
Dear editor, 
We thank both of the reviewers for their comments. Both reviewers are highly supportive of publication of 
this manuscript.  
Importantly, none of their comments represented substantial criticism to any of our interpretations. All of 
their suggestions represented corrections or suggestions for the presentation of the paper. We incorporated 
almost all of them and motivate the few exceptions where we respectfully chose otherwise in the below reply 
letter. We therefore hope this version of the manuscript can be accepted for publication. 
Sincerely, on behalf of all authors, 
Appy Sluijs 
 
Anonymous Reviewer #1 
 
Sluijs et al. used the previously analyzed samples which were stored for over a decade. As I am interested in 
GDGTs, I was curious how the old and new GDGT data would differ, although I assume the offset would be 
small if stored properly and measured in good condition of the HPLC/MS. Figure 3 shows the result and 
regression analysis between the old and measured GDGTs results. Both TEX86 and BIT look comparable. 
However, I found that there are few outliers in the TEX86 dataset from the supplementary data. I plotted all 
their new vs old TEX86, and the Rˆ2 value is lower to 0.66. Still comparable statistically, however, the 
authors did not mention about the outliers. 
REPLY: These outliers represent data points for which the intensity of some isomers was insufficient in our 
reruns for proper quantification. For these 5 samples, TEX86 values were anomalously low as a 
consequence. These were the open fields in the spread sheet of the raw data but for clarity we have now 
marked them ‘below detection’ for the revised version of the manuscript. This further clarifies based on 
which data the 0.82 R^2 of Figure 3 is based.  
 
I appreciate the authors for providing their valuable dataset and kindly included the spreadsheet calculation 
for the readers to follow. For RI (ring index), however, I found that the calculations were all missing while it 
can be calculated from the dataset. I calculated again from their data but the values were slightly different. 
The maximum difference between the reported value (column BX) and the calculation I did is up to 0.11 RI 
unit. Although the difference is small, this would impact on some of the samples that have _RI near 0.3, 
screening whether the data is reliable or unreliable near its cutoff value. 
REPLY: We thank the reviewer very much for noticing this. The discrepancy was caused by an error in our 
excel calculations so that Cren isomer was not properly included. The numbers have been corrected in the 
revised supplement and Figure 5. The difference is indeed minor as the reviewer indicates and in fact it 
results in lower ΔRI and so we found no extra unreliable data points in our rescreening of the data. 
 
Overall, I suggest a moderate revision of the manuscript, especially in the data analysis first, before it can be 
accepted by CP. Also, the manuscript contained plagiarism (line 160-163) and many run-on sentences which 
made it difficult in absorbing the information when reading, therefore, I suggest a more improvement in the 
scientific writing for the next version. 
REPLY: We have carefully reconsidered the text, and reworded sections that may have been unclear. 
 
Some specific comments are below: 
Line 20-21: add “ACEX” 
REPLY: this has been done 
 
Line 20-52: the abstract seems to be too long and includes too much information of the study results in 
detail. Also, line 46-50 is just copied and pasted here from the main text (line 806-810). 
REPLY: we have shortened the abstract significantly and avoided textual overlap with the rest of the text. 
 
Line 37: the background SSTs in early Eocene generally exceed 
REPLY: this has been done 
 



Line 71-77: run-on sentence: divided into two sentences 
REPLY: this has been done 
 
Line 77-84: I understand citing all the references to supplement, however, 17 citations are too overloaded in 
one sentence for the reader. I suggest organizing the citation to where they would belong. For example, link 
and cite Pagani et al. (2006) with “molecular fossils” which examined the _D of n-alkane addressing the 
hydrologic cycle. Or breakdown the sentence and cite only the important references. 
REPLY: we have cited three of the early papers that showed the potential for follow-up work. 
 
Line 160-163: this sentence should be rephrased. It is exactly the same as written in Hollis et al. (2019) 
describing the BAYSPAR, but one word added here (plagiarism). 
REPLY: this has been done 
 
Line 169: add the TEX86 value range of which converted SSTs differs between linear & non-linear 
REPLY: This has been extensively discussed in the literature and it seems that the divergence occurs close to 
the maximum value in the calibration dataset (ca. 0.70), which we have included now. 
 
Line 190-191: I suggest to remove “based on high BIT index value” and add the range 
of BIT results from the study after the equation. 
REPLY: this has been done and we have added a sentence reporting on a previous subjectively defined 
threshold assigned on the study section (Sluijs et al., 2009). 
 
Line 207: specify the GDGT. If just GDGT, does it mean both iso- and brGDGts? 
REPLY: this has been specified to isoGDGTs 
 
Line 219-224: add the depth range of the deep contribution (Talyor et al., 2013) and also the reconstructed 
water depth of Site M00004A, meaning shallower shelf environ- ment, to connect the interpretation of 
negligible deep source. 
REPLY: This has been done (>1000 m) 
 
Line 233: use “[Crenarchaeol isomer]” for consistent compound name in all equations. 
this also implies for the names throughout the paper. 
REPLY: this has been done 
 
Line 234: “significant presence (or contribution) of anaerobic methanotrophy” 
REPLY: this has been done 
 
Line 242-243: provide references 
REPLY: this has been done 
 
Line 251: “Crenarchaeol isomer” for consistency of the compound name throughout the paper. 
REPLY: this has been done 
 
Line 299: I would rather suggest starting with ‘brGMGTs’ and supplement that this was previously reported 
as H-shaped brGDGTs, since the former is the major compound referred throughout the manuscript. Also, I 
suggest removing any description of ‘Hshape brGDGTs’ afterwards, as it makes it more confusing. 
REPLY: This suggestion has been followed 
 
Line 344: the precision of TEX86 unit or converted SSTs unit? 
REPLY: We now explain that this regards the uncertainty calculated to the SST domain. 
 
Line 351-353: same comment with line 344. In addition, I am confused with what “both” labs means. 
REPLY: We have deleted this confusing sentence. 
 
 



Line 409: interval should be between 371.0 to “369.0” mcd, based on Figure 4 and Sluijs et al. (2009), 
REPLY: Indeed, thank you for noticing. We have changed this accordingly. 
 
Line 416-417: add the linear regression line in Figure 4 and supplement what “explaining 26 % of the 
variation” means 
REPLY: This has been done and the statement on variation has been clarified; this number is taken directly 
from the R^2 (0.26) of the linear regression. 
 
Line 428: I suggest to cite “Figure 6” in the first sentence, so the reader can easily compare the visualized 
data with the text, starting from the beginning of section or paragraph. 
REPLY: this has been done 
 
Line 442-452: Rather than directly moving on to the discussion of the method and result, I suggest to add a 
brief explanation of what lignite is and why lignite was used as the representative of terrestrial source for the 
readers to easily understand the concept. 
REPLY: This has been done. We use the peat and lignite databases because they represent comprehensive 
datasets and therefore allow a rough calculation of the potential isoGDGT contribution. 
 
Line 445: supplement how the absolute concentration is calculated (e.g. what standard used). 
REPLY: Absolute concentration was incorrect. It has been changed to raw signal intensity. 
 
Line 467: “GDGT-2 and -3”. Suggest describing the compounds be consistent throughout the paper. 
REPLY: this has been done 
 
Line 473-478: This is true based on the isoGDGT distributions of Paleogene lignite. The reported lignite 
samples’ paleolatitudes are located within 57 _S to 48 _N, outside the Arctic region. Is there any lignite 
record from the Arctic that could be a more direct source to constrain the isoGDGTs distribution? If not, then 
how can this anomalous abundance of terrestrial isoGDGTs be explained in the Arctic where terrestrial input 
(especially from peats) is highly suggested while it has not been recorded elsewhere? 
REPLY: We are not aware of any study that describes such high abundances of GDGT-3 nor a study that 
describes GDGT distributions from a northern high latitude Paleogene lignite, such as those described by 
Suan et al. (2017). In addition, we do not argue that peats are the main contributor to the terrestrial 
isoGDGT contribution. We merely include this exercise as a crude model for the potential terrestrial 
contribution to the isoGDGT pool in our ACEX samples, as we will better explain in the next version of the 
manuscript. Ideally, the analyses we perform here are also conducted using the abundance of isoGDGTs 
relative to brGDGTs in mineral soils to provide an even more complete picture, but those paired data are 
not available.  
 
Line 486-487: add the threshold value of GDGT-2/Cren (Weijers et al., 2011), as it is shown as MI’s cutoff 
in the following. 
REPLY: As far as we are aware, a formal threshold or cut off was never defined, but our values are clearly 
within the safe range of values described by Weijers et al. (2011), which is what we indicated here. 
 
Line 492: I suggest the authors add a short interpretation of why these biomarker results are contrasted to the 
suitable depositional environment for abundant anaerobic archaea (methanotrophy and methanogen) which 
they indicated in the beginning of the section. 
REPLY: this has been done 
 
Line 508-510: interpreting BIT index with a distal position from the shoreline is problematic. Even in coastal 
marine or lacustrine settings, the BIT shows a large variation (Hopmans et al., 2004). Is the change of 
position interpreted from sea-level rise, similar to Sluijs et al. (2006)? Then what caused the sea-level rise 
(thermal expansion?) while the temperature proxy does not indicate significant warming? 
REPLY: We do not only rely on the BIT index but also on palynological evidence that is consistent with a 
relative drop in terrestrial organic matter contribution. Relative sea level rise is clearly the simplest 
explanation for the observed changes. Sluijs et al. (2006) described sea level rise during the PETM that was 



later shown to be eustatic (Sluijs et al., 2008a). The interval described here regards an episode of relative 
sea level rise some time before ETM2. We are not aware of literature that has seen similar relative sea level 
rise elsewhere so we presume this relative sea level rise was of local, perhaps tectonic, origin. We have 
rephrased as follows: 
“At ~371.2 mcd a drop in BIT index and a change in the palynological assemblages corresponds to an 
interval of greenish sediment, suggestive of pronounced amounts of glauconite. These changes are consistent 
with local relative sea level rise, causing a somewhat more distal position relative to the shoreline. However, 
the sediment remains dominantly siliciclastic and organic terrestrial components, particularly pollen and 
spores, remain abundant still indicating a shallow setting (Sluijs et al., 2008a; Sluijs et al., 2008b).” 
 
Line 591: suggest the citation as “Figure 7b”. This applies to other figure citations in the text to be more 
specific, when available, rather than just citing the whole figure. Another example is - line 606 to change to 
“Figure 7d” 
REPLY: this has been done 
 
Line 633-635: suggest to divide the two methods with (1) and (2), which the dashed line makes it confusing, 
and remove the linear/non-linear calibration description since these are already explained previously. 
REPLY: We have included the 1) and 2) suggestion but we choose to keep the reminder to the reader 
regarding the linear vs non-linear calibrations. 
 
Line 739: I find “lower temperature mean annual air temperature” very unclear. 
REPLY: We have deleted the first ‘temperature’ to solve this issue. 
 
Figure 1: (1) the word ‘using’ is used repeatedly – remove or organize with a different word (2) add gplate 
webpage link for the readers and reference (3) describe or indicate what the brownish lines in the map 
REPLY: We have rephrased the caption accordingly  
 
Figure 2: (1) I suggest removing GDGT-4 since it is not discussed in the text nor measured in this study (see 
supplementary spreadsheet). Moreover, GDGT-4 is generally not included when calculating the relative 
fraction of isoGDGTs among the whole isoGDGTs pool. (2) add Crenarchaeol regioisomer’s structure or 
note together with the Crenarchaeol (3) suggest changing “chemical structure” to “molecular structure” 
REPLY: We have changed the MS accordingly. Specifically, we have removed isoGDGT-4 from the figure as 
suggested. We noted in the caption of figure 2 that the Crenarchaeol isomer differs from Crenarchaeol in the 
stereochemistry of a cyclopentane moiety (Sinninghe Damsté et al., 2018), and replaced ‘chemical’ with 
‘molecular’ as suggested. 
 
