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Abstract

A series of papers shortly following Integrated Ocean Drilling Program Arctic Coring
Expedition (ACEX, 2004) on Lomonosov Ridge indicated remarkably high early
Eocene sea surface temperatures (SST; ca. 23 to 27 °C) and land air temperatures (ca.
17 to 25 °C) based on the distribution of isoprenoid and branched glycerol dialkyl
glycerol tetraether (isoGDGT and brGDGT) lipids, respectively. Here, we revisit these
results using recent analytical developments — which have led to improved temperature
calibrations and the discovery of new temperature-sensitive glycerol monoalkyl
glycerol tetracthers (GMGTs) — and currently available proxy constraints.

The isoGDGT assemblages support temperature as the dominant variable controlling
TEX3s values for most samples. However, contributions of isoGDGTs from land, which
we characterize in detail, complicate TEX3gs paleothermometry in the late Paleocene
and part of the interval between the Paleocene-Eocene Thermal Maximum (PETM; ~56
Ma) and Eocene Thermal Maximum 2 (ETM2; ~54 Ma). Background early Eocene
SSTs generally exceeded 20 °C, with peak warmth during the PETM (~26 °C) and
ETM2 (~27 °C). We find abundant branched GMGTs, likely dominantly marine in
origin, and their distribution responds to environmental change. Further modern work
is required to test to what extent temperature and other environmental factors determine
their distribution.

Published Arctic vegetation reconstructions indicate coldest month mean continental
air temperatures of 6-13 °C, which reinforces the question if TEXsgs-derived SSTs in
the Paleogene Arctic are skewed towards the summer season. The exact meaning of
TEXss in the Paleogene Arctic thus remains a fundamental issue, and one that limits
our assessment of the performance of fully-coupled climate models under greenhouse

conditions.
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1. Introduction

The Eocene epoch (56 to 34 million years ago; Ma) has long been characterized by
warm climates. The earliest signs of a balmy Eocene Arctic region — fossil leaves of
numerous plant species — were documented 150 years ago (Heer, 1869). Subsequent
findings identified palms, baobab and mangroves, indicating the growth of temperate
rainforests and year-round frost-free conditions in the Eocene Arctic region
(Schweitzer, 1980; Greenwood and Wing, 1995; Suan et al., 2017; Willard et al., 2019).
Fossils of animals, including varanid lizards, tortoises and alligators also indicate warm
Arctic climates (Dawson et al., 1976; Estes and Hutchinson, 1980). These earliest
findings sparked interest into the climatological mechanisms allowing for such polar
warmth about a century ago (Berry, 1922). Ever since, paleobotanists have focused on
the Arctic plant fossils and have significantly refined their paleoclimatological
interpretation towards estimates of precipitation as well as seasonal and mean annual
temperature (e.g. Uhl et al., 2007; Greenwood et al., 2010; Eberle and Greenwood,
2012; Suan et al., 2017; Willard et al., 2019).

Novel insights in Paleogene Arctic paleoclimate research were made in the years
following the Arctic Coring Expedition 302 (ACEX, Integrated Ocean Drilling
Program (IODP) 2004, Figure 1). This expedition recovered upper Paleocene and lower
Eocene siliciclastic sediments, deposited in a shallow marine environment, in Hole 4A
(87°52.00 ‘N; 136° 10.64 ’E; 1,288 m water depth), on the Lomonosov Ridge in the
central Arctic Ocean (Backman et al., 2006). The succession was deposited at a
paleolatitude of ~78 °N, based on a geological reconstruction (Seton et al., 2012)
projected using a paleomagnetic reference frame (Torsvik et al., 2012) (see
paleolatitude.org, Van Hinsbergen et al., 2015). The sediments are devoid of biogenic

calcium carbonate, but rich in immature organic matter, including terrestrial and marine
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microfossil assemblages and molecular fossils (e.g. Pagani et al., 2006; Sluijs et al.,
2006; Stein et al., 20006).

As the upper Paleocene and lower Eocene sediments of the ACEX core lack biogenic
calcium carbonate and alkenones, SST reconstructions are based on the biomarker-
based paleothermometer TEXg¢. This proxy is based on membrane lipids (isoprenoid
glycerol dibiphytanyl glycerol tetraethers; isoGDGTs) of Thaumarchaeota, which adapt
the fluidity of their membrane according to the surrounding temperature by increasing
the number of cyclopentane rings at higher temperatures (De Rosa et al., 1980; Wuchter
et al., 2004; Schouten et al., 2013, and references therein). The proxy was introduced
in 2002 by Schouten et al. (2002) and was calibrated to mean annual SST using modern
marine surface sediments.

Initial papers suggested that Arctic SST increased significantly during two episodes of
transient global warming. Maximum values of ~23°C and ~27 °C occurred during the
Paleocene-Eocene Thermal Maximum (PETM-56 Ma ago, Sluijs et al., 2006) and
Eocene Thermal Maximum 2 (ETM2-54 Ma ago, Sluijs et al., 2009), respectively.
Lower SSTs, generally exceeding 20 °C, characterized the remainder of the early
Eocene (Sluijs et al., 2008b). Such temperatures were immediately recognized to be
remarkably high and could not be explained using fully-coupled climate model
simulations (Sluijs et al., 2006). Even the current-generation of IPCC-class models are
unable to match early Eocene Arctic mean annual SSTs, although reconstructions of
tropical and mid-latitude SSTs and deep ocean temperatures are consistent with some
newer simulations (Frieling et al., 2017; Cramwinckel et al., 2018; Evans et al., 2018;
Zhu et al., 2019).

Since the publication of the ACEX SST records, constraints on the applicability of the

TEX3s proxy have tremendously improved (see review by Schouten et al., 2013, and



95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

subsequent work by Taylor, 2013 #1645; Elling et al., 2014; Qin et al., 2014; Elling et
al., 2015; Kim et al., 2015; Qin et al., 2015; Hurley et al., 2016; Zhang et al., 2016).
This work has delivered new constraints on the ecology of Thaumarchaeota, the
dominant depth at which they reside in the ocean and from which depth their isoGDGTs
are exported towards the sea floor. It also identified potential confounding factors such
as variation in dominant isoGDGT export depth (e.g., Taylor et al., 2013; Kim et al.,
2015), the input of non-Thaumarchaeotal-derived isoGDGTs (e.g., Weijers et al., 2011;
Zhang et al., 2011), growth phase (Elling et al., 2014), and environmental ammonium
and oxygen concentrations (Qin et al., 2015; Hurley et al., 2016). Moreover, several
indicators to detect such anomalies have been developed. Improvements in the
chromatography method used for GDGT analysis now allow for better separation of
previously co-eluting compounds leading to enhanced analytical precision and
sensitivity (Hopmans et al., 2016). Finally, recent work has described new GDGTs from
oceans and sediments, notably branched glycerol monoalkyl glycerol tetraethers
(brGMGTs, or ‘H-shaped’ brGDGTs) (e.g., Schouten et al., 2008; Liu et al., 2012),
characterized by a covalent carbon-carbon bond that links the two alkyl chains. Their
presence and distribution in peats and lake sediments has been linked to land air
temperatures (LAT) (e.g., Naafs et al., 2018a; Baxter et al., 2019). However, these
compounds have not yet been reported from ancient marine sediments.

