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Abstract. A series of papers published shortly after the In-
tegrated Ocean Drilling Program Arctic Coring Expedition
(ACEX, 2004) on Lomonosov Ridge indicated remarkably
high early Eocene sea surface temperatures (SSTs; ca. 23
to 27 ◦C) and land air temperatures (ca. 17 to 25 ◦C) based5

on the distribution of isoprenoid and branched glycerol di-
alkyl glycerol tetraether (isoGDGT and brGDGT) lipids, re-
spectively. Here, we revisit these results using recent analyt-
ical developments – which have led to improved temperature
calibrations and the discovery of new temperature-sensitive10

glycerol monoalkyl glycerol tetraethers (GMGTs) – and cur-
rently available proxy constraints.

The isoGDGT assemblages support temperature as the
dominant variable controlling TEX86 values for most sam-
ples. However, contributions of isoGDGTs from land, which15

we characterize in detail, complicate TEX86 paleothermom-
etry in the late Paleocene and part of the interval between the
Paleocene–Eocene Thermal Maximum (PETM; ∼ 56 Ma)
and the Eocene Thermal Maximum 2 (ETM2; ∼ 54 Ma).
Background early Eocene SSTs generally exceeded 20 ◦C,20

with peak warmth during the PETM (∼ 26 ◦C) and ETM2
(∼ 27 ◦C). We find abundant branched GMGTs, likely domi-
nantly marine in origin, and their distribution responds to en-
vironmental change. Further modern work is required to test

to what extent temperature and other environmental factors 25

determine their distribution.
Published Arctic vegetation reconstructions indicate

coldest-month mean continental air temperatures of 6–13 ◦C,
which reinforces the question of whether TEX86-derived
SSTs in the Paleogene Arctic are skewed towards the sum- 30

mer season. The exact meaning of TEX86 in the Paleogene
Arctic thus remains a fundamental issue, and it is one that
limits our assessment of the performance of fully coupled
climate models under greenhouse conditions.

1 Introduction 35

The Eocene epoch (56 to 34 million years ago; Ma) has long
been characterized by warm climates. The earliest signs of a
balmy Eocene Arctic region – fossil leaves of numerous plant
species – were documented 150 years ago (Heer, 1869). Sub-
sequent findings identified palms, baobab and mangroves, in- 40

dicating the growth of temperate rainforests and year-round
frost-free conditions in the Eocene Arctic region (Schweitzer,
1980; Greenwood and Wing, 1995; Suan et al., 2017; Willard
et al., 2019). Fossils of animals, including varanid lizards,
tortoises and alligators, also indicate warm Arctic climates 45

(Dawson et al., 1976; Estes and Hutchinson, 1980). These
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Figure 1. Location of ACEX Hole 4A within a paleogeographic
reconstruction of the Arctic region at the time of the PETM. Recon-
struction made using gplates (Müller et al., 2018), with the tectonic
reconstruction of Seton et al. (2012), the paleomagnetic reference
frame of Torsvik et al. (2012) and modern coastlines. The red shape
is Lomonosov Ridge in this reconstruction, and grey lines are struc-
tural features including spreading ridges.

earliest findings sparked interest in the climatological mech-
anisms allowing for such polar warmth about a century ago
(Berry, 1922). Ever since, paleobotanists have focused on
Arctic plant fossils and significantly refined their paleocli-
matological interpretation towards estimates of precipitation5

as well as seasonal and mean annual temperature (e.g., Uhl
et al., 2007; Greenwood et al., 2010; Eberle and Greenwood,
2012; Suan et al., 2017; Willard et al., 2019).

Novel insights in Paleogene Arctic paleoclimate research
were made in the years following the Arctic Coring Expedi-10

tion 302 (ACEX; Integrated Ocean Drilling Program – IODP,
2004; Fig. 1). This expedition recovered upper Paleocene and
lower Eocene siliciclastic sediments deposited in a shallow
marine environment, in Hole 4A (87◦52.00′ N; 136◦10.64′ E;
1288 m water depth), on the Lomonosov Ridge in the cen-15

tral Arctic Ocean (Backman et al., 2006). The succession
was deposited at a paleolatitude of ∼ 78◦ N based on a ge-
ological reconstruction (Seton et al., 2012) projected using
a paleomagnetic reference frame (Torsvik et al., 2012) (see
http://paleolatitude.org/, model version 2.1; Van Hinsbergen20

et al., 2015). The sediments are devoid of biogenic calcium
carbonate but rich in immature organic matter, including ter-
restrial and marine microfossil assemblages and molecular
fossils (e.g., Pagani et al., 2006; Sluijs et al., 2006; Stein et
al., 2006).25

As the upper Paleocene and lower Eocene sediments of the
ACEX core lack biogenic calcium carbonate and alkenones,
sea surface temperature (SST) reconstructions are based on
the biomarker-based paleothermometer TEX86. This proxy is
based on membrane lipids (isoprenoid glycerol dibiphytanyl30

glycerol tetraethers; isoGDGTs) of Thaumarchaeota, which

adapt the fluidity of their membrane according to the sur-
rounding temperature by increasing the number of cyclopen-
tane rings at higher temperatures (De Rosa et al., 1980;
Wuchter et al., 2004; Schouten et al., 2013, and references 35

therein). The proxy was introduced in 2002 by Schouten et
al. (2002) and was calibrated to mean annual SST using mod-
ern marine surface sediments.

Initial papers suggested that Arctic SST increased sig-
nificantly during two episodes of transient global warming. 40

Maximum values of ∼ 23 and ∼ 27 ◦C occurred during the
Paleocene–Eocene Thermal Maximum (PETM-56 Myr ago;
Sluijs et al., 2006) and the Eocene Thermal Maximum 2
(ETM2-54 Myr ago; Sluijs et al., 2009), respectively. Lower
SSTs, generally exceeding 20 ◦C, characterized the remain- 45

der of the early Eocene (Sluijs et al., 2008b). Such temper-
atures were immediately recognized to be remarkably high
and could not be explained using fully coupled climate model
simulations (Sluijs et al., 2006). Even the current-generation
of IPCC-class (IPCC: Intergovernmental Panel on Climate 50

Change) models are unable to match early Eocene Arc-
tic mean annual SSTs, although reconstructions of tropical
and midlatitude SSTs and deep ocean temperatures are con-
sistent with some newer simulations (Frieling et al., 2017;
Cramwinckel et al., 2018; Evans et al., 2018; Zhu et al., 55

2019).
Since the publication of the ACEX SST records, con-

straints on the applicability of the TEX86 proxy have tremen-
dously improved (see review by Schouten et al., 2013, and
subsequent work by Taylor et al., 2013, no. 1645TS1 ; Elling 60

et al., 2014; Qin et al., 2014; Elling et al., 2015; Kim et
al., 2015; Qin et al., 2015; Hurley et al., 2016; Zhang et al.,
2016). This work has delivered new constraints on the ecol-
ogy of Thaumarchaeota, the dominant depth at which they
reside in the ocean and the depth from which their isoGDGTs 65

are exported towards the seafloor. It also identified potential
confounding factors such as variation in dominant isoGDGT
export depth (e.g., Taylor et al., 2013; Kim et al., 2015), the
input of non-thaumarchaeotal-derived isoGDGTs (e.g., Wei-
jers et al., 2011; Zhang et al., 2011), growth phase (Elling et 70

al., 2014), and environmental ammonium and oxygen con-
centrations (Qin et al., 2015; Hurley et al., 2016). Moreover,
several indicators to detect such anomalies have been de-
veloped. Improvements in the chromatography method used
for GDGT analysis now allow for better separation of pre- 75

viously co-eluting compounds, leading to enhanced analyt-
ical precision and sensitivity (Hopmans et al., 2016). Fi-
nally, recent work has described new GDGTs from oceans
and sediments, notably branched glycerol monoalkyl glyc-
erol tetraethers (brGMGTs or “H-shaped” brGDGTs) (e.g., 80

Schouten et al., 2008; Liu et al., 2012), characterized by a
covalent carbon–carbon bond that links the two alkyl chains.
Their presence and distribution in peats and lake sediments
have been linked to land air temperatures (LAT) (e.g., Naafs
et al., 2018a; Baxter et al., 2019). However, these compounds 85

have not yet been reported from ancient marine sediments.
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Figure 2. Molecular structures of the relevant isoGDGTs,
brGDGTs and brGMGTs as well as their terminology as described
in this study. Crenarchaeol isomer (not shown) differs from crenar-
chaeol in the stereochemistry of the cyclopentane moiety adjacent
to the cyclohexyl moiety (Sinninghe Damsté et al., 2018b). For the
terminology of the brGMGTs, for which the exact chemical struc-
ture is still unclear, we follow Baxter et al. (2019), since we identify
the same isomers (see Fig. S2 for a chromatogram).

