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Abstract. Narrative evidence contained within historical documents and inscriptions provides an important record of climate 1 

variability for periods prior to the onset of systematic meteorological data collection. A common approach used by historical 2 

climatologists to convert such qualitative information into continuous quantitative proxy data is through the generation of 3 

ordinal-scale climate indices. There is, however, considerable variability in the types of phenomena reconstructed using an 4 

index approach and the practice of index development in different parts of the world. This review, written by members of the 5 

PAGES CRIAS Working Group – a collective of climate historians and historical climatologists researching Climate 6 

Reconstructions and Impacts from the Archives of Societies – provides the first global synthesis of the use of the index 7 

approach in climate reconstruction. We begin by summarising the range of studies that have used indices for climate 8 

reconstruction across six continents (Europe, Asia, Africa, the Americas, Australia) plus the world’s oceans. We then outline 9 

the different methods by which indices are developed in each of these regions, including a discussion of the processes 10 

adopted to verify and calibrate index series, and the measures used to express confidence and uncertainty. We conclude with 11 

a series of recommendations to guide the development of future index-based climate reconstructions to maximise their 12 

effectiveness for use by climate modellers and in multiproxy climate reconstructions. 13 

 14 
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1. Introduction 17 

Much of the effort of the palaeoclimatological community in recent decades has focussed on understanding long-term 18 

changes in climate, typically at millennial, centennial, or at best (in the case of dendroclimatology and palaeolimnology) sub-19 

decadal to annual resolution. The results of this research have revolutionised our knowledge both of how climates have 20 

varied in the past and the potential drivers of such variability. However, as Pfister et al. (2018) identify, the results of 21 

palaeoclimate research are often at a temporal and spatial scale that is not suitable for understanding the short-term and local 22 

impacts of climate variability upon economies and societies. To this end, historical climatologists work to reconstruct high-23 

resolution – annual, seasonal, monthly and in some cases daily – series of past temperature and precipitation variability from 24 

the archives of societies, as these are the scales at which weather impacts upon individuals and communities (e.g. Allan et 25 

al., 2016; Brönnimann et al., 2019). 26 

The archives of societies, used here in a broad sense to refer to both written records and evidence preserved in the built 27 

environment (e.g. historic flood markers, inscriptions), contain extensive information about past local weather and its 28 

repercussions for the natural environment and on daily lives. Information sources include, but are not limited to, annals, 29 

chronicles, inscriptions, letters, diaries/journals (including weather diaries), newspapers, financial, legal and administrative 30 

documents, ships’ logbooks, literature, poems, songs, paintings and pictographic and epigraphic records (Brázdil et al., 2005; 31 

Brázdil et al., 2010; Brázdil et al., 2018; Pfister, 2018; Rohr et al., 2018). Three main categories of information appear in 32 

these sources that can be used independently or in combination for climate reconstruction: (i) early instrumental 33 

meteorological data; (ii) records of recurring physical and biological processes (e.g. dates of plant flowering, grape ripening, 34 

the freezing of lakes and rivers); and (iii) narrative descriptions of short-term atmospheric processes and their impacts on 35 

environments and societies (Brönnimann et al., 2018).  36 

The heterogeneity of the archives of societies – in time, space and in the types of information included in individual sources 37 

– raises conceptual and methodological challenges for climate reconstruction. Historical meteorological data can be quality-38 

checked and analysed using standard climatological methods, while records of recurrent physical and biological phenomena 39 

provide proxy information that may be assessed using a variety of palaeoclimatological approaches (cf. Brönnimann et al., 40 

2018). Narrative descriptions, however, require different treatment to make local observations of weather and its impacts 41 

compatible with the statistical requirements of climatological research.  42 

A common approach used in historical climatology for the analysis of descriptive (or narrative) evidence is the generation of 43 

ordinal-scale indices as a bridge between raw weather descriptions and climate reconstructions. A simple index might, for 44 

example, employ a three-point classification, with months classed as −1 (cold or dry), 0 (normal) and 1 (warm or wet) 45 

depending upon the prevailing conditions described within historical sources. As Pfister et al. (2018) note, this “index” 46 

approach provides a means of converting “disparate documentary evidence into continuous quantitative proxy data… but 47 

without losing the ability to get back to the short-term local information for critical inspection and analysis” (p.116). Brázdil 48 

et al. (2010) provide a detailed account of the issues associated with the generation of indices. 49 

The index approach to historical climate reconstruction over much of the world – an exception being China – has its roots in 50 

European scholarship. There is, however, considerable variability in the types of phenomena reconstructed using an index 51 

approach in different areas. There is also variability in practice, both in the way that historical evidence is treated to generate 52 

indices and in the number of ordinal categories in individual index series. Variability in the treatment of evidence arises, in 53 

part, from the extent to which analytical approaches have developed independently. In terms of categorisation, three-, five- 54 

and seven-point index series are most widely used but greater granularity (i.e. a greater number of index classes) may be 55 

achieved in different regions and for different climate phenomena depending upon the quantity, resolution and/or richness of 56 

the original historical evidence.   57 
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This study arises from the work of the PAGES (Past Global Changes) CRIAS Working Group, a cooperative of climate 58 

historians and historical climatologists researching Climate Reconstructions and Impacts from the Archives of Societies. The 59 

first meeting of the Working Group in Bern, Switzerland, in September 2018 identified the need to understand variability 60 

and – ideally – harmonise practice in the use of indices to maximise the utility of historical climate reconstructions for 61 

climate change investigations. This study, written by regional experts in historical climatology with contributions from other 62 

CRIAS members, is intended to address this need. 63 

The main aims of this paper are to: (i) provide a global state-of-the-art review of the development and use of the index 64 

approach as applied to descriptive evidence in historical climate reconstruction; and (ii) identify best practice for future 65 

investigations. It does so through a continent-by-continent overview of practice, followed by a review of the use of indices in 66 

the reconstruction of climate variability over the oceans. Studies from northern polar regions are reviewed within sections 5 67 

(the Americas) and 7 (the Oceans), as appropriate. To the knowledge of the authors, no studies of the climate history of 68 

Antarctica use an index approach.  69 

Three caveats are necessary to frame the coverage of the review. First, the nature of documentary sources is well discussed 70 

in the climate history literature for most parts of the world. As such, we provide only limited commentary on sources for 71 

each continent, except for selected regions. These include China, where only a few overviews of documentary sources have 72 

been published (e.g. Wang, 1979; Wang and Zhang, 1988; Zhang and Crowley, 1989; Ge et al., 2018), and Japan and Russia 73 

where, to our knowledge, no detailed descriptions are available for Anglophone audiences. Second, there are instances in the 74 

literature where quantifiable data in documentary sources (e.g. sea-ice cover, phenological phenomena) and even 75 

instrumental meteorological data are converted to indices for climate reconstruction purposes. This occurs mainly in studies 76 

where such data are integrated with narrative evidence to generate longer, more continuous and homogenous series with a 77 

consistent (monthly or seasonal) resolution. We do not describe the generation of such index series in detail, but do provide 78 

examples in sections 2 to 7, as appropriate. Third, the emphasis of the article is on the documentation of studies that have 79 

used an index approach to climate reconstruction, with critical review and comparison where appropriate. The number of 80 

instances where comparative analysis is possible is necessarily restricted by the limited number of studies that have 81 

undertaken either different approaches to index development for the same location or identical approaches for different 82 

regions. 83 

 84 

2. Climate indices in Europe 85 

2.1. Origins of documentary-based indices in Europe 86 

The use of climate indices has a long tradition in Europe, with the earliest studies published during the 1920s CE. As in any 87 

area, the start date for meaningful index-based reconstructions is determined by the availability of source material. In 88 

Central, Western and Mediterranean Europe, for example, sources containing narrative evidence are sufficiently dense from 89 

the 15th century CE onwards to enable seasonal index reconstruction for more than half of all covered years. Exceptionally, 90 

indices can be generated from the 12th century onwards, but with greatest confidence from the 14th century when serial 91 

sources join the available historiographic information (Wozniak, 2020). The number of index-based climate reconstructions 92 

for Europe is large; as such, this section of the review focusses mainly upon studies that include original published series 93 

based on primary sources and that reconstruct meteorological entities. This excludes climate modelling and other studies that 94 

synthesise or reanalyse previously published historical index series. 95 

Due to the dominance of references to winter conditions in European documentary sources, early investigations centred 96 

primarily on winter severity (Pfister et al., 2018). The first use of the index approach was by the Dutch journalist, astronomer 97 

and later climatologist Cornelis Easton, who published his oeuvre on historical European winter severity in 1928 (Easton, 98 
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1928). In this monograph, Easton presented early instrumental data but also a catalogue of descriptions of winter conditions 99 

dating back to the 3rd century BCE derived from narrative evidence. For the period prior to 1205 CE, this catalogue lists only 100 

remarkable winter seasons; however, after this date every winter up to 1916 is attributed to a ten-point classification, 101 

including a quantifiable coefficient and a descriptive category. Easton’s classification appears as an adapted graph in the 102 

second edition of Charles E. P. Brooks (1949) book on Climate Through the Ages (Pfister et al., 2018).  103 

An isolated attempt to quantify the evaluation of weather diaries (spanning 1182-1780 CE) was proposed by the German 104 

meteorologist Fritz Klemm (1970), with a two-point scale for winter and summer temperature (cold/mild and mild/warm 105 

respectively) and precipitation (dry/wet). The Dutch meteorologist Folkert IJnsen also developed winter severity indices for 106 

the Netherlands (1200-1916 CE) but following a slightly different approach (IJnsen and Schmidt, 1974). However, one of 107 

the most important advances came in the late 1970s when British climatologist Hubert Horace Lamb published three-point 108 

indices of winter severity and summer wetness for Western Europe (1100-1969 CE) in his seminal book Climate: Past, 109 

