of a sample generated from a
population PX that is known to be Gaussian.

• Assume that in the measurement process you can only observe the absolute
values yi = |xi|. Thus, there is a 50% chance that xi = yi and another
50% chance for xi = −yi for each individual xi.

• Assume the low standard deviation of the sample y = (y1, ..., yn) allows
to almost certainly exclude that the true values xi have pairwise different
signs. Hence the true value of the sample is either x = (y1, ..., yn) or
x = (−y1, ...,−yn).

• Assume you want to test the null hypothesis that the population mean µ
is equal to zero.

• If you apply criterion (1) you would average over the uncertainty distri-
bution to obtain the expected sample E(X) = (0, ..., 0). Application of
the t-test to the averaged sample would in this case always lead to accep-
tance of the null-hypothesis. Thus, it would neither fulfill the requirement
stated by the referee nor deliver any other meaningful insight.

• Application of criterion (2) in turn will yield the correct decision because
pval(y1, ..., yn) = pval(−y1, ...,−yn) and hence, one either finds P (pval <
0.05) = 1 or P (pval < 0.05) = 0.

• The expected p-value that is considered in criterion (3) coincides with the
p-value of the true value of the sample and would likewise yield the correct
decision.

This example shows that averaging out the uncertainty on the level of the
observations can lead to meaningless decisions, in particular in the case of not
unimodal uncertainty distributions. In fact, the posterior distributions of the
transition onsets of individual proxies are multimodal for many of the DO tran-
sitions under study (for example see Fig.3 manuscript where the posterior dis-
tribution for the transition onset of calcium at the GI-12c onset is shown - the
figure is included below). If we strictly followed the paradigm of averaging out
uncertainties on the observational level, then this should consequently be done
prior to the computation of the transition onset lag ∆tp,q between the proxies
p and q, which is a function of the two uncertain transition onset times of the
proxies p and q. This would again alter the results of the analysis.

1.4.2 Setup designed by referee 1

Above we have given an example that motivates the propagation of the measure-
ment uncertainty to the level of the p-value and shows that criterion (1) does
not necessarily fulfill the requirement suggested by the referee. Here, we discuss
the setup introduced by the referee to argue in favour of criterion (1). We argue
that the setup must be interpreted slightly differently with the consequence that
it cannot serve as an argument for criterion (1).
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The referee considers a Gaussian population PX = N (µX = 0, σX = 1) and
realizes a sample x = (x1, ..., x16) from this population. We will denote the true
value of the sample by x in the following. x corresponds to the ∆Tn in the ref-
erees’ comment. Measuring the values xi necessarily involves uncertainty, which
referee 1 models as a second-level normal distribution around the true value. It
is important to note here that this second level distribution does not constitute
an analogue to the uncertainty distributions ρ∆ti(∆t

∗
i ) in our manuscript, which

quantify the plausibility that the true value ∆ti equals ∆t∗i . This is explained in
detail below. The most obvious difference is that the distributions introduced
by the referee are designed such that the expected value necessarily coincides
with the true value, but this cannot be guaranteed in the real application case.

Again, if xi can be observed directly and without the need to introduce
anything like the ramp fit model, the measured value yi will deviated from the
true value xi due to measurement uncertainty. Typically (as done by the referee)
one assumes a Gaussian distribution for the probability to measure yi if the true
value is xi:

PYi|xi
(Yi|xi) ∼ N (xi, σobs), (7)

where σobs quantifies the measurement uncertainty in the setup. Correspond-
ingly, the error ∆i = xi−Yi that you make in the measurement follows a normal
distribution as well

P∆i|xi
= N (0, σobs). (8)

Generally, P∆i|xi
is in fact independent of xi such that P∆ = N (0, σobs) conve-

niently describes the errors (∆1, ...,∆16) as i.i.d. random variables.
If σobs is known, from a measured value yi you can in turn deduce a proba-

bility distribution that quantifies the probability that the true value xi is given
by some x∗i :

PX∗i (xi = x∗i |yi) ∼ N (yi, σobs). (9)

We see here that the expectation of this distribution, E(X∗i ), does not coincide
with the true value xi but instead with the measured value yi. These consider-
ations are illustrated in Fig. 1.