Considering these developments and the paleoclimatologi-
cal importance of the ACEX dataset, we reanalyzed the origi-
nal lipid extracts for the PETM, ETM2 and the interval span-
ning these events (Sluijs et al., 2006; Sluijs et al., 2009) ac-
cording to the latest chromatography protocols. We also com-5

pile published and generate new GDGT data from modern
and Paleogene terrestrial deposits and use these to better as-
sess the potential confounding influence of isoGDGTs from
terrestrial sources, which was already recognized as a poten-
tial problem in the early work (Sluijs et al., 2006).10

2 GDGT-based SST indices, calibration and
confounding factors

2.1 TEX86 and its calibration to SST

TEX86 is based on the relative abundance of four different
GDGTs (Fig. 2), following (Schouten et al., 2002)15

TEX86 =

(
[GDGT−2]+[GDGT−3]
+[crenarchaeol isomer]

)
(

[GDGT−1]+[GDGT−2]+[GDGT−3]
+[crenarchaeol isomer]

) , (1)

where a higher relative abundance of cyclopentane moieties
implies higher SSTs.

A number of models are used to calibrate TEX86 to SST
(Schouten et al., 2002; Schouten et al., 2003; Schouten et al.,20

2007; Kim et al., 2008; Liu et al., 2009; Kim et al., 2010;
Tierney and Tingley, 2014; O’Brien et al., 2017), all based
on a modern ocean surface sediment database. The currently
available culture and mesocosm experiments as well as sur-
face sediment data suggest that the relation between SST25

and TEX86 is close to linear for a large portion of the mod-
ern ocean (Kim et al., 2010; Ho et al., 2014; Tierney and
Tingley, 2014; O’Brien et al., 2017). In polar regions, the
TEX86 response to temperature diminishes (e.g., Kim et al.,
2010; Tierney and Tingley, 2014). The response of TEX86 to30

SST at the high-temperature end remains the subject of dis-
cussion (e.g., Cramwinckel et al., 2018; Hollis et al., 2019).

Several authors prefer a linear relation (e.g., Tierney and Tin-
gley, 2014; O’Brien et al., 2017). However, physiological
considerations and multiple temperature-dependent GDGT 35

indices might also imply a nonlinear relation at the high-
temperature end, as can be observed at the high end of the
modern ocean dataset and beyond the reach of the modern
ocean in paleoclimate data (Cramwinckel et al., 2018). At
higher temperatures, membrane adaptation may increasingly 40

be established using isoGDGTs not included in the TEX86
ratio, leading to a diminished TEX86 response at very high
temperatures (Cramwinckel et al., 2018). A nonlinear re-
sponse has thus been proposed in other calibrations (Liu et
al., 2009; Kim et al., 2010). The most recent nonlinear cali- 45

bration, TEXH
86 (Kim et al., 2010), represents an exponential

relation between SST and TEX86 (Hollis et al., 2019). Unfor-
tunately, TEXH

86 is mathematically problematic and has sys-
tematic residuals in the modern ocean (Tierney and Tingley,
2014). 50

Tierney and Tingley (2014) introduced a spatially varying
Bayesian method to convert TEX86 to SST and assume a lin-
ear relationship (BAYSPAR). BAYSPAR extracts TEX86 val-
ues from the modern core-top dataset that are similar to the
measured TEX86 value from the geological sample based on 55

a tolerance defined by the user, and it subsequently calculates
regressions based on these core-top data. The uncertainty in
SST reflects spatial differences in the correlation coefficient,
intercept and error variance of the regression model.

Currently, it is generally encouraged to present results us- 60

ing both a linear and a nonlinear function (Hollis et al., 2019).
The assumption of a linear or nonlinear relation between SST
and TEX86 leads to very different SST reconstructions for
geological samples when TEX86 values are > 0.70 (Kim et
al., 2010; Tierney and Tingley, 2014; Frieling et al., 2017; 65

O’Brien et al., 2017; Cramwinckel et al., 2018; Hollis et al.,
2019). However, TEX86 values for the early Eocene ACEX
samples (0.5–0.7, Sluijs et al., 2006; Sluijs et al., 2008b;
Sluijs et al., 2009) are below this value and well above most
values observed in the polar regions (Kim et al., 2010; Tier- 70

ney and Tingley, 2014; O’Brien et al., 2017), indicating that
all calibrations will yield similar absolute SST values.

2.2 Caveats and confounding factors

Several confounding factors and caveats have been identi-
fied that could potentially bias TEX86 data relative to mean 75

annual SST. These notably relate to additions of isoGDGTs
that were not produced in the upper water column by Thau-
marchaeota, seasonal biases and choices that are made in the
calibration between SST and TEX86. Below we summarize
methods that have been developed to assess if isoGDGT dis- 80

tributions might have been biased by confounding factors.
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2.2.1 isoGDGTs of terrestrial origin

Previous work (Sluijs et al., 2006; Sluijs et al., 2008b; Sluijs
et al., 2009) recognized that high contributions of terrestri-
ally derived isoGDGTs could compromise the TEX86 signal
for portions of the upper Paleocene to lower Eocene interval5

of the ACEX core. This contribution can be tracked using
the branched and isoprenoid tetraether (BIT) index, a ratio
of mostly soil-derived branched GDGTs (brGDGTs; Fig. 2)
and crenarchaeol, which is dominantly marine-derived (Hop-
mans et al., 2004; Schouten et al., 2013; adjusted to include10

6-methyl brGDGT isomers):

BITindex=

(
[brGDGT−Ia]+[brGDGT−IIa]+[brGDGT−IIa′]

+[brGDGT−IIIa]+[brGDGT−IIIa′]

)
(

[brGDGT−Ia]+[brGDGT−IIa]+[brGDGT−IIa′]
+[brGDGT−IIIa]+[brGDGT−IIIa′]+[crenarchaeol]

)
.

(2)

Most studies define a BIT value (typically 0.3 or 0.4)
above which TEX86-derived SSTs are unreliable (e.g., Wei-
jers et al., 2006). However, the threshold of 0.4 is conserva-15

tive in some settings, and the impact of terrigenous GDGTs
on reconstructed SST will depend on the nature and temper-
ature of the source catchment (Inglis et al., 2015). In addi-
tion, a cutoff value based on BIT values is difficult given the
relatively large differences in BIT between labs, which origi-20

nate from methodological differences (Schouten et al., 2009).
A strong linear relationship between BIT and TEX86 values
is often taken as an indication of a bias in TEX86 through
land-derived isoGDGTs to the marine TEX86 signature (e.g.,
Douglas et al., 2014). An earlier study used a somewhat sub-25

jective threshold of 0.3 for an interval spanning ETM2 in the
ACEX core (Sluijs et al., 2009).

2.2.2 isoGDGTs of deepwater origin

Thaumarchaeota, the source of most isoGDGTs in marine
waters (Zeng et al., 2019; Besseling et al., 2020), are am-30

monium oxidizers (Könneke et al., 2005; Wuchter et al.,
2006a), making them independent of light. Although they oc-
cur throughout the water column, maximum abundances oc-
cur at depths < 200 m, generally around NO2 maxima (e.g.,
Karner et al., 2001; Pitcher et al., 2011a). In most oceans,35

sedimentary GDGTs dominantly derive from the upper few
hundred meters based on analyses of suspended particular
organic matter and sediment traps (Wuchter et al., 2005;
Wuchter et al., 2006b; Yamamoto et al., 2012; Richey and
Tierney, 2016). A deeper contribution has also been inferred40

based on 14C analysis (Shah et al., 2008), implying possible
contributions of isoGDGTs from the thermocline. Moreover,
contributions of isoGDGTs produced in the deep sea have
regionally been identified (e.g., Kim et al., 2015). Taylor et
al. (2013) also found that deep-dwelling (> 1000 m) archaea45

might contribute to the sedimentary isoGDGT assemblage.
They indicate that such deep contributions can be tracked us-
ing the GDGT-2 /GDGT-3 ratio; high values of > 5 indicate
contributions of archaea living deeper in the water column.