Present and Future (Lamb, 1977). Lamb’s methodology was more easily applicable compared to Easton’s – a likely reason 110 

why successive studies refer to Lamb’s method and why, in the aftermath of his publication, the index approach was applied 111 

in many different European regions.  112 

In 1984, the Swiss historian Christian Pfister published his first temperature and precipitation indices for Switzerland in the 113 

volume Das Klima der Schweiz von 1525-1860, expanding his climate indices to cover all months and seasons of the year 114 

(Pfister, 1984). Pfister’s work adapted Lamb’s methods, extending Lamb’s three-point scale into monthly seven-point 115 

ordinal-scale temperature and precipitation indices (Figure 1). Shortly after Pfister’s initial study, Pierre Alexandre (1987) 116 

developed a comprehensive overview of the climate of the European Middle Ages (1000-1425 CE), also using indices. Over 117 

a decade later, Van Engelen et al. (2001) published a nine-point index-based temperature reconstruction for the Netherlands 118 

and Belgium (764-1998 CE). Most research groups investigating European climate history – including those led by Rüdiger 119 

Glaser (Freiburg, Germany) and Rudolf Brázdil (Brno, Czech Republic) – now adopt Pfister’s approach as the standard 120 

method for index development, at least for temperature and precipitation reconstructions. This is described in more detail in 121 

section 8 as part of a global overview of approaches to index construction. The opportunity to combine narrative evidence 122 

with quantifiable information is one of the great advantages of the index-approach (Pfister et al., 2018). As a result, many 123 

index-based series for Europe incorporate some quantitative data. Many series also contain data gaps; the earlier the epoch, 124 

the more likely there are to be breaks in series – this is common to almost all index-based series globally. 125 

 126 
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Figure 1: Monthly seven-point temperature indices for the Swiss Plateau (1680-1700), reconstructed using the Pfister index 127 

approach (data from Pfister, 1998). Zero values for specific months are indicated by a small green bar. 128 

One area of Europe with a different research tradition is Russia (Jusupović and Bauch, 2020). Here, the earliest climate 129 

history research was by K.S. Veselovskij (1857), who compared historical information from various source types against 130 

early 19th century statistical climate data (for more details of Veselovskiy's work, see Zhogova, 2013). M.A. Bogolepov later 131 

analysed climate-related information in published Cyrillic and Latin sources from the 10th century onwards (Bogolepov, 132 

1907, 1908, 1911). Other studies have focused on accounts of anomalous weather in Russian sources (e.g. Borisenkov and 133 

Paseckij, 1983, 1988) and on reconstructing historical climate (Burchinskij, 1957; Liakhov, 1984; Borisenkov, 1988; 134 

Klimanov et al., 1995; Klimenko et al., 2001; Slepcov and Klimenko, 2005; Klimenko and Solomina, 2010), river flows 135 

(Oppokov, 1933) and famine years (Leontovich, 1892; Bozherianov, 1907). 136 

The most important collection of Russian documentary sources is the 43-volume Полное Собрание Русских Летописей 137 

(‘Complete Collection of Russian Chronicles’, abbreviated to ПСРЛ; Borisenkov and Paseckij, 1988). These chronicles 138 

document events including infestations of insects, droughts, wet summers, wet autumns, unusual frost events, famine, floods, 139 

storms and earthquakes. The records have been used, in conjunction with other European sources, by Borisenkov and 140 

Paseckij (1988) to reconstruct a qualitative Russian climate history for the last 1000 years. More recent reconstructions have 141 

extended beyond historical sources to include a variety of other climate proxies (e.g. Klimenko and Solomina, 2010). The 142 

development of index-based series from narrative evidence has yet to be attempted, although reconstructions of specific 143 

meteorological extremes, including wet/dry/warm/cold seasons and floods plus related socio-economic events such as 144 

famines, have been published by Shahgedanova (2002) (based on Borisenkov and Paseckij, 1983). 145 

2.2. Temperature indices 146 

Temperature is the most common meteorological phenomenon analysed using an index approach over northern and central 147 

Europe. Authors who have developed temperature index series include Christian Pfister (1984, 1992, 1999), Pierre 148 

Alexandre (1987), Rudolf Brázdil (e.g. Brázdil and Kotyza, 1995, 2000; Brázdil et al., 2013a; spanning periods from 1000-149 

1830 CE), Rüdiger Glaser (e.g. Glaser et al., 1999; Glaser, 2001; Glaser and Riemann, 2009; 1000-2000 CE), Astrid Ogilvie 150 

and Graham Farmer (1997; 1200-1439 CE), Gabriela Schwarz-Zanetti (1998; 1000-1524 CE), Lajos Rácz (1999; 16th 151 

century onwards), the Dutch working group around Aryan van Engelen (Van Engelen et al., 2001; Shabalova and van 152 

Engelen, 2003), Maria-João Alcoforado et al. (2000; 1675-1715 CE), Elena Xoplaki et al. (2001; 1675-1715 and 1780-1830 153 

CE), Anita Bokwa et al. (2001; 16th and 17th centuries), Petr Dobrovolný et al. (2009), Dario Camuffo et al. (2010; 1500-154 

2000 CE), Maria Fernández-Fernández et al. (2014; 2017; 1750-1840 CE), Laurent Litzenburger (2015; 1400-1530 CE) and 155 

Chantal Camenisch (2015a; 2015b; 15th century). The basis of these reconstructions is mainly narrative evidence from 156 

multiple sources, or in the case of Brázdil and Kotyza (1995, 2000) and Fernández-Fernández et al. (2014), a single narrative 157 

source. However, depending on the epoch, evidence may be supplemented by information from early weather diaries, 158 

administrative records and legislative sources. The majority of these studies (e.g. Pfister, 1984, 1992; Brázdil and Kotyza, 159 

1995; Glaser et al., 1999; Pfister, 1999; Rácz, 1999; Brázdil and Kotyza, 2000; Glaser, 2001; Van Engelen et al., 2001; 160 

Shabalova and van Engelen, 2003; Dobrovolný et al., 2009; Glaser and Riemann, 2009; Camuffo et al., 2010) include an 161 

overlap with available instrumental data. 162 

In Europe, different types of index scales have been used. As noted above, Christian Pfister (1984) developed a seven-point 163 

scale with a monthly resolution for temperature and precipitation (e.g., for temperature, -3: extremely cold, -2: very cold, -1: 164 

cold, 0: normal, 1: warm, 2: very warm, 3: extremely warm). Most historical climatologists follow this approach, though in 165 

some cases less granulated versions have had to be applied due to limited source density or quality. For instance, Glaser 166 

(2013) followed Pfister’s indexing approach but used a three-point scale for the period 1000-1500 as information on weather 167 
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appear only occasionally in documentary sources from this time. Schwarz-Zanetti (1998), Litzenburger (2015) and 168 

Camenisch (2015a) have also applied seven-point indices for the late Middle Ages, the latter two series at a seasonal 169 

resolution (Figure 2).  170 

 171 

Figure 2: Comparison of seven-point winter temperature indices for Metz (Litzenburger, 2015) and the Low Countries 172 

(Belgium, Luxembourg and The Netherlands; Camenisch, 2015a) for the period 1420-1500, reconstructed using the Pfister 173 

index approach. Zero values for specific years are indicated by a small bar. 174 

In addition to these studies, four other approaches exist for Europe: (i) IJnsen’s temperature index (IJnsen and Schmidt, 175 

1974) consists of a nine-point scale, which was also adopted by Van Engelen et al. (2001); (ii) Alexandre (1987) used a five-176 

point scale seasonal index, with categories from -2 (very warm) to + 2 (very cold) and 0 being attributed to non-documented 177 

seasons; (iii) Fernández-Fernández et al. (2014; 2017) used a three-point-scale: (+1: warmer than usual; 0:  normal; -1: 178 

colder than usual) and (iv) Domínguez-Castro et al. (2015) a five-point index (+2: very hot; +1: hot; 0: normal; -1: cold; -2: 179 

very cold). As noted in section 2.1, Klemm (1970) proposed a two-point index (warm/cold) for winter conditions.  180 

2.3. Precipitation indices 181 

Many of the authors mentioned in section 2.2 have also published precipitation indices. These reconstructions are usually 182 

based on the same source materials as the temperature indices (an exception being Dobrovolný et al., 2015). However, for 183 

certain regions, very specific source types exist that are more favourable for precipitation reconstructions than temperature – 184 

see, for example, the precipitation series for the Mediterranean based on the analysis of urban annals, religious chronicles 185 

and books of church and city archives (e.g. Rodrigo et al., 1994; Rodrigo et al., 1998; Rodrigo et al., 1999; Rodrigo and 186 

Barriendos, 2008; Fernández-Fernández et al., 2014; Domínguez-Castro et al., 2015; Fernández-Fernández et al., 2015). 187 

These series span various periods of the 16th to 20th centuries and, in some cases, overlap with instrumental data. 188 

Often the same scale is applied for both temperature and precipitation indices; however, in certain regions, precipitation 189 

indices may show more gaps than their temperature counterparts as data may be seasonal or more sporadic. The studies by 190 