We assume that the referee had in mind something like repeated measure-
ments of the true value. Repeated measurement would indeed correspond to
sampling from the distribution of measured values given a true value PYi|xi

.
However, the situation in our study is such that the uncertainty distribution
for the true value must be quantified after a single measurement. Assuming
that multiple measurements of individual true values xi were possible, then
the measured values yi,j would in the referees setup be distributed normally
around the true value (see Eq. 7) where j indicates the j-th repetition of the
measurement of the i-th true value. From the set of m measurements of xi:
yi = (yi,1, ..., yi,m) the mean of the distribution PYi|xi

- and hence the true
value xi - can be estimated. Either a point estimate can be derived as done by
the referee by taking

x∗i = Ȳ mi =
1

m

m∑
j=1

yi,j (10)
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Figure 1: Illustration of measurement uncertainty. On the top level, there is the
population that characterizes the random experiment. From this population,
three true values are realized, measuring each is associated with uncertainty.
The probability to measure yi if xi is the true value is shown in light gray in
the second level. When the measurement is executed, one value is realized from
each of these distributions - the measured value which is indicated in dark green.
Given that the uncertainty of the measurement process is known, one can then
specify an uncertainty distribution for the true value, based on the measured
value (green Gaussian distributions in the bottom panel).
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or a distribution PX∗i |yi,1,...,yi,m(x∗i = xi) for the estimator x∗i can be derived
by means of the t-distribution (see original version of the manuscript). This
uncertainty distribution, which estimates the true value xi based on m mea-
surements yi,1, ...yi,m, is much narrower than the distribution PYi|xi

. So in the
example provided by the referee, the criterion (1) should be compared with the
application of the criteria (2) and (3) to the uncertainty distributions that can
be derived for the true value from repeated measurement via the t-distribution
(assuming that the distribution for ∆ were Gaussian). The referee might have
had in mind that in the case of repeated measurement a test statistic T (x)
should be computed for each measured sample Tj = T (y1,j , ..., y16,j) and that
the T1, ..., Tm would correspond to a set of p-values pval1 , ..., pvalm . In that
case the {pvalj}j could be interpreted as a representation of the uncertainty on
the p-value, but this is not the case in our situation. One aims to compute
the p-value that corresponds to the true sample x1, ..., x16. As mentioned be-
fore, multiple measurement of each xi substantially reduced the uncertainty on
each xi. Thus, before computing the test statistic, the uncertainty distribution
PX∗i |yi,1,...,yi,m can be computed, which will be a t-distribution centered around

Ȳ mi . The width of this distribution will be significantly smaller than σobs. The
remaining uncertainty should then be propagated according to Eq. 19.

1.4.3 χ2-test

We have shown above that what the referee interprets as the uncertainty dis-
tribution is in fact not the uncertainty distribution, but the distribution of the
measured value Yi around a true value xi. Furthermore, we explained why in
case of repeated measurements one should not compute p-values for each mea-
sured sample y1,j , ...y16,j , but should instead use the multiple measurements to
infer uncertainty distributions PX∗i |yi,1,...,yi,m for the estimator of true values x∗i .
This uncertainty is small compared to σobs and should then be propagated in
the sense of Eq. 19. We would thus politely like to argue that the referee com-
pares mathematical objects that cannot be compared. If the 6000 samples from
PYi|xi

really were to be interpreted as multiple measurements of the true value,
then proper propagation of the uncertainty to PX∗i |yi,1,...,yi,m would indeed yield
rejection rates of 5% for the criteria (2) and (3) in the setup designed by the
referee.

For the case of a single measurement we will show how under the correct
interpretation of the measurements yi criterion (1) in addition does not reject
a true null-hypothesis at a 5% rate, as stated by the referee. We will discuss a
chi2-test, because in the particular case of the t-test the 5% rejection holds true
due to the symmetry of the problem.

Consider a normally distributed random variable X with PX = N (µX =
0, σX) and a sample x = (x1, ..., xn) of n realizations. Furthermore, assume
that the measurement errors are distribution normally as above

P∆ = N (0, σobs), (11)

such that the measured value Yi = xi + ∆i corresponding to the true value xi is
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distributed according to PYi|xi
= N (xi, σobs). We distinguish the following two

situations:

1. single measurement of the true sample x = (x1, ..., xn) yields a single
realization of the measured sample y = (y1, ..., yn)

2. repeated measurement of the true sample yields for each true value xi a
set of measured values yi = (yi,1, ..., yi,m).