Considering these developments and the paleoclimatological importance of the ACEX
dataset, we re-analyzed the original lipid extracts for the PETM, ETM2 and the interval
spanning these events (Sluijs et al., 2006; Sluijs et al., 2009), according to the latest
chromatography protocols. We also compile published and generate new GDGT data

from modern and Paleogene terrestrial deposits and use these to better assess the
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potential confounding influence of isoGDGTs from terrestrial sources, which was

already recognized as a potential problem in the early work (Sluijs et al., 2006).

2. GDGT-based SST indices, calibration and confounding factors
2.1 TEXss and its calibration to SST
TEXss is based on the relative abundance of 4 different GDGTs (Figure 2), following

(Schouten et al., 2002):

([GDGT-2]+[GDGT-3]+[Crenarchaeol isomer))
(IGDGT-1]+[GDGT-2]+[GDGT-3]+[Crenarchaeol isomer])

TEX86 = Eq. (1)

where a higher relative abundance of cyclopentane moieties implies higher SSTs.

A number of models are used to calibrate TEXgs to SST (Schouten et al., 2002;
Schouten et al., 2003; Schouten et al., 2007; Kim et al., 2008; Liu et al., 2009; Kim et
al., 2010; Tierney and Tingley, 2014; O'Brien et al., 2017), all based on a modern ocean
surface sediment database. The currently available culture and mesocosm experiments
and surface sediment data suggest that the relation between SST and TEXgss is close to
linear for a large portion of the modern ocean (Kim et al., 2010; Ho et al., 2014; Tierney
and Tingley, 2014; O'Brien et al., 2017). In polar regions, the TEXgs response to
temperature diminishes (e.g., Kim et al., 2010; Tierney and Tingley, 2014). The
response of TEXgs to SST at the high temperature end remains subject of discussion
(e.g. Cramwinckel et al., 2018; Hollis et al., 2019). Several authors prefer a linear
relation (e.g., Tierney and Tingley, 2014; O'Brien et al., 2017). However, physiological
considerations and multiple temperature-dependent GDGT indices might imply a non-
linear relation also at the high temperature end, as can be observed at the high end of
the modern ocean dataset and beyond the reach of the modern ocean in paleoclimate

data (Cramwinckel et al., 2018). At higher temperatures, membrane adaptation may
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increasingly be established using isoGDGTs not included in the TEXss ratio leading to
a diminished TEX3s response at very high temperatures (Cramwinckel et al., 2018). A
non-linear response has thus been proposed in other calibrations (Liu et al., 2009; Kim
et al., 2010). The most recent non-linear calibration, TEXZ, (Kim et al., 2010),
represents an exponential relation between SST and TEXgs (Hollis et al., 2019).
Unfortunately, TEX£, is mathematically problematic and has systematic residuals in
the modern ocean (Tierney and Tingley, 2014).

Tierney and Tingley (2014) introduced a spatially-varying Bayesian method to convert
TEXss to SST and assumes a linear relationship (BAYSPAR). BAYSPAR extracts
TEX3s values from the modern core-top dataset that are similar to the measured TEXss
value from the geological sample based on a tolerance defined by the user, and
subsequently calculates regressions based on these core-top data. The uncertainty in
SST reflects spatial differences in the correlation coefficient and intercept and the error
variance of the regression model.

Currently, it is generally encouraged to present results both using a linear and a non-
linear function (Hollis et al., 2019). The assumption of a linear or non-linear relation
between SST and TEXse leads to very different SST reconstructions for geological
samples yielding TEXss values >0.70 (Kim et al., 2010; Tierney and Tingley, 2014;
Frieling et al., 2017; O'Brien et al., 2017; Cramwinckel et al., 2018; Hollis et al., 2019).
However, TEXgs values of the early Eocene ACEX samples (0.5 — 0.7, Sluijs et al.,
2006; Sluijs et al., 2008b; Sluijs et al., 2009) are below this value and well above most
values observed in the polar regions (Kim et al., 2010; Tierney and Tingley, 2014;
O'Brien et al., 2017), indicating that all calibrations will yield similar absolute SST

values.
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2.2 Caveats and confounding factors

Several confounding factors and caveats have been identified that could potentially bias
TEX36 data relative to mean annual SST. These notably relate to additions of isoGDGTs
that were not produced in the upper water column by Thaumarchaeota, seasonal biases,
and choices that are made in the calibration between SST and TEXss. Below we
summarize methods that have been developed to assess if isoGDGT distributions might

have been biased by confounding factors.

2.2.1 isoGDGTs of terrestrial origin

Previous work (Sluijs et al., 2006; Sluijs et al., 2008b; Sluijs et al., 2009) recognized
that high contributions of terrestrially-derived isoGDGTs could compromise the TEX s
signal for portions of the upper Paleocene to lower Eocene interval of the ACEX core.
This contribution can be tracked using the Branched and Isoprenoid Tetraether (BIT)
index, a ratio of mostly soil-derived branched GDGTs (brGDGTs; Figure 2) and
Crenarchaeol, which is dominantly marine-derived (Hopmans et al., 2004; Schouten et

al., 2013):

([brGDGT—-I1al+[brGDGT—I1al+[brGDGT—II1a])

BIT i =
index ([brGDGT—Ial+[brGDGT—Ila]+[brGDGT—II1a))+[Crenarchaeol])

Eq. (2)

Most studies define a BIT value (typically 0.3 or 0.4) above which TEXss-derived SST
are unreliable (e.g., Weijers et al., 2006). However, the threshold of 0.4 is conservative
in some settings and the impact of terrigenous GDGTs on reconstructed SST will
depend on the nature and temperature of the source catchment (Inglis et al., 2015). In
addition, a cut-off value based on BIT values is difficult given the relatively large
differences in BIT between labs, which originate from methodological differences
(Schouten et al., 2009). A strong linear relationship between BIT and TEXjse values is

often taken as indication of a bias in TEXss through land-derived isoGDGTs to the
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marine TEXges signature (e.g., Douglas et al., 2014). An earlier study used a somewhat
subjective threshold of 0.3 for an interval spanning ETM?2 in the ACEX core (Sluijs et

al., 2009).

2.2.2 isoGDGTs of deep water origin

Thaumarchaeota, the source of most isoGDGTs in marine waters (Zeng et al., 2019;
Besseling et al., 2020), are ammonium oxidizers (Konneke et al., 2005; Wuchter et al.,
2006a), making them independent of light. Although they occur throughout the water
column, maximum abundances occur at depths <200 m, generally around NO> maxima
(e.g., Karner et al., 2001; Pitcher et al., 2011a). In most oceans, sedimentary GDGTs
dominantly derive from the upper few hundred meters, based on analyses of suspended
particular organic matter and sediment traps (Wuchter et al., 2005; Wuchter et al.,
2006b; Yamamoto et al., 2012; Richey and Tierney, 2016). A deeper contribution has
also been inferred based on !“C analysis (Shah et al., 2008), implying possible
contributions of isoGDGTs from thermocline. Moreover, contributions of isoGDGT's
produced in the deep sea have regionally been identified (e.g., Kim et al., 2015). Taylor
et al. (2013) also found that deep dwelling (>1000 meter) archaea might contribute to
the sedimentary isoGDGT assemblage. They indicate that such deep contributions can
be tracked using the GDGT-2/GDGT-3 ratio; high values of >5 indicate contributions
of archaea living deeper in the water column. Given that upper Paleocene and lower
Eocene ACEX sediments were deposited in a shallow shelf environment (Sluijs et al.,