Given that upper Paleocene and lower Eocene ACEX sedi- 50

ments were deposited in a shallow shelf environment (Sluijs
et al., 2008b), a significant contribution of deep ocean ar-
chaeal lipids is not expected.

2.2.3 isoGDGTs of methanotrophic and methanogenic
archaea 55

Contributions of isoGDGTs to the sedimentary pool
might also derive from anaerobic methanotrophs and/or
methanogens. Several indices have been developed to track
such contributions based on relatively high contributions
of particular isoGDGTs of these groups of archaea. The 60

methane index (MI) was developed to detect the relative
contribution of anaerobic methanotrophic Euryarchaeota, no-
tably represented by GDGT-1, GDGT-2 and GDGT-3 (Pan-
cost et al., 2001; Zhang et al., 2011), and is therefore defined
as 65

MI=
[GDGT− 1]+ [GDGT− 2]+ [GDGT− 3]

([GDGT−1]+[GDGT−2]+[GDGT−3]
+[crenarchaeol]+[crenarchaeol isomer])

. (3)

MI values greater than 0.5 indicate a significant contri-
bution of anaerobic methanotrophy. Such values may yield
unreliable TEX86 values. Another tracer for contributions of
anaerobic methanotrophic archaea is the analogous GDGT- 70

2 / crenarchaeol ratio (Weijers et al., 2011).
Methanogenic archaea can synthesize GDGT-0 and

smaller quantities of GDGT-1, GDGT-2 and GDGT-3. The
ratio GDGT-0 / crenarchaeol is indicative of contributions
of methanogenic archaea to the isoGDGT pool (Blaga et 75

al., 2009); values > 2 indicate a substantial contribution of
methanogenic archaea. Up to now, high index values have of-
ten been observed near methane seeps or anoxic basins (e.g.,
Jaeschke et al., 2012) but rarely in open marine waters in the
modern domain and paleodomains (Inglis et al., 2015; Zhang 80

et al., 2016). Given the reducing conditions in the sediment
and water column at the study site across the late Paleocene
and early Eocene (Sluijs et al., 2006; Stein et al., 2006; Sluijs
et al., 2008b; März et al., 2010), an influence of methane cy-
cling might be expected. 85

2.2.4 isoGDGTs of the “Red Sea type”

Sedimentary isoGDGT distributions from the Red Sea are
anomalous to other marine settings and are characterized by
the low abundance of GDGT-0 and the high abundance of
the crenarchaeol isomer. Presumably, this is due to an en- 90

demic thaumarchaeotal assemblage. The Red Sea isoGDGT
distribution yields a different relationship between SST and
TEX86 (Trommer et al., 2009; Kim et al., 2015). Inglis et
al. (2015) attempted to quantify a “Red Sea type” GDGT
distribution CE1 in geological samples using the following 95

index:

%GDGTrs=
[crenarchaeol isomer]

([GDGT− 0]+ [crenarchaeol isomer])
× 100. (4)
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However, as noted by Inglis et al. (2015) this ratio is also
strongly SST-dependent such that the Red Sea type GDGT
assemblage cannot be discerned from GDGT distributions
that occur at high temperatures in normal open marine set-
tings.5

2.2.5 Seasonal bias

TEX86 is calibrated to mean annual SST. However, particu-
larly in midlatitude and high-latitude areas where production
and export production are highly seasonal, the sedimentary
GDGT distribution might not represent annual mean con-10

ditions (Wuchter et al., 2006b; Pitcher et al., 2011b; Mol-
lenhauer et al., 2015; Richey and Tierney, 2016; Park et al.,
2019). This issue should partly be reflected in the calibration
uncertainty of the modern ocean database (several degrees
Celsius, depending on the calibration and method; see sec-15

tion 2.7). Sluijs et al. (2006, 2008b, 2009) originally argued
that the TEX86 results from the ACEX core could be biased
towards summer temperature because the export of organic
matter from the surface ocean towards the sediment likely
peaked during the season of highest production, i.e., the sum-20

mer. However, we also note that the TEX86–temperature re-
lationship is not improved when using seasonal mean ocean
temperatures (Kim et al., 2010; Tierney and Tingley, 2014)
and modern observations indicate homogenization of the sea-
sonal cycle at depth (Wuchter et al., 2006b; Yamamoto et al.,25

2012; Richey and Tierney, 2016), implying that seasonality
has a relatively limited effect on modern sedimentary TEX86
values.

2.2.6 Additional isoGDGT-based temperature indicators

The underlying mechanism of TEX86 is that isoGDGTs pro-30

duced at higher SSTs contain more rings than those pro-
duced at low SSTs. Although the combination of compounds
included in TEX86 seems to yield the strongest relation
with temperature in the modern ocean (Kim et al., 2010),
it implies that isoGDGT ratios other than TEX86 also pro-35

vide insights into SST. One alternative temperature-sensitive
isoGDGT index is the ring index (RI), which represents
the weighed number of cyclopentane rings of isoGDGTs 0–
3, crenarchaeol and the crenarchaeol isomer (Zhang et al.,
2016), defined asTS240

RI= 0× [%GDGT− 0]+ 1× [%GDGT− 1]+ 2

× [%GDGT− 2]+ 3× [%GDGT− 3]
+ 4× [%crenarchaeol+%crenarchaeol isomer] . (5)

Note that the abundance of GDGT-0 is important for de-
termining the percentage of the other GDGTs in the total
isoGDGT pool.

The close relation between TEX86 and RI can also be used45

to detect aberrant distributions, including those produced
by methanogenic, methanotrophic and terrestrial sources, as

these sources typically contribute disproportionate amounts
of specific lipids. RITEX, calculated from TEX using the
polynomial fit of Zhang et al. (2016), is subtracted from the 50

RI to arrive at the 1RI. Cutoff values for sample deviation
from the modern ocean calibration dataset are defined as
95 % confidence limits of the TEX86–RI relation, or above
|0.3|1RI units.

2.3 H-shaped branched GDGTs; brGMGTs 55

BrGMGTs (Fig. 2) were first identified by Liu et al. (2012)
in marine sediments, who identified a single acyclic tetram-
ethylated brGMGT (m/z 1020). This compound was later
detected within the marine water column and appeared to be
abundant within the oxygen minimum zone (Xie et al., 2014). 60

Naafs et al. (2018a) identified a larger suite of brGMGTs
(including m/z 1048 and 1034) in a quasi-global compila-
tion of modern peat samples. They argued that these com-
pounds were preferentially produced at depth within the
anoxic catotelm. Analogous to the continental paleother- 65

mometer based on bacterial brGDGTs produced in surface
soils, termed MBT’5me (Weijers et al., 2007b; De Jonge et
al., 2014), they showed that the degree of methylation of
brGMGTs in peats relates to mean annual air temperature.
They calculated the degree of methylation of brGDGTs with- 70

out cyclopentane moieties, designed for comparison to the
methylation of brGMGTs, defined by H-MBTacyclic:

MBTacyclic =
brGDGT− Ia(

brGDGT−Ia+brGDGT−IIa+brGDGT−IIa′
+brGDGT−IIIa+brGDGT−IIIa′

) , (6)

H−MBTacyclic =
H1020( H1020

H1034+H1048
) . (7) 75

TS3Based on the strong relation between MBTacyclic and
H-MBTacyclic in their peat samples, Naafs et al. (2018a)
suggested that the brGMGTs have the same origin as the
brGDGTs, presumably Acidobacteria (Sinninghe Damsté et
al., 2011; Sinninghe Damsté et al., 2018a). In addition, they 80

showed that the abundance of brGMGTs (relative to the total
quantity of brGMGTs and brGDGTs) positively correlates
with mean annual air temperature, suggesting that the cova-
lent bond in the brGMGTs is used to maintain membrane
stability at higher temperature (Naafs et al., 2018a). 85