We will first discuss the case of a single measurement, because this is the one
in analogy to the manuscript. Without any knowledge about the true values
xi the unconditional distribution for the random variables Yi is given by the
convolution of PX and P∆

PY = N (0, σX) ~N (0, σobs) = N (0,
√
σ2
X + σ2

obs). (12)

Hence, measuring a single sample of true values is effectively the same as sam-
pling from a normal distribution with standard deviation σY =

√
σ2
X + σ2

obs and
mean µY = 0. Suppose you were given one measured sample y = (y1, ..., yn) As
explained above, knowing σobs allows you to quantify an uncertainty distribution
for the true value from this measurement:

PX∗|y = N (y, σobs) or componentwise PX∗i |yi = N (yi, σobs) (13)

This means that, given y, the probability that the true value equals x∗ is nor-
mally distributed around the measured y, with standard deviation σobs.

Now suppose you wanted to test the null-hypothesis H0 : σX < σ0, knowing
that X is normally distributed. Under this condition, the test statistic

χ2 =
(n− 1)s2

σ2
0

(14)

follows a χ2 distribution of n−1 degrees of freedom. Here, s2 = 1
n−1

∑n
i=1(xi−

u)2 denotes the samples’ variance with sample mean u = 1
n

∑n
i=1 xi. σ0 is

the variance that defines the null-hypothesis. In a one-sided significance test
α = 0.05 the most extreme 5% at the high end of the possible values for χ2

comprise the rejection region ΩK . Referee 1 now proposed to first collapse the
uncertainty distribution PX∗|y to its expected value

E(X∗) = y (15)

and subsequently apply the hypothesis test. It becomes clear that in this setup
one effectively tests the standard deviation σY =

√
σ2
X + σ2

obs instead of the

desired σ2
X . For σ2

obs ∼ σ2
X one finds σY ∼

√
2σX . If then σX . σ0 the

probability to reject the hypothesis easily rises above the chosen significance
level under the use of criterion (1), since the effective standard deviation exceeds
the hypothesized standard deviation by a factor of

√
2 even though the null-

hypothesis is in fact true. Importantly, we see here that large observational

11



3

4

5

6

ln
(C

a
2
+

)
[n

g
/

g
]

(b)

46.846.8546.9

GICC05 Age [ky b2k]

3

4

5

6

ln
(N

a
+

)
[n

g
/

g
]

0

25

ρ
T

0
(t

0
)

[k
y−

1
]

(a)

−50 0 50

∆t[y]

0
.0

0
.0

1
0

.0
2

re
l.

fr
eq

u
en

ce
/

d
en

si
ty

[1
/

y]

(c)

Gaussian KDE

MCMC samples

Figure 2: Figure 3 from the manuscript

uncertainty limits the ability to test hypothesis. In the setup discussed by
referee 1, the results obtained by the application of criterion (1) were robust
against the measurement uncertainty which contradicts our physical intuition.
Please note that all criteria converge to the classical hypothesis testing case
when ∆ or more generally speaking, the uncertainty tends to zero.

In the case where repeated measurements of the true value xi are possible
one can estimate the true value xi with higher precision by averaging over the
observed values

Ȳ m = (Yi,1, ..., Yi,m). (16)

For a given xi the variable Ȳ m will be distributed around xi with variance
σ2
obs

m .
Hence, the generic random variable Ȳ m is normally distributed around zero

with an effective standard deviation of σȲm =

√
σ2
X +

σ2
obs

m . The mechanism is
the same as above and again, the chances to wrongly reject the null-hypothesis
may be higher than 5% if one would follow criterion (1), because the effective
variance exceeds the true variance. The impact of the measurement uncertainty
is reduced by the repeated measurement.

1.5 Point-by-Point answer to the referee

Additionally, prompted by the authors statement about the novelty of
their ”uncertainty propa- gation to p-values” in their response: A cursory
literature search (keywords fuzzy p-values, bayesian p-values) brought up a
range of papers that seem to be dealing with p-values in settings similar to
the setting the authors deal with here. It would be good if the authors set
their approach into the context of aforementioned literature or highlight
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its conceptual differences should the they decide to further employ it in
the next iteration of the study.