2008b), a significant contribution of deep ocean archaeal lipids is not expected.
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2.2.3 isoGDGTs of methanotrophic and methanogenic archaea

Contributions of isoGDGTs to the sedimentary pool might also derive from anaerobic
methanotrophs and/or methanogens. Several indices have been developed to track such
contributions, both based on relatively high contributions of particular isoGDGTs of
these groups of archaea. The Methane Index (MI) was developed to detect the relative
contribution of anaerobic methanotrophic Euryarchaeota assumed to be represented by

GDGT-0 but also GDGT-1, 2 and 3 (Zhang et al., 2011) and is therefore defined as

_ [6DGT-1]+[GDGT-2]+[GDGT—-3]
([GDGT-1]+[GDGT-2]+[GDGT-3]+[Crenarchaeol]+ [Crenarchaeol isomer])

MI Eq. (3)

MI values greater than 0.5 indicate significant contribution of anaerobic
methanotrophy. Such values may yield unreliable TEXss values. Another tracer for
contributions of anaerobic methanotrophic archaea is the analogous GDGT-
2/Crenarchaeol ratio (Weijers et al., 2011).

Methanogenic archaea can synthesize GDGT-0, as well as smaller quantities of GDGT-
1, GDGT-2 and GDGT-3. The ratio GDGT-0/Crenarchacol is indicative of
contributions of methanogenic archaea to the isoGDGT pool (Blaga et al., 2009) where
values > 2 indicate substantial contribution of methanogenic archaea. Up to now, high
index values have often been observed near methane seeps or anoxic basins (e.g.,
Jaeschke et al., 2012) but rarely in open marine waters in the modern and paleodomains
(Inglis et al., 2015; Zhang et al., 2016). Given the reducing conditions in the sediment
and water column at the study site across the late Paleocene and early Eocene (Sluijs et
al., 2006; Stein et al., 2006; Sluijs et al., 2008b; Mérz et al., 2010), an influence of

methane cycling might be expected.
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2.2.4 isoGDGTs of the ‘Red Sea Type’

Sedimentary isoGDGT distributions from the Red Sea are anomalous to other marine
settings and are characterised by the low abundance of GDGT-0 and the high abundance
of the Crenarchaeol isomer. Presumably, this is due to an endemic Thaumarchaeotal
assemblage. The Red Sea isoGDGT distribution yields a different relationship between
SST and TEX3gs (Trommer et al., 2009; Kim et al., 2015). Inglis et al. (2015) attempted
to quantify a ‘Red Sea-type’ GDGT distribution in geological samples using the

following index:

[Crenarchaeol isomer]
([GDGT—0]+ [Crenarchaeol isomer])

%GDGTrs = x 100 Eq. (4)

However, as noted by Inglis et al. (2015) this ratio is also strongly SST-dependent such
that the Red Sea type GDGT assemblage cannot be discerned from GDGT distributions

that occur at high temperatures in normal open marine settings.

2.2.5 Seasonal bias

TEXgss is calibrated to mean annual SST. However, particularly in mid and high latitude
areas where production and export production is highly seasonal, the sedimentary
GDGT distribution might not represent annual mean conditions (Wuchter et al., 2006b;
Pitcher et al., 2011b; Mollenhauer et al., 2015; Richey and Tierney, 2016; Park et al.,
2019). This issue should partly be reflected in the calibration uncertainty of the modern
ocean database (several °C, depending on the calibration and method; see section 2.7).
Sluijs et al. (2006; 2008b; 2009) originally argued that the TEXss results from the
ACEX core could be biased towards summer temperature because the export of organic
matter from the surface ocean towards the sediment likely peaked during the season of
highest production, i.e., the summer. However, we also note that the TEX3s-temperature

relationship is not improved when using seasonal mean ocean temperatures (Kim et al.,
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2010; Tierney and Tingley, 2014) and modern observations indicate homogenization
of the seasonal cycle at depth (Wuchter et al., 2006b; Yamamoto et al., 2012; Richey
and Tierney, 2016), implying that seasonality has relatively limited effect on modern

sedimentary TEXses values.

2.2.6 Additional isoGDGT-based temperature indicators

The underlying mechanism of TEXss is that isoGDGTs produced at higher SSTs
contain more rings than those produced at low SSTs. Although the combination of
compounds included in TEXss seems to yield the strongest relation with temperature in
the modern ocean (Kim et al., 2010), it implies that isoGDGT ratios other than TEXss
also provide insights into SST. One alternative temperature sensitive isoGDGT index
is the Ring Index (RI), which represents the weighed number of cyclopentane rings of
isoGDGTs 0-3, Crenarchaeol and the Crenarchaeol isomer (Zhang et al., 2016), defined
as:

RI = 0x[%GDGT — 0] + 1 x[%GDGT — 1] + 2 x[%GDGT — 2] + 3 x[%GDGT — 3] +

4 x [Y%Crenarchaeol + %Crenarchaeol isomer] Eq. (5)

Note that the abundance of GDGT-0 is important for determining the percentage of the
other GDGTs of the total isoGDGT pool.

The close relation between TEXgs and RI can also be used to detect aberrant
distributions, including those produced by methanogenic, methanotrophic and
terrestrial sources, as these sources typically contribute disproportionate amounts of
specific lipids. A RItex, calculated from TEX using the polynomial fit of Zhang et al.
(2016), is subtracted from the RI to arrive at the ARI. Cut-off values for sample
deviation from the modern ocean calibration dataset are defined as 95% confidence

limits of the RI-TEX relation, or above |0.3| ARI units.
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2.3 H-shaped branched GDGTs; brGMGTs

BrGMGTs (Figure 2) were first identified by Liu et al. (2012) in marine sediments, who
identified a single acyclic tetramethylated brGMGT (m/z 1020). This compound was
later detected within the marine water column and appeared to be abundant within the
oxygen minimum zone (Xie et al., 2014). Naafs et al. (2018a) identified a larger suite
of brGMGTs (including m/z 1048 and 1034), in a quasi-global compilation of modern
peat samples. They argued that these compounds were preferentially produced at depth,
within the anoxic catotelm. Analogous to the continental paleothermometer based on
bacterial brGDGTs produced in surface soils, termed MBT sme (Weijers et al., 2007b;
De Jonge et al., 2014), they showed that the degree of methylation of brGMGTs in peats
relates to mean annual air temperature. They calculated the degree of methylation of
brGDGTs without cyclopentane moieties, designed for comparison to the methylation

of brGMGTs, defined by H-MBTacyclic:

brGDGT-Ia E (6)
(brGDGT—-1a+brGDGT—11a+GDGT—11a’+brGDGT—I11a+brGDGT—I11a") 4

MBTacyclic =

brGMGT—-H1020
(brGMGT—-H1020+brGMGT—-H1034+brGMGT—10438)

H — MBTacyclic = Eq. (7)