Baxter et al. (2019) identified a total of seven different
brGMGTs from a suite of African lake sediments (Fig. 2) and
found their relative distribution to correlate with mean an-
nual air temperature. Accordingly, they proposed a proxy for
mean annual air temperature termed brGMGT-I (see Fig. 2 90

for the molecular structures referred to here):

brGMGT− I=
[H1020c]+ [H1034a]+ [H1034c]

[H1020b]+[H1020c]+[H1034a]
+[H1034c]+[H1048]

. (8)
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3 Material and methods

We used the polar fractions previously analyzed by Sluijs
et al. (2006, 2009) from the PETM through ETM2 interval
at IODP Expedition 302 Hole 4A. These fractions originate
from a total lipid extract produced using a Dionex accelerated5

solvent extractor and fraction separations by Al2O3 column
chromatography using hexane : dichloromethane (DCM) (9 :
1, v/v) and DCM :methanol (1 : 1; v/v) to yield the apo-
lar and polar fractions, respectively. Polar fractions were re-
dissolved in hexane : isopropanol (99 : 1, v/v) and passed10

through a 0.45 µm polytetrafluoroethylene filter. This frac-
tion was then analyzed by high-performance liquid chro-
matography (HPLC) and atmospheric pressure chemical
ionization–mass spectrometry using an Agilent 1260 Infin-
ity series HPLC system coupled to an Agilent 6130 single-15

quadrupole mass spectrometer at Utrecht University follow-
ing Hopmans et al. (2016) to measure the abundance of
GDGTs. Based on long-term observation of the in-house
standard, the analytical precision for TEX86 calculates to
±0.3 ◦C in the SST domain.20

To gain further insights into the potential impact of ter-
restrial isoGDGT input on TEX86 values, we compiled
isoGDGT and brGDGT distributions from modern peats
(n= 473; Naafs et al., 2017) and early Paleogene lignites
(n= 58; Naafs et al., 2018b). Note that the fractional abun-25

dance of crenarchaeol isomer was not reported in the early
Paleogene dataset of Naafs et al. (2018b). We therefore re-
visited the original chromatograms from Naafs et al. (2018b)
and integrated the crenarchaeol isomer (m/z 1292).

4 Results30

The new GDGT distributions (Table S1 in the Supplement)
are consistent with the TEX86 and BIT index data gener-
ated over a decade ago using the older analytical HPLC
setup (Hopmans et al., 2000; Hopmans et al., 2016) (Fig. 3).
TEX86 exhibits some scatter and the slope of the regres-35

sion is slightly off the 1 : 1 line, indicating that the new data
have somewhat higher TEX86 values. Less scatter is appar-
ent in the BIT record, but the original BIT index values were
slightly higher than recorded here, as indicated by the regres-
sion (Fig. 3). This result is consistent with previous analyses40

with the new analytical setup (Hopmans et al., 2016). This
does not impact previous qualitative interpretations of this
record (Sluijs et al., 2006; Sluijs et al., 2008b; Sluijs et al.,
2009). In the Discussion section, we assess indicators of po-
tential confounding factors (Sect. 2.2), including the influx45

of terrestrially derived isoGDGTs to the sediments (Figs. 4,
5 and S1) and several indices related to methane and depth
of production (Fig. 6).

Although we did not detect significant quantities of iso-
prenoid GMGTs, high abundances of various brGMGTs are50

present in the ACEX samples, in total between 10 % and
45 % of the total brGDGT assemblage (Fig. 7). We consis-

Figure 3. Comparison of the original GDGT dataset for the upper
Paleocene and lower Eocene of ACEX Hole 4A (Sluijs et al., 2006;
Sluijs et al., 2009) and the new data generated according to the latest
chromatography protocols.

tently identify at least five brGMGTs across the three differ-
ent mass-to-charge ratios (m/z 1020, 1034 and 1048). Based
on their (relative) retention times and overall distribution we 55

were able to apply the nomenclature of Baxter et al. (2019) to
five of these and assign individual peaks to previously identi-
fied compounds (Fig. S2). The abundance of brGMGTs rela-
tive to brGDGTs increases during the PETM. The proposed
temperature indicators based on brGMGTs show mixed re- 60

sults, with some showing a clear response to the PETM
(Fig. 7e) while others do not (Fig. 7d).

5 Discussion

5.1 IsoGDGT provenance

5.1.1 Contributions of soil-derived isoGDGTs 65

As noted by Sluijs et al. (2006), late Paleocene samples yield
anomalously high abundances of GDGT-3, likely derived
from a terrestrial source. We therefore consider the late Pa-
leocene temperature estimates unreliable. To assess the tem-
perature change during the PETM, Sluijs et al. (2006) devel- 70

oped a TEX86 calibration without this moiety, termed TEX′86.
However, TEX′86 has not been widely used outside the Pale-
ogene Arctic because the anomalous abundances of GDGT-
3 have not been recorded elsewhere. High contributions of
GDGT-3 from terrestrial input would also be associated with 75

an increase in the abundance of other isoGDGTs. Indeed, re-
cent TEX86-based global SST compilations and comparisons
to climate simulations for the PETM excluded the Paleocene
ACEX data because the TEX′86 calibration complicates the
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Figure 4. Comparison between BIT index values and TEX86 for
various intervals spanning the upper Paleocene and lower Eocene
of ACEX Hole 4A.

comparison to other regions where it has not been applied
(Frieling et al., 2017; Hollis et al., 2019).

Input of soil organic matter is consistent with Willard et
al. (2019), who established that the brGDGT assemblage
is dominantly soil-derived as opposed to being produced in5

the coastal marine environment. This observation is based
upon the weighted average number of rings in the tetramethy-
lated brGDGTs (#ringstetra), which generally does not exceed
0.4 to 0.7 in the global soil calibration dataset (Sinninghe
Damsté, 2016). In the ACEX record, #ringstetra is < 0.2110

(Willard et al., 2019), consistent with a dominant soil source.
This indicates that (1) brGDGT abundances, (2) brGDGT
distributions and (3) the BIT index are reliable indicators
of the relative supply of terrestrially derived isoGDGTs into
the marine basin. The Paleocene section of the dataset also15

stands out regarding its relation between the BIT index and
TEX86 (Fig. 4), which confirms its anomalous nature.

During the PETM, TEX86 values are higher (due to warm-
ing) and BIT values lower. This was attributed to sea level
rise during the hyperthermals, resulting in a more distal po-20

sition relative to the terrestrial GDGT source (Sluijs et al.,
2006; Sluijs et al., 2008a). The interval between 371.0 and
369.0 mcd (i.e., above the PETM and below ETM2) also
stands out. This interval was previously recognized by Sluijs
et al. (2009) to reflect an open marine environment, with25

a dominance of marine palynomorphs and algal biomark-
ers. They also found that high BIT values correspond to low
TEX86 values within that interval and therefore implemented
a subjective threshold value of 0.3, above which TEX86-
derived SSTs were considered unreliable. Although the re-30

lation between BIT and TEX86 exhibits considerable scat-
ter, the new analyses support the notion that a higher influx

of terrestrial isoGDGTs lowers TEX86 values. The linear re-
gression (Fig. 4; excluding the one outlier with high TEX86
and BIT values in the top right of the plot because it has 35

highly anomalous distributions; 1RI= 0.61) yields an R2 of
0.26 that explains a portion of the variation (Fig. 4). The na-
ture of this influence is determined by the relative abundance
of terrestrial isoGDGTs and their TEX86 value. The TEX86
value at the terrestrial endmember of BIT= 1, assuming var- 40

ious types of regressions, centers around 0.5. The remain-
der of the data does not show a clear relation between BIT
and TEX86, although some of the lowest TEX86 values corre-
spond to high BIT values, suggesting that the terrestrial end-
member contributed isoGDGT assemblages with relatively 45

low TEX86 values in other intervals as well.
The relatively low degree of cyclization in the early