Figure 5: (1) describe the “modern peats” into two in the caption. (2) describe what the box and line, error 
bar, circles indicate (3) add the number of samples for statistical meaning 
REPLY: this has been done 
 
Figure 7: (1) I suggest 7d and 7e switch the order, since it is the 
REPLY: this has been done 
 
Supplementary material Data table: (1) a lot of blanks in the sample data, as well as an unknown words or 
sample core names below the data seat (see row 153-157).  
REPLY: These open fields in the spread sheet of the raw data have been marked ‘below detection’ in the 
revised supplement. 
 
(2) in “iGDGTs in peats” sheet, cite the references  
REPLY: this has been done 
 
(3) in “Lignite crenarchaeol”, Sluijs et al. reported the GDGTs (iso- and br-) data originally from Naaf et al. 
(2018) and their newly measured ‘Cren. Isomer’. Here, I suggest the authors to report the other iso and br-
GDGTs abundances (here which I assume is HPLC/MS integrated peak area) together since they clearly 



mentioned in ‘Material and Methods’ that they re-analyzed the polar fraction of the lignite samples. 
Although I expect that this will not significantly change the result, still comparing only the newly measured 
‘Cren. Isomer’ with reported GDGT dataset is not acceptable. This is because even measuring the same 
sample in the same method, the peak area can be different among interlaboratory measurements, the 
analytical parameter of the analytical instrument etc.  
REPLY: We did not re-analyse these samples, but instead revisited the original chromatograms where we 
determined the peak area for the crenarchaeol isomer (i.e., Naafs et al., 2018). We have amended the text to 
make this clearer. 
 
In addition, I suggest to add the calculations and results of the ‘fraction of isoGDGTs’ in all lignite samples. 
Lastly, minor comment on style of the table (e.g. missing cell borders, missing compound names) to be 
consistent. Describe ‘n.d.’ and ‘b.d’ too. 
REPLY: We have added steps in our calculated values for fraction of isoGDGTs in lignites to our data 
supplement. In addition, to further facilitate reproducibility, we added an example calculation of the data 
presented in Supplementary Figure 1 and include the meaning of the abbreviations.  
 
 
 
Reviewer #2; Dr. Tom Dunkley-Jones 
 
We thank Dr. Dunkley-Jones for his review of our paper. He raises two points. Point 1 regards an as yet 
unpublished paper by Eley et al., and Point 2 regards the shape of the calibration between SST and TEX86. 
We discuss these points below. 
 
This is an excellent and thorough reassessment of organic biomarker temperature records for the latest 
Paleocene and early Eocene, derived from sediments recovered from the central Arctic Ocean. As 
demonstrated within the manuscript, this time of peak Cenozoic warmth is a key interval of interest to the 
paleoclimate community. Considerable proxy data and climate model efforts are focusing on this interval to 
address questions of climate sensitivity and the persistent problem of extreme polar warmth, which is 
indicated by the proxy data but is still problematic for climate model simulations. The late Paleocene to early 
Eocene also includes multiple hyperthermal events with millennial-scale onsets, which allow for the study of 
climate warming and ecosystem responses that approach the rates of modern environmental change. Two of 
these hyperthermal events are recovered within the ACEX record (PETM and ETM2). The biomarker-based 
temperature data from the Lomonosov Ridge is a critical latitudinal “end-member” for an assessment of 
polar warmth during the latest Paleocene and early Eocene. The unusual GDGT assemblages extracted from 
these samples, and the initial efforts to use these to estimate sea surface temperatures – which by necessity 
were non-standard – left some concern within the community about their reliability as predictors of absolute 
temperatures. This study re-evaluates this critical record with new analyses, including of glycerol monoalkyl 
glycerol tetraethers (GMGTs), and places this new data within the context of the past decade of studies on 
the calibration and use of GDGT-based thermometry. 
 
Reply: We thank Dr. Dunkley-Jones for his support of our work. 
 
Point 1. This study should be accepted for publication in Climates of the Past, although I do have one 
recommendation that I would like the authors to consider engaging with. Within this study they do a very 
thorough job of testing the potential controls and biases on GDGT assemblages using a range of indices and 
co-occurring markers for terrestrial-derived brGDGTs. The general aim of this is to screen GDGT 
assemblages, such that they can be separated into those that are formed in broadly analogous conditions to 
the modern marine system – and hence where the modern temperature dependency of assemblage 
composition can be well-modelled by the modern core-top calibration - and those samples where the GDGT 
assemblage is significantly altered, by terrestrial input, methanogenesis or other processes, such that resultant 
estimates of SSTs may be biased. In their comprehensive treatment of this question of non analogue 
behaviour and biases, my only recommendation is that the authors also consider the methods proposed by 
Eley et al. (Climates of the Past Discussions, 2019) for the detection of ancient GDGT assemblages that are 



significantly non-analogue to the modern calibration dataset. Below I include calculations of their Dnearest 
metric and OPTiMAL SST estimation for the new GDGT data presented by Sluijs et al. These results 
confirm some of the key findings of Sluijs et al. – that the pre-PETM GDGT assemblages are anomalous 
relative to the modern calibration dataset (Dnearest> 1); that there two clear shifts towards GDGT 
assemblages more “typical” of the modern at _385.0m, and then again at _375.0m. There is also an interval 
after the PETM, where TEX86 based temperatures remain high (>20_C), whilst OPTiMAL temperatures are 
considerably lower, with values in the high single figures (_375 to 371 mcd). Sluijs et al. show that pre-
ETM2 GDGTs have high BIT indices (_377 to _371 m) and do not consider TEX86 derived temperatures 
from this interval to be robust because of the potential bias from terrestrial-derived material. The OPTiMAL 
methodology, however, indicates that these pre-ETM2 GDGT assemblages are relatively closely analogous 
to GDGT assemblages in the modern core top data (Dnearest <0.5), and that these “near neighbours” are 
formed in locations with modern MAT SSTs below 10_C. 
 
The Eley et al. (2019) methodology – and the one applied by me below (Figure 1) – includes all modern core 
top data within the Tierney & Tingley (2015) database, including Arctic data associated with SSTs <3_C. 
These data were excluded from the standard BAYSPAR calibration (“NoNorth” / “TT13” model of Tierney 
& Tingley, 2014), because in the Arctic region “TEX86 has a near-zero sensitivity to SST and therefore little 
predictability” and “incorporation of these data can negatively affect TEX86 predictability in the North 
Atlantic” (Tierney & Tingley, 2014). Although it would need to be tested – with OPTiMAL being run with 
and without these modern high-latitude data points and then applied to the ACEX core – it is possible that 
modern Arctic GDGT assemblages are the “nearest neighbours” of the pre-ETM2 GDGT assemblages, 
whereas above _371 mcd, assemblages shift to a more normal open marine assemblage, as inferred by Sluijs 
et al. on the basis of BIT indices. This may, in part, account for the significant warming suggested by 
OPTiMAL across this transition, and further work would be needed to investigate the inclusion or exclusion 
of modern Arctic GDGT assemblages in the modern calibration for OPTiMAL, and the ability to extract 
temperature information from these GDGT assemblages using proxy formulations other than the TEX86 
index. Regardless of this, the consideration of the OPTiMAL approach con- firms - through an independent 
approach that is agnostic about the form or “model choice”, of the GDGT – SST relationship - that Arctic 
SSTs around ETM2 were in the region of _20_C (OPTiMAL) or higher (TEX86H, BAYSPAR). 
 
Reply to point 1. We are aware of the Eley et al. manuscript and their new indicators are certainly 
potentially interesting for this paper. As far as we can see on the CP website, however, this paper is under 
evaluation and, considering the online discussion, may be subject to significant revisions. This compromises 
the use of this method in its present form.  
We have nevertheless considered the Dnearest and OPTiMAL records kindly provided by the reviewer. 
Certainly, as the reviewer indicates, some of the results are consistent with our results (e.g. during the latest 
Paleocene) and could in principle be used as support for our statements. Other aspects are inconsistent with 
what we find. For example, the interval 377-371 m discussed by the reviewer is particularly interesting. 
Although the Dnearest metric suggests that TEX86 values are robust, the delta Ring Index, a simple metric to 
evaluate whether GDGT distributions are similar to modern ocean core top data (Zhang et al., 2011), 
clearly indicates the GDGT assemblage is compromised for reliable TEX86 paleothermometry. The BIT 
index (>0.4 to 0.8), the palynological assemblage (dominated by terrestrial organic matter) the 
dinoflagellate cyst assemblage (almost completely freshwater-tolerant) and bulk organic carbon stable 
carbon isotope ratios are also inconsistent with a dominant marine source of the organic matter (Sluijs et 
al., 2008b; Sluijs et al., 2009; Sluijs and Dickens, 2012). This would call into question the reliability of the 
Dnearest metric as an indicator of “normal” marine isoGDGT assemblages, even if they are consistent with 
some of the modern core top data. Therefore, it seems to us that any discussion on this topic would rather 
serve as a test to the as yet unpublished new methods proposed by Eley et al. rather than contributing to the 
main goal of our paper, to reconstruct late Paleocene – early Eocene Arctic paleotemperature. 
Collectively, we therefore prefer to not discuss these results at this point. 
 
Point 2. Section 2.1 and especially Lines 145 – 147: suggest that culture and mesocosm experiments and 
surface sediment data indicate a linear relationship but without a clear citation of these studies. Rather, the 
citations seem to be of the studies that demonstrate a deviation from linearity. As the authors implicitly 



acknowledge - with statements like “suggest a linear relation” (line 146) or “assumes a linear relationship” 
(line 160) - the most appropriate form of the TEX86 – SST relationship is uncertain, with current calibration 
models making some degree of assumption about the best fit relationship between core top TEX86 data and 
SSTs. I would suggest a slight rephrase to acknowledge this uncertainty and appropriate citations to back up 
any arguments made about the form of the relationship. There is extensive discussion of the assumptions that 
can be made about the form of the TEX86 – SST relationship within the online discussion to Eley et al. 
(2019) that address this issue, between those who argue for an assumed linear response (Tierney) and those 
who question this assumption (Eley et al.) – some of the relevant response to Tierney quoted below from 
Eley et al. (https://www.climpast-discuss.net/cp-2019-60/cp-2019-60-AC1-supplement.pdf): 
 
“We agree that there is a basic underlying trend for more rings within GDGT structures at higher 
temperatures (Zhang et al. 2015; Qin et al., 2015). What we dispute is that this translates into a simple linear 
model at the community scale (core top calibration dataset), or is yet reproduced with consistency between 
strains in laboratory cultures, including the temperature-dependence of GDGT ring numbers within the 
marine, mesophilic Thaumarchaeota in Marine Group 1 (broadly equivalent to the old Crenarchaeota Group 
1) (Eilling et al., 2015; Qin et al., 2015; Wuchter et al., 2007). Wuchter et al. (2004) and Schouten et al. 
(2007) show a compiled linear calibration of TEX86 against incubation temperature (up to 40_C in the case 
of Schouten et al., 2007) based on strains that were enriched from surface seawater collected from the North 
Sea and Indian Ocean respectively. Like Qin et al., (2015) we note the nonlinear nature of the individual 
experiments in Wuchter et al., 2004 (see Wuchter et al., 2004 Fig. 5). Moreover, the relatively lower Cren’ in 
these studies yield a very different intercept and slope (compared to core-top calibrations e.g. Kim et al. 
2010) meaning that the resulting calibrations for TEX86 cannot be applied to core-tops. This was recognised 
by Kim et al. (2010), who state “but we may speculate that Marine Group I Crenarchaeota species in the 
enrichment cultures are not completely representative of those occurring in nature… 
 
…As we state above, although we agree that there is a basic underlying trend of increasing ring number with 
increasing growth temperature, we do not agree that this is well enough known to be quantified into a “basic 
relationship” that can be “enforced” as a particular model form. Rather, there is uncertainty in the appropriate 
form of the relationship even within the modern calibration data (see Kim et al. 2010) which becomes 
substantial beyond the calibration range. The spatial structuring of residuals in global models of modern 
TEX86 temperature dependence (Tierney & Tingley, 2014) and clear structuring of residuals with 
temperature in our and other GDGT- temperature calibrations, are likely indications of transitions in the 
ecology, community make-up or habitat of modern GDGT producers that are not well constrained. We argue 
that this complexity in the GDGT temperature responses in the modern oceans should be grounds for caution 
when applying empirical models from the modern to ancient conditions, especially when working with the 
subset of ancient assemblage data for which there is no modern analogue.” 
 