Based on the strong relation between MBTacyclic and H-MBTacyciic in their peat samples,
Naafs et al. (2018a) suggested that the brGMGTs have the same origin as the brGDGTs,
presumably Acidobacteria (Sinninghe Damsté et al., 2011; Sinninghe Damsté et al.,
2018a). In addition, they showed that the abundance of brGMGTs (relative to the total
amount of brGMGTs and brGDGTs) positively correlates with mean annual air
temperature, suggesting that the covalent bond in the brGMGTs is used to maintain

membrane stability at higher temperature (Naafs et al., 2018a).
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Baxter et al. (2019) identified a total of seven different brGMGTs from a suite of
African lake sediments (Figure 2), and found their relative distribution to correlate to
mean annual air temperature. Accordingly, they proposed a proxy for mean annual air

temperature termed brGMGT-I (see Figure 2 for the molecular structures referred to

here):

o [H1020c]+[H1034a]+[H1034c]
brGMGT — I = [H1020b]+[H1020c]+[H1034a]+[H1034c]+[H1048] Eq. (3)
3. Material and Methods

We used the polar fractions previously analyzed by Sluijs et al. (2006; 2009) from the
PETM through ETM2 interval at IODP Expedition 302 Hole 4A. These fractions
originate from a total lipid extract produced using a Dionex Accelerated Solvent
Extractor and fraction separations by AlO3 column chromatography using
hexane:dichloromethane (DCM) (9:1, v/v) and DCM:methanol (1:1; v/v) to yield the
apolar and polar fractions, respectively. Polar fractions were re-dissolved in
hexane:isopropanol (99:1, v/v)) and passed through a 0.45-um polytetrafluoroethylene
filter. This fraction was then analyzed by high-performance liquid chromatography
(HPLC) and atmospheric pressure chemical ionization—mass spectrometry using an
Agilent 1260 Infinity series HPLC system coupled to an Agilent 6130 single-
quadrupole mass spectrometer at Utrecht University following Hopmans et al. (2016)
to measure the abundance of GDGTs. Based on long-term observation of the in-house
standard, the analytical precision for TEXgs calculates to 0.3 °C in the SST domain.

To gain further insights into the potential impact of terrestrial isoGDGT input on TEXss
values, we compiled isoGDGT and brGDGTs distributions from modern peats (n =473,
Naafs et al., 2017) and early Paleogene lignites (n = 58, Naafs et al., 2018b). Note, the

fractional abundance of Crenarchaeol isomer was not reported in the early Paleogene

14



340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

dataset of Naafs et al. (2018b). We therefore revisited the original chromatograms from

Naafs et al. (2018b) and integrated the crenarchaeol isomer (m/z 1292).

4. Results

The new GDGT distributions (Supplementary Table) are consistent with the TEX3gs and
BIT index data generated over a decade ago using the older analytical HPLC setup
(Hopmans et al., 2000; Hopmans et al., 2016) (Figure 3). TEXgs exhibits some scatter
but the slope of the regression is 0.98 for the entire dataset, which is indistinguishable
from the 1:1 line. The scatter is minor compared to the uncertainties inherent to
calibrations that transfer these values to SST. Less scatter is apparent in the BIT record
but the original BIT index values were slightly higher than recorded here (~0.5),
indicated by a shallower slope of the regression (0.92). This result is consistent with
previous analyses with the new analytical setup (Hopmans et al., 2016). This does not
impact previous qualitative interpretations of this record (Sluijs et al., 2006; Sluijs et
al., 2008b; Sluijs et al., 2009). In the discussion section, we assess indicators of
potential confounding factors (section 2.2), including the influx of terrestrially-derived
isoGDGTs to the sediments (Figures 4, 5 and S1) and several indices related to methane
and depth of production (Figures 6).

Although we did not detect significant amounts of isoprenoid GMGTs, high
abundances of various brGMGTs are present in the ACEX samples, in total between 10
and 45% of the total brGDGT assemblage (Figure 7). We consistently identify at least
five brGMGTs across the three different mass-to-charge ratios (m/z 1020, 1034 and
1048). Based on their (relative) retention times and overall distribution we were able to
apply the nomenclature of Baxter et al. (2019) to five of these and assign individual

peaks to previously identified compounds (Figure S2). The abundance of brGMGTs
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relative to brGDGTs increase during the PETM. The proposed temperature indicators
based on brGMGTs show mixed results, with some showing a clear response to the

PETM (Figure 7¢) while others do not (Figure 7d).

5. Discussion

5.1 IsoGDGT provenance

5.1.1 Contributions of soil-derived isoGDGTs

As noted by Sluijs et al. (2006), late Paleocene samples yield anomalously high
abundances of GDGT-3, likely derived from a terrestrial source. We therefore consider
the late Paleocene temperature estimates unreliable. To assess the temperature change
during the PETM, Sluijs et al. (2006) developed a TEXgs calibration without this
moiety, termed TEXg, . However, TEXg, has not been widely used outside the
Paleogene Arctic because the anomalous abundances of GDGT-3 have not been
recorded elsewhere. High contributions of GDGT-3 from terrestrial input would also
be associated with an increase in the abundance of other isoGDGTs. Indeed, recent
TEXg¢-based global SST compilations and comparison to climate simulations for the
PETM excluded the Paleocene ACEX data because the TEX3gs” calibration complicates
the comparison to other regions where it has not been applied (Frieling et al., 2017,
Hollis et al., 2019).

Input of soil organic matter is consistent with Willard et al. (2019) who established that
the brGDGT assemblage is dominantly soil-derived as opposed to being produced in
the coastal marine environment. This observation is based upon the weighted average
number of rings in the tetramethylated brGDGTs (#ringsietra) which generally does not
exceed 0.4 to 0.7 in the global soil calibration dataset (Sinninghe Damsté, 2016). In the

ACEX record, #ringseetra s < 0.21 (Willard et al., 2019), consistent with a dominant soil
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source. This indicates that 1) brGDGT abundances, 2) brGDGT distributions and 3) the
BIT index are reliable indicators of the relative supply of terrestrially-derived
isoGDGTs into the marine basin. The Paleocene section of the dataset also stands out
regarding its relation between BIT index and TEXsgs (Figure 4), which confirms its
anomalous nature.

During the PETM, TEX3s values are higher (due to warming) and BIT values lower.
This was attributed to sea level rise during the hyperthermals resulting in a more distal
position relative to the terrestrial GDGT source (Sluijs et al., 2006; Sluijs et al., 2008a).
The interval between 371.0 and 369.0 mcd (i.e. above the PETM and below ETM2)
stands out. This interval was previously recognized by Sluijs et al. (2009) to reflect an
open marine environment, with a dominance of marine palynomorphs and algal
biomarkers. They also found that high BIT values correspond to low TEXgs values
within that interval and therefore implemented a subjective threshold value of 0.3,
above which TEXss-derived SSTs were considered unreliable. Although the relation
between BIT and TEX3gs exhibits considerable much scatter, the new analyses supports
the notion that higher influx of terrestrial isoGDGTs lowers TEXgs values. The linear
regression (Figure 4; excluding the one outlier with high TEXsgs and BIT values in the
top right of the plot because it has highly anomalous distributions (ARI = 0.61)), yields
an R? of 0.26 so explains a portion of the variation (Figure 4). The nature of this
influence is determined by the relative abundance of terrestrial isoGDGTs and their
TEXss value. The TEXgs value at the terrestrial endmember of BIT = 1, assuming
various types of regressions, centers around 0.5. The remainder of the data does not
show a clear relation between BIT and TEXss although some of the lowest TEXgs

values correspond to high BIT values, suggesting that the terrestrial endmember
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contributed isoGDGT assemblages with relatively low TEXss values in other intervals
as well.

The relatively low degree of cyclization in the early Eocene contrasts starkly with high
degree of cyclisation during the late Paleocene (Figure 6). This implies that the
distribution of terrestrial isoGDGTs varies strongly between the latest Paleocene and
early Eocene within our studied section.