Van Engelen et al. (2001), Alexandre (1987), Fernández-Fernández et al. (2014; 2017) and Domínguez-Castro et al. (2015) 191 

are exceptions, in that each adopted a different or more rudimentary scale for precipitation compared to their temperature 192 

reconstructions. Van Engelen et al. (2001) opted for a five-point scale for precipitation compared to a nine-point scale for 193 

temperature, and Alexandre (1987) a three-point rather than five-point index. Alexandre’s (1987) precipitation index is also 194 

relatively simple and separates events by their nature (1: Snow; 2: Rain; 3: Dry conditions) rather than intensity. Fernández-195 
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Fernández et al. (2014; 2017) used a two-point scale (0: total absence of rain; 1: occurrence of rain) and Domínguez-Castro 196 

et al. (2015) a four-point scale. 197 

Index series based on historical records of religious rogation ceremonies warrant separate discussion. Rogations are liturgical 198 

acts conducted to request either rainfall during a drought (termed pro-pluvia rogations) or an end to excessive or persistent 199 

precipitation (pro-serenitate rogations), and were used as an institutional mechanism to address social stress in response to 200 

such meteorological extremes (see Martín-Vide and Barriendos, 1995; Barriendos, 2005; Tejedor et al., 2019). Analyses of 201 

the occurrence and nature of rogation ceremonies have proven particularly valuable for western Mediterranean regions (most 202 

notably the Iberian Peninsula), where they have been used to create precipitation indices spanning the 16th to 19th centuries 203 

(e.g. Álvarez Vázquez, 1986; Martín-Vide and Vallvé, 1995; Barriendos, 1997, 2010; Gil-Guirado et al., 2019). In some 204 

cases, information about rogation ceremonies has been combined with climate-related narrative evidence to generate 205 

precipitation series (e.g. Fragoso et al., 2018). Useful evaluations of different indexing methods are provided by Domínguez-206 

Castro et al. (2008) and Gil-Guirado et al. (2016). For a discussion of the use of rogation ceremonies as a proxy for drought 207 

see section 2.5, and for examples of rogation-based reconstructions in Mexico and South America see section 5. 208 

2.4. Flood indices 209 

Flood events – the result of short periods of heavy precipitation and/or prolonged rainfall – can also be classified using 210 

indices. The basis of European flood indices include descriptive accounts, administrative records such as bridge master’s 211 

accounts (e.g. those in Wels, Austria, which span the period 1350-1600 CE; Rohr, 2006, 2007, 2013), historic flood marks 212 

and river profiles (Wetter et al., 2011; spanning 1268-present and overlapping with instrumental data). In some regions, the 213 

availability and characteristics of sources may vary, and certain source types may be more important for flood reconstruction 214 

than others. This is, for instance, the case in Hungary, where charters play a particularly important role in flood 215 

reconstruction (Kiss, 2019; for the period 1001-1500 CE).  216 

The scales used for flood reconstruction differ slightly from those used for the reconstruction of temperature and 217 

precipitation. Drawing on Brázdil et al. (1999; which spans the 16th century), scholars mainly from Central Europe (e.g. 218 

Sturm et al., 2001 [for the period 1500 CE-present]; Glaser and Stangl, 2003; 2004 [1000 CE-present]; Kiss, 2019) and 219 

France (Litzenburger, 2015) have applied a three-point scale. In contrast, Pfister (1999), Wetter et al. (2011) and Salvisberg 220 

(2017; 1550-2000 CE) used a five-point scale for floods of the River Rhine in Basel and the River Gürbe in the vicinity of 221 

Bern. The French historian Emmanuel Garnier also developed a five-point scale to reconstruct flood time-series from 1500 222 

to 1850 CE, taking into consideration the spatial extent and economic consequences of each event (Garnier, 2009, 2015). A 223 

novel feature of the Garnier index is that it includes a -1 value for events where intensity cannot be estimated through 224 

documentary sources. Rohr (2006, 2007, 2013) chose a four-point scale for his flood reconstruction of the river Traun in 225 

Wels (Austria). In many cases, the index values express the amount of flood damage and/or the duration of flooding in 226 

combination with the geographical extent (e.g. Pfister and Hächler, 1991 [covering the period 1500-1989 CE]; Salvisberg, 227 

2017; Kiss, 2019). Comprehensive overviews of flood reconstruction, including the index method, are given in Glaser et al. 228 

(2010), Brázdil et al. (2012) and recent work by the PAGES Floods Working Group synthesised in Wilhelm et al. (2018). 229 

2.5. Drought indices 230 

Drought events are closely linked to precipitation variability. As a result, many analyses of historical European droughts use 231 

indices adapted from precipitation reconstructions. Evidence of past droughts can be found in administrative sources, diaries, 232 

newspapers, religious sources and epigraphic evidence (see Brázdil et al., 2005; Brázdil et al., 2018; Erfurt and Glaser, 2019 233 

[which spans the period 1800 CE-present]). Different approaches exist in historical climatology to express the severity of 234 

droughts in index form. Brázdil and collaborators (2013b) proposed a three-point scale (-1: dry; -2: very dry; -3: extremely 235 

dry) adapted from the precipitation indices described in section 2.3. Dry periods appear only in the drought index if they last 236 
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for at least two successive months. A similar approach is used by Pfister et al. (2006), Camenisch and Salvisberg (2020; 237 

covering 1315-1715 CE) and Bauch et al. (2020; 1200-1400 CE). However, Garnier (2018) applies a five-point scale with an 238 

additional sixth category for known drought-years with insufficient evidence for a more precise classification.  239 

Drought indices have also been derived for the Western Mediterranean using records of rogation ceremonies, with specific 240 

methodologies developed to estimate the length, severity and continuity of drought episodes (see Domínguez-Castro et al., 241 

2008). A number of studies have used evidence of pro-pluvia ceremonies (see section 2.3) as a drought proxy (Piervitali and 242 

Colacino, 2001; Domínguez-Castro et al., 2008; Domínguez-Castro et al., 2010; Garnier, 2010; Domínguez-Castro et al., 243 

2012b; Tejedor et al., 2019), sometimes in combination with other narrative evidence (e.g. Fragoso et al., 2018; Gil-Guirado 244 

et al., 2019). Readers are referred to Brázdil et al. (2018) for a detailed discussion of the different types of drought indices. 245 

2.6. Other indices 246 

In Europe, the index method has only rarely been applied in contexts other than for temperature, precipitation, flood and 247 

drought reconstruction. Pichard and Roucaute (2009) developed, for example, an index for snowfall in the French 248 

Mediterranean region since 1715 CE, including ordinal categories escalating from 1 to 3 depending on the event duration 249 

and quantity of snow fallen. This study is based on information from diaries and other urban documentary sources. Marie-250 

Luise Heckmann (2008, 2015), coming from the field of historical seismology and seemingly unconnected to discussions in 251 

historical climatology, developed a combined temperature/precipitation index that differentiates winters and summers by 252 

weather description and phenological phenomena; this index was applied to documentary data from late-medieval Prussia 253 

and Livonia (1200-1500 CE). Pro-pluvia rogation ceremonies have been analysed as a proxy for the winter North Atlantic 254 

Oscillation between 1824 and 1931 CE in the Extremedura region of Spain (Bravo-Paredes et al., 2020). 255 

Sea ice reconstructions for the seas around Iceland have been developed by Astrid Ogilvie, the pioneer of Icelandic climate 256 

history (Ogilvie, 1984, 1992; Ogilvie and Jónsson, 2001).  She developed a monthly resolution sea-ice index based on 257 

historical observations in 37 sectors of the sea around Iceland (Ogilvie, 1996), including sightings of sea-ice in ships’ 258 

logbooks, whalers’ and sealers’ charts, diaries, letters, books and newspapers. The index values hence vary from 1 to 259 

(theoretically) 37, with data weighed by source reliability. Pre-1900 CE records report single observations of icebergs and 260 

varying concepts of sea-ice have to be taken into consideration. The record is presented as a 5-year summarised value for the 261 

period 1600-1784 CE, with monthly and annual values given from 1785 to present. 262 

 263 

3. Climate indices in Asia 264 

3.1. Origins of documentary-based indices in Asia 265 

The use of the index approach in Asia is limited to research in China and India. With the exception of Japan, historical 266 

climatology research is either in its infancy or completely absent in other parts of the continent (Adamson and Nash, 2018). 267 

Very little work to reconstruct climate from documentary sources has occurred in southeast Asia, for example, and efforts to 268 

utilise records from the Byzantine Empire (Telelis, 2008; Haldon et al., 2014) and Muslim world (e.g. Vogt et al., 2011; 269 

Domínguez-Castro et al., 2012a) are only recently emerging. In Korea, only Kong and Watts (1992) have developed 270 

anything resembling climate indices, categorising individual years as warm/cold or dry/humid using information from diaries 271 

and histories. 272 

Climate reconstruction work in China has developed largely independently from European historical climatology traditions. 273 

The Central Meteorological Bureau of China has published several fundamental works on Chinese wet/dry series. In 1981, a 274 

milestone work showed 120 cities with a five-point wet/dry series for the whole of China spanning the period 1470 to 1979 275 

CE (Central Meteorological Bureau of China, 1981). Nowadays, most reconstructions (including coldness, drought, frost, 276 
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hail and others) are based on the Compendium of Chinese Meteorological Records of the Last 3,000 Years edited by Zhang 277 

De’er (2004). This compendium provides details of a wide range of historical meteorological phenomena from across China 278 

at a daily level. However, due to an imbalance in population distribution, records are more abundant for eastern than western 279 

China (Ge et al., 2013). In India, the only study to use an index approach (Adamson and Nash, 2014) was developed from 280 

Nash and Endfield’s work in southern Africa (see section 4); there were, however, several differences in approach, notably 281 

the inclusion of calibration tables. 282 

One country where the field of historical climatology is relatively well-developed is Japan. Japan has weather data recorded 283 

in documents dating back to at least 55 CE (Ingram et al., 1981), and diaries in particular have been utilised to reconstruct 284 

climate conditions (e.g. Mikami, 2008; Zaiki et al., 2012; Ichino et al., 2017; Shō et al., 2017). Access to documentary data 285 

on past weather phenomena is provided by detailed collections that evaluate historical sources (Mizukoshi, 2004-2014; 286 