Reply to point 2. We fully agree with the reviewer here. In fact, some of us have argued for the possibility of 
a non-linear relation ourselves in a recent paper (Cramwinckel et al., 2018). We will adapt the text in 
section 2.1 to fully reflect the current status of the discussion (e.g., Hollis et al., 2019). 
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Abstract 21 

A series of papers shortly following Integrated Ocean Drilling Program Arctic Coring 22 

Expedition (ACEX, 2004) on Lomonosov Ridge indicated remarkably high early 23 

Eocene sea surface temperatures (SST; ca. 23 to 27 °C) and land air temperatures (ca. 24 

17 to 25 °C) based on the distribution of isoprenoid and branched glycerol dialkyl 25 

glycerol tetraether (isoGDGT and brGDGT) lipids, respectively. Here, we revisit these 26 

results using recent analytical developments – which have led to improved temperature 27 

calibrations and the discovery of new temperature-sensitive glycerol monoalkyl 28 

glycerol tetraethers (GMGTs) – and currently available proxy constraints.  29 

The isoGDGT assemblages support temperature as the dominant variable controlling 30 

TEX86 values for most samples. However, contributions of isoGDGTs from land, which 31 

we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene 32 

and part of the interval between the Paleocene-Eocene Thermal Maximum (PETM; ~56 33 

Ma) and Eocene Thermal Maximum 2 (ETM2; ~54 Ma). Background early Eocene 34 

SSTs generally exceeded 20 °C, with peak warmth during the PETM (~26 °C) and 35 

ETM2 (~27 °C). We find abundant branched GMGTs, likely dominantly marine in 36 

origin, and their distribution responds to environmental change. Further modern work 37 

is required to test to what extent temperature and other environmental factors determine 38 

their distribution. 39 

Published Arctic vegetation reconstructions indicate coldest month mean continental 40 

air temperatures of 6-13 °C, which reinforces the question if TEX86-derived SSTs in 41 

the Paleogene Arctic are skewed towards the summer season. The exact meaning of 42 

TEX86 in the Paleogene Arctic thus remains a fundamental issue, and one that limits 43 

our assessment of the performance of fully-coupled climate models under greenhouse 44 

conditions. 45 
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 106 

1. Introduction 107 

The Eocene epoch (56 to 34 million years ago; Ma) has long been characterized by 108 

warm climates. The earliest signs of a balmy Eocene Arctic region – fossil leaves of 109 

numerous plant species – were documented 150 years ago (Heer, 1869). Subsequent 110 

findings identified palms, baobab and mangroves, indicating the growth of temperate 111 

rainforests and year-round frost-free conditions in the Eocene Arctic region 112 

(Schweitzer, 1980; Greenwood and Wing, 1995; Suan et al., 2017; Willard et al., 2019). 113 

Fossils of animals, including varanid lizards, tortoises and alligators also indicate warm 114 

Arctic climates (Dawson et al., 1976; Estes and Hutchinson, 1980). These earliest 115 

findings sparked interest into the climatological mechanisms allowing for such polar 116 

warmth about a century ago (Berry, 1922). Ever since, paleobotanists have focused on 117 

the Arctic plant fossils and have significantly refined their paleoclimatological 118 

interpretation towards estimates of precipitation as well as seasonal and mean annual 119 

temperature (e.g. Uhl et al., 2007; Greenwood et al., 2010; Eberle and Greenwood, 120 

2012; Suan et al., 2017; Willard et al., 2019). 121 

Novel insights in Paleogene Arctic paleoclimate research were made in the years 122 

following the Arctic Coring Expedition 302 (ACEX, Integrated Ocean Drilling 123 

Program (IODP) 2004, Figure 1). This expedition recovered upper Paleocene and lower 124 

Eocene siliciclastic sediments, deposited in a shallow marine environment, in Hole 4A 125 

(87° 52.00 ‘N; 136° 10.64 ’E; 1,288 m water depth), on the Lomonosov Ridge in the 126 

central Arctic Ocean (Backman et al., 2006). The succession was deposited at a 127 

paleolatitude of ~78 °N, based on a geological reconstruction (Seton et al., 2012) 128 

projected using a paleomagnetic reference frame (Torsvik et al., 2012) (see 129 

paleolatitude.org, Van Hinsbergen et al., 2015). The sediments are devoid of biogenic 130 

Deleted: ,131 
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calcium carbonate, but rich in immature organic matter, including terrestrial and marine 132 

microfossil assemblages and molecular fossils (e.g. Pagani et al., 2006; Sluijs et al., 133 

2006; Stein et al., 2006).  134 

As the upper Paleocene and lower Eocene sediments of the ACEX core lack biogenic 135 

calcium carbonate and alkenones, SST reconstructions are based on the biomarker-136 

based paleothermometer TEX86. This proxy is based on membrane lipids (isoprenoid 137 

glycerol dibiphytanyl glycerol tetraethers; isoGDGTs) of Thaumarchaeota, which adapt 138 

the fluidity of their membrane according to the surrounding temperature by increasing 139 

the number of cyclopentane rings at higher temperatures (De Rosa et al., 1980; Wuchter 140 

et al., 2004; Schouten et al., 2013, and references therein). The proxy was introduced 141 

in 2002 by Schouten et al. (2002) and was calibrated to mean annual SST using modern 142 

marine surface sediments.  143 

Initial papers suggested that Arctic SST increased significantly during two episodes of 144 

transient global warming. Maximum values of ~23°C  and ~27 °C occurred during the 145 

Paleocene-Eocene Thermal Maximum (PETM-56 Ma ago, Sluijs et al., 2006) and 146 

Eocene Thermal Maximum 2 (ETM2-54 Ma ago, Sluijs et al., 2009), respectively. 147 

Lower SSTs, generally exceeding 20 °C, characterized the remainder of the early 148 

Eocene (Sluijs et al., 2008b). Such temperatures were immediately recognized to be 149 

remarkably high and could not be explained using fully-coupled climate model 150 

simulations (Sluijs et al., 2006). Even the current-generation of IPCC-class models are 151 

unable to match early Eocene Arctic mean annual SSTs, although reconstructions of 152 

tropical and mid-latitude SSTs and deep ocean temperatures are consistent with some 153 

newer simulations (Frieling et al., 2017; Cramwinckel et al., 2018; Evans et al., 2018; 154 

Zhu et al., 2019). 155 
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Since the publication of the ACEX SST records, constraints on the applicability of the 166 

TEX86 proxy have tremendously improved (see review by Schouten et al., 2013, and 167 

subsequent work by Taylor, 2013 #1645; Elling et al., 2014; Qin et al., 2014; Elling et 168 

al., 2015; Kim et al., 2015; Qin et al., 2015; Hurley et al., 2016; Zhang et al., 2016). 169 

This work has delivered new constraints on the ecology of Thaumarchaeota, the 170 

dominant depth at which they reside in the ocean and from which depth their isoGDGTs 171 

are exported towards the sea floor. It also identified potential confounding factors such 172 

as variation in dominant isoGDGT export depth (e.g., Taylor et al., 2013; Kim et al., 173 

2015), the input of non-Thaumarchaeotal-derived isoGDGTs (e.g., Weijers et al., 2011; 174 

Zhang et al., 2011), growth phase (Elling et al., 2014), and environmental ammonium 175 

and oxygen concentrations (Qin et al., 2015; Hurley et al., 2016). Moreover, several 176 

indicators to detect such anomalies have been developed. Improvements in the 177 

chromatography method used for GDGT analysis now allow for better separation of 178 

previously co-eluting compounds leading to enhanced analytical precision and 179 

sensitivity (Hopmans et al., 2016). Finally, recent work has described new GDGTs from 180 

oceans and sediments, notably branched glycerol monoalkyl glycerol tetraethers 181 

(brGMGTs, or ‘H-shaped’ brGDGTs) (e.g., Schouten et al., 2008; Liu et al., 2012), 182 

characterized by a covalent carbon-carbon bond that links the two alkyl chains. Their 183 

presence and distribution in peats and lake sediments has been linked to land air 184 

temperatures (LAT) (e.g., Naafs et al., 2018a; Baxter et al., 2019). However, these 185 

compounds have not yet been reported from ancient marine sediments.  186 

Considering these developments and the paleoclimatological importance of the ACEX 187 

dataset, we re-analyzed the original lipid extracts for the PETM, ETM2 and the interval 188 

spanning these events (Sluijs et al., 2006; Sluijs et al., 2009), according to the latest 189 

chromatography protocols. We also compile published and generate new GDGT data 190 

Deleted: Moreover, i191 

Deleted: and 192 

Deleted: n addition, i193 

Deleted: improved 194 

Deleted: Also195 

Deleted: brGMGTs196 
Deleted: , previously or 197 
Deleted: br198 

Deleted: , that may be useful for reconstructing land 199 

Deleted: investigated in200 



 6 

from modern and Paleogene terrestrial deposits and use these to better assess the 201 

potential confounding influence of isoGDGTs from terrestrial sources, which was 202 

already recognized as a potential problem in the early work (Sluijs et al., 2006).  203 

 204 

2. GDGT-based SST indices, calibration and confounding factors  205 

2.1 TEX86 and its calibration to SST 206 

TEX86 is based on the relative abundance of 4 different GDGTs (Figure 2), following 207 

(Schouten et al., 2002):  208 

𝑇𝐸𝑋!" =	
([%&%'()]+[%&%'(,]+[-./01.231/45	7849/.])