Eocene contrasts starkly with the high degree of cyclization
during the late Paleocene (Fig. 6e). This implies that the dis-
tribution of terrestrial isoGDGTs varies strongly between the 50

latest Paleocene and early Eocene within our studied section.
The impact of soil-derived isoGDGTs also emerges from

the ring index approach of Zhang et al. (2016; see Sect. 2.2.6
and Fig. 6). The difference between the ring index and TEX86
at the onset of the PETM is mainly controlled by crenar- 55

chaeol, which is comparatively low in abundance in the Pa-
leocene but highly abundant in the PETM. This increase is
likely associated with sea level rise during the PETM be-
cause crenarchaeol is predominantly produced in the marine
realm. It is also consistent with a drop in BIT index val- 60

ues and the relative abundance of terrestrial palynomorphs
(Sluijs et al., 2008a). The approach of Zhang et al. (2016)
also confirms that many isoGDGT distributions exhibit an
anomalous relation between TEX86 and the ring index rel-
ative to the modern core top dataset, with 1RI values > 0.3 65

(Fig. 6). Importantly, all samples with1RI values> 0.3 have
BIT values above 0.35, indicating that contributions of soil-
derived iso-GDGTs dominate non-temperature effects in the
distributions. We therefore discard TEX86-derived SSTs for
samples with BIT values > 0.35. 70

We also develop a crude model to further constrain the
potential contribution of terrestrially derived isoGDGTs.
First, we determine the abundance of isoGDGTs relative to
brGDGTs in modern peat samples (Naafs et al., 2017) and
early Paleogene lignites (fossil peat) (Naafs et al., 2018b; the 75

isoGDGT data are published here). Although there is no rea-
son to assume that peat was a major component of the hinter-
land (Willard et al., 2019), the aforementioned datasets can
provide an estimate of the potential contribution from terres-
trial isoGDGTs to our study site. The raw signal intensity 80

of brGDGTs in the ACEX samples is used to estimate the
potential contribution of terrestrially derived isoGDGTs to
the samples. To this end, we use the fractional abundance
of the various isoGDGTs in the modern peat and Paleogene
lignite datasets (Fig. 5). Then, we estimate the abundance 85

of these terrestrially derived isoGDGTs in our ACEX sam-
ples by scaling this fraction to the measured abundances of
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Figure 5. The abundance of various isoGDGTs relative to the total brGDGT abundance in modern peats (a, b) and Paleogene lignites (a;
Eq. 9) used to assess potential isoGDGT contributions to the ACEX samples. The box represents standard 25 %–50 %–75 % quantiles, and
whiskers represent the box limits plus or minus 1.5× the interquartile range (IQR). Any data outside that range are given as circles. The
number of measurements per dataset are as follows. Modern peats: 473 (most isoGDGTs have been identified in ±430 of those); modern
peats above 15 ◦C: 141 (all except one have isoGDGT data); lignites: 58 (all of which have isoGDGT data but only 29 have available and
quantifiable crenarchaeol isomer data).

Figure 6. Branched and isoprenoid GDGT records across the upper Paleocene and lower Eocene of ACEX Hole 4A. (a) Carbon isotope
stratigraphy (total organic carbon record from Sluijs et al., 2006, 2009; marine organic matter record from Sluijs and Dickens, 2012), (b) BIT
index (Eq. 2), (c) indices indicative of anaerobic archaeal methanotrophy (MI (Eq. 3) and GDGT-2 / crenarchaeol) and methanogenesis
(GDGT-0 / crenarchaeol), (d) GDGT-2 /GDGT-3 ratio, (e) ring index (Eq. 5) and D-ring index, and (f) TEX86 (Eq. 1) calibrated to sea
surface temperature using a nonlinear calibration TEXH

86 calibration (Kim et al., 2010) and the BAYSPAR method, which is based on a linear
calibration (Tierney and Tingley, 2014).

brGDGTs and isoGDGTs in our ACEX samples, following

Terrestrial fraction of isoGDGT x

= (fractionof isoGDGTx in terrestrial test dataset

×
sum(brGDGTs)

abundance of isoGDGT x

)
,

(9)

where x represents the specific analyzed GDGT (see the Sup-
plement for an example of these calculations).

This leads to estimates of the potential relative contri- 5

butions of the individual isoGDGTs derived from land to
the ACEX samples based on the entire modern peat dataset
(Naafs et al., 2017), modern peats from regions with mean
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annual air temperature (MAT) exceeding 15 ◦C (Naafs et al.,
2017) and Paleogene lignites (Naafs et al., 2018b; this paper,
Figs. 5 and S1). This approach implies that crenarchaeol and
the crenarchaeol isomer are almost exclusively from the ma-
rine realm. However, GDGT-1, GDGT-2 and GDGT-3 in our5

study site may be derived from the terrestrial realm (Fig. 5),
especially in specific stratigraphic intervals (Fig. S1). In the
most extreme cases, the modeled contributions of terrestrial
isoGDGTs are higher than the measured isoGDGT abun-
dances (i.e., terrestrial fraction > 1). This is principally seen10

in isoGDGT-2 and GDGT-3, especially when we employ
the Paleogene lignite database. This particular assumption
clearly overestimates the abundance of terrestrially sourced
isoGDGTs in our setting. However, the temporal trends ob-
tained using modern peats, subtropical modern peats and Pa-15

leogene lignites are essentially identical and give some indi-
cation of which isoGDGTs are most likely to be impacted by
terrestrial input and across which intervals. Interestingly, this
approach also suggests that particularly GDGT-3 is shown
to be strongly affected (Fig. 5), which qualitatively matches20

the distributions in the ACEX samples. This is principally
because GDGT-3 is the least abundant marine isoGDGT in-
cluded in our analyses, whereas it is often as abundant as
GDGT-1 and GDGT-2 in terrestrial settings (Fig. 5).

5.1.2 Contributions of methanotrophic or methanogenic25

archaea?

The depositional environment at the study site included am-
ple (export) production, sediment organic matter content
and low-oxygen conditions at the sediment–water interface
(Sluijs et al., 2006; Stein et al., 2006; Stein, 2007; Sluijs et30

al., 2008b; Sluijs et al., 2009; März et al., 2010). This may
have been suitable for abundant methanogenic and methan-
otrophic archaea, potentially contributing to the sedimentary
isoGDGT assemblage. However, our GDGT-2 / crenarchaeol
values (< 0.23; Fig. 6) are far below values that suggest35

significant isoGDGT contributions of methanotrophic Eur-
yarchaeota as described by Weijers et al. (2011). MI val-
ues (maximum observed 0.31) are also generally below pro-
posed cutoff values (0.3–0.5, Zhang et al., 2011) that sug-
gest such contributions. Finally, GDGT-0 / crenarchaeol ra-40

tios (< 1.4) remain below the cutoff value of 2 throughout
the section (Fig. 6), also making a significant isoGDGT con-
tribution from methanogens highly unlikely (Blaga et al.,
2009). Collectively, relative contributions of isoGDGTs from
methanogenic and methanotrophic archaea seem low despite45

the low-oxygen environment, suggesting a relatively high
flux of pelagic isoGDGTs.

5.1.3 Contributions of deep-dwelling archaea?

Taylor et al. (2013) showed that GDGT-2 /GDGT-3 ratios
correspond to depth of production, with high values (> 5) in50

deep waters (> 1000 m). We record low values (1–4) between

∼ 390 and ∼ 371.2 mcd (Fig. 6), which supports dominant
production in the surface ocean based on the modern cali-
bration dataset (Taylor et al., 2013). However, the overlying
interval (∼ 371 to ∼ 368.3 mcd) has much higher (average 55

7.4) and variable GDGT-2 /GDGT-3 values, with peak val-
ues of 10–14. Such values suggest significant contributions
of isoGDGTs produced at water depths of several kilometers
according to the analyses by Taylor et al. (2013).