During our work on the manuscript, we encountered the concept of fuzzy p-
values as well. However, we found that it did not match our case precisely.
Filtzmoser (2004) writes with regards to fuzzy data:

Real observations of continuous quantities are not precise num-
bers but more or less non-precise. The best description of such
data is by so-called non-precise numbers. Such observations are
also called fuzzy. The fuzziness is different from measurement
errors and stochastic uncertainty. It is a feature of single ob-
servations from continuous quantities. Errors are described by
statistical models and should not be confused with fuzziness. In
general fuzziness and errors are superimposed.

Instead of PDF’s, in the fuzzy p-value theory the uncertainty about data
is expressed in terms of characteristic functions. Also an adoption of this
concept to our case fails due to the properties that characteristic functions
are required to fulfill (see for example Filtzmoser, 2004 and Parchami,
2008).

However, we agree with the referee that fuzzy p-values are worth men-
tioning in the context of our work and added the sentence ’The theory of
fuzzy p-values is in fact concerned with uncertainties either in the data or
in the hypothesis, however, it is not applicable to measurement uncertain-
ties that are quantifiable in terms of probability density functions’ in line
569.

Regarding the Bayesian p-value, Gelman et al. (2004) write:

Posterior predictive p-values. To evaluate the fit of the posterior
distribution of a Bayesian model, we can compare the observed
data to the posterior predictive distribution. In the Bayesian
approach, test quantities can be functions of the unknown pa-
rameters as well as data because the test quantity is evaluated
over draws from the posterior distribution of the unknown pa-
rameters. The Bayesian p-value is defined as the probability
that the replicated data could be more extreme than the ob-
served data, as measured by the test quantity:

pB = Pr(T (yrep, θ) ≥ T (y, θ)|y), (17)

where the probability is taken over the posterior distribution of
θ and the posterior predictive distribution of yrep (that is, the
joint distribution, p(θ, yrep|y):

pB =

∫ ∫
IT (yrep,θ)≥T (y,θ)p(y

rep|θ)p(θ|y)dyrepdθ, (18)
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where I is the indicator function. In this formula, we have used
the property of the predictive distribution that p(yrep|θ, y) =
p(yrep|θ).

Hence, the Bayesian p-value assesses the fit of a model to data. In our
application, that would be the fit of the linear-ramp model to the tran-
sition data. But this concept does not seem applicable for assessing the
significance of the uncertain sample of transition onset lags with respect
to the null-hypothesis.

L 129ff It is not true that Erhardt et al. (2019) only considered time series free
from data-gaps. In fact, looking at Figure 3 in the presented manuscript,
both the Ca 2+ as well as the Na + data series do in fact exhibit at least
one section of missing data. Please reformulate.

In the caption of their Fig.3 Erhardt et al write ’No timing results are
given for transitions where there are data gaps in one of the necessary
datasets.’ However, it is true that DO events with minor gaps in the data
around the transition are used for the analysis nonetheless.

We corrected the statement, which now reads: ’For their analysis, Erhardt
et al. (2019) only considered time series around DO events that do not
suffer from substantial data gaps.’

L 198ff The choice of terms for the different type of distributions is a little bit
misleading. Posterior distributions as generate by Bayesian inference are
probability distributions. Yes, posterior distributions carry the uncer-
tainty about an inferred parameter conditional on the data and the model,
but they are probability distributions nontheless. By using the neologism
”uncertainty distributions” the authors implicate that they are more un-
certain than their ”probability distributions” generated by random exper-
iments. This sets the tone for the discussion that follows in a very odd
way. The authors should use the correct term ”posterior probabilities”.
Changing this would also avoid such contortions as the ”high uncertainty
probabilities” (L 305)

The referee is certainly correct that mathematically, there is no differ-
ence between the distributions that we term ’uncertainty distributions’
and standard probability distributions represented by probability density
functions (PDFs). However, their interpretation is somewhat different:
a PDF that characterizes a random experiment can be thought of as the
probability to observe a certain value of the random variable in a repeated
next execution of the experiment. Contrarily, an uncertainty distribution
is a measure of plausibility but the uncertain variable cannot be observed
repeatedly. We believe that the term ’uncertainty distribution’ is a useful
way to highlight this difference and in fact helps the reader not to confuse
the different origins of randomness involved in the analysis. We would
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therefore like to keep using the term ’uncertainty distribution’ and have
not changed this in the revised manuscript.