Fujiki, 2007). However, Japanese historical climatology has no tradition of using indices, instead tending to use information 287 

in documentary sources to reconstruct units of meteorological measurement such as temperature and precipitation directly. 288 

For example, Mikami (2008) correlated mean monthly summer temperature with number of rain days. Mizukoshi (1993) and 289 

Hirano and Mikami (2008) used historical records to provide detailed reconstructions of weather patterns. Mizukoshi (1993) 290 

divided rainy seasons into three types: “heavy rain type”, “light rain type” and “clear rainy season type”, although these are 291 

not indices per se. In a similar way, Itō (2014) distinguished precipitation in categories such as “persisting rainfall” or “long 292 

downpour”, depending on seven keywords for each category. He used a similar approach to define indicators for cold spells, 293 

using keywords such as “cold”, “frost”, and “put on cotton [clothes]”. This keyword method for climatic conditions is also 294 

applied by Tagami (2015). There has also been much effort to reconstruct climate from climate-dependent phenomena such 295 

as cherry blossom or lake freezing dates (e.g. Aono and Kazui, 2008; Mikami, 2008; Aono and Saito, 2010).  296 

3.2. Types of documentary evidence used to create index series 297 

Historical climate index development in India has used a similar range of sources to those noted above for Europe – 298 

specifically newspapers and private diaries spanning the period 1781 to 1860 CE, supplemented by government records, 299 

missionary materials and some reports (Adamson and Nash, 2014). The sources used for the development of climate indices 300 

in China, however, are very different and require further explanation. 301 

The earliest known written weather records in China, inscribed onto oracle bones, bronzes and wooden scripts, date to the 302 

Shang dynasty (~1600 BCE). These records were intended for weather forecasting, but later included actual weather 303 

observations (Wang and Zhang, 1988). Emperors of succeeding dynasties compiled more systematic records to allow them 304 

to better understand the weather, forecast harvests and hence maintain social stability (Tan et al., 2014). Some scholars use 305 

an old Chinese concept of Tien (or Tian, meaning Heaven) to explain the tradition. Tien was viewed as a medium used by 306 

gods and divinities to forward messages. Natural hazards (e.g. droughts and floods) were regarded as displaying Tien’s 307 

displeasure with the emperor and his court and were often followed by uprisings and rebellions (Perry, 2001; Pei and Forêt, 308 

2018). To help them understand the long-term pattern of such hazards, imperial governments appointed specialists such as 309 

Taishi (imperial historians) or Qintian Jian (imperial astronomers) to record unusual and/or extreme weather events. Later, 310 

related environmental and socioeconomic events, such as early or late blossoming, agricultural conditions, famine, plagues 311 

and locust outbreaks, were also recorded (see Wang et al., 2018, for further details). This long tradition of chronicling has 312 

resulted in an exceptional range of materials for understanding and reconstructing past climates. It is worth noting, however 313 

that – due to a desire in imperial China to generalise details (Hansen, 1985) – phenomena were often only recorded as 314 

narrative descriptions with magnitude categorised as large, medium, or small.  315 

The earliest official chronicle was Han Shu (‘The Book of Han’) written by Ban Gu (32-92 CE). However, many earlier 316 

historical books incorporate climate observations, including Shi Ji (‘Records of the Grand Historian’) by Sima Qian (145-86 317 
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BCE) and Chun Qiu (‘Spring and Autumn Annals’) compiled by Confucius (551-479 BCE) for the history of the Lu 318 

Kingdom (722- 481 BCE) (Wang and Zhang, 1988). Classic literature called Jing Shi Zi Ji was compiled in Si Ku Quan Shu 319 

(‘Complete Library in Four Branches of Literature’) published in 1787 (full-text digital versions are accessible at websites 320 

including Scripta Sinica: http://hanchi.ihp.sinica.edu.tw/ihp/hanji.htm). The Shi (meaning ‘history’) branch contains, but is 321 

not limited to, the ‘Twenty-Four Histories’ (later expanded to ‘Twenty-Five Histories’ by adding Qing Shi Gao, the ‘Draft 322 

History of Qing’), other historical books, documents of the central administration, local gazettes and private diaries (Ge et 323 

al., 2018).  324 

While providing consistency in recording practices, the spatial coverage of official historical books was often limited to 325 

national capitals or other important locations. However, the writing of Fang Zhi – local chronicles or gazettes, popular in the 326 

Ming (1368-1643 CE) and especially Qing (1644-1911 CE) dynasties – substantively expanded the availability of 327 

documentary sources. Local gazettes contain unusual weather- and climate-related statements like those in the official 328 

chronicles, but incorporate additional details at provincial, prefectural, county or township levels depending on the local 329 

administrative unit. For more information, see Ge et al. (2018) and a database of local gazettes at 330 

http://lcd.ccnu.edu.cn/#/index. 331 

In the 1980s, the Central Meteorological Bureau of China initiated a massive project for the compilation of weather- and 332 

climate-related records. The work resulted in the most influential publication in contemporary Chinese climate literature, 333 

The Compendium of Chinese Meteorological Records of the Last 3,000 Years edited by Zhang De’er (2004); this contains 334 

more than 150,000 records quoted from 7,930 historical documents, mostly local gazettes. To maximise the availability of 335 

the compendium, Wang et al. (2018) have digitised the records into the REACHES database (Figure 3). The quantity of 336 

records peaks in the last six hundred years, during the Ming and Qing dynasties. This is due to a large number of local 337 

gazettes spread across the country; however, only a few are available for the Tibetan Plateau and arid western regions. The 338 

Institute of Geographic Sciences and Natural Resources Research (Chinese Academy of Sciences) has also collated 339 

phenological records from historical documents (Zhu and Wang, 1973; Ge et al., 2003).  340 

Two sources of documentary evidence are of particular importance for historical climate reconstruction in China. Daily 341 

observations of sky conditions, wind directions, precipitation types and duration are recorded in Qing Yu Lu (‘Clear and Rain 342 

Records’) (Wang and Zhang, 1988). The records, however, are descriptive and only available for selected areas; these 343 

include Beijing (1724-1903 with six missing years), Nanjing (1723-1798), Suzhou (1736-1806), and Hangzhou (1723-1773). 344 

Yu Xue Fen Cun (‘Depth of Rain and Snow’) reported the measured depth of rainfall infiltration into the soil or depth of 345 

snow accumulation above ground in the Chinese units fen (~3.2mm) and cun (~3.2cm). From 1693 to the end of the Qing 346 

dynasty in 1911, these measurements were taken in eighteen provinces; however, many records include imprecise 347 

measurements and/or dates (Ge et al., 2005; Ge et al., 2011). Despite their descriptive and semi-quantitative nature, the two 348 

documentary sources are valuable for reconstructing past climate, especially for summer precipitation (Gong et al., 1983; 349 

Zhang and Liu, 1987; Zhang and Wang, 1989; Ge et al., 2011) and meiyu (or 'plum rains', marking the beginning of the rainy 350 

season; see Wang and Zhang, 1991) in different cities depending on the record length as described above. They are also 351 

useful for cross checking and/or validating climate indices derived from other documentary sources.  352 

3.3. Temperature indices 353 

The availability of documentary temperature indices for Asia is restricted to China. Zhu (1973) was the first Chinese scholar 354 

to use historical weather records and phenological evidence to identify temperature variability over the last 5,000 years 355 

(~3000 BCE to 1955 CE). He consulted a range of data sources for his reconstruction, including the dates of lake/river 356 

freezing/thawing, the start/end dates of snow and frost seasons, arrival dates of migrating birds, the distribution of plants 357 

http://hanchi.ihp.sinica.edu.tw/ihp/hanji.htm
http://lcd.ccnu.edu.cn/#/index
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such as bamboo, lychee and orange, the blossoming dates of cherry trees and harvest records. However, the study did not 358 

clearly indicate his methodology.  359 

Winter temperature anomalies were initially regarded as key indicators of temperature changes in China (Zhang and Gong, 360 

1979; Zhang, 1980; Gong et al., 1983; Wang and Wang, 1990a; Shen and Chen, 1993; Ge et al., 2003), as (i) there were 361 

more temperature-related descriptions in winter than in other seasons and (ii) winter temperatures have higher regional 362 

uniformity than summer temperatures (Wang and Zhang, 1992). However, this uniformity mainly reflects changes in the 363 

Siberian High system, so reconstructions of summer (and other season) temperature and precipitation anomalies to reflect 364 

other aspects of monsoon circulation soon received increasing attention (see, for example, Zhang and Liu, 1987; Wang and 365 

Wang, 1990b; Yi et al., 2012).  366 

 367 

 368 

Figure 3: Numbers of historical documentary records in the REACHES database for China. (a) Spatial distribution of 369 

records at 1,692 geographical sites across China. (b) Temporal evolution of the records in the database from 1 to 1911 CE 370 

(brown series); inset (blue series) shows the same data for 1 to 1350 CE but with an expanded vertical axis.  371 
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Zhu’s (1973) pioneering work has had a great influence upon the development of historical climatology in China. Successive 372 

studies used a similar approach to reconstruct winter temperature indices for every decade from the 1470s to 1970s by 373 

counting the frequency of years with cold- or warm-related records (Zhang and Gong, 1979; Zhang, 1980; Shen and Chen, 374 

1993; Zheng and Zheng, 1993). Zhang (1980) adopted binary (cold/warm) categories and further developed an equation to 375 

derive decadal temperature indices for the period 1470-1970 CE (see Section 8.2); this approach was applied in several 376 

studies (Gong et al., 1983; Wang and Wang, 1990b; Zheng and Zheng, 1993; Man, 1995). 377 