However, all paleoenvironmental information generated 60

based on the sediments and tectonic reconstructions of
Lomonosov Ridge – a strip of continental crust that discon-
nected from the Siberian margin in the Paleocene – has in-
dicated a neritic setting of the drill site at least up to the
middle Eocene (e.g., O’Regan et al., 2008; Sangiorgi et al., 65

2008; Sluijs et al., 2008a; Sluijs et al., 2009). At∼ 371.2 mcd
a drop in the BIT index and a change in the palynologi-
cal assemblages correspond to an interval of greenish sedi-
ment suggestive of pronounced amounts of glauconite. These
changes are consistent with local relative sea level rise, caus- 70

ing a somewhat more distal position relative to the shore-
line. However, the sediment remains dominantly siliciclas-
tic and organic terrestrial components, particularly pollen
and spores, still remain abundant, indicating a shallow set-
ting (Sluijs et al., 2008a, 2008b). Increased contributions of 75

isoGDGTs produced at depth would be expected to have
caused a systematic cold bias, but based on linear regression
analysis the large variability in GDGT-2 /GDGT-3 ratios is
unrelated to the recorded variability in TEX86 values. The
high GDGT-2 /GDGT-3 ratio values therefore cannot be ex- 80

plained by contributions of deep-dwelling archaea.
In a study of the last 160 kyr in the South China Sea, Dong

et al. (2019) found that very high GDGT-2 /GDGT-3 ratios
(∼ 9 but up to 13) correspond to high values in nitrogen iso-
tope ratios, interpreted to reflect low contributions in dia- 85

zotroph N2 fixation and enhanced upwelling. In our record,
the high GDGT-2 /GDGT-3 ratios are associated with nor-
mal marine conditions and the dinocyst assemblages are not
indicative of upwelling conditions (Sluijs et al., 2009). Un-
fortunately, the available nitrogen isotope record (Knies et 90

al., 2008) does not cover this interval in sufficient resolution
to assess a relation with diazotroph activity. The increase in
the GDGT-2 /GDGT-3 ratio correlates with a strong drop in
BIT index values and an increase in normal marine dinocyst
species (Sluijs et al., 2009), but a shift to more open marine 95

environment does not explain the high ratio values. As such,
the cause of the high GDGT-2 /GDGT-3 ratios in this in-
terval remains unclear, but we consider it highly unlikely to
relate to contributions of deep-dwelling Thaumarchaeota.

5.1.4 Oxygen concentrations and ammonium oxidation 100

rates

A variety of nonthermal factors can impact TEX86 values,
including ammonium and oxygen concentrations and growth
phase (Elling et al., 2014; Qin et al., 2014; Hurley et al.,
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2016). Across the studied interval of the ACEX core, sev-
eral intervals of seafloor and water column anoxia have been
identified based on organic and inorganic proxies, notably
during the PETM and ETM2 (Sluijs et al., 2006; Stein et
al., 2006; Sluijs et al., 2008b; Sluijs et al., 2009; März et5

al., 2010).
Particularly suspect is an interval of low TEX86 values that

marks the middle of the ETM2 interval, directly following
a ∼ 4 ◦C warming at its onset (Sluijs et al., 2009). This in-
terval is also marked by the presence of sulfur-bound isore-10

nieratane (Sluijs et al., 2009), a derivative of isorenieratene.
This biomarker is produced by the brown strain of green
sulfur bacteria that require light for photosynthesis and free
sulfide, indicating euxinic conditions in the (lower) photic
zone (Sinninghe Damsté et al., 1993). We also record a con-15

comitant shift in several methane-related indicators, GDGT-
2 /GDGT-3 ratio values and the 1RI. A mid-ETM2 cooling
signal has not been recorded at other study sites, and this in-
terval marks the occurrence of pollen of thermophilic plants
such as palms and baobab (Sluijs et al., 2009; Willard et20

al., 2019). Therefore, the low TEX86 values were suggested
to reflect thaumarchaeotal depth migration to the deeper
chemocline due to euxinic conditions (Sluijs et al., 2009),
similar to the modern Black Sea (Coolen et al., 2007; Wake-
ham et al., 2007) and the Mediterranean Sea during sapropel25

formation (Menzel et al., 2006).
More recent work has indicated that the isolated marine

thaumarchaeotal species Nitrosopumilus maritimus produces
lower TEX86 values with higher ammonia oxidation rates
(Hurley et al., 2016) and O2 concentrations (Qin et al., 2015).30

Although this observation is difficult to extrapolate to the to-
tal response of the thaumarchaeotal community in the marine
environment on geological timescales, lower O2 availability
should lower oxidation rates, leading to higher TEX86 values
(Qin et al., 2015; Hurley et al., 2016). However, we record a35

drop in TEX86 values with the development of anoxia during
ETM2. The nature of the anomalously low cyclization in the
ETM2 isoGDGT assemblage, which passes all quality tests
regarding GDGT distribution (Fig. 6), therefore remains elu-
sive.40

5.2 Origin and environmental forcing of brGMGTs

The relative abundances of brGMGTs in our samples are sur-
prisingly high. On average, they comprise 25 % of the total
branched GDGT and GMGT assemblage. The limited lit-
erature on modern occurrences implies that both terrestrial45

and marine sources may have contributed to the brGMGT
assemblage. Data from marine sediments (Liu et al., 2012)
and the water column (Xie et al., 2014) clearly show pro-
duction within the marine realm. Their occurrence in mod-
ern peats (Naafs et al., 2018a), lake sediments (Baxter et50

al., 2019) and Paleogene lignites (Inglis et al., 2019) might
also imply transport from land to marine sediments. A soil-
derived source is currently unsupported, as they were most

often below the detection limit in recent studies of geother-
mally heated soils (De Jonge et al., 2019) and a soil transect 55

from the Peruvian Andes (Kirkels et al., 2020). The rela-
tive brGMGT abundances we record are close to the max-
imum found in modern peats (Naafs et al., 2018a). How-
ever, significant input of peat-derived organic matter into our
study site is inconsistent with the low input of peat-derived 60

Sphagnum spores (Willard et al., 2019). Alternatively, the
high abundance of brGMGTs could also be related to subsur-
face production in marine sediments. An analogous process
was invoked by Naafs et al. (2018a) to explain the very high
abundance of brGMGTs in an early Paleogene lignite. Col- 65

lectively, however, we surmise that production in the marine
realm may be an important contributor to the brGMGT pool
in our setting.

Several factors may contribute to the rise in the abundance
of brGMGTs relative to brGDGTs across the PETM. Higher 70

relative abundances of brGMGTs in modern peats generally
occur at higher mean annual air temperatures (Naafs et al.,
2018a), so this signal could relate to warming during the
PETM if their origin at the study site is terrestrial. However,
since we consider it likely that a large part of the brGMGT 75

assemblage is of marine origin, the rise in brGMGT abun-
dance likely relates to the previously recorded (Sluijs et al.,
2006; Sluijs et al., 2008b) sea level rise during the PETM
at the study site. This is consistent with the increase in ma-
rine brGMGT production relative to terrestrial brGDGT sup- 80

ply to the study site (Fig. 7b). This is consistent with the in-
verse correlation between brGMGT abundance and the BIT
index (Fig. 7b). Lastly, if the production of marine brGMGTs
was focused in oxygen minimum zones (Xie et al., 2014), the
development of low-oxygen conditions in the water column 85

based on several indicators, such as the presence of isorenier-
atane (Sluijs et al., 2006), might have increased the produc-
tion of brGMGTs in the water column. It is also possible that
all of these factors contributed to the changes in the abun-
dance of brGMGTs relative to brGDGTs across the PETM. 90

The brGMGT-I proxy does not produce temperature trends
similar to those seen in TEX86 or MBT’5me (Fig. 7d). If the
majority of the brGMGTs are of marine origin, this indicates
that brGMGTs produced in the marine realm do not respond
to temperature as was hypothesized based on the African lake 95

dataset by Baxter et al. (2019).
Also, the application of the H-MBTacyclic index (equa-

tion 7) appeared problematic because, similar to Baxter et
al. (2019), we identified several more isomers than Naafs et
al. (2018a, who developed this index) detected in their peat 100

samples. It therefore remains unclear which of our peaks
should be used to calculate the H-MBTacyclic index val-
ues. We therefore show the two plausible options. For the
first, we use all peaks with m/z 1020, 1034 and 1048 (H-
MBT-all in Fig. 7e) within the expected retention time win- 105

dow. However, based on our chromatography, we consider
it more likely that the dominant peaks identified by Naafs
et al. (2018a) at m/z 1020 and 1034 represent H1020c and
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Figure 7. Branched GMGT records across the upper Paleocene and lower Eocene of ACEX Hole 4A. (a) Carbon isotope stratigraphy (total
organic carbon record from Sluijs et al., 2006, 2009; marine organic matter record from Sluijs and Dickens, 2012). (b) Fraction of brGMGTs
of the total branched GDGTs and GMGTs and BIT index (Eq. 2). (c) MBT’5me record (Willard et al., 2019) using the calibrations of De
Jonge et al. (2014) as well as BayMBT (Dearing Crampton-Flood et al., 2020; median value; see the Supplement for uncertainty) and TEXH

86.
(d) MBTacyclic (Eq. 6) and H-MBT based on all isomers detected with m/z 1020 and m/z 1034 (H-MBT all; Eq. 7) and based on H1020a
and H1034b (H-MBT H1020a, H1034c). (e) The brGMGT-1 record (Eq. 8).