The impact of soil-derived isoGDGTs also emerges from the Ring Index approach of
Zhang et al. (2016, see section 2.6 and Figure 6). The difference between the Ring Index
and TEXse at the onset of the PETM is mainly controlled by Crenarchaeol, which is
comparatively low in abundance in the Paleocene but highly abundant in the PETM.
This increase is likely associated with sea level rise during the PETM because
Crenarchaeol is predominantly produced in the marine realm. It is also consistent with
a drop in BIT index values and the relative abundance of terrestrial palynomorphs
(Sluijs et al., 2008a). The approach of Zhang et al. (2016) also confirms that many
isoGDGT distributions exhibit an anomalous relation between TEXgs and the Ring
Index relative to the modern core top dataset, with ARI values >0.3 (Figure 6).
Importantly, all samples with ARI values >0.3 have BIT values above 0.35, indicating
that contributions of soil-derived iso-GDGTs dominate non-temperature effects in the
distributions. We therefore discard TEXss-derived SSTs for samples with BIT values
>(.35.

We also develop a crude model to further constrain the potential contribution of
terrestrially-derived isoGDGTs. First, we determine the abundance of isoGDGTs
relative to brGDGTs in modern peat samples (Naafs et al., 2017) and early Paleogene
lignites (fossil peat) (Naafs et al., 2018b, the isoGDGT data are published here).

Although there is no reason to assume that peat was a major component of the
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hinterland (Willard et al., 2019) , the aforementioned datasets can provide an estimate
of the potential contribution from terrestrial iso0GDGTs to our study site. The raw signal
intensity of brGDGTs in the ACEX samples are used to estimate the potential
contribution of terrestrially-derived isoGDGTs to the samples. To this end, we use the
fractional abundance of the various isoGDGTs in the modern peat and Paleogene lignite
datasets (Figure 5). Then, we estimate the abundance of these terrestrially-derived
isoGDGTs in our ACEX samples by scaling this fraction to the measured abundances
of brGDGTs and isoGDGTs in our ACEX samples, following

Terrestrial fraction of isoGDGT x =

sum(brGDGTSs))
abundance of isoGDGT x

(Fraction of isoGDGTx in terrestrial test dataset * ) Eq. (9)

where x represents the specific analyzed GDGT (see Supplementary Data File for an
example of these calculations).

This leads to estimates of the potential relative contributions of the individual
isoGDGTs derived from land in the ACEX samples based on the entire modern peat
dataset (Naafs et al., 2017), modern peats from regions with MAT exceeding 15°C
(Naafs et al., 2017) and Paleogene lignites (Naafs et al., 2018b, this paper, Figures 5
and S1). This approach implies that Crenarchaeol and the Crenarchaeol-isomer are
almost exclusively from the marine realm. However, GDGT-1, GDGT-2 and GDGT-3
in our study site may be derived from the terrestrial realm (Figure 5), especially in
specific stratigraphic intervals (Figure S1). In the most extreme cases, the modeled
contributions of terrestrial iSoGDGTs is higher than the measured isoGDGT
abundances (i.e., terrestrial fraction > 1). This is principally seen in iGDGT-2 and
GDGT-3, especially when we employ the Paleogene lignite database. This particular
assumption clearly overestimates the abundance of terrestrially sourced isoGDGTs in

our setting. However, the temporal trends obtained using modern peats, subtropical
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modern peats and Paleogene lignites are essentially identical and give some indication
which isoGDGTs are most likely to be impacted by terrestrial input and across which
intervals. Interestingly, this approach also suggests that particularly GDGT-3 is shown
to be strongly affected (Figure 5), which qualitatively matches the distributions in the
ACEX samples. This is principally because GDGT-3 is the least abundant marine
isoGDGT included in our analyses, whereas it is often as abundant as GDGT-1 and 2

in terrestrial settings (Fig. 5).

5.1.2 Contributions of methanotrophic or methanogenic archaea?

The depositional environment at the study site included ample (export) production,
sediment organic matter content, and low oxygen conditions at the sediment-water
interface (Sluijs et al., 2006; Stein et al., 2006; Stein, 2007; Sluijs et al., 2008b; Sluijs
et al., 2009; Mirz et al., 2010). This may have been suitable for abundant methanogenic
and methanotrophic archaea, potentially contributing to the sedimentary isoGDGT
assemblage. However, our GDGT-2/Crenarchaeol values (<0.23; Figure 6) are far
below values that suggest significant isoGDGT contributions of methanotrophic
Euryarchaeota as described by Weijers et al. (2011). MI values (maximum observed
0.31) are also generally below proposed cut off values (0.3-0.5, Zhang et al., 2011) that
suggest such contributions. Finally, GDGT-0/Crenarchaeol ratios (<1.4) remain below
the cut-off value of 2 throughout the section (Figure 6), also making a significant
isoGDGT contribution from methanogens highly unlikely (Blaga et al., 2009).
Collectively, relative contributions of isoGDGTs from methanogenic and
methanotrophic archaea seem low despite the low-oxygen environment, suggesting a

relatively high flux of pelagic isoGDGTs.
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5.1.3 Contributions of deep-dwelling archaea?

Taylor et al. (2013) showed that GDGT-2/GDGT-3 ratios correspond to depth of
production, with high values (>5) in deep waters (>1000 m). We record low values (1-
4) between ~390 and ~371.2 mcd (Figure 6), which supports a dominant production in
the surface ocean based on the modern calibration data set (Taylor et al., 2013).
However, the overlying interval (~371 to ~368.3 mcd) has much higher (average 7.4)
and variable GDGT-2/GDGT-3 values with peak values of 10-14. Such values suggest
significant contributions of isoGDGTs produced at water depths of several kilometers
according to the analyses by Taylor et al. (2013).

However, all paleoenvironmental information generated based on the sediments as well
as tectonic reconstructions of Lomonosov Ridge — a strip of continental crust that
disconnected from the Siberian margin in the Paleocene - has indicated a neritic setting
of the drill site at least up to the middle Eocene (e.g., O'Regan et al., 2008; Sangiorgi
et al., 2008; Sluijs et al., 2008a; Sluijs et al., 2009). At ~371.2 mcd a drop in BIT index
and a change in the palynological assemblages corresponds to an interval of greenish
sediment, suggestive of pronounced amounts of glauconite. These changes are
consistent with local relative sea level rise, causing a somewhat more distal position
relative to the shoreline. However, the sediment remains dominantly siliciclastic and
organic terrestrial components, particularly pollen and spores, remain abundant still
indicating a shallow setting (Sluijs et al., 2008a; Sluijs et al., 2008b). Increased
contributions of isoGDGTs produced at depth would be expected to have caused a
systematic cold bias but based on linear regression analysis the large variability in
GDGT-2/GDGT-3 ratios is unrelated to the recorded variability in TEXgs values. The
high GDGT-2/GDGT-3 ratio values can therefore not be explained by contributions of

deep dwelling archaea.
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In a study of the last 160 kyr in the South China Sea, Dong et al. (2019) found that very
high GDGT-2/GDGT-3 ratios (~9 but up to 13) correspond with high values in nitrogen
isotope ratios, interpreted to reflect low contributions in diazotroph N> fixation and
enhanced upwelling. In our record, the high GDGT-2/GDGT-3 ratios are associated
with normal marine conditions and the dinocyst assemblages are not indicative of
upwelling conditions (Sluijs et al., 2009). Unfortunately, the available nitrogen isotope
record (Knies et al., 2008) does not cover this interval in sufficient resolution to assess
a relation with diazotroph activity. The increase in GDGT-2/GDGT-3 ratio correlates
to a strong drop in BIT index values and an increase in normal marine dinocyst species
(Sluijs et al., 2009), but a shift to more open marine environment does not explain the
high ratio values. As such, the cause of the high GDGT-2/GDGT-3 ratios in this interval
remains unclear but we consider it highly unlikely to relate to contributions of deep

dwelling Thaumarchaeota.