([%&%'(;]+[%&%'()]+[%&%'(,]+[-./01.231/45	7849/.])
  Eq. (1) 209 

where a higher relative abundance of cyclopentane moieties implies higher SSTs.  210 

 211 

A number of models are used to calibrate TEX86 to SST (Schouten et al., 2002; 212 

Schouten et al., 2003; Schouten et al., 2007; Kim et al., 2008; Liu et al., 2009; Kim et 213 

al., 2010; Tierney and Tingley, 2014; O'Brien et al., 2017), all based on a modern ocean 214 

surface sediment database. The currently available culture and mesocosm experiments 215 

and surface sediment data suggest that the relation between SST and TEX86 is close to 216 

linear for a large portion of the modern ocean (Kim et al., 2010; Ho et al., 2014; Tierney 217 

and Tingley, 2014; O'Brien et al., 2017). In polar regions, the TEX86 response to 218 

temperature diminishes (e.g., Kim et al., 2010; Tierney and Tingley, 2014). The 219 

response of TEX86 to SST at the high temperature end remains subject of discussion 220 

(e.g. Cramwinckel et al., 2018; Hollis et al., 2019). Several authors prefer a linear 221 

relation (e.g., Tierney and Tingley, 2014; O'Brien et al., 2017). However, physiological 222 

considerations and multiple temperature-dependent GDGT indices might imply a non-223 

linear relation also at the high temperature end, as can be observed at the high end of 224 

the modern ocean dataset and beyond the reach of the modern ocean in paleoclimate 225 
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data (Cramwinckel et al., 2018). At higher temperatures, membrane adaptation may 230 

increasingly be established using isoGDGTs not included in the TEX86 ratio leading to 231 

a diminished TEX86 response at very high temperatures (Cramwinckel et al., 2018). A 232 

non-linear response has thus been proposed in other calibrations (Liu et al., 2009; Kim 233 

et al., 2010). The most recent non-linear calibration, 𝑇𝐸𝑋!"#  (Kim et al., 2010), 234 

represents an exponential relation between SST and TEX86 (Hollis et al., 2019). 235 

Unfortunately, 𝑇𝐸𝑋!"#  is mathematically problematic and has systematic residuals in 236 

the modern ocean (Tierney and Tingley, 2014).  237 

Tierney and Tingley (2014) introduced a spatially-varying Bayesian method to convert 238 

TEX86 to SST and assumes a linear relationship (BAYSPAR). BAYSPAR extracts 239 

TEX86 values from the modern core-top dataset that are similar to the measured TEX86 240 

value from the geological sample based on a tolerance defined by the user, and 241 

subsequently calculates regressions based on these core-top data. The uncertainty in 242 

SST reflects spatial differences in the correlation coefficient and intercept and the error 243 

variance of the regression model. 244 

Currently, it is generally encouraged to present results both using a linear and a non-245 

linear function (Hollis et al., 2019). The assumption of a linear or non-linear relation 246 

between SST and TEX86 leads to very different SST reconstructions for geological 247 

samples yielding TEX86 values >0.70 (Kim et al., 2010; Tierney and Tingley, 2014; 248 

Frieling et al., 2017; O'Brien et al., 2017; Cramwinckel et al., 2018; Hollis et al., 2019). 249 

However, TEX86 values of the early Eocene ACEX samples (0.5 – 0.7, Sluijs et al., 250 

2006; Sluijs et al., 2008b; Sluijs et al., 2009) are below this value and well above most 251 

values observed in the polar regions (Kim et al., 2010; Tierney and Tingley, 2014; 252 

O'Brien et al., 2017), indicating that all calibrations will yield similar absolute SST 253 

values. 254 
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 273 

2.2 Caveats and confounding factors 274 

Several confounding factors and caveats have been identified that could potentially bias 275 

TEX86 data relative to mean annual SST. These notably relate to additions of isoGDGTs 276 

that were not produced in the upper water column by Thaumarchaeota, seasonal biases, 277 

and choices that are made in the calibration between SST and TEX86. Below we 278 

summarize methods that have been developed to assess if isoGDGT distributions might 279 

have been biased by confounding factors. 280 

 281 

2.2.1 isoGDGTs of terrestrial origin 282 

Previous work (Sluijs et al., 2006; Sluijs et al., 2008b; Sluijs et al., 2009) recognized 283 

that high contributions of terrestrially-derived isoGDGTs could compromise the TEX86 284 

signal for portions of the upper Paleocene to lower Eocene interval of the ACEX core. 285 

This contribution can be tracked using the Branched and Isoprenoid Tetraether (BIT) 286 

index, a ratio of mostly soil-derived branched GDGTs (brGDGTs; Figure 2) and 287 

Crenarchaeol, which is dominantly marine-derived (Hopmans et al., 2004; Schouten et 288 

al., 2013):  289 

𝐵𝐼𝑇	𝑖𝑛𝑑𝑒𝑥 = 	 ([<.%&%'(=1]+[<.%&%'(==1]+[<.%&%'(===1])
([<.%&%'(=1]+[<.%&%'(==1]+[<.%&%'(===1])+[-./01.231/45])

   Eq. (2) 290 

Most studies define a BIT value (typically 0.3 or 0.4) above which TEX86-derived SST 291 

are unreliable (e.g., Weijers et al., 2006). However, the threshold of 0.4 is conservative 292 

in some settings and the impact of terrigenous GDGTs on reconstructed SST will 293 

depend on the nature and temperature of the source catchment (Inglis et al., 2015). In 294 

addition, a cut-off value based on BIT values is difficult given the relatively large 295 

differences in BIT between labs, which originate from methodological differences 296 

(Schouten et al., 2009). A strong linear relationship between BIT and TEX86 values is 297 
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often taken as indication of a bias in TEX86 through land-derived isoGDGTs to the 307 

marine TEX86 signature (e.g., Douglas et al., 2014). An earlier study used a somewhat 308 

subjective threshold of 0.3 for an interval spanning ETM2 in the ACEX core (Sluijs et 309 

al., 2009). 310 

 311 

2.2.2 isoGDGTs of deep water origin 312 

Thaumarchaeota, the source of most isoGDGTs in marine waters (Zeng et al., 2019; 313 

Besseling et al., 2020), are ammonium oxidizers (Könneke et al., 2005; Wuchter et al., 314 

2006a), making them independent of light. Although they occur throughout the water 315 

column, maximum abundances occur at depths <200 m, generally around NO2 maxima 316 

(e.g., Karner et al., 2001; Pitcher et al., 2011a). In most oceans, sedimentary GDGTs 317 

dominantly derive from the upper few hundred meters, based on analyses of suspended 318 

particular organic matter and sediment traps (Wuchter et al., 2005; Wuchter et al., 319 

2006b; Yamamoto et al., 2012; Richey and Tierney, 2016). A deeper contribution has 320 

also been inferred based on 14C analysis (Shah et al., 2008), implying possible 321 

contributions of isoGDGTs from thermocline. Moreover, contributions of isoGDGTs 322 

produced in the deep sea have regionally been identified (e.g., Kim et al., 2015). Taylor 323 

et al. (2013) also found that deep dwelling (>1000 meter) archaea might contribute to 324 

the sedimentary isoGDGT assemblage. They indicate that such deep contributions can 325 

be tracked using the GDGT-2/GDGT-3 ratio; high values of >5 indicate contributions 326 

of archaea living deeper in the water column. Given that upper Paleocene and lower 327 

Eocene ACEX sediments were deposited in a shallow shelf environment (Sluijs et al., 328 

2008b), a significant contribution of deep ocean archaeal lipids is not expected. 329 

 330 
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2.2.3 isoGDGTs of methanotrophic and methanogenic archaea 342 

Contributions of isoGDGTs to the sedimentary pool might also derive from anaerobic 343 

methanotrophs and/or methanogens. Several indices have been developed to track such 344 

contributions, both based on relatively high contributions of particular isoGDGTs of 345 

these groups of archaea. The Methane Index (MI) was developed to detect the relative 346 

contribution of anaerobic methanotrophic Euryarchaeota assumed to be represented by 347 

GDGT-0 but also GDGT-1, 2 and 3 (Zhang et al., 2011) and is therefore defined as 348 

𝑀𝐼 = 	 [%&%'(;]+[%&%'()]+[%&%'(,]
([%&%'(;]+[%&%'()]+[%&%'(,]+[-./01.231/45]+	[-./01.231/45	7849/.])

  Eq. (3) 349 

MI values greater than 0.5 indicate significant contribution of anaerobic 350 

methanotrophy. Such values may yield unreliable TEX86 values. Another tracer for 351 

contributions of anaerobic methanotrophic archaea is the analogous GDGT-352 

2/Crenarchaeol ratio (Weijers et al., 2011).  353 

Methanogenic archaea can synthesize GDGT-0, as well as smaller quantities of GDGT-354 

1, GDGT-2 and GDGT-3. The ratio GDGT-0/Crenarchaeol is indicative of 355 

contributions of methanogenic archaea to the isoGDGT pool (Blaga et al., 2009) where 356 

values > 2 indicate substantial contribution of methanogenic archaea. Up to now, high 357 

index values have often been observed near methane seeps or anoxic basins (e.g., 358 

Jaeschke et al., 2012) but rarely in open marine waters in the modern and paleodomains 359 

(Inglis et al., 2015; Zhang et al., 2016). Given the reducing conditions in the sediment 360 

and water column at the study site across the late Paleocene and early Eocene (Sluijs et 361 

al., 2006; Stein et al., 2006; Sluijs et al., 2008b; März et al., 2010), an influence of 362 

methane cycling might be expected. 363 

 364 
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2.2.4 isoGDGTs of the ‘Red Sea Type’ 369 

Sedimentary isoGDGT distributions from the Red Sea are anomalous to other marine 370 

settings and are characterised by the low abundance of GDGT-0 and the high abundance 371 

of the Crenarchaeol isomer. Presumably, this is due to an endemic Thaumarchaeotal 372 

assemblage. The Red Sea isoGDGT distribution yields a different relationship between 373 

SST and TEX86 (Trommer et al., 2009; Kim et al., 2015). Inglis et al. (2015) attempted 374 

to quantify a ‘Red Sea-type’ GDGT distribution in geological samples using the 375 

following index: 376 

%GDGTrs = 	 [𝐶𝑟𝑒𝑛𝑎𝑟𝑐ℎ𝑎𝑒𝑜𝑙	𝑖𝑠𝑜𝑚𝑒𝑟]
([𝐺𝐷𝐺𝑇−0]+	[𝐶𝑟𝑒𝑛𝑎𝑟𝑐ℎ𝑎𝑒𝑜𝑙	𝑖𝑠𝑜𝑚𝑒𝑟])

	𝑥	100   Eq. (4) 377 

However, as noted by Inglis et al. (2015) this ratio is also strongly SST-dependent such 378 

that the Red Sea type GDGT assemblage cannot be discerned from GDGT distributions 379 

that occur at high temperatures in normal open marine settings. 380 

 381 

2.2.5 Seasonal bias 382 

TEX86 is calibrated to mean annual SST. However, particularly in mid and high latitude 383 

areas where production and export production is highly seasonal, the sedimentary 384 

GDGT distribution might not represent annual mean conditions (Wuchter et al., 2006b; 385 

Pitcher et al., 2011b; Mollenhauer et al., 2015; Richey and Tierney, 2016; Park et al., 386 

2019). This issue should partly be reflected in the calibration uncertainty of the modern 387 

ocean database (several °C, depending on the calibration and method; see section 2.7). 388 

Sluijs et al. (2006; 2008b; 2009) originally argued that the TEX86 results from the 389 