The formal development of an ordinal-scale temperature index was first introduced by Wang and Wang (1990b) who used a 378 

four-point scale to build decadal winter cold index series for the period 1470-1979 CE in eastern China (0: no or light snow 379 

or no frost; 1: heavy snow over several days; 2: heavy snow over months; 3: heavy snow and frozen ground until the 380 

following spring). This approach was widely applied in subsequent series in different regions, for different seasons and at 381 

differing temporal resolutions (Wang and Wang, 1990a; Wang and Wang, 1990b; Wang et al., 1998; Wang and Gong, 2000; 382 

Tan and Liao, 2012; Tan and Wu, 2013). For example, Wang and Gong (2000) developed a fifty-year resolution winter cold 383 

index for eastern China spanning the period 800-2000 CE. Tan and colleagues adapted the approach to reconstruct decadal 384 

temperature index series (-2: rather cold; -1: cold; 0: normal; 1: warm) in the Ming (1368-1643 CE; Tan and Liao, 2012) and 385 

Qing dynasties (1644-1911 CE; Tan and Wu, 2013) in the Yangtze delta region.  386 

3.4. Drought/flood and moisture indices 387 

China has a particularly rich legacy of documents describing historical floods and droughts, and using such records to define 388 

drought-flood series has a long tradition. Zhu (1926) and Yao (1943) presented the earliest drought-flood series for all of 389 

eastern China (206 BCE-1911 CE), although their temporal and spatial resolutions are vague. Due to the higher number of 390 

available records for the last several hundred years, reconstructions using frequency counts were avoided in their series; 391 

instead the ratio between flood and drought events was used to build moisture indices (see section 8.2). Examples of other 392 

early studies include Yao (1982), Zhang and Zhang (1979), Zheng et al. (1977) and Gong and Hameed (1991).  393 

Beginning in the 1970s, the Central Meteorological Administration initiated a project to reconstruct historic annual 394 

precipitation. This adopted a five-point ordinal scale (1: very wet; 2: wet; 3: normal; 4: dry; 5: very dry) to form drought-395 

flood indices for 120 locations in China spanning the period 1470-1979 CE (Academy of Meteorological Science of China 396 

Central Meteorological Administration, 1981). The indices were compiled based on the evaluation of historical descriptions 397 

(section 8.2), with the series later extended to 2000 CE (Zhang and Liu, 1993; Zhang et al., 2003). Most reconstructions in 398 

China now use this five-point index (Zheng et al., 2006; Tan and Wu, 2013; Tan et al., 2014; Ge et al., 2018). For example, 399 

Zhang et al. (1997) used the approach to establish six regional series of drought-flood indices for eastern China (from the 400 

North China Plain to the Lower Yangtze Plain) spanning the period 960-1992 CE. Zheng et al. (2006) developed a dataset 401 

covering 63 stations across the North China Plain and the middle and lower reaches of the Yangtze Plain and reconstructed a 402 

drought-flood index series spanning 137 BCE to 1469 CE.  403 

Adamson and Nash (2014) also adopted a five-point index series when reconstructing monsoon precipitation in western 404 

India (Figure 4). Where data quality allowed, indices were derived for individual ‘monsoon months’ (May/June, July, 405 

August and September/October) and summed to produce an index value for each entire monsoon season. Where monthly-406 

level indices could not be constructed, indices pertaining to the whole monsoon were generated directly from narrative 407 

evidence. The five-point index was chosen to correspond with the terminology currently used by the Indian Meteorological 408 

Department for their seasonal forecasts (from ‘deficient’ to ‘excess’ rainfall) and regular reports of rainfall conditions (a 4-409 

point scale from ‘scanty’ to ‘excess’, with a fifth category ‘heavy’ added by the authors). As each of these correspond to 410 

percentage deviations from a rainfall norm, this allowed the generation of calibration tables within an instrumental overlap 411 
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period, to assign descriptive terms to specific index points (e.g. the term ‘seasonable rain’ to the category +1 ‘excess’). This 412 

should allow the same methodology to be repeated elsewhere in India but limits the methodology to the subcontinent.  413 

  414 

Figure 4: Five-point Western India Monsoon Rainfall reconstruction for 1780-1860. The reconstruction is a combination of 415 

separate series for Mumbai, Pune and the Gulf of Khambat (see inset). Monsoon index categories map broadly onto Indian 416 

Meteorological Department (IMD) descriptors of seasonal monsoon rainfall (data for reconstruction from Adamson and 417 

Nash, 2014). Zero values are shown as small bars; years with insufficient data to generate an index value are left blank. 418 

3.5. Other series 419 

Several other studies have used weather descriptions within documentary records to reconstruct past climate series in China. 420 

These include reconstructed winter thunderstorm frequency (Wang, 1980, spanning 250 BCE-1900 CE), dust fall (Zhang, 421 

1984, for the period 1860-1898 CE; Fei et al., 2009, for the past 1700 years) and typhoon series in Guangdong (Liu et al., 422 

2001, 1000-1909 CE) and coastal China (Chen et al., 2019, 0-1911 CE). Many scholars have also used information in Qing 423 

Yu Lu and Yu Xue Fen Cun to count and build winter snowfall days series (Zhou et al., 1994; Ge et al., 2003), while Hao et 424 

al. (2012) have further used the series to regress annual winter temperatures over the middle and lower reaches of the 425 

Yangtze River since 1736. 426 

Phenology-related phenomena have also been widely used in China to indicate past climate variability (Liu et al., 2014). 427 

Flower blossom dates in Hunan between 1888 and 1916 (Fang et al., 2005) and in the Yangtze Plain from 1450 to 1649 (Liu, 428 

2017) were used to indicate temperature change. The date of the first recorded ‘song’ of the adult cicada has also been used 429 

to reconstruct precipitation change during the rainy season in Hunan from the late 19th to early 20th century (on the principle 430 

that cicada growth to adulthood requires sufficient humidity, and this coincides with the peak rainy season; Xiao et al., 431 

2008). In recent years, researchers have been able to reconstruct various series including typhoons (Chen et al., 2019; Lin et 432 

al., 2019) and droughts (Lin et al., 2020) from the compendium of Chinese records compiled by Zhang (2004). 433 

Using descriptions of agricultural outputs in the Twenty-Four Histories and Qing History, Yin et al. (2015) developed a grain 434 

harvest yield index and used this to infer temperature variations from 210 BCE to 1910 CE. Details of outbreaks of Oriental 435 

migratory locusts in these same histories have been used by Tian et al. (2011) to construct a 1910-year-long locust index 436 
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through which precipitation and temperature variations can be inferred. The History of Natural Disasters and Agriculture in 437 

Each Dynasty of China, published by the Chinese Academy of Social Science (1988), includes details of disasters such as 438 

famines to reconstruct indices of climate variability during the imperial era. 439 

 440 

4. Climate indices in Africa 441 

4.1. Origins of documentary-based indices in Africa 442 

Compared to the wealth of documentary evidence available for Europe and China, there are relatively few collections of 443 

written materials through which to explore the historical climatology of Africa (Nash and Hannaford, 2020). The bulk of 444 

written evidence stems from the late 18th century onwards, with a proliferation of materials for the 19th century following 445 

the expansion of European missionary and other colonial activity.  446 

Most historical rainfall reconstructions for Africa use evidence from one or more source type. A small number of studies are 447 

based exclusively upon early instrumental meteorological data. Of these, some (e.g. the continent-wide analysis by 448 

Nicholson et al., 2018) combine early rain gauge data with more systematically collected precipitation data from the 19th to 449 

21st centuries, to produce quantitative time series. Others, such as Hannaford et al. (2015) for southeast Africa, use data 450 

digitised from ships’ logbooks to generate quantitative regional rainfall chronologies. Most climate reconstructions, 451 

however, make use of narrative accounts to develop relative rainfall chronologies based on ordinal indices, either for the 452 

whole continent or for specific regions.  453 

While drawing upon European traditions and sharing many similar elements, methodologies for climate index development 454 

in Africa have evolved largely in isolation from approaches in Europe (see section 8.3). The earliest work by Sharon 455 

Nicholson, for example, was published around the same time that Hubert Lamb was developing his index approach 456 

(Nicholson, 1978a, 1978b, 1979, 1980). Her early methodological papers on precipitation reconstruction (Nicholson, 1979, 457 

1981, 1996) use a qualitative approach to identify broadly wetter and drier periods in African history. A seven-point index 458 

(+3 to -3) integrating narrative evidence with instrumental precipitation data was introduced in Nicholson (2001) and 459 

expanded in Nicholson et al. (2012a) and Nicholson (2018).  460 

The many regional studies in southern Africa owe their approach to the work of Coleen Vogel (Vogel, 1988, 1989), who 461 

drew on Nicholson’s research but advocated the use of a five-point index to classify rainfall levels in the Cape region of 462 

South Africa (+2: very wet, severe floods; +1: wet, good rains; 0: seasonal rains; -1: dry, months of no rain reported; -2: very 463 

dry, severe drought). Subsequent regional studies, starting with Endfield and Nash (2002) and Nash and Endfield (2002), 464 

have adopted the same five-point approach. 465 

4.2. Precipitation indices 466 

The main continent-wide index-based series for Africa originate from research undertaken by Sharon Nicholson (e.g. 467 

Nicholson et al., 2012a). This series uses a seven-point scale and has been used to explore both temporal (Figure 5) and 468 

spatial (Figure 6) variations in historical rainfall across Africa during the 19th century. One regional rainfall reconstruction is 469 

available for West Africa (Norrgård, 2015, spanning 1750-1800 CE and using a seven-point scale ) and one for Kenya 470 