5.1.4 Oxygen concentrations and ammonium oxidation rates

A variety of non-thermal factors can impact TEX3gs values, including ammonium and
oxygen concentrations and growth phase (Elling et al., 2014; Qin et al., 2014; Hurley
etal., 2016). Across the studied interval of the ACEX core, several intervals of seafloor
and water column anoxia have been identified based on organic and inorganic proxies,
notably during the PETM and ETM2 (Sluijs et al., 2006; Stein et al., 2006; Sluijs et al.,
2008b; Sluijs et al., 2009; Mirz et al., 2010).

Particularly suspect is an interval of low TEXgs values that marks the middle of the
ETM2 interval, directly following a ~4 °C warming at its onset (Sluijs et al., 2009).
This interval is also marked by the presence of sulfur-bound isorenieratane (Sluijs et

al., 2009), a derivative of isorenieratene. This biomarker is produced by the brown
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strain of green sulfur bacteria that require light for photosynthesis and free sulfide,
indicating euxinic conditions in the (lower) photic zone (Sinninghe Damsté et al.,
1993). We also record a concomitant shift in several methane-related indicators,
GDGT-2/GDGT-3 ratio values and the ARI. A mid-ETM2 cooling signal has not been
recorded at other study sites and this interval marks the occurrence of pollen of
thermophilic plants such as palms and baobab (Sluijs et al., 2009; Willard et al., 2019).
Therefore, the low TEX3gs values were suggested to reflect thaumarcheotal depth
migration to the deeper chemocline due to euxinic conditions (Sluijs et al., 2009),
similar to the modern Black Sea (Coolen et al., 2007; Wakeham et al., 2007) and the
Mediterranean Sea during sapropel formation (Menzel et al., 2006).

More recent work has indicated that the isolated marine Thaumarchaeotal species
Nitrosopumilus maritimus produces lower TEXsgs values with higher ammonia
oxidation rates (Hurley et al., 2016) and O concentrations (Qin et al., 2015). Although
this observation is difficult to extrapolate to the total response of the Thaumarcheotal
community in the marine environment on geological time scales, lower O availability
should lower oxidation rates leading to higher TEXss values (Qin et al., 2015; Hurley
et al., 2016). However, we record a drop in TEX3gs values with the development of
anoxia during ETM2. The nature of the anomalously low cyclization in the ETM2
isoGDGT assemblage, which passes all quality tests regarding GDGT distribution

(Figure 6), remains therefore elusive.

5.2 Origin and environmental forcing of brGMGTs
The relative abundances of brGMGTs in our samples are surprisingly high. On average,
they comprise 25% of the total branched GDGT and GMGT assemblage. The limited

literature on modern occurrences implies that both terrestrial and marine sources may
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have contributed to the brGMGT assemblage. Data from marine sediments (Liu et al.,
2012) and the water column (Xie et al., 2014), clearly shows production within the
marine realm. Their occurrence in modern peats (Naafs et al., 2018a), lake sediments
(Baxter et al., 2019) and Paleogene lignites (Inglis et al., 2019) might also imply
transport from land to marine sediments. A soil-derived source is currently
unsupported, as they were most often below detection limit in recent studies of
geothermally heated soils (De Jonge et al., 2019) and a soil transect from the Peruvian
Andes (Kirkels et al., 2020). The brGMGT abundances we record are close to the
maximum abundance found in modern peats (Naafs et al., 2018a). However, significant
input of peat-derived organic matter into our study site is inconsistent with the low input
of peat-derived Sphagnum spores (Willard et al., 2019). Alternatively, the high
abundance of brGMGTs could also be related to subsurface production in marine
sediments. An analogous process was invoked by Naafs et al. (2018a) to explain very
high abundance of brGMGTs in an early Paleogene lignite. Collectively, however, we
surmise that production in the marine realm may be an important contributor to the
brGMGT pool in our setting.

Several factors may contribute to the rise in the abundance of brGMGTs relative to
brGDGTs across the PETM. Higher relative abundances of brGMGTs in modern peats
generally occur at higher mean annual air temperatures (Naafs et al., 2018a) and so this
signal could relate to warming during the PETM if their origin at the study site is
terrestrial. However, since we consider it likely that a large part of the brGMGTs
assemblage is of marine origin, the rise in brGMGT abundance likely relates to the
previously recorded (Sluijs et al., 2006; Sluijs et al., 2008b) sea level rise during the
PETM at the study site. This is consistent with the increase in marine brGMGT

production relative to terrestrial brGDGT supply to the study site (Figure 7b). This is
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consistent with the inverse correlation between brGMGT abundance and the BIT index
(Figure 7b). Lastly, if the production of marine brGMGTs was focused in oxygen
minimum zones (Xie et al., 2014), the development of low oxygen conditions in the
water column based on several indicators, such as the presence of isorenieratane (Sluijs
et al., 2006), might have increased the production of brGMGTs in the water column. It
is also possible that all of these factors contributed to the changes in abundance of
brGMGTs relative to brGDGTs across the PETM.

The brGMGT-I proxy does not produce temperature trends similar to those seen in
TEXss or MBT sme (Figure 7d). If the majority of the brGMGTs are of marine origin,
this indicates that brGMGTs produced in the marine realm do not respond to
temperature as was hypothesized based on the African Lake dataset by Baxter et al.
(2019).

Also the application of the H-MBTacycic index (equation 7) appeared problematic
because, similar to Baxter et al. (2019), we identified several more isomers than Naafs
et al. (2018a, who developed this index) detected in their peat samples. It therefore
remains unclear which of our peaks should be used to calculate the H-MBTacyclic index
values. We therefore show the two plausible options. For the first, we use all peaks with
m/z 1020, 1034 and 1048 (H-MBT-all in Figure 7¢) within the expected retention time
window. However, based on our chromatography, we consider it more likely that the
dominant peaks identified by Naafs et al. (2018a) at m/z 1020 and 1034 represent
H1020c and H1034b, respectively, and therefore use only those in addition to the single
identifiable peak at m/z 1048 as a second option (H-MBT (H1020c, H1034) in Figure
7e. Both options show a clear rise across the PETM, although the HMBT (H1020c,
H1034a) shows a larger signal and somewhat better correspondence in absolute values

to MBTacyclic, though with more scatter. A close correspondence between MBTacyclic
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and HMBT has also been found in a lignite that has been assigned to the PETM (Inglis
etal., 2019).

If the dominant source of the brGMGTs was marine throughout the record, the increase
in methylation possibly relates to warming. This would not be unprecedented as marine-
produced brGDGTs show an increase in methylation as a function of temperature
(Dearing Crampton-Flood et al., 2018). Sollic et al. (2017) also suggest that archaeal-
derived isoprenoid GMGTs produced in marine sediments incorporate additional
methyl groups at higher sediment temperatures. Water column oxygen concentrations
and pH also changed at our site during the PETM, which potentially affected
distributions. Extensive evaluation of brGMGT distributions in modern samples is

therefore required to assess the proxy potential.