H1034b, respectively, and therefore use only those in addi-
tion to the single identifiable peak at m/z 1048 as a sec-
ond option (H-MBT; H1020c, H1034b) in Fig. 7e. Both op-
tions show a clear rise across the PETM, although the HMBT
(H1020c, H1034a) shows a larger signal and somewhat better5

correspondence in absolute values to MBTacyclic though with
more scatter. A close correspondence between MBTacyclic
and HMBT has also been found in a lignite that has been
assigned to the PETM (Inglis et al., 2019).

If the dominant source of the brGMGTs was marine10

throughout the record, the increase in methylation possi-
bly relates to warming. This would not be unprecedented
as marine-produced brGDGTs show an increase in methyla-
tion as a function of temperature (Dearing Crampton-Flood
et al., 2018). Sollic et al. (2017) also suggest that archaeal-15

derived isoprenoid GMGTs produced in marine sediments
incorporate additional methyl groups at higher sediment tem-
peratures. Water column oxygen concentrations and pH also
changed at our site during the PETM, which potentially af-
fected distributions. Extensive evaluation of brGMGT distri-20

butions in modern samples is therefore required to assess the
proxy potential.

5.3 Uncertainty in TEX86-based SST estimates

5.3.1 Uncertainty based on calibration dataset

To calculate SSTs, we use (1) the BAYSPAR method (Tier- 25

ney and Tingley, 2014), which assumes a linear relationship
between TEX86 and SST, and (2) TEXH

86 (Kim et al., 2010),
which assumes a nonlinear relationship between TEX86 and
SST. Differences between these calibrations are smaller than
the calibration errors (Fig. 6) because the TEX86 values 30

in the ACEX dataset all fall within the range of the mod-
ern core-top calibration. Taken together, both indices imply
that mean annual SSTs varied between 18 and 28 ◦C in the
early Eocene, providing strong evidence for remarkable early
Eocene warmth in the Arctic region. 35

The TEXH
86 calibration has a calibration error of 2.5 ◦C

(residual mean standard error; RMSE) (Kim et al., 2010).
The BAYSPAR method yields possible values that range
± 6 ◦C from the most probable value (Fig. 6), but these un-
certainty estimates are more comparable than is immediately 40

apparent, as this analysis takes a 90 % confidence interval
compared to the 68 % probability of RMSE. All of the cali-
brations and methods to obtain values and uncertainties are
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based on a modern core-top dataset and thus implicitly in-
clude potential confounding factors such as seasonality and
depth of production and export. However, there is no (quan-
titative) constraint on any of these parameters in the calibra-
tion dataset. This is particularly important for the studied re-5

gion because it represents a polar endmember of the marine
environment with highly seasonal production and export as
well as potentially high seasonality in temperature. In the
modern ocean, relations between SST and TEX86 in the Arc-
tic and ice-proximal Southern Ocean settings differ from the10

global ocean. This is attributed to a change in viscoelastic
adaptation to temperature at the low end and/or a change in
the thaumarchaeotal community (Kim et al., 2010; Ho et al.,
2014; Tierney and Tingley, 2014). This may mask potential
confounding factors that may be specifically relevant to polar15

environments. This is important here, where the polar regions
were ice-free and the functioning of physical, chemical and
biological ocean systems was fundamentally different from
the present day. This uncertainty is not accounted for using
traditional regression analyses or Bayesian techniques, and20

quantification of uncertainty in non-analog climates remains
extremely difficult.

5.3.2 Constraints from independent proxy data

Independent proxy data may provide additional constraints.
The appearance of the dinoflagellate cyst genus Apecto-25

dinium during the PETM and ETM2 in the Arctic basin
(Sluijs et al., 2006; Sluijs et al., 2009; Harding et al., 2011)
provides qualitative support for pronounced warming and ap-
parent subtropical conditions. Recent efforts to quantify the
paleoecological affinities of this now extinct genus have sug-30

gested a required minimum temperature of ∼ 20 ◦C (Frieling
et al., 2014; Frieling and Sluijs, 2018). Although this value is
partly based on TEX86 data from the ACEX cores, it is sup-
ported by data from an epicontinental site in Siberia (Frieling
et al., 2014).35

A second line of independent proxy evidence includes veg-
etation reconstructions. As indicated above, the TEX86 re-
sults are qualitatively consistent with the ample evidence for
thermophilic plants and animals in the Arctic (e.g., Heer,
1869; Schweitzer, 1980; Greenwood and Wing, 1995; Uhl et40

al., 2007; Suan et al., 2017). Particularly valuable are mini-
mum winter temperature tolerances for specific plant species.
Palynological analyses have indicated the presence of palm
and baobab pollen within the PETM and ETM2 intervals in
the ACEX cores (Sluijs et al., 2009; Willard et al., 2019).45

Modern palms are unable to tolerate sustained intervals of
frost, and sexual reproduction is limited to regions where the
coldest-month mean temperature (CMMT) is significantly
above freezing (Van der Burgh, 1984; Greenwood and Wing,
1995). This threshold was recently quantified to be ≥ 5.2 ◦C50

(Reichgelt et al., 2018). The presence of baobab within the
PETM interval and ETM2 also indicates mean winter air
temperatures of at least 6 ◦C (Willard et al., 2019). Impor-

tantly, these plants were not encountered in the intervals
outside the PETM and ETM2, suggesting that background 55

coldest-month mean air temperatures were potentially too
low (< 6 ◦C) to support megathermal vegetation.

Pollen of palms and Avicennia mangroves was recently
identified in time-equivalent sections in Arctic Siberia (Suan
et al., 2017). Although the details of the stratigraphic frame- 60

work for these records may be somewhat problematic,
these findings indicate elevated CMMT estimates on land
(> 5.5 ◦C) and in the surface ocean (> 13 ◦C) during the late
Paleocene and early Eocene (Suan et al., 2017).

Apparently conflicting evidence comes from the occur- 65

rence of glendonites and erratics in specific stratigraphic
levels in Paleocene and Eocene strata in Spitsbergen, inter-
preted to reflect “cold snaps” in climate (Spielhagen and
Tripati, 2009). Some of these stratigraphic levels are very
close to (or even potentially within) the PETM, consider- 70

ing the local stratigraphic level of the PETM (Cui et al.,
2011; Harding et al., 2011). However, glendonites and er-
ratics have not been found at the exact same stratigraphic
levels as thermophilic biota (Spielhagen and Tripati, 2009).
The formation and stability of ikaite (the precursor mineral of 75

the diagenetic glendonites) in Spitsbergen were dependent on
relatively low-temperature, arguably persistent near-freezing
seawater temperatures in the sediment (Spielhagen and Tri-
pati, 2009). However, glendonite occurrences in other set-
tings (e.g., Mesozoic sediments in midlatitude regions; Te- 80

ichert and Luppold, 2013) have also recently been linked to
methane seeps (Morales et al., 2017). Therefore, the specific
temperature constraints implied by glendonites under such
conditions are the subject of debate. Future work should ap-
ply temperature reconstructions based on the geochemical 85

composition of the glendonites and biomarkers or biota on
corresponding strata to assess whether glendonite occurrence
is related to colder climates.