(Mutua and Runguma, 2020, spanning 1845-1976 CE with a five-point scale). The greatest numbers of regional 471 

reconstructions – all using a five-point scale – are available for southern Africa. These include chronologies covering all or 472 

part of the 19th century for the Kalahari (Endfield and Nash, 2002; Nash and Endfield, 2002, 2008) and Lesotho (Nash and 473 

Grab, 2010), and – most recently – Malawi (Nash et al., 2018) and Namibia (Grab and Zumthurm, 2018). Several 474 

reconstructions are available for South Africa, including separate 19th century series for the Western and Eastern Cape, 475 

Namaqualand and present-day KwaZulu-Natal (Vogel, 1988, 1989; Kelso and Vogel, 2007; Nash et al., 2016). Most studies, 476 
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including the continent-wide series, reconstruct rainfall at an annual level, but, where information density permits, it has 477 

been possible to construct rainfall at seasonal scales (e.g. Nash et al., 2016). Regional studies from southern Africa have 478 

recently been combined with instrumental data and other annually-resolved proxies (including sea surface temperature data 479 

derived from analyses of fossil coral) to produce two multi-proxy reconstructions of rainfall variability (Neukom et al., 480 

2014a; Nash et al., 2016). 481 

 482 

Figure 5: Seven-point "wetness" index series for 1801 to 1840 for the 90 homogenous rainfall regions of Africa indicated 483 

across the x-axis. This series is reconstructed using documentary and instrumental data, with data gaps infilled using 484 

substitution and statistical inference (see section 8.3 and Nicholson et al., 2012a). From left to right, the regions 485 

approximately extend by latitude from the northern (region 1 – Northern Algeria/Tunisia) to southern (region 84 – western 486 

Cape, South Africa) extremes of the continent. Anomalies in the numbering sequence are regions 85, 86, 90 (all equatorial 487 

Africa), 87 (eastern Africa) and 88, 89 (Horn of Africa). 488 

 489 

Figure 6: Rainfall anomaly patterns for 1835 and 1888 for the 90 homogenous rainfall regions of Africa delineated on the 490 

maps (modified after Nicholson et al., 2012b). 491 
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4.3. Temperature indices 492 

To date, the only study exploring temperature variations in Africa using an index approach is an annually-resolved 493 

chronology of cold season variability spanning 1833-1900 CE for the high altitude kingdom of Lesotho in southern Africa 494 

(Grab and Nash, 2010). This uses a three-point index for winter severity (normal/mild; severe; very severe) and identifies 495 

more severe and snow-rich cold seasons during the early- to mid-19th century (1833-1854) compared with the latter half of 496 

the 19th century (Figure 7). A reduction in the duration of the frost season by over 20 days during the 19th century is also 497 

identified.  498 

 499 

Figure 7: Three-point “cold season severity” index for Lesotho and surrounding areas during the 19th century (top), with 500 

major volcanic eruptions indicated. The occurrence of snowfall events (bottom) during the same period is also shown 501 

(modified after Grab and Nash, 2010). 502 

5. Climate indices in the Americas 503 

5.1. Origins of documentary-based indices in the Americas 504 

The use of the index approach in climate reconstruction is variable across the Americas. Although sufficient historical 505 

records exist in some regions, particularly the north-eastern United States since the 18th century, few researchers have 506 

generated climate indices for the USA or Canada (White, 2018). Mexico, in contrast, has produced pioneering studies in 507 

climate history, especially on extreme droughts (see Prieto and Rojas, 2018; Prieto et al., 2019). In South America, 508 

documentary evidence is overall lower in quality and quantity compared to Europe, so more complex indices have been 509 

replaced by simpler ones, which extend to the 1500s CE.  510 

5.2. Temperature, precipitation and river-flow indices 511 

The only index-based temperature and precipitation reconstructions for the USA and Canada are those produced by William 512 

Baron and collaborators. Although influenced by the work of Pfister, Baron (1980, 1982) used a distinct content analysis of 513 

weather diaries (see section 8.4) to produce open-ended seasonal indices of New England temperature and precipitation for 514 

1620-1800 CE, a period overlapping with the first local instrumental temperature series (which began in the 1740s). He later 515 
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combined seasonal indices, early instrumental records and phenological observations to create annual temperature and 516 

precipitation series and reconstruct frost-free periods (Baron et al., 1984; Baron, 1989, 1995). 517 

There are a number of valuable compilations of extreme droughts in Mexico (e.g. Florescano, 1969; Jáuregui, 1979; 518 

Castorena et al., 1980; Endfield, 2007) and research that has identified climate trends across the country for 1450-1977 CE 519 

(Metcalfe, 1987; Garza Merodio, 2002). Garza Merodio systemised the frequency and duration of climatic anomalies in the 520 

Basin of Mexico for 1530-1869 CE. García-Acosta et al. (2003) developed an unprecedented catalogue of historic droughts 521 

in central Mexico for 1450-1900 CE. Later work compared this information with a tree-ring series and found a significant 522 

correlation between major droughts and ENSO years over the same period (Mendoza et al., 2005). Mendoza et al. (2007) 523 

constructed a similar series of droughts on the Yucatan Peninsula for the 16th to 19th centuries. Garza Merodio (2017) 524 

improved this index and extended it back in time (see Hernández and Garza Merodio, 2010), based on the frequency and 525 

complexity of rogation ceremonies (16th to 20th centuries). This approach identified droughts in bishoprics and towns of 526 

Mexico. Most recently, Dominguez-Castro et al. (2019) developed series for rainfall, temperature and other meteorological 527 

phenomena for Mexico City using information recorded in the books of Felipe de Zúñiga and Ontiveros; these volumes 528 

provide meteorological data with daily resolution for the twelve years spanning 1775 to 1786 CE.  529 

In South America, the most detailed available historical information is on the scarcity or abundance of water. For 530 

investigations into historical rainfall and river flow rates, most studies construct 5-7 classes of data with annual or seasonal 531 

resolution. For example, a number of flood series have been compiled for rivers in Argentina (Prieto et al., 1999; Herrera et 532 

al., 2011; Prieto and Rojas, 2012, 2015; Gil-Guirado et al., 2016) – see Figure 8. In Bolivia, Gioda and Prieto (1999) and 533 

Gioda et al. (2000) developed a precipitation series for Potosí beginning in 1574 CE. In northern Chile, Ortlieb (1995) also 534 

compiled a detailed precipitation series for the 1800s CE. In Colombia, Mora Pacheco has developed a drought series for the 535 

Altiplano Cundiboyacense spanning the period 1778-1828 CE (Mora Pacheco, 2018). Finally, Dominguez-Castro et al. 536 

(2018) present a precipitation instrumental series from Quito (1891-2015 CE) and a series of wet and dry extremes from 537 

rogation ceremonies from 1600 to 1822 CE.  In contrast, temperature records are less reliable and generally begin with the 538 

earliest instrumental data in the late 1800s CE (Prieto and García‐Herrera, 2009; Prieto and Rojas, 2018), but there are 539 

exceptions (e.g. Prieto, 1983, which covers the 17th and 18th centuries). Most temperature-related indices use three classes.  540 

Some of the world’s most important index-based chronologies of the El Niño Southern Oscillation (ENSO) derive from the 541 

analysis of ENSO-related impacts recorded in South American documentary evidence. This area of research was pioneered 542 

by William Quinn and colleagues (Quinn et al., 1987; Quinn and Neal, 1992), with Quinn’s chronologies revised and 543 

improved by various authors using additional primary documentary sources (e.g. Ortlieb, 1994; Ortlieb, 1995, 2000; García-544 

Herrera et al., 2008).  545 
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 546 

Figure 8: Six-point index series of historical flow in the Bermejo River (northern Argentina) between 1600 and 2008 CE 547 

based on documentary evidence. These annual-level data were used to create the decadal-scale flood series in Prieto and 548 

Rojas (2015). Zero values are indicated by short orange bars. 549 

5.3. Sea-ice and snowfall indices 550 

Relatively few studies have developed indices of winter conditions for the Americas. Building on their content analysis 551 

approach and that of Astrid Ogilvie in Iceland (see section 2.6), Catchpole and Faurer (1983) and Catchpole (1995) produced 552 

open-ended annual sea-ice indices for the western and eastern Hudson Bay, spanning the period 1751-1869 CE. A different 553 

type of three-class index was developed for snowfall in the Andes at 33°S spanning 1600-1900 CE, based on the number of 554 

months per year that the main mountain pass between Argentina and Chile was closed (Prieto, 1984). 555 

 556 

6. Climate indices in Australia 557 

6.1. Origins of documentary-based indices in Australia 558 

Like Africa, Australia has a limited history of using documentary records for developing regional climate indices. Aside 559 

from early compilations of 19th century colonial documents and newspaper records (Jevons, 1859; Russell, 1877), or climate 560 

almanacs published by the Australian Bureau of Meteorology (Hunt, 1911, 1914, 1918; Watt, 1936; Warren, 1948), few 561 

attempts were made in the 20th century to use historical sources to develop climate indices. Those that were developed 562 

focussed predominantly on drought conditions (see, for example, Foley, 1957; McAfee, 1981; Nicholls, 1988). However, 563 

considerable effort has been given in recent years to reconstruct climate variability in south-eastern Australia since British 564 

colonisation in 1788 CE using both historical documents and instrumental observations (e.g. Gergis et al., 2009; Fenby, 565 

2012; Fenby and Gergis, 2013; Gergis and Ashcroft, 2013; Ashcroft et al., 2014a; Ashcroft et al., 2014b; Gergis et al., 2018; 566 

Ashcroft et al., 2019; Gergis et al., 2020). There have also been attempts to reconstruct storms and tropical cyclones along 567 

the east coast of Australia (e.g. Callaghan and Helman, 2008; Callaghan and Power, 2011, 2014; Power and Callaghan, 568 