5.3 Uncertainty on TEXss-based SST estimates.

5.3.1 Uncertainty based on calibration dataset

To calculate SSTs, we use 1) the BAYSPAR method (Tierney and Tingley, 2014),
which assumes a linear relationship between TEXgs and SST, and 2) TEXS. (Kim et
al., 2010), which assumes a non-linear relationship between TEXgs and SST.
Differences between these calibrations are smaller than the calibration errors (Figure 6)
because the TEXss values in the ACEX dataset all fall within the range of the modern
core top calibration. Taken together, both indices imply that mean annual SSTs varied
between 18 °C and 28 °C in the early Eocene, providing strong evidence for remarkable
early Eocene warmth in the Arctic region.

The TEXZ, calibration has a calibration error of 2.5 °C (residual mean standard error;
RSME) (Kim et al., 2010). The BAYSPAR method yields possible values that range

~6 °C from the most probable value (Figure 6), but these uncertainty estimates are more
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comparable than is immediately apparent, as this analysis takes a 90% confidence
interval compared to the 68% probability of RSME. All of the calibrations and methods
to obtain values and uncertainties are based on a modern core-top dataset and thus
implicitly include potential confounding factors such as seasonality and depth of
production and export. However, there is no (quantitative) constraint on any of these
parameters in the calibration data set. This is particularly important for the studied
region because it represents a polar endmember of the marine environment with highly
seasonal production and export and potentially high seasonality in temperature. In the
modern ocean, relations between SST and TEXss in the Arctic and ice-proximal
Southern Ocean settings differ from the global ocean. This is attributed to a change in
viscoelastic adaptation to temperature at the low end and/or a change in the
Thaumarchaeotal community (Kim et al., 2010; Ho et al., 2014; Tierney and Tingley,
2014). This may mask potential confounding factors that may be relevant specifically
to polar environments. This is important here, where the polar regions were ice free and
the functioning of physical, chemical and biological ocean systems were fundamentally
different from present day. This uncertainty is not accounted for using traditional
regression analyses or Bayesian techniques and quantification of uncertainty in non-

analogue climates remains extremely difficult.

5.3.2 Constraints from independent proxy data

Independent proxy data may provide additional constraints. The appearance of the
dinoflagellate cyst genus Apectodinium during the PETM and ETM2 in the Arctic basin
(Sluijs et al., 2006; Sluijs et al., 2009; Harding et al., 2011) provide qualitative support
for pronounced warming and apparent subtropical conditions. Recent efforts to quantify

the paleoecological affinities of this now extinct genus have suggested a required
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minimum temperature of ~20°C (Frieling et al., 2014; Frieling and Sluijs, 2018).
Although this value is partly based on TEXss data from the ACEX cores, it is supported
by data from an epicontinental site in Siberia (Frieling et al., 2014).

A second line of independent proxy evidence includes vegetation reconstructions. As
indicated above, the TEXs¢ results are qualitatively consistent with the ample evidence
for thermophilic plants and animals in the Arctic (e.g., Heer, 1869; Schweitzer, 1980;
Greenwood and Wing, 1995; Uhl et al., 2007; Suan et al., 2017). Particularly valuable
are minimum winter temperature tolerances for specific plant species. Palynological
analyses have indicated the presence of palm and baobab pollen within the PETM and
ETM2 intervals in the ACEX cores (Sluijs et al., 2009; Willard et al., 2019). Modern
palms are unable to tolerate sustained intervals of frost and sexual reproduction is
limited to regions where the coldest month mean temperature (CMMT) is significantly
above freezing (Van der Burgh, 1984; Greenwood and Wing, 1995). This threshold was
was recently quantified to be > 5.2 °C (Reichgelt et al., 2018). The presence of baobab
within the PETM interval and ETM?2 also indicate mean winter air temperatures of at
least 6 °C (Willard et al., 2019). Importantly, these plants were not encountered in the
intervals outside the PETM and ETM2, suggesting background coldest month mean air
temperatures were potentially too low (<6°C) to support megathermal vegetation.
Pollen of palms and Avicennia mangroves were recently identified in time-equivalent
sections in Arctic Siberia (Suan et al., 2017). Although the details of stratigraphic
framework for these records may be somewhat problematic, these findings indicate
elevated CMMT estimates on land (>5.5 °C) and in the surface ocean (>13 °C) during
the late Paleocene and early Eocene (Suan et al., 2017).

Apparently conflicting evidence comes from the occurrence of glendonites and erratics

in specific stratigraphic levels in Paleocene and Eocene strata in Spitsbergen,
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interpreted to reflect ‘cold snaps’ in climate (Spielhagen and Tripati, 2009). Some of
these stratigraphic levels are very close to (or even potentially within) the PETM,
considering the local stratigraphic level of the PETM (Cui et al., 2011; Harding et al.,
2011). However, glendonites and erratics have not been found at the exact same
stratigraphic levels as thermophilic biota (Spielhagen and Tripati, 2009). The formation
and stability of ikaite (the precursor mineral of the diagenetic glendonites) in
Spitsbergen was dependent on relatively low temperature, arguably persistent near-
freezing sea water temperatures in the sediment (Spielhagen and Tripati, 2009).
However, glendonite occurrences in other settings (e.g. Mesozoic sediments in mid-
latitude regions, Teichert and Luppold, 2013) have recently also been linked to methane
seeps (Morales et al., 2017). Therefore, the specific temperature constraints implied by
glendonites under such conditions are subject of debate. Future work should apply
temperature reconstructions based on the geochemical composition of the glendonites,
and biomarkers or biota on corresponding strata to assess whether glendonite
occurrence is related to colder climates.

The estimate on seasonal minima provides an important constraint on Arctic
climatology during the PETM and ETM2. Most likely, the palms and baobabs grew
close to the shore, where the relative heat of the ocean kept atmospheric temperatures
relatively high during the winter. If minimum winter SSTs were in the range of the SST
reconstructions based on the nearby Avicennia mangrove pollen (Suan et al., 2017),
which for open ocean settings would perhaps amount to ~10 °C, then summer SST must
have soared to at least 30 °C in summer if TEXgs—based SST reconstructions of ~20 °C
truly reflects the annual mean. It would imply an SST seasonality of ~20 °C, much
higher than any modern open marine setting. In the present day Arctic Ocean, heat is

seasonally stored and released in sea ice melting and freezing, and sea ice cover
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insulates the ocean and reflects much sunlight, resulting in a seasonal cycle of not more
than 1.5 °C, even in ice-free regions (Chepurin and Carton, 2012). However, coupled
model simulations have indicated that the future loss of sea ice will greatly enhance the
seasonal SST range to up to 10 °C in 2300 given unabated CO» emissions (Carton et
al., 2015). With year-round snow and ice-free conditions, even stronger summer
stratification during the Eocene due to higher greenhouse gas concentrations and fresh-
water supply through an enhanced hydrological cycle (Pierrehumbert, 2002;
Carmichael et al., 2017), a near-shore 20 °C seasonal cycle in Arctic Ocean SST may
not be unrealistic, although it remains inconsistent with current-generation fully
coupled, relatively low resolution, model simulations (e.g., Frieling et al., 2017).