ACEX core could be biased towards summer temperature because the export of organic 390 

matter from the surface ocean towards the sediment likely peaked during the season of 391 

highest production, i.e., the summer. However, we also note that the TEX86-temperature 392 

relationship is not improved when using seasonal mean ocean temperatures (Kim et al., 393 
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2010; Tierney and Tingley, 2014) and modern observations indicate homogenization 398 

of the seasonal cycle at depth (Wuchter et al., 2006b; Yamamoto et al., 2012; Richey 399 

and Tierney, 2016), implying that seasonality has relatively limited effect on modern 400 

sedimentary TEX86 values. 401 

 402 

2.2.6 Additional isoGDGT-based temperature indicators 403 

The underlying mechanism of TEX86 is that isoGDGTs produced at higher SSTs 404 

contain more rings than those produced at low SSTs. Although the combination of 405 

compounds included in TEX86 seems to yield the strongest relation with temperature in 406 

the modern ocean (Kim et al., 2010), it implies that isoGDGT ratios other than TEX86 407 

also provide insights into SST. One alternative temperature sensitive isoGDGT index 408 

is the Ring Index (RI), which represents the weighed number of cyclopentane rings of 409 

isoGDGTs 0-3, Crenarchaeol and the Crenarchaeol isomer (Zhang et al., 2016), defined 410 

as: 411 

𝑅𝐼 = 0𝑥[%𝐺𝐷𝐺𝑇 − 0] + 1	𝑥[%𝐺𝐷𝐺𝑇 − 1] + 2	𝑥[%𝐺𝐷𝐺𝑇 − 2] + 3	𝑥[%𝐺𝐷𝐺𝑇 − 3] +412 

4	𝑥	[%𝐶𝑟𝑒𝑛𝑎𝑟𝑐ℎ𝑎𝑒𝑜𝑙 +%𝐶𝑟𝑒𝑛𝑎𝑟𝑐ℎ𝑎𝑒𝑜𝑙	𝑖𝑠𝑜𝑚𝑒𝑟]   Eq. (5) 413 

Note that the abundance of GDGT-0 is important for determining the percentage of the 414 

other GDGTs of the total isoGDGT pool. 415 

The close relation between TEX86 and RI can also be used to detect aberrant 416 

distributions, including those produced by methanogenic, methanotrophic and 417 

terrestrial sources, as these sources typically contribute disproportionate amounts of 418 

specific lipids. A RITEX, calculated from TEX using the polynomial fit of Zhang et al. 419 

(2016), is subtracted from the RI to arrive at the DRI. Cut-off values for sample 420 

deviation from the modern ocean calibration dataset are defined as 95% confidence 421 

limits of the RI-TEX relation, or above |0.3| DRI units.  422 
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 423 

2.3 H-shaped branched GDGTs; brGMGTs 424 

BrGMGTs (Figure 2) were first identified by Liu et al. (2012) in marine sediments, who 425 

identified a single acyclic tetramethylated brGMGT (m/z 1020). This compound was 426 

later detected within the marine water column and appeared to be abundant within the 427 

oxygen minimum zone (Xie et al., 2014). Naafs et al. (2018a) identified a larger suite 428 

of brGMGTs (including m/z 1048 and 1034), in a quasi-global compilation of modern 429 

peat samples. They argued that these compounds were preferentially produced at depth, 430 

within the anoxic catotelm. Analogous to the continental paleothermometer based on 431 

bacterial brGDGTs produced in surface soils, termed MBT’5me (Weijers et al., 2007b; 432 

De Jonge et al., 2014), they showed that the degree of methylation of brGMGTs in peats 433 

relates to mean annual air temperature. They calculated the degree of methylation of 434 

brGDGTs without cyclopentane moieties, designed for comparison to the methylation 435 

of brGMGTs, defined by H-MBTacyclic: 436 

 437 

𝑀𝐵𝑇𝑎𝑐𝑦𝑐𝑙𝑖𝑐 = 	 <.%&%'(=1
(<.%&%'(=1+<.%&%'(==1+%&%'(==1!+<.%&%'(===1+<.%&%'(===1!)

 Eq. (6) 438 

 439 

𝐻 −𝑀𝐵𝑇𝑎𝑐𝑦𝑐𝑙𝑖𝑐 = 	 <.%P%'(Q;R)R
(<.%P%'(Q;R)R+<.%P%'(Q;R,S+<.%P%'(;RS!)

  Eq. (7) 440 

 441 

Based on the strong relation between MBTacyclic and H-MBTacyclic in their peat samples, 442 

Naafs et al. (2018a) suggested that the brGMGTs have the same origin as the brGDGTs, 443 

presumably Acidobacteria (Sinninghe Damsté et al., 2011; Sinninghe Damsté et al., 444 

2018a). In addition, they showed that the abundance of brGMGTs (relative to the total 445 

amount of brGMGTs and brGDGTs) positively correlates with mean annual air 446 
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temperature, suggesting that the covalent bond in the brGMGTs is used to maintain 449 

membrane stability at higher temperature (Naafs et al., 2018a). 450 

Baxter et al. (2019) identified a total of seven different brGMGTs from a suite of 451 

African lake sediments (Figure 2), and found their relative distribution to correlate to 452 

mean annual air temperature. Accordingly, they proposed a proxy for mean annual air 453 

temperature termed brGMGT-I (see Figure 2 for the molecular structures referred to 454 

here): 455 

𝑏𝑟𝐺𝑀𝐺𝑇 − 𝐼 = 	 [Q;R)R2]+[Q;R,S1]+[Q;R,S2]

[Q;R)R<]+[Q;R)R2]+[Q;R,S1]+[Q;R,S2]+[Q;RS!]
   Eq. (8) 456 

 457 

3. Material and Methods 458 

We used the polar fractions previously analyzed by Sluijs et al. (2006; 2009) from the 459 

PETM through ETM2 interval at IODP Expedition 302 Hole 4A. These fractions 460 

originate from a total lipid extract produced using a Dionex Accelerated Solvent 461 

Extractor and fraction separations by Al2O3 column chromatography using 462 

hexane:dichloromethane (DCM) (9:1, v/v) and DCM:methanol (1:1; v/v) to yield the 463 

apolar and polar fractions, respectively. Polar fractions were re-dissolved in 464 

hexane:isopropanol (99:1, v/v)) and passed through a 0.45-μm polytetrafluoroethylene 465 

filter. This fraction was then analyzed by high-performance liquid chromatography 466 

(HPLC) and atmospheric pressure chemical ionization–mass spectrometry using an 467 

Agilent 1260 Infinity series HPLC system coupled to an Agilent 6130 single-468 

quadrupole mass spectrometer at Utrecht University following Hopmans et al. (2016) 469 

to measure the abundance of GDGTs. Based on long-term observation of the in-house 470 

standard, the analytical precision for TEX86 calculates to ±0.3 °C in the SST domain.  471 

To gain further insights into the potential impact of terrestrial isoGDGT input on TEX86 472 

values, we compiled isoGDGT and brGDGTs distributions from modern peats (n = 473, 473 
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Naafs et al., 2017) and early Paleogene lignites (n = 58, Naafs et al., 2018b). Note, the 478 

fractional abundance of Crenarchaeol isomer was not reported in the early Paleogene 479 

dataset of Naafs et al. (2018b). We therefore revisited the original chromatograms from 480 

Naafs et al. (2018b) and integrated the crenarchaeol isomer (m/z 1292).   481 

 482 

4. Results 483 

The new GDGT distributions (Supplementary Table) are consistent with the TEX86 and 484 

BIT index data generated over a decade ago using the older analytical HPLC setup 485 

(Hopmans et al., 2000; Hopmans et al., 2016) (Figure 3). TEX86 exhibits some scatter 486 

but the slope of the regression is 0.98 for the entire dataset, which is indistinguishable 487 

from the 1:1 line. The scatter is minor compared to the uncertainties inherent to 488 

calibrations that transfer these values to SST. Less scatter is apparent in the BIT record 489 

but the original BIT index values were slightly higher than recorded here (~0.5), 490 

indicated by a shallower slope of the regression (0.92). This result is consistent with 491 

previous analyses with the new analytical setup (Hopmans et al., 2016). This does not 492 

impact previous qualitative interpretations of this record (Sluijs et al., 2006; Sluijs et 493 

al., 2008b; Sluijs et al., 2009). In the discussion section, we assess indicators of 494 

potential confounding factors (section 2.2), including the influx of terrestrially-derived 495 

isoGDGTs to the sediments (Figures 4, 5 and S1) and several indices related to methane 496 

and depth of production (Figures 6). 497 

Although we did not detect significant amounts of isoprenoid GMGTs, high 498 

abundances of various brGMGTs are present in the ACEX samples, in total between 10 499 

and 45% of the total brGDGT assemblage (Figure 7). We consistently identify at least 500 

five brGMGTs across the three different mass-to-charge ratios (m/z 1020, 1034 and 501 

1048). Based on their (relative) retention times and overall distribution we were able to 502 

Deleted: We therefore re-analyzed the polar fractions of 503 
their early Paleogene lignite extracts via HPLC-MS using a 504 
ThermoFisher Scientific Accela Quantum Access at the 505 
University of Bristol following Hopmans et al. (2016). Based 506 
on long-term observation of the in-house standard, the 507 
analytical precision for TEX86 is ±0.3 °C for both labs. 508 

Deleted: at the higher end 509 

Deleted: ,510 

Deleted: , are present in the ACEX samples511 
Deleted: Specifically, w512 
Deleted: can 513 
Deleted: 5 peaks across the mass chromatograms of m/z 514 



 16 

apply the nomenclature of Baxter et al. (2019) to five of these and assign individual 515 

peaks to previously identified compounds (Figure S2). The abundance of brGMGTs 516 

relative to brGDGTs increase during the PETM. The proposed temperature indicators 517 

based on brGMGTs show mixed results, with some showing a clear response to the 518 

PETM (Figure 7e) while others do not (Figure 7d).  519 

 520 

5. Discussion 521 

5.1 IsoGDGT provenance 522 

5.1.1 Contributions of soil-derived isoGDGTs 523 

As noted by Sluijs et al. (2006), late Paleocene samples yield anomalously high 524 

abundances of GDGT-3, likely derived from a terrestrial source. We therefore consider 525 

the late Paleocene temperature estimates unreliable. To assess the temperature change 526 

during the PETM, Sluijs et al. (2006) developed a TEX86 calibration without this 527 

moiety, termed 𝑇𝐸𝑋!"& . However, 𝑇𝐸𝑋!"&  has not been widely used outside the 528 

Paleogene Arctic because the anomalous abundances of GDGT-3 have not been 529 

recorded elsewhere. High contributions of GDGT-3 from terrestrial input would also 530 

be associated with an increase in the abundance of other isoGDGTs. Indeed, recent 531 

TEX86-based global SST compilations and comparison to climate simulations for the 532 

PETM excluded the Paleocene ACEX data because the TEX86’ calibration complicates 533 

the comparison to other regions where it has not been applied (Frieling et al., 2017; 534 

Hollis et al., 2019). 535 

Input of soil organic matter is consistent with Willard et al. (2019) who established that 536 

the brGDGT assemblage is dominantly soil-derived as opposed to being produced in 537 

the coastal marine environment. This observation is based upon the weighted average 538 

number of rings in the tetramethylated brGDGTs (#ringstetra) which generally does not 539 
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exceed 0.4 to 0.7 in the global soil calibration dataset (Sinninghe Damsté, 2016). In the 554 

ACEX record, #ringstetra is < 0.21 (Willard et al., 2019), consistent with a dominant soil 555 

source. This indicates that 1) brGDGT abundances, 2) brGDGT distributions and 3) the 556 

BIT index are reliable indicators of the relative supply of terrestrially-derived 557 

isoGDGTs into the marine basin. The Paleocene section of the dataset also stands out 558 

regarding its relation between BIT index and TEX86 (Figure 4), which confirms its 559 

anomalous nature.  560 

During the PETM, TEX86 values are higher (due to warming) and BIT values lower. 561 

This was attributed to sea level rise during the hyperthermals resulting in a more distal 562 

position relative to the terrestrial GDGT source (Sluijs et al., 2006; Sluijs et al., 2008a). 563 