2016), although these are not index-based.  569 

Documentary-based indices for Australia have focussed on regional rainfall histories using largely material from previously 570 

published drought and/or rainfall compilations (Fenby and Gergis, 2013). These compilations contained a vast collection of 571 

primary source material including newspaper reports, unpublished diaries and letters, almanacs, observatory reports, 19th 572 

century Australian publications and official government reports. For example, the seminal 19th century sources of Jevons 573 
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(1859) and Russell (1877), that formed the foundation of the Fenby and Gergis (2013) analysis, contain 79 primary sources, 574 

including 40 accounts from personal diaries, letters and correspondence between a range of people in the colony with the 575 

authors. Most recently, Gergis et al. (2020) compiled colonial newspaper and government reports to identify daily 576 

temperature extremes of snowfall and heatwaves from South Australia back to 1838. Although a temperature index has not 577 

yet been developed from this material, there is great potential to do so alongside recently homogenised 19th century 578 

instrumental temperature observations from the Adelaide region. 579 

6.2. Precipitation and drought indices 580 

The most extensive analysis of documentary records was compiled by Fenby (2012) and Fenby and Gergis (2013) as part of 581 

a large-scale project to reconstruct climate in south-eastern Australia using palaeoclimate, early instrumental and 582 

documentary data (Gergis et al., 2018). Fenby and Gergis (2013) used twelve secondary source compilations to collate 583 

monthly summaries of drought conditions experienced in five modern states in south-eastern Australia between 1788 and 584 

1860 CE into a three-point index (wet, normal, drought). As explained in section 8.5, agreement between sources and several 585 

months of dry conditions was required before a period was considered a drought, rather than just ‘normal’ low summer 586 

rainfall. In coastal New South Wales, months of above average rainfall were only compiled where sufficiently detailed 587 

rainfall information was available (Fenby and Gergis, 2013). Given that Australian rainfall has high spatial variability, and 588 

many of the secondary sources only contained descriptions of localised floods or severe storm events, there were insufficient 589 

local reports from other regions to reconstruct larger-scale rainfall conditions using the sources considered.  590 

To combine instrumental and documentary data into a single series spanning European settlement of Australia (1788 CE-591 

present), Gergis and Ashcroft (2013) developed a three-point drought and wet year index based on instrumental rainfall 592 

observations from a five-station network in the Sydney region (spanning 1832-1859) and a 45-station rainfall network from 593 

across south-eastern Australia (1860-2008). As with the “wetness” index for Africa (Figure 5), the instrumental data were 594 

converted to an index so they could be combined with the documentary-based index of Fenby and Gergis (2013) to create a 595 

single, complete rainfall reconstruction. Good agreement was found during the overlapping period between instrumental and 596 

documentary-derived indices (1832-1860), and between the eastern New South Wales index and the wider south-eastern 597 

Australian indices. This provides some confidence that the two indices could be combined, and that data from the very early 598 

period, when only eastern New South Wales records are available, are indicative of conditions experienced in the broader 599 

region.  600 

Given the exploratory nature of this work in south-eastern Australia, the aim of these studies was to use documentary and 601 

instrumental data to simply identify the occurrence of wet and dry years in the first instance, rather than develop a more 602 

finely resolved scale of the magnitude of the rainfall anomalies. The recent digitisation and analysis of daily instrumental 603 

rainfall data from Sydney, Melbourne and Adelaide (Ashcroft et al., 2019) provides an excellent opportunity to develop 604 

indices combining documentary and instrumental data from these regions in the future. 605 

 606 

7. Climate indices and the world’s oceans 607 

7.1. Challenges in generating documentary-based indices for the world’s oceans 608 

The oceans constitute a challenging environment for historical climatologists. Written evidence of past weather at sea is 609 

generally local in scope, especially before the 17th century, and direct weather observations scarcely extend beyond the coast 610 

before the 15th century. Historical climatologists can use two categories of information to create reconstructions of past 611 

oceanic climate: (i) direct observations of weather, water, and sea ice conditions; and (ii) records of activities that were 612 

influenced by weather and water conditions. Such information can be found in documents written at sea (on ships, boats or, 613 
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from the twentieth century, submarines; Figure 9), documents written on the coast within sight of the sea, and documents 614 

written inland that record weather or activities at sea.  615 

 616 

Figure 9: Journal written by a Dutch whaler during a voyage to the "Greenland Fishery," between Jan Mayen and Svalbard, 617 

1615. Source: 0120 Oud archief stad Enkhuizen 1353-1815 (1872), Westfries Archief, Hoorn. 618 

Between the 16th and 20th centuries, ships’ logbooks are perhaps the most useful source type (see Wheeler, 2005a, 2005b; 619 

Wheeler and Garcia-Herrera, 2008; Ward and Wheeler, 2012; García-Herrera and Gallego, 2017; Degroot, 2018). Sailors 620 

originally recorded the speed and direction of the wind in order to calculate their location, and their compass-aided 621 

measurements of wind direction are often assumed to be true instrumental observations (Gallego et al., 2015). Yet naval 622 

officers on different ships in the same fleet could record slightly different measurements, and they did not always accurately 623 

estimate their longitude, or consistently describe whether recorded wind directions related to real or magnetic north 624 

(Wilkinson, 2009; García‐Herrera et al., 2018). Logs kept by flag officers – which survive in larger quantities in early 625 

periods than logs kept by subordinate officers – may not include systematic weather observations. Ships did not sail in 626 

sufficient numbers prior to the 18th and 19th centuries for scholars to use surviving logbooks for comprehensive regional 627 

weather reconstructions, and many logbooks have been lost. Finally, logbooks written aboard some ships copied wind 628 

measurements earlier recorded in simple tables and should therefore be considered secondary sources for the purpose of 629 

climate reconstruction (Norrgård, 2017). 630 

Logbooks of the 16th and 17th centuries, in particular, are most valuable when used alongside other documentary evidence. 631 

Journals kept during exceptional voyages may provide similar environmental data but in a narrative format. Accounts of the 632 

passage of ships through ports and tollhouses; the annual catch brought in by fishermen or whalers; or the duration of 633 

voyages may provide evidence of changes in the distribution of sea ice or patterns of prevailing wind. Correspondence, diary 634 

entries, intelligence reports, newspaper articles and chronicles may describe weather at sea, or weather blown in from the 635 
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sea, often at high resolution and occasionally for decades. Paintings, illustrations, and even literature may provide insights 636 

into the changing frequency or severity of weather events at sea. These sources can supplement other human records of the 637 

oceanic climate, including oral histories, or shipwrecks distributed in areas of heavy trade (Chenoweth, 2006; Trouet et al., 638 

2016). 639 

7.2. Indices of wind direction and velocity 640 

If carefully contextualised, information in written records of oceanic weather – especially ships’ logbooks and accounts of 641 

naval voyages – can be quantified and entered into databases. The Climatological Database of the World’s Oceans 642 

(CLIWOC; Figure 10), for example, quantified nearly 300,000 logbooks from 1750 to 1850 CE, and their data are now 643 

among 456 million marine reports within the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) (García‐644 

Herrera et al., 2005b; Koek and Konnen, 2005; García‐Herrera et al., 2006). By using such datasets, or by creating databases 645 

of their own, scholars have reconstructed aspects of past climate at sea, in many cases verifying or extending reconstructions 646 

compiled by scientists using other means. High resolution reconstructions of regional trends in the frequency of winds from 647 

different directions, for example, reveal broadscale atmospheric circulation changes associated with stratovolcanic eruptions, 648 

ENSO, the North Atlantic Oscillation (NAO) or the monsoons of the Northern and Southern Hemispheres  (e.g. Garcia et al., 649 

2001; Küttel et al., 2010; Barriopedro et al., 2014; Barrett, 2017; Barrett et al., 2018; García‐Herrera et al., 2018). 650 

 651 

Figure 10: Plot of the position of all ships’ logbook entries in the CLIWOC database (Degroot and Ottens, 2020). The map 652 

is derived from the open source variant of the CLIWOC database (García‐Herrera et al., 2005b) held at 653 

https://www.historicalclimatology.com.  654 

7.3. Indices of sea-ice extent 655 

Records of sea ice in harbours and heavily trafficked waterways – or records of dues paid at ports and tollhouses – yield 656 

easily quantified data. However, reports of sea ice at high latitudes in correspondence, logbooks or journals written before 657 

the 19th century often give unclear descriptions of sea ice density, which makes it harder to determine how much sea ice 658 

there might have been in different regions from year to year (Prieto et al., 2004). The resolution and precision of Arctic 659 

index-based sea ice or iceberg reconstructions that rely on early modern documents is accordingly quite low (Catchpole and 660 

Faurer, 1983; Catchpole and Halpin, 1987; Catchpole and Hanuta, 1989). An emerging way to circumvent this issue is to 661 
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focus on particular regions where warm and cold ocean currents mixed, and that were sensitive to (a) changes in sea and air 662 

surface temperatures and (b) current strength, for example, around western Svalbard or the Yugorsky Strait (Degroot, 2015). 663 

Logbook reports of the presence of sea ice in these target areas can be quantified, indexed, and used to develop 664 

reconstructions that suggest broadscale shifts in the strength of marine currents (Degroot, 2020). 665 

7.4. Indices of precipitation and storms 666 

Some ships’ logbooks note the occurrence of precipitation at sea, and most record winds that must have influenced 667 

precipitation on land. Historical climatologists have therefore used logbooks to classify and graph precipitation at or near the 668 

sea (e.g. Wheeler, 2005b; Hannaford et al., 2015). Moreover, most documents that directly describe weather at sea or blown 669 

in from the sea faithfully report storms and at least approximately note their severity (Lamb, 1992; García-Herrera et al., 670 