Constraints from the total pollen assemblages in the ACEX cores based on a nearest
living relative approach suggest Arctic mean annual temperatures on land of 13-18 °C,
and summer temperatures significantly exceeding 20 °C during the PETM and ETM2
(Willard et al., 2019). Although these estimates come with much larger uncertainty than
winter temperatures and may suffer from the non-analogous setting, they are generally
lower than our TEXss values. The brGDGT-based paleothermometer MBT sme (De
Jonge et al., 2014) also indicates lower mean annual air temperatures than reported from
TEXss (Willard et al., 2019, Figure 7). These data, derived from the same UHPLC/MS
analyses as the isoGDGT data presented here, indicate mean annual air temperatures
averaging ~18 °C during the PETM, with a residual mean calibration error of 4.8 °C.
This value is ~7 °C lower than earlier estimates based on a slightly different method,

analytical procedure and a smaller modern calibration dataset (Weijers et al., 2007a).
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5.4 State of constraints on Paleocene-Eocene Arctic temperatures

To unlock the unique premise of Eocene climates for testing the skill of current-
generation fully coupled climate models under high greenhouse gas forcing, proxy data
and models are ideally approached separately. Among the most important implications
of the Arctic temperature estimates are reconstructions of the meridional temperature
gradients. Importantly, not a single simulation using an IPCC-class model of early
Paleogene climate has produced Arctic annual mean sea surface temperatures close to
the ACEX TEX3gs-based reconstructions without unrealistically high tropical SSTs
(Lunt et al., 2012). Recent simulations using the Community Earth System Model
(CESM) versions 1 (Frieling et al., 2017; Cramwinckel et al., 2018) and 1.2 (Zhu et al.,
2019) using Eocene boundary conditions produced climates that correspond to SST
reconstructions in many ocean regions based on several proxies, but still produced
cooler mean annual SSTs for the Arctic Ocean than suggested by TEXse (Frieling et al.,
2017; Cramwinckel et al., 2018; Zhu et al., 2019). TEX3s also indicates SSTs higher
than in these model simulations at several sites along the Antarctic margin (Bijl et al.,
2009; Bijl et al., 2013). The question thus remains if the conversion of TEXgs values
towards mean annual SST using any modern core-top calibration for high latitude
Paleogene locations is valid, or if the climate models still significantly underestimate
polar temperatures. Certainly, if interpreted as mean annual SST, TEXse-based
estimates are high compared to the few available additional estimates, notably based on
vegetation, but the latter also suffer from similar uncertainties (e.g., Hollis et al., 2019).
A few biases might lead to underestimates of meridional temperature gradients as
indicated from TEXgss. First, the flat Eocene temperature gradient implied by TEXss
was suggested to result from erroneously calibrating the proxy to SST rather than to the

temperature of the subsurface (Ho and Laepple, 2016). The rationale is that the
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meridional temperature gradient is smaller in deeper waters than it is in the surface.
However, the idea was contested for multiple reasons, including the fact that sediments
at most Eocene study sites, such as the ACEX site, were deposited at a depth of less
than 200m, making the application of a deep subsurface (>1000m) calibration
inappropriate (Tierney et al., 2017). Moreover, recent analyses have indicated that the
TEXss signal dominantly reflects temperature of top 200 m of the water column (Zhang
and Liu, 2018).

Secondly, as suggested previously (Sluijs et al., 2006), if TEX3gs were biased towards
any season in the non-analogue Arctic Ocean, it would be the summer, the dominant
season of organic matter export towards the seafloor through fecal pelleting or marine
snow aggregates. Vegetation suggests very high winter continental coldest month mean
air temperatures of at least 6-8 °C (Sluijs et al., 2009; Suan et al., 2017; Willard et al.,
2019), coastal coldest month mean SSTs of >13 °C (Suan et al., 2017), and terrestrial
mean annual and warmest month mean temperature on land of 13-21 °C and >20°C,
respectively (Suan et al., 2017; Willard et al., 2019) (see section 5.3.2). These estimates
are closer to the most recent model simulations and lower than the existing TEXss (e.g.,
Frieling et al., 2017; Zhu et al., 2019). If TEXgs-implied SST of ~25 °C is skewed
towards a summer estimate, this would decrease the model-data bias regarding the
meridional temperature gradient estimates. Given the current uncertainties in the use of
TEXgss for the non-analogue Arctic Ocean, we however cannot independently constrain

this.

6. Conclusions

We analyzed isoGDGT and brGMGT (H-shaped brGDGT) distributions in sediments

recovered from the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) to Eocene
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Thermal Maximum 2 (ETM2; ~54 Ma) interval on Lomonosov Ridge, Arctic Ocean
using state-of-the-art analytical procedures, compare them to the original dataset (Sluijs
et al., 2006; Sluijs et al., 2009) and interpret the results following the currently available
TEXg6 proxy constraints.

Although contributions of isoGDGTs from land complicate TEXss paleothermometry
in some stratigraphic intervals, temperature was the dominant variable controlling
TEXss values. Background early Eocene SSTs exceed ~20 °C and peak warmth
occurred during the PETM and ETM2. However, uncertainty estimates of these SSTs
based on the non-analogue modern ocean, remains complex. Temperature constraints
from terrestrial vegetation support remarkable warmth in the study section and
elsewhere in the Arctic basin, notably coldest month mean temperatures around 10 °C
at least within the PETM and ETM2. If TEXgs-derived SSTs of ~20 °C truly represent
mean annual SSTs, the seasonal range of Arctic SST might have been in the order of
20 °C. If SST estimates are entirely skewed towards the summer season, seasonal
ranges in the order of 10 °C may be considered comparable to those simulated in future
ice-free Arctic Ocean scenarios.

We find abundant brGMGTs, which appear predominantly produced in the marine
realm at the study site. Their abundance increases during the PETM, likely due to sea
level rise and perhaps due to warming and a drop in seawater oxygen concentrations.
Although speculative, an increase in brGMGT methylation during the PETM may be a
function of temperature, but a relation between brGMGT distribution and

environmental parameters including temperature is yet to be confirmed.
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Figure 1. Location of ACEX Hole 4A within a paleogeographic reconstruction of the
Arctic region at the time of the PETM. Reconstruction made using gplates (Miiller et
al., 2018), with the tectonic reconstruction of Seton et al. (2012, red shape is
Lomonosov Ridge in this reconstruction and grey lines are structural features including
spreading ridges), the paleomagnetic reference frame of Torsvik et al., (2012), and

modern coastlines.
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Figure 2. Molecular structures of the relevant isoGDGTs, brGDGTs and brGMGTs
and their terminology as described in this study. Crenarchaeol isomer (not shown)
differs from Crenarchaeol in the stereochemistry of the cyclopentane moiety adjacent
to the cyclohexyl moiety (Sinninghe Damsté et al., 2018b). For the terminology of the
brGMGTs, for which the exact chemical structure is still unclear, we follow Baxter et

al. (2019), since we identify the same isomers (see Figure S2 for a chromatogram).
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Figure 3. Comparison of the original GDGT dataset of the upper Paleocene and lower

Eocene of ACEX Hole 4A (Sluijs et al., 2006; Sluijs et al., 2009) and the new data
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1342 Figure 4. Comparison between BIT index values and TEXgs for various intervals

1343 spanning the upper Paleocene and lower Eocene of ACEX Hole 4A.
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