The interval between 371.0 and 369.0 mcd (i.e. above the PETM and below ETM2) 564 

stands out. This interval was previously recognized by Sluijs et al. (2009) to reflect an 565 

open marine environment, with a dominance of marine palynomorphs and algal 566 

biomarkers. They also found that high BIT values correspond to low TEX86 values 567 

within that interval and therefore implemented a subjective threshold value of 0.3, 568 

above which TEX86-derived SSTs were considered unreliable. Although the relation 569 

between BIT and TEX86 exhibits considerable much scatter, the new analyses supports 570 

the notion that higher influx of terrestrial isoGDGTs lowers TEX86 values. The linear 571 

regression (Figure 4; excluding the one outlier with high TEX86 and BIT values in the 572 

top right of the plot because it has highly anomalous distributions (ΔRI = 0.61)), yields 573 

an R2 of 0.26 so explains a portion of the variation (Figure 4). The nature of this 574 

influence is determined by the relative abundance of terrestrial isoGDGTs and their 575 

TEX86 value. The TEX86 value at the terrestrial endmember of BIT = 1, assuming 576 

various types of regressions, centers around 0.5. The remainder of the data does not 577 

show a clear relation between BIT and TEX86 although some of the lowest TEX86 578 
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values correspond to high BIT values, suggesting that the terrestrial endmember 594 

contributed isoGDGT assemblages with relatively low TEX86 values in other intervals 595 

as well.  596 

The relatively low degree of cyclization in the early Eocene contrasts starkly with high 597 

degree of cyclisation during the late Paleocene (Figure 6). This implies that the 598 

distribution of terrestrial isoGDGTs varies strongly between the latest Paleocene and 599 

early Eocene within our studied section. 600 

The impact of soil-derived isoGDGTs also emerges from the Ring Index approach of 601 

Zhang et al. (2016, see section 2.6 and Figure 6). The difference between the Ring Index 602 

and TEX86 at the onset of the PETM is mainly controlled by Crenarchaeol, which is 603 

comparatively low in abundance in the Paleocene but highly abundant in the PETM. 604 

This increase is likely associated with sea level rise during the PETM because 605 

Crenarchaeol is predominantly produced in the marine realm. It is also consistent with 606 

a drop in BIT index values and the relative abundance of terrestrial palynomorphs 607 

(Sluijs et al., 2008a). The approach of Zhang et al. (2016) also confirms that many 608 

isoGDGT distributions exhibit an anomalous relation between TEX86 and the Ring 609 

Index relative to the modern core top dataset, with DRI values >0.3 (Figure 6). 610 

Importantly, all samples with DRI values >0.3 have BIT values above 0.35, indicating 611 

that contributions of soil-derived iso-GDGTs dominate non-temperature effects in the 612 

distributions. We therefore discard TEX86-derived SSTs for samples with BIT values 613 

>0.35. 614 

We also develop a crude model to further constrain the potential contribution of 615 

terrestrially-derived isoGDGTs. First, we determine the abundance of isoGDGTs 616 

relative to brGDGTs in modern peat samples (Naafs et al., 2017) and early Paleogene 617 

lignites (fossil peat) (Naafs et al., 2018b, the isoGDGT data are published here). 618 
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Although there is no reason to assume that peat was a major component of the 630 

hinterland (Willard et al., 2019) , the aforementioned datasets can provide an  estimate 631 

of the potential contribution from terrestrial isoGDGTs to our study site. The raw signal 632 

intensity of brGDGTs in the ACEX samples are used to estimate the potential 633 

contribution of terrestrially-derived isoGDGTs to the samples. To this end, we use the 634 

fractional abundance of the various isoGDGTs in the modern peat and Paleogene lignite 635 

datasets (Figure 5). Then, we estimate the abundance of these terrestrially-derived 636 

isoGDGTs in our ACEX samples by scaling this fraction to the measured abundances 637 

of brGDGTs and isoGDGTs in our ACEX samples, following  638 

𝑇𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛		𝑜𝑓	𝑖𝑠𝑜𝐺𝐷𝐺𝑇	x =639 

(𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑖𝑠𝑜𝐺𝐷𝐺𝑇x	𝑖𝑛	𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙	𝑡𝑒𝑠𝑡	𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ∗ 8T9(<.%&%'8))
1<T0U102/	4V	784%&%'	W

) Eq. (9) 640 

where x represents the specific analyzed GDGT (see Supplementary Data File for an 641 

example of these calculations).  642 

This leads to estimates of the potential relative contributions of the individual 643 

isoGDGTs derived from land in the ACEX samples based on the entire modern peat 644 

dataset (Naafs et al., 2017), modern peats from regions with MAT exceeding 15°C 645 

(Naafs et al., 2017) and Paleogene lignites (Naafs et al., 2018b, this paper, Figures 5 646 

and S1). This approach implies that Crenarchaeol and the Crenarchaeol-isomer are 647 

almost exclusively from the marine realm. However, GDGT-1, GDGT-2 and GDGT-3 648 

in our study site may be derived from the terrestrial realm (Figure 5), especially in 649 

specific stratigraphic intervals (Figure S1). In the most extreme cases, the modeled 650 

contributions of terrestrial isoGDGTs is higher than the measured isoGDGT 651 

abundances (i.e., terrestrial fraction > 1). This is principally seen in iGDGT-2 and 652 

GDGT-3, especially when we employ the Paleogene lignite database. This particular 653 

assumption clearly overestimates the abundance of terrestrially sourced isoGDGTs in 654 
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our setting. However, the temporal trends obtained using modern peats, subtropical 684 

modern peats and Paleogene lignites are essentially identical and give some indication 685 

which isoGDGTs are most likely to be impacted by terrestrial input and across which 686 

intervals. Interestingly, this approach also suggests that particularly GDGT-3 is shown 687 

to be strongly affected (Figure 5), which qualitatively matches the distributions in the 688 

ACEX samples. This is principally because GDGT-3 is the least abundant marine 689 

isoGDGT included in our analyses, whereas it is often as abundant as GDGT-1 and 2 690 

in terrestrial settings (Fig. 5). 691 

 692 

5.1.2 Contributions of methanotrophic or methanogenic archaea? 693 

The depositional environment at the study site included ample (export) production, 694 

sediment organic matter content, and low oxygen conditions at the sediment-water 695 

interface (Sluijs et al., 2006; Stein et al., 2006; Stein, 2007; Sluijs et al., 2008b; Sluijs 696 

et al., 2009; März et al., 2010). This may have been suitable for abundant methanogenic 697 

and methanotrophic archaea, potentially contributing to the sedimentary isoGDGT 698 

assemblage. However, our GDGT-2/Crenarchaeol values (<0.23; Figure 6) are far 699 

below values that suggest significant isoGDGT contributions of methanotrophic 700 

Euryarchaeota as described by Weijers et al. (2011). MI values (maximum observed 701 

0.31) are also generally below proposed cut off values (0.3-0.5, Zhang et al., 2011) that 702 

suggest such contributions. Finally, GDGT-0/Crenarchaeol ratios (<1.4) remain below 703 

the cut-off value of 2 throughout the section (Figure 6), also making a significant 704 

isoGDGT contribution from methanogens highly unlikely (Blaga et al., 2009). 705 

Collectively, relative contributions of isoGDGTs from methanogenic and 706 

methanotrophic archaea seem low despite the low-oxygen environment, suggesting a 707 

relatively high flux of pelagic isoGDGTs. 708 
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 721 

5.1.3 Contributions of deep-dwelling archaea? 722 

Taylor et al. (2013) showed that GDGT-2/GDGT-3 ratios correspond to depth of 723 

production, with high values (>5) in deep waters (>1000 m). We record low values (1-724 

4) between ~390 and ~371.2 mcd (Figure 6), which supports a dominant production in 725 

the surface ocean based on the modern calibration data set (Taylor et al., 2013). 726 

However, the overlying interval (~371 to ~368.3 mcd) has much higher (average 7.4) 727 

and variable GDGT-2/GDGT-3 values with peak values of 10-14. Such values suggest 728 

significant contributions of isoGDGTs produced at water depths of several kilometers 729 

according to the analyses by Taylor et al. (2013).   730 

However, all paleoenvironmental information generated based on the sediments as well 731 

as tectonic reconstructions of Lomonosov Ridge – a strip of continental crust that 732 

disconnected from the Siberian margin in the Paleocene - has indicated a neritic setting 733 

of the drill site at least up to the middle Eocene (e.g., O'Regan et al., 2008; Sangiorgi 734 

et al., 2008; Sluijs et al., 2008a; Sluijs et al., 2009). At ~371.2 mcd a drop in BIT index 735 

and a change in the palynological assemblages corresponds to an interval of greenish 736 

sediment, suggestive of pronounced amounts of glauconite. These changes are 737 

consistent with local relative sea level rise, causing a somewhat more distal position 738 

relative to the shoreline. However, the sediment remains dominantly siliciclastic and 739 

organic terrestrial components, particularly pollen and spores, remain abundant still 740 

indicating a shallow setting (Sluijs et al., 2008a; Sluijs et al., 2008b). Increased 741 

contributions of isoGDGTs produced at depth would be expected to have caused a 742 

systematic cold bias but based on linear regression analysis the large variability in 743 

GDGT-2/GDGT-3 ratios is unrelated to the recorded variability in TEX86 values.  The 744 
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high GDGT-2/GDGT-3 ratio values can therefore not be explained by contributions of 760 

deep dwelling archaea. 761 

In a study of the last 160 kyr in the South China Sea, Dong et al. (2019) found that very 762 

high GDGT-2/GDGT-3 ratios (~9 but up to 13) correspond with high values in nitrogen 763 

isotope ratios, interpreted to reflect low contributions in diazotroph N2 fixation and 764 

enhanced upwelling. In our record, the high GDGT-2/GDGT-3 ratios are associated 765 

with normal marine conditions and the dinocyst assemblages are not indicative of 766 

upwelling conditions (Sluijs et al., 2009). Unfortunately, the available nitrogen isotope 767 

record (Knies et al., 2008) does not cover this interval in sufficient resolution to assess 768 

a relation with diazotroph activity. The increase in GDGT-2/GDGT-3 ratio correlates 769 

to a strong drop in BIT index values and an increase in normal marine dinocyst species 770 

(Sluijs et al., 2009), but a shift to more open marine environment does not explain the 771 

high ratio values. As such, the cause of the high GDGT-2/GDGT-3 ratios in this interval 772 

remains unclear but we consider it highly unlikely to relate to contributions of deep 773 

dwelling Thaumarchaeota.  774 

 775 

5.1.4 Oxygen concentrations and ammonium oxidation rates 776 

A variety of non-thermal factors can impact TEX86 values, including ammonium and 777 

oxygen concentrations and growth phase (Elling et al., 2014; Qin et al., 2014; Hurley 778 

et al., 2016). Across the studied interval of the ACEX core, several intervals of seafloor 779 

and water column anoxia have been identified based on organic and inorganic proxies, 780 

notably during the PETM and ETM2 (Sluijs et al., 2006; Stein et al., 2006; Sluijs et al., 781 

2008b; Sluijs et al., 2009; März et al., 2010).  782 

Particularly suspect is an interval of low TEX86 values that marks the middle of the 783 

ETM2 interval, directly following a ~4 °C warming at its onset (Sluijs et al., 2009). 784 
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This interval is also marked by the presence of sulfur-bound isorenieratane (Sluijs et 789 

al., 2009), a derivative of isorenieratene. This biomarker is produced by the brown 790 

strain of green sulfur bacteria that require light for photosynthesis and free sulfide, 791 

indicating euxinic conditions in the (lower) photic zone (Sinninghe Damsté et al., 792 

1993). We also record a concomitant shift in several methane-related indicators, 793 