For sake of clarity, and to avoid ambiguous notation, we have marked all
uncertaint quantities with a hat - that is, all random variables that inherit
their randomness from the Bayesian transition onset detection. The same
holds true for potential values they might assume. We added explanation
on how true values and uncertain values are related and how the two-level
randomness must be understood in line 267.

’The left panel in Fig. 4 illustrates this situation: from an underlying
population PX a sample x = (x1, ..., x6) is realized, with the xi denoting
the true values of the individual realizations. However, the exact value
of xi can not be measured due to measurement uncertainties. Instead
an estimator Ŷi is introduced together with the uncertainty distribution
ρŶi

(ŷi) that expresses the observers belief about how likely a specific value

ŷi for the estimator Ŷi is to agree with the true value xi. The Ŷi correspond
to the ∆T̂ p,qi . For the xi there is no direct correspondence in the problem
at hand, because this quantity in practice cannot be excessed and hence
must not be denoted explicitly in the practical case. We call the vector of
estimators Ŷ = (Ŷ1, ..., Ŷn) an uncertain sample in the following.’

Also, in the cause of this, the notation especially in Section 3 changed in
many places.

However, we agree that ’high uncertainty probability’ is not a well compre-
hensible term and have thus replaced ’that is, we observe high uncertainty
probabilities for negative ∆Ti across the sample according to Eq. 7’ with
’that is, the corresponding uncertainty distribution indicate high proba-
bilities for negative ∆Ti across the sample according to Eq. 7.’ (l.326)

L 208ff Prescribing a ”fixed pattern of causes and effects” is an overly strong in-
terpretation. It is quite easy to imagine a range of mechanisms that have
an indistinguishable imprint in the proxy record but trigger a transition
from stadial to interstadial conditions. For example the ocean processes
alone, that the authors list in the introduction are probably very difficult
to distinguish using the proxies presented here as they partly invoke very
similar feedback mechanisms. I would suggest to reformulate ”similar pat-
tern of cause and effects” to convey the possible ambiguity as a discussion
of the imprint in the proxy records by the different causes clearly goes
beyond the focus of this manuscript. The same holds true for later impli-
cations of the one trigger of DO-Events that the authors make throughout
the manuscript.

The referee is of course right that different mechanisms could easily have
left the same or at least an indistinguishable imprint in the proxy data.
However, we express very clearly that the assumed one to one mapping

– δ18O→ temperature
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– Ca2+ → state of the atmosphere

– Na+ → sea ice

– λ→ local precipitation

is potentially oversimplified and that we leave the discussion about the
correct proxy interpretation to the experts. In order to think of the ∆ti
from different DO events as an i.i.d. random variable, one has to assume
that all DO events were triggered by the same physical process, which
in turn necessarily ’prescribes a fixed pattern of causes and effects for
all DO events’ - at least on the scale of interaction between the climatic
subsystems represented by the proxies. In turn, if the pattern of causes
and effects was different between DO events, then the physical mechanism
was not the same and we could not treat ∆t as an i.i.d. random variable.

For clarity, we added: ’at least on the scale of interaction between climatic
subsystems represented by the proxies under study’ to the corresponding
sentence in line 213.

L 210 The imperative ”should” in regards to the setup of the frequentist analysis
that follows should be replaced with ”could” or ”can”.

Thank you, we fully agree and replaced ’should’ with ’can’.

L 220 Either ”be” or ”bear”.

Corrected: ’bear’.

L 224 The footnote should either be added to and discussed in the paper or re-
moved. As it is right now it is just a clever remark that does not contribute
to the overall manuscript.

The footnote is very technical and addresses the mathematically interested
reader. Placing the statement in a footnote clearly signals that it this
content is not required to follow the reasoning in the main text. If the
editor thinks that using footnotes in this way is not adequate, we will be
glad to incorporate this footnote into the main text.

L 263 I think it would be better to say that the sample no longer only carries
the randomness of the population. As would be the case for a regular
statistical test with certain values.