The estimate on seasonal minima provides an impor-
tant constraint on Arctic climatology during the PETM and 90

ETM2. Most likely, the palms and baobabs grew close to the
shore, where the relative heat of the ocean kept atmospheric
temperatures relatively high during the winter. If minimum
winter SSTs were in the range of the SST reconstructions
based on the nearby Avicennia mangrove pollen (Suan et al., 95

2017), which for open ocean settings would perhaps amount
to ∼ 10 ◦C, then summer SST must have soared to at least
30 ◦C in summer if TEX86-based SST reconstructions of
∼ 20 ◦C truly reflect the annual mean. It would imply an
SST seasonality of ∼ 20 ◦C, much higher than any modern 100

open marine setting. In the present-day Arctic Ocean, heat is
seasonally stored and released in sea ice melting and freez-
ing, and sea ice cover insulates the ocean and reflects a high
amount of sunlight, resulting in a seasonal cycle of not more
than 1.5 ◦C, even in ice-free regions (Chepurin and Carton, 105

2012). However, coupled model simulations have indicated
that the future loss of sea ice will greatly enhance the sea-
sonal SST range to up to 10 ◦C in 2300 given unabated CO2
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emissions (Carton et al., 2015). With year-round snow- and
ice-free conditions as well as even stronger summer strat-
ification during the Eocene due to higher greenhouse gas
concentrations and freshwater supply through an enhanced
hydrological cycle (Pierrehumbert, 2002; Carmichael et al.,5

2017), a nearshore 20 ◦C seasonal cycle in Arctic Ocean SST
may not be unrealistic, although it remains inconsistent with
current-generation fully coupled, relatively low-resolution
model simulations (e.g., Frieling et al., 2017).

Constraints from the total pollen assemblages in the10

ACEX cores based on a nearest living relative approach sug-
gest Arctic mean annual temperatures on land of 13–18 ◦C
and summer temperatures significantly exceeding 20 ◦C dur-
ing the PETM and ETM2 (Willard et al., 2019). Although
these estimates come with much larger uncertainty than win-15

ter temperatures and may suffer from the non-analogous set-
ting, they are generally lower than our TEX86 values. The
brGDGT-based paleothermometer MBT’5me (De Jonge et
al., 2014) also suggests lower mean annual air temperatures
than reported from TEX86 (Willard et al., 2019, Fig. 7).20

These data, derived from the same HPLC–MS analyses as the
isoGDGT data presented here, indicate mean annual air tem-
peratures averaging ∼ 18 ◦C during the PETM, with a resid-
ual mean calibration error of 4.8 ◦C. This value is ∼ 7 ◦C
lower than earlier estimates based on a slightly different25

method and analytical procedure as well as a smaller mod-
ern calibration dataset (Weijers et al., 2007a). However, re-
cent inclusion of data from Indian soils in the MBT’5me cali-
bration dataset improved the proxy at the higher-temperature
end (Dearing Crampton-Flood et al. 2020). The new calibra-30

tion, BayMBT, results in air temperatures∼ 3 ◦C higher than
that of De Jonge et al. (2014), which was used by Willard et
al. (2019; Fig. 7). The high calibration uncertainty of MBT
(see the Supplement) implies that the biomarker-derived air
temperature and SST reconstructions are within error.35

5.4 State of constraints on Paleocene–Eocene Arctic
temperatures

To unlock the unique premise of Eocene climates for testing
the skill of current-generation fully coupled climate models
under high greenhouse gas forcing, proxy data and models40

are ideally approached separately. Among the most impor-
tant implications of the Arctic temperature estimates are re-
constructions of the meridional temperature gradients. Im-
portantly, not a single simulation using an IPCC-class model
of early Paleogene climate has produced Arctic annual mean45

sea surface temperatures close to the ACEX TEX86-based
reconstructions without unrealistically high tropical SSTs
(Lunt et al., 2012). Recent simulations using the Commu-
nity Earth System Model (CESM) versions 1 (Frieling et al.,
2017; Cramwinckel et al., 2018) and 1.2 (Zhu et al., 2019)50

with Eocene boundary conditions produced climates that cor-
respond to SST reconstructions in many ocean regions based
on several proxies, but they still produced cooler mean an-

nual SSTs for the Arctic Ocean than suggested by TEX86
(Frieling et al., 2017; Cramwinckel et al., 2018; Zhu et al., 55

2019). TEX86 also indicates SSTs higher than in these model
simulations at several sites along the Antarctic margin (Bijl
et al., 2009; Bijl et al., 2013). The question thus remains of
whether the conversion of TEX86 values to mean annual SST
using any modern core-top calibration for high-latitude Pale- 60

ogene locations is valid and whether the climate models still
significantly underestimate polar temperatures. Certainly, if
interpreted as mean annual SST, TEX86-based estimates are
high compared to the few available additional estimates, no-
tably based on vegetation, but the latter also suffer from sim- 65

ilar uncertainties (e.g., Hollis et al., 2019).
A few biases might lead to underestimates of meridional

temperature gradients as indicated from TEX86. First, the
flat Eocene temperature gradient implied by TEX86 was sug-
gested to result from erroneously calibrating the proxy to 70

SST rather than to the temperature of the subsurface (Ho and
Laepple, 2016). The rationale is that the meridional temper-
ature gradient is smaller in deeper waters than it is in the
surface. However, the idea was contested for multiple rea-
sons, including the fact that sediments at most Eocene study 75

sites, such as the ACEX site, were deposited at a depth of
less than 200m, making the application of a deep subsurface
(> 1000 m) calibration inappropriate (Tierney et al., 2017).
Moreover, recent analyses have indicated that the TEX86 sig-
nal dominantly reflects the temperature of the top 200 m of 80

the water column (Zhang and Liu, 2018).
Secondly, as suggested previously (Sluijs et al., 2006), if

TEX86 were biased towards any season in the non-analog
Arctic Ocean, it would be the summer, the dominant sea-
son of organic matter export towards the seafloor through fe- 85

cal pelleting or marine snow aggregates. Vegetation suggests
very high winter continental coldest-month mean air temper-
atures of at least 6–8 ◦C (Sluijs et al., 2009; Suan et al., 2017;
Willard et al., 2019), coastal coldest-month mean SSTs of
> 13 ◦C (Suan et al., 2017), and terrestrial mean annual and 90

warmest-month mean temperature on land of 13–21 ◦C and
> 20 ◦C, respectively (Suan et al., 2017; Willard et al., 2019)
(see Sect. 5.3.2). These estimates are closer to the most recent
model simulations and lower than the existing TEX86 (e.g.,
Frieling et al., 2017; Zhu et al., 2019). If TEX86-implied SST 95

of ∼ 25 ◦C is skewed towards a summer estimate, this would
decrease the model–data bias regarding the meridional tem-
perature gradient estimates. Given the current uncertainties
in the use of TEX86 for the non-analog Arctic Ocean, we
cannot independently constrain this. 100

6 Conclusions

We analyzed isoGDGT and brGMGT (H-shaped brGDGT)
distributions in sediments recovered from the Paleocene–
Eocene Thermal Maximum (PETM; ∼ 56 Ma) to Eocene
Thermal Maximum 2 (ETM2; ∼ 54 Ma) interval on 105
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Lomonosov Ridge, Arctic Ocean, using state-of-the-art an-
alytical procedures, compared them to the original dataset
(Sluijs et al., 2006; Sluijs et al., 2009) and interpreted the
results following the currently available TEX86 proxy con-
straints.5

Although contributions of isoGDGTs from land com-
plicate TEX86 paleothermometry in some stratigraphic in-
tervals, temperature was the dominant variable control-
ling TEX86 values. Background early Eocene SSTs exceed
∼ 20 ◦C, and peak warmth occurred during the PETM and10

ETM2. However, uncertainty estimates of these SSTs based
on the non-analog modern ocean remain complex. Temper-
ature constraints from terrestrial vegetation support remark-
able warmth in the study section and elsewhere in the Arc-
tic basin, notably coldest-month mean temperatures around15

10 ◦C at least within the PETM and ETM2. If TEX86-derived
SSTs of ∼ 20 ◦C truly represent mean annual SSTs, the sea-
sonal range of Arctic SST might have been of the order of
20 ◦C. If SST estimates are entirely skewed towards the sum-
mer season, seasonal ranges of the order of 10 ◦C may be20

considered comparable to those simulated in future ice-free
Arctic Ocean scenarios.

We find abundant brGMGTs, which appear to be predom-
inantly produced in the marine realm at the study site. Their
abundance increases during the PETM, likely due to sea level25

rise and perhaps due to warming and a drop in seawater
oxygen concentrations. Although speculative, an increase in
brGMGT methylation during the PETM may be a function
of temperature, but a relation between brGMGT distribution
and environmental parameters including temperature has yet30

to be confirmed.
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