GDGT-2/GDGT-3 ratio values and the DRI. A mid-ETM2 cooling signal has not been 794 

recorded at other study sites and this interval marks the occurrence of pollen of 795 

thermophilic plants such as palms and baobab (Sluijs et al., 2009; Willard et al., 2019). 796 

Therefore, the low TEX86 values were suggested to reflect thaumarcheotal depth 797 

migration to the deeper chemocline due to euxinic conditions (Sluijs et al., 2009), 798 

similar to the modern Black Sea (Coolen et al., 2007; Wakeham et al., 2007) and the 799 

Mediterranean Sea during sapropel formation (Menzel et al., 2006).  800 

More recent work has indicated that the isolated marine Thaumarchaeotal species 801 

Nitrosopumilus maritimus produces lower TEX86 values with higher ammonia 802 

oxidation rates (Hurley et al., 2016) and O2 concentrations (Qin et al., 2015). Although 803 

this observation is difficult to extrapolate to the total response of the Thaumarcheotal 804 

community in the marine environment on geological time scales, lower O2 availability 805 

should lower oxidation rates leading to higher TEX86 values (Qin et al., 2015; Hurley 806 

et al., 2016). However, we record a drop in TEX86 values with the development of 807 

anoxia during ETM2. The nature of the anomalously low cyclization in the ETM2 808 

isoGDGT assemblage, which passes all quality tests regarding GDGT distribution 809 

(Figure 6), remains therefore elusive.  810 

 811 

 812 

 813 

Deleted: , a814 

Deleted: In general, however, if the relatively restricted and 815 
low-O2 setting had any impact on TEX86 values, these culture 816 
studies (Qin et al., 2015; Hurley et al., 2016) suggest it would 817 
have led to an underestimate of the SST. 818 



 24 

5.2 Origin and environmental forcing of brGMGTs 819 

The relative abundances of brGMGTs in our samples are surprisingly high. On average, 820 

they comprise 25% of the total branched GDGT and GMGT assemblage. The limited 821 

literature on modern occurrences implies that both terrestrial and marine sources may 822 

have contributed to the brGMGT assemblage. Data from marine sediments (Liu et al., 823 

2012) and the water column (Xie et al., 2014), clearly shows production within the 824 

marine realm. Their occurrence in modern peats (Naafs et al., 2018a), lake sediments 825 

(Baxter et al., 2019) and Paleogene lignites (Inglis et al., 2019) might also imply 826 

transport from land to marine sediments. A soil-derived source is currently 827 

unsupported, as they were most often below detection limit in recent studies of 828 

geothermally heated soils (De Jonge et al., 2019) and a soil transect from the Peruvian 829 

Andes (Kirkels et al., 2020). The brGMGT abundances we record are close to the 830 

maximum abundance found in modern peats (Naafs et al., 2018a). However, significant 831 

input of peat-derived organic matter into our study site is inconsistent with the low input 832 

of peat-derived Sphagnum spores (Willard et al., 2019). Alternatively, the high 833 

abundance of brGMGTs could also be related to subsurface production in marine 834 

sediments. An analogous process was invoked by Naafs et al. (2018a) to explain very 835 

high abundance of brGMGTs in an early Paleogene lignite. Collectively, however, we 836 

surmise that production in the marine realm may be an important contributor to the 837 

brGMGT pool in our setting.   838 

Several factors may contribute to the rise in the abundance of brGMGTs relative to 839 

brGDGTs across the PETM. Higher relative abundances of brGMGTs in modern peats 840 

generally occur at higher mean annual air temperatures (Naafs et al., 2018a) and so this 841 

signal could relate to warming during the PETM if their origin at the study site is 842 

terrestrial. However, since we consider it likely that a large part of the brGMGTs 843 
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assemblage is of marine origin, the rise in brGMGT abundance likely relates to the 847 

previously recorded (Sluijs et al., 2006; Sluijs et al., 2008b) sea level rise during the 848 

PETM at the study site. This is consistent with the increase in marine brGMGT 849 

production relative to terrestrial brGDGT supply to the study site (Figure 7b). This is 850 

consistent with the inverse correlation between brGMGT abundance and the BIT index 851 

(Figure 7b). Lastly, if the production of marine brGMGTs was focused in oxygen 852 

minimum zones (Xie et al., 2014), the development of low oxygen conditions in the 853 

water column based on several indicators, such as the presence of isorenieratane (Sluijs 854 

et al., 2006), might have increased the production of brGMGTs in the water column. It 855 

is also possible that all of these factors contributed to the changes in abundance of 856 

brGMGTs relative to brGDGTs across the PETM.  857 

The brGMGT-I proxy does not produce temperature trends similar to those seen in 858 

TEX86 or MBT’5me (Figure 7d). If the majority of the brGMGTs are of marine origin, 859 

this indicates that brGMGTs produced in the marine realm do not respond to 860 

temperature as was hypothesized based on the African Lake dataset by Baxter et al. 861 

(2019).  862 

Also the application of the H-MBTacyclic index (equation 7) appeared problematic 863 

because, similar to Baxter et al. (2019), we identified several more isomers than Naafs 864 

et al. (2018a, who developed this index) detected in their peat samples. It therefore 865 

remains unclear which of our peaks should be used to calculate the H-MBTacyclic index 866 

values. We therefore show the two plausible options. For the first, we use all peaks with 867 

m/z 1020, 1034 and 1048 (H-MBT-all in Figure 7e) within the expected retention time 868 

window. However, based on our chromatography, we consider it more likely that the 869 

dominant peaks identified by Naafs et al. (2018a) at m/z 1020 and 1034 represent 870 

H1020c and H1034b, respectively, and therefore use only those in addition to the single 871 
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identifiable peak at m/z 1048 as a second option (H-MBT (H1020c, H1034) in Figure 877 

7e. Both options show a clear rise across the PETM, although the HMBT (H1020c, 878 

H1034a) shows a larger signal and somewhat better correspondence in absolute values 879 

to MBTacyclic, though with more scatter. A close correspondence between MBTacyclic 880 

and HMBT has also been found in a lignite that has been assigned to the PETM (Inglis 881 

et al., 2019). 882 

If the dominant source of the brGMGTs was marine throughout the record, the increase 883 

in methylation possibly relates to warming. This would not be unprecedented as marine-884 

produced brGDGTs show an increase in methylation as a function of temperature 885 

(Dearing Crampton-Flood et al., 2018). Sollic et al. (2017) also suggest that archaeal-886 

derived isoprenoid GMGTs produced in marine sediments incorporate additional 887 

methyl groups at higher sediment temperatures. Water column oxygen concentrations 888 

and pH also changed at our site during the PETM, which potentially affected 889 

distributions. Extensive evaluation of brGMGT distributions in modern samples is 890 

therefore required to assess the proxy potential. 891 

 892 

5.3 Uncertainty on TEX86-based SST estimates. 893 

5.3.1 Uncertainty based on calibration dataset 894 

To calculate SSTs, we use 1) the BAYSPAR method (Tierney and Tingley, 2014), 895 

which  assumes a linear relationship between TEX86 and SST, and 2) 𝑇𝐸𝑋!"#  (Kim et 896 

al., 2010), which assumes a non-linear relationship between TEX86 and SST. 897 

Differences between these calibrations are smaller than the calibration errors (Figure 6) 898 

because the TEX86 values in the ACEX dataset all fall within the range of the modern 899 

core top calibration. Taken together, both indices imply that mean annual SSTs varied 900 
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between 18 °C and 28 °C in the early Eocene, providing strong evidence for remarkable 926 

early Eocene warmth in the Arctic region.  927 

The 𝑇𝐸𝑋!"#  calibration has a calibration error of 2.5 °C (residual mean standard error; 928 

RSME) (Kim et al., 2010). The BAYSPAR method yields possible values that range 929 

~6 °C from the most probable value (Figure 6), but these uncertainty estimates are more 930 

comparable than is immediately apparent, as this analysis takes a 90% confidence 931 

interval compared to the 68% probability of RSME. All of the calibrations and methods 932 

to obtain values and uncertainties are based on a modern core-top dataset and thus 933 

implicitly include potential confounding factors such as seasonality and depth of 934 

production and export. However, there is no (quantitative) constraint on any of these 935 

parameters in the calibration data set. This is particularly important for the studied 936 

region because it represents a polar endmember of the marine environment with highly 937 

seasonal production and export and potentially high seasonality in temperature. In the 938 

modern ocean, relations between SST and TEX86 in the Arctic and ice-proximal 939 

Southern Ocean settings differ from the global ocean. This is attributed to a change in 940 

viscoelastic adaptation to temperature at the low end and/or a change in the 941 

Thaumarchaeotal community (Kim et al., 2010; Ho et al., 2014; Tierney and Tingley, 942 

2014). This may mask potential confounding factors that may be relevant specifically 943 

to polar environments. This is important here, where the polar regions were ice free and 944 

the functioning of physical, chemical and biological ocean systems were fundamentally 945 

different from present day. This uncertainty is not accounted for using traditional 946 

regression analyses or Bayesian techniques and quantification of uncertainty in non-947 

analogue climates remains extremely difficult. 948 

 949 
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5.3.2 Constraints from independent proxy data 963 

Independent proxy data may provide additional constraints. The appearance of the 964 

dinoflagellate cyst genus Apectodinium during the PETM and ETM2 in the Arctic basin 965 

(Sluijs et al., 2006; Sluijs et al., 2009; Harding et al., 2011) provide qualitative support 966 

for pronounced warming and apparent subtropical conditions. Recent efforts to quantify 967 

the paleoecological affinities of this now extinct genus have suggested a required 968 

minimum temperature of ~20°C (Frieling et al., 2014; Frieling and Sluijs, 2018). 969 

Although this value is partly based on TEX86 data from the ACEX cores, it is supported 970 

by data from an epicontinental site in Siberia (Frieling et al., 2014).  971 

A second line of independent proxy evidence includes vegetation reconstructions. As 972 

indicated above, the TEX86 results are qualitatively consistent with the ample evidence 973 

for thermophilic plants and animals in the Arctic (e.g., Heer, 1869; Schweitzer, 1980; 974 

Greenwood and Wing, 1995; Uhl et al., 2007; Suan et al., 2017). Particularly valuable 975 

are minimum winter temperature tolerances for specific plant species. Palynological 976 

analyses have indicated the presence of palm and baobab pollen within the PETM and 977 

ETM2 intervals in the ACEX cores (Sluijs et al., 2009; Willard et al., 2019). Modern 978 

palms are unable to tolerate sustained intervals of frost and sexual reproduction is 979 

limited to regions where the coldest month mean temperature (CMMT) is significantly 980 

above freezing (Van der Burgh, 1984; Greenwood and Wing, 1995). This threshold was 981 

was recently quantified to be ≥ 5.2 °C (Reichgelt et al., 2018). The presence of baobab 982 

within the PETM interval and ETM2 also indicate mean winter air temperatures of at 983 

least 6 °C (Willard et al., 2019). Importantly, these plants were not encountered in the 984 

intervals outside the PETM and ETM2, suggesting background coldest month mean air 985 

temperatures were potentially too low (<6ºC) to support megathermal vegetation. 986 
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Pollen of palms and Avicennia mangroves were recently identified in time-equivalent 992 

sections in Arctic Siberia (Suan et al., 2017). Although the details of stratigraphic 993 

framework for these records may be somewhat problematic, these findings indicate 994 

elevated CMMT estimates on land (>5.5 °C) and in the surface ocean (>13 °C) during 995 

the late Paleocene and early Eocene (Suan et al., 2017).  996 

Apparently conflicting evidence comes from the occurrence of glendonites and erratics 997 

in specific stratigraphic levels in Paleocene and Eocene strata in Spitsbergen, 998 

interpreted to reflect ‘cold snaps’ in climate (Spielhagen and Tripati, 2009). Some of 999 

these stratigraphic levels are very close to (or even potentially within) the PETM, 1000 

considering the local stratigraphic level of the PETM (Cui et al., 2011; Harding et al., 1001 