2004; García‐Herrera et al., 2005a; Chenoweth and Divine, 2008; Wheeler et al., 2010). Reconstructions based on written 671 

evidence of damage inflicted along the coast, however, can be more problematic, as damage reflected both complex social 672 

conditions and environmental circumstances beyond the severity of storms (de Kraker, 2011; Degroot, 2018). 673 

 674 

8. Methods for the derivation of climate indices 675 

The preceding sections have highlighted the variable number of classes used in index-based climate reconstructions and 676 

hinted at the variety of different approaches to index development. This section summarises the main methodological 677 

approaches used to derive indices on the different continents, with an emphasis on temperature and rainfall series.  678 

8.1. Climate index development in Europe – “Pfister indices” 679 

In Europe, the most widely adopted approach to the reconstruction of temperature and rainfall variability for climatically-680 

homogenous regions is through the development of seven-point ordinal indices (Pfister, 1984; Pfister et al., 2018), which the 681 

climate historian Franz Mauelshagen has termed “Pfister indices” (Mauelshagen, 2010). These indices are normally 682 

generated at a monthly level through the analysis of (bio)physically-based proxies and contemporary reports of climate and 683 

related conditions. This is not without its challenges, and requires a source-critical understanding of the evidence-base in 684 

addition to a knowledge of regional climates (Brázdil et al., 2010). To aid interpretation, any contemporary report should be 685 

accompanied by a range of information, including details of the date, time, location affected, author and source quality (see 686 

Brázdil et al., 2010; Pfister et al., 2018). The criteria used to allocate a specific month to a specific index category will vary 687 

from place to place according to regional climatic variability. Table 1, for example, illustrates the indicators used to classify 688 

individual months as either “warm” (+2/+3) or “cold” (-2/-3) in a temperature reconstruction for Switzerland (Pfister, 1992); 689 

these include regionally relevant phenomena such as the timing and duration of snowfall and various plant-phenological 690 

indicators. Pfister et al. (2018) recommend that monthly rankings of above +1 and below -1 should only be attributed based 691 

on proxy data such as phenological evidence, with values of -3 and +3 reserved only for exceptional months. An index value 692 

of 0 should only be used where reports of climate suggest normal conditions – an absence of data should be reported as a gap 693 

in the time series rather than a 0 value.   694 
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Table 1: Criteria used in the generation of seven-point temperature indices for “warm” (+2/+3) or “cold” (-2/-3) months in 695 

Switzerland (after Pfister, 1992; Pfister et al., 2018). Italics indicate criteria grounded in statistical analyses. 696 

Month “Cold” (index values of -2/-3) “Warm” (index values of +2/+3) 

Dec, Jan, Feb Uninterrupted snow cover 

Freezing of lakes 

Scarce snow cover 

Early vegetation activity 

Mar Long duration of snow cover 

Frequent snowfalls 

Early sweet cherry flowering 

No snowfall 

Apr Several days of snow cover 

Frequent snowfalls 

Beech tree leaf emergence 

Early vine flower 

May Late grain and grape harvest 

Late vine flower 

Early grain and grape harvest 

Start of barley harvest 

Jun Late vine flower 

Several low altitude snowfalls 

Early grain and grape harvest 

High vine yields 

Jul Low vine yields 

Snowfalls at higher altitudes 

High vine yields 

Aug Low tree ring density 

Low sugar content of vine 

Snowfalls at higher altitudes 

High tree ring density 

High sugar content of vine 

Sep Low sugar content of vine 

Snowfalls at higher altitudes 

High sugar content of vine 

Oct Snowfalls, snow cover Second flowering of spring plants 

Nov Long duration of snow cover Second flowering of spring plants 

No snowfall 

 697 

Once monthly index values have been generated, these are then summed to produce seasonal or annual classifications where 698 

required. Three-month seasonal values can, as a result, fluctuate from -9 to +9 and annual values from -36 to +36 (see 699 

Pfister, 1984). It should be remembered, however, that indexation generates ordinal data, with no guarantee that the intervals 700 

between each index level are equal, so that the sum for a specific season or year can only approximate the magnitude of a 701 

meteorological phenomenon. The process of summation may result in positive index values for relatively warmer/wetter 702 

months during the year being cancelled out by negative index values for relatively colder/drier months. For example, a year 703 

containing a run of extremely dry months followed by a run of extremely wet months may produce a summed index value 704 

close to zero – even though the year includes two periods of ‘extreme’ climate. Careful assessment is therefore required 705 

when reporting summed indices to avoid any loss of information, particularly concerning extreme events. The approach used 706 

by Nicholson et al. (2012a) for African precipitation series may be helpful here, where individual years were flagged if 707 

documentary sources suggested wetter and drier extremes across the year that differed by more than two index classes. 708 

Implicit in this methodological approach is that runs of monthly indices are available with almost no gaps (e.g. Litzenburger, 709 

2015) or that, where gaps occur, there is a high probability that conditions during a given month reflect the longer-term 710 

average for that month (e.g. Dobrovolný et al., 2009). Variations in source density, however, mean that it may not always be 711 

possible to define indices at a monthly level. Such variations could simply be due to a scarcity of available sources, or could 712 

be the product of seasonal variability that results in observations of a climate phenomenon being concentrated in specific 713 

parts of the year (e.g. observations of rainfall in areas of Europe with a Mediterranean climate are likely to be concentrated 714 

between September and April). In these situations, researchers should (i) choose an appropriate temporal resolution (i.e. 715 

seasonal or annual) based on the number and quality of available records, and (ii) develop specific seasonal- or annual-level 716 

criteria – see, for example, the temperature and precipitation reconstructions for Belgium, Luxembourg and The Netherlands 717 

generated by Camenisch (2015a) or the Mediterranean temperature series by Camuffo et al. (2010). The methods used for 718 

calibration and verification are outlined in the following section. 719 

In the development of his seven-point scale, Pfister assumed that monthly temperature and precipitation followed a Gaussian 720 

distribution. Initially, Pfister (1984) developed duodecile classes based on the frequency distribution of monthly 721 

temperature/precipitation means for the sixty-year reference period 1901-1960 as the standard of comparison (Table 2). The 722 
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most extreme months (i.e. those given an index value of -3/+3) were those that fell into duodecile classes 1 and 12, 723 

representing the 8.3% driest (or coldest) or 8.3% wettest (or warmest) months, respectively. Other index categories were 724 

defined using 16.6% intervals. In the later version of his indices, Pfister (1999 and onwards) discontinued the use of 725 

duodecile classes, using instead the standard deviation from the mean temperature/precipitation for the 1901-1960 reference 726 

period to define index categories: -/+180% (of the standard deviation from the mean of the reference period) for index values 727 

-3/+3, -/+130% for values -2/+2, and +/-65% for values +1/-1. 728 

Table 2: The definition of the weighted temperature and precipitation index values used in the creation of initial (pre-1999) 729 

seven-point “Pfister” indices (after Pfister, 1992). 730 

 Lowest      Highest 

 8.3% 16.6% 16.6% 16.6% 16.6% 16.6% 8.3% 

Duodecile 1 2-3 4-5 6-7 8-9 10-11 12 

Index -3 -2 -1 0 1 2 3 

 731 

8.2. Climate index development in Asia  732 

In China, the quantification of historical records to reconstruct climate change originated with a Semantic Differential 733 

Method based on an analysis of each record’s content (see Central Meteorological Bureau of China, 1981; Su et al., 2014; 734 

Yin et al., 2015). Temperature series were traditionally established at a decadal scale only. In creating a series, each year was 735 

first defined as ‘cold’, ‘warm’ or ‘normal’ according to direct weather descriptions or environmental and phenological 736 

evidence. In contrast to the Pfister method (see section 8.1), ‘normal’ was also used when there was insufficient information 737 

available to determine temperature abnormalities. This approach reflects the nature of most Chinese documents, where the 738 

primary mission of the recorders was to detail abnormal or extreme events; fewer descriptions of abnormal events are 739 

therefore interpreted as indicating conditions closer to normal. After each year had been defined as cold, warm or normal, an 740 

equation was then used to derive the decadal indices. The earliest example was published by Zhang (1980): 𝑇𝑖 = −[𝑛1 +741 

0.3(10 − (𝑛1 + 𝑛2)], where 𝑇𝑖  is the decadal winter temperature index, 𝑛1 the number of cold years, 𝑛2 the number of warm 742 

years, and 0.3 the empirical coefficient (see also Zhang and Crowley, 1989). The resulting value is always negative; the 743 

lower the value, the more severe the coldness. 744 

A second approach to the construction of ordinal scale indices was developed by the Wangs in the 1990s (e.g. Wang and 745 

Wang, 1990a; Wang and Wang, 1990b; Wang et al., 1998). This used a four-point scale (0, 1, 2, 3) (Table 3). As in Europe, 746 

indices were generated through the analysis of phenological descriptions and contemporary reports of climate and related 747 

phenomena. Like Europe, criteria for individual index categories could also be adjusted for specific places at specific 748 

seasons according to geographical and climatic attributes. However, unlike the Pfister method, an index value of 0 could be 749 

used where there were missing data. The Wangs further introduced a statistical method to compare phenological evidence 750 

with modern (1951-1985 CE) and early instrumental data (1873-1972 CE in Shanghai) and allocate temperature ranges to 751 

ordinal scales (Wang and Wang, 1990b). An index value of -0.5 corresponded to a -0.5~-0.9°C temperature anomaly, a value 752 

of -1.0 to a -1.0~-1.9°C anomaly and a value of -2.0 to an anomaly of <=-2.0°C; values of 1.5 were added to indicate warm 753 

temperatures and -3.0 to capture extreme cold periods. These cold indices were then regressed with the decadal mean