The formulation ’the sample no longer only carries the randomness of the
population’ suggests that now the sample carries the randomness of the
population and the randomness due measurement uncertainty simultane-
ously. However, the sample of DO transition onset lags has already been
realized and therefore does not carry the randomness of the population
any more. It only carries the randomness due to the measurement.

L 284 In null-hypothesis significance testing the null-hypothesis can only be re-
jected.
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With regards to this, Romano and Lehmann (2006) write:

We now begin the study of the statistical problem that forms
the principal subject of this book, the problem of hypothesis
testing. As the term suggests, one wishes to decide whether or
not some hypothesis that has been formulated is correct. The
choice here lies between only two decisions: accepting or reject-
ing the hypothesis. A decision procedure for such a problem is
called a test of the hypothesis in question.

The term ’null-hypothesis’ is used to expressed that this hypothesis entails
the ’no effect’, ’no difference’ or ’no causal relation’ that one aims to
reject. If the test fails to reject the null-hypothesis it must certainly be
acceptance, for the time being. However, in the revised manuscript we
highlight more strongly than before that in our case we cannot reject the
null-hypothesis due to the large uncertainties and that this result should
not be interpreted as evidence against the alternative (see l.562ff).

At the beginning of the discussion section some text parts have been moved
around and some parts have been shortened. Now the section reads more
consise while the content has not changed.

In the previous version we used the term ’biased’ to characterize a pop-
ulation with mean different from zero. Since a ’bias’ in statistics usually
means a systematic distortion of measurements, we replaced the terms
’biased’ and ’unbiased’ with the terms ’non-neutral’ and ’neutral’, respec-
tively.
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2 Answer to Referee 2

2.1 General Remarks

First of all we would like to thank the referee for the careful second review. Be-
fore we address the comments point by point, we will discuss the main critizism,
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which is why we do not use a mixture distribution to statistically assess the sig-
nificance of the sample of uncertain DO time lags. The simple answer is: we do,
but we failed to make this clear earlier. We therefore apologize for our reserva-
tion towards this comment, which was brought up by the referee already in the
first review and which we had misunderstood. Accordingly the paragraph from
line 572 onwards (previous manuscript) was removed in the revised version.

The referee proposes to use a mixture distribution to test whether the pop-
ulation mean is greater than or equal to zero. In fact, the bootstrap test that
we carry out does exactly this, though it is not immediately obvious. Given a
sample x = (x1, ..., xn) generated from a population PX , the idea behind boot-
strapping is that the empirical distribution (or mixture distribution as termed
by the referee) ρ̄X(x) = 1

n

∑n
i=1 δ(x − xi) approximates the population to a

certain degree. Let H0 : µX ≥ 0 denote the null-hypothesis that the mean µX
of the population PX is greater than or equal to zero. In the absence of any
further information on the populations shape, a null-distribution for testing the
hypothesis can be constructed by modifying the mixture distribution such that
it complies with the null-hypothesis.

In order to test the mean of a population, Lehmann and Romano (2006)
propose the use of the test statistic

Tn = n1/2 u, (19)

with u = 1
n

∑n
i=1 xi denoting the sample mean. To construct a null-distribution

for the test statistic, they take the mixture distribution shifted by the sample
mean

ρnX′(x
′) =

1

n

n∑
i=1

δ(x′ − xi + u), (20)

such that ρnX′(x
′) has mean 0. Hence, it fulfills the null-hypothesis while simulta-

neously capturing the characteristics of the mixture distribution. Furthermore,
this choice guarantees that 1) ρnX′

n→∞→ ρX′ such that ρX′ has mean 0 as well
(criteria for convergence are given in Lehmann and Romano (2006)), and 2)
that in this limit the probability for rejection is not higher than α (the chosen
significance level) for any original population PX that fulfills H0. For testing
the inequality considered in H0, the case where the null-distribution has zero
mean is the decisive one. From the shifted mixture distribution ρnX′ a data-
driven null-distribution can be computed by resampling m samples of size n
X∗j = (x∗1, ..., x

∗
n)j from ρnX′ and computing the test statistic Tnj = Tn(X∗j ) for

each of these ’synthetic samples’. For a given significance level α the 1 − α-th
percentile of the set {Tn1 , ..., Tnm} establishes a rejection region for the original
Tn(x).

In the previous version of our manuscript we used the sample mean itself
as a test statistic. This has been corrected and we now use the statistic Tn

as proposed by Lehmann and Romano (2006). Furthermore, in our study the
original sample x as well as its sample mean u(x) and its corresponding test
statistic are uncertain. This uncertainty is propagated rigorously through all
the steps described above.
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When the referee proposed to use the mixture distribution to ’test whether
the population mean is greater or equal zero’, he or she might have had in
mind to simply resample samples of size n X∗j = (x∗1, ..., x

∗
n)j from a non-shifted

mixture distribution. Then one could compute their means u∗j = 1
n

∑n
i=1 x

∗
i,j

and compare the α-th percentile to the mean of the null hypothesis µ0 ≥ 0.
Lehmann and Romano (2006) and Hall and Wilson (1991) provide arguments

why for rigorous hypothesis testing the shifting of the mixture distribution is
required. While taking this into account, effectively we indeed use the mixture
distribution to assess the significance of the given sample with respect to the
null-hypothesis, just as proposed by the referee.

2.2 Point by Point answer to the referee

L380 In response the referee’s remark on using the mixture distribution, we
rewrote section 3.3.3 and changed the test statistic. Accroding to these
changes, Figures 6. and 7. as well as Table 1 and Table B1 were updated.

L86ff “In order to review the statistical evidence for a potential systematic lags,
we formalize the notion of a ’systematic lag’: We call a lag systematic if
it is enshrined in the random experiment in form of a population mean
different from zero. Samples generated from such a biased population
would systematically (and not by chance) exhibit sample means different
from zero. Accordingly, we formulate the null hypothesis of a pairwise
unbiased transition sequence, that is, a population mean equal to zero.”
Could this maybe be reformulated, in order to also acknowledge the fact
that whether or not a truly biased sample can be expected to systemati-
cally exhibit sample means (significantly) different from zero depends on
the sample size? To me, this seems to be an important motivation for the
procedure proposed here.

We agree that the sample size is one of the factors that limits the ability
to detect a systematic lag between the proxy variables. The probability
to reject the null-hypothesis assuming a truly biased population is a non-
trivial quantity and depends on the sample size, the strength of the bias,
and the variance of the population simultaneously. Since these factors
interact in a non-trivial way, we do not believe this point should be raised
already at the stage were we still aim to properly define the statistical
problem. Instead we have included a paragraph in the discussion that
discusses the chance to reject the null-hypothesis.

Caption Fig. 2 I was not sure at first whether the posteriors shown are from the authors
or from Erhardt et al. Maybe this could be made specifically clear in the
caption.

We reproduced all posterior probability density estimates adopting the
method and the data provided by Erhardt et al. We agree that this was
not made sufficiently clear in the caption. Hence, we changed the sentence
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’The probability density estimates for the transition onsets with respect
to the timing of the DO event according to Rasmussen et al. (2014)
are shown in arbitrary units for all proxies’ to ’The posterior probability
densities for the transition onsets with respect to the timing of the DO
event according to Rasmussen et al. (2014) are shown in arbitrary units
for all proxies. They were recalculated using the data and the method
provided by Erhardt et al. (2019).’

L187 indipendent → independent

Corrected.

L797-798 I don’t understand what is meant here, maybe just a grammatical error?

We are not quite sure we understand what the referee finds problem-
atic here. We changed the sentence ’For a given proxy pair the start-
ing point for the statistical analysis however, is the uncertain sample
∆Tp,q = (∆T p,q1 , ...,∆T p,qn ) characterized by the n dimensional uncer-
tainty distribution ρp,q∆T(∆tp,q) =

∏
ρ∆Tp,q

i
(∆tp,qi ).’ to ’For a given proxy

pair the starting point for the statistical analysis is, however, the uncer-
tain sample ∆Tp,q = (∆T p,q1 , ...,∆T p,qn ), which is characterized by the
n-dimensional uncertainty distribution ρp,q∆T(∆tp,q) =

∏
ρ∆Tp,q

i
(∆tp,qi ).’

and hope that this clarifies the statement.

At the beginning of the discussion section some text parts have been moved
around and some parts have been shortened. Now the section reads more
consise while the content has not changed.
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