2011). However, glendonites and erratics have not been found at the exact same 1002 

stratigraphic levels as thermophilic biota (Spielhagen and Tripati, 2009). The formation 1003 

and stability of ikaite (the precursor mineral of the diagenetic glendonites) in 1004 

Spitsbergen was dependent on relatively low temperature, arguably persistent near-1005 

freezing sea water temperatures in the sediment (Spielhagen and Tripati, 2009). 1006 

However, glendonite occurrences in other settings (e.g. Mesozoic sediments in mid-1007 

latitude regions, Teichert and Luppold, 2013) have recently also been linked to methane 1008 

seeps (Morales et al., 2017). Therefore, the specific temperature constraints implied by 1009 

glendonites under such conditions are subject of debate. Future work should apply 1010 

temperature reconstructions based on the geochemical composition of the glendonites, 1011 

and biomarkers or biota on corresponding strata to assess whether glendonite 1012 

occurrence is related to colder climates.  1013 

The estimate on seasonal minima provides an important constraint on Arctic 1014 

climatology during the PETM and ETM2. Most likely, the palms and baobabs grew 1015 

close to the shore, where the relative heat of the ocean kept atmospheric temperatures 1016 
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relatively high during the winter. If minimum winter SSTs were in the range of the SST 1027 

reconstructions based on the nearby Avicennia mangrove pollen (Suan et al., 2017), 1028 

which for open ocean settings would perhaps amount to ~10 °C, then summer SST must 1029 

have soared to at least 30 °C in summer if TEX86–based SST reconstructions of ~20 °C 1030 

truly reflects the annual mean. It would imply an SST seasonality of ~20 °C, much 1031 

higher than any modern open marine setting. In the present day Arctic Ocean, heat is 1032 

seasonally stored and released in sea ice melting and freezing, and sea ice cover 1033 

insulates the ocean and reflects much sunlight, resulting in a seasonal cycle of not more 1034 

than 1.5 °C, even in ice-free regions (Chepurin and Carton, 2012). However, coupled 1035 

model simulations have indicated that the future loss of sea ice will greatly enhance the 1036 

seasonal SST range to up to 10 °C in 2300 given unabated CO2 emissions (Carton et 1037 

al., 2015). With year-round snow and ice-free conditions, even stronger summer 1038 

stratification during the Eocene due to higher greenhouse gas concentrations and fresh-1039 

water supply through an enhanced hydrological cycle (Pierrehumbert, 2002; 1040 

Carmichael et al., 2017), a near-shore 20 °C seasonal cycle in Arctic Ocean SST may 1041 

not be unrealistic, although it remains inconsistent with current-generation fully 1042 

coupled, relatively low resolution, model simulations (e.g., Frieling et al., 2017).  1043 

Constraints from the total pollen assemblages in the ACEX cores based on a nearest 1044 

living relative approach suggest Arctic mean annual temperatures on land of 13-18 °C, 1045 

and summer temperatures significantly exceeding 20 °C during the PETM and ETM2 1046 

(Willard et al., 2019). Although these estimates come with much larger uncertainty than 1047 

winter temperatures and may suffer from the non-analogous setting, they are generally 1048 

lower than our TEX86 values. The brGDGT-based paleothermometer MBT’5me (De 1049 

Jonge et al., 2014) also indicates lower mean annual air temperatures than reported from 1050 

TEX86 (Willard et al., 2019, Figure 7). These data, derived from the same UHPLC/MS 1051 
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analyses as the isoGDGT data presented here, indicate mean annual air temperatures 1055 

averaging ~18 °C during the PETM, with a residual mean calibration error of 4.8 °C. 1056 

This value is ~7 °C lower than earlier estimates based on a slightly different method, 1057 

analytical procedure and a smaller modern calibration dataset (Weijers et al., 2007a).  1058 

 1059 

5.4 State of constraints on Paleocene-Eocene Arctic temperatures 1060 

To unlock the unique premise of Eocene climates for testing the skill of current-1061 

generation fully coupled climate models under high greenhouse gas forcing, proxy data 1062 

and models are ideally approached separately. Among the most important implications 1063 

of the Arctic temperature estimates are reconstructions of the meridional temperature 1064 

gradients. Importantly, not a single simulation using an IPCC-class model of early 1065 

Paleogene climate has produced Arctic annual mean sea surface temperatures close to 1066 

the ACEX TEX86-based reconstructions without unrealistically high tropical SSTs 1067 

(Lunt et al., 2012). Recent simulations using the Community Earth System Model 1068 

(CESM) versions 1 (Frieling et al., 2017; Cramwinckel et al., 2018) and 1.2 (Zhu et al., 1069 

2019) using Eocene boundary conditions produced climates that correspond to SST 1070 

reconstructions in many ocean regions based on several proxies, but still produced 1071 

cooler mean annual SSTs for the Arctic Ocean than suggested by TEX86 (Frieling et al., 1072 

2017; Cramwinckel et al., 2018; Zhu et al., 2019). TEX86 also indicates SSTs higher 1073 

than in these model simulations at several sites along the Antarctic margin (Bijl et al., 1074 

2009; Bijl et al., 2013). The question thus remains if the conversion of TEX86 values 1075 

towards mean annual SST using any modern core-top calibration for high latitude 1076 

Paleogene locations is valid, or if the climate models still significantly underestimate 1077 

polar temperatures. Certainly, if interpreted as mean annual SST, TEX86-based 1078 
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estimates are high compared to the few available additional estimates, notably based on 1080 

vegetation, but the latter also suffer from similar uncertainties (e.g., Hollis et al., 2019). 1081 

A few biases might lead to underestimates of meridional temperature gradients as 1082 

indicated from TEX86. First, the flat Eocene temperature gradient implied by TEX86 1083 

was suggested to result from erroneously calibrating the proxy to SST rather than to the 1084 

temperature of the subsurface (Ho and Laepple, 2016). The rationale is that the 1085 

meridional temperature gradient is smaller in deeper waters than it is in the surface. 1086 

However, the idea was contested for multiple reasons, including the fact that sediments 1087 

at most Eocene study sites, such as the ACEX site, were deposited at a depth of less 1088 

than 200m, making the application of a deep subsurface (>1000m) calibration 1089 

inappropriate (Tierney et al., 2017). Moreover, recent analyses have indicated that the 1090 

TEX86 signal dominantly reflects temperature of top 200 m of the water column (Zhang 1091 

and Liu, 2018).  1092 

Secondly, as suggested previously (Sluijs et al., 2006), if TEX86 were biased towards 1093 

any season in the non-analogue Arctic Ocean, it would be the summer, the dominant 1094 

season of organic matter export towards the seafloor through fecal pelleting or marine 1095 

snow aggregates. Vegetation suggests very high winter continental coldest month mean 1096 

air temperatures of at least 6-8 °C (Sluijs et al., 2009; Suan et al., 2017; Willard et al., 1097 

2019), coastal coldest month mean SSTs of >13 °C (Suan et al., 2017), and terrestrial 1098 

mean annual and warmest month mean temperature on land of 13-21 °C and >20°C, 1099 

respectively (Suan et al., 2017; Willard et al., 2019) (see section 5.3.2). These estimates 1100 

are closer to the most recent model simulations and lower than the existing TEX86 (e.g., 1101 

Frieling et al., 2017; Zhu et al., 2019). If TEX86-implied SST of ~25 °C is skewed 1102 

towards a summer estimate, this would decrease the model-data bias regarding the 1103 

meridional temperature gradient estimates. Given the current uncertainties in the use of 1104 
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TEX86 for the non-analogue Arctic Ocean, we however cannot independently constrain 1106 

this.  1107 

 1108 

6. Conclusions 1109 

We analyzed isoGDGT and brGMGT (H-shaped brGDGT) distributions in sediments 1110 

recovered from the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) to Eocene 1111 

Thermal Maximum 2 (ETM2; ~54 Ma) interval on Lomonosov Ridge, Arctic Ocean 1112 

using state-of-the-art analytical procedures, compare them to the original dataset (Sluijs 1113 

et al., 2006; Sluijs et al., 2009) and interpret the results following the currently available 1114 

TEX86 proxy constraints.  1115 

Although contributions of isoGDGTs from land complicate TEX86 paleothermometry 1116 

in some stratigraphic intervals, temperature was the dominant variable controlling 1117 

TEX86 values. Background early Eocene SSTs exceed ~20 °C and peak warmth 1118 

occurred during the PETM and ETM2. However, uncertainty estimates of these SSTs 1119 

based on the non-analogue modern ocean, remains complex. Temperature constraints 1120 

from terrestrial vegetation support remarkable warmth in the study section and 1121 

elsewhere in the Arctic basin, notably coldest month mean temperatures around 10 °C 1122 

at least within the PETM and ETM2. If TEX86-derived SSTs of ~20 °C truly represent 1123 

mean annual SSTs, the seasonal range of Arctic SST might have been in the order of 1124 

20 °C. If SST estimates are entirely skewed towards the summer season, seasonal 1125 

ranges in the order of 10 °C may be considered comparable to those simulated in future 1126 

ice-free Arctic Ocean scenarios. 1127 

We find abundant brGMGTs, which appear predominantly produced in the marine 1128 

realm at the study site. Their abundance increases during the PETM, likely due to sea 1129 

level rise and perhaps due to warming and a drop in seawater oxygen concentrations. 1130 
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Although speculative, an increase in brGMGT methylation during the PETM may be a 1132 

function of temperature, but a relation between brGMGT distribution and 1133 

environmental parameters including temperature is yet to be confirmed. 1134 

 1135 
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Figure 1. Location of ACEX Hole 4A within a paleogeographic reconstruction of the 1711 

Arctic region at the time of the PETM. Reconstruction made using gplates (Müller et 1712 

al., 2018), with the tectonic reconstruction of Seton et al. (2012, red shape is 1713 

Lomonosov Ridge in this reconstruction and grey lines are structural features including 1714 

spreading ridges), the paleomagnetic reference frame of Torsvik et al., (2012), and 1715 

modern coastlines. 1716 
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Figure 2. Molecular structures of the relevant isoGDGTs, brGDGTs and brGMGTs 1722 

and their terminology as described in this study. Crenarchaeol isomer (not shown) 1723 

differs from Crenarchaeol in the stereochemistry of the cyclopentane moiety adjacent 1724 

to the cyclohexyl moiety (Sinninghe Damsté et al., 2018b). For the terminology of the 1725 

brGMGTs, for which the exact chemical structure is still unclear, we follow Baxter et 1726 

al. (2019), since we identify the same isomers (see Figure S2 for a chromatogram). 1727 
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Figure 3. Comparison of the original GDGT dataset of the upper Paleocene and lower 1731 

Eocene of ACEX Hole 4A (Sluijs et al., 2006; Sluijs et al., 2009) and the new data 1732 

generated according to the latest chromatography protocols. 1733 
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Figure 3. Comparison of the original GDGT dataset of the upper Paleocene 
and lower Eocene of ACEX Hole 4A (Sluijs et al., 2006; Sluijs et al., 2009) and 
the new data generated according to the latest chromatography protocols.
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Figure 4. Comparison between BIT index values and TEX86 for various intervals 1735 

spanning the upper Paleocene and lower Eocene of ACEX Hole 4A. 1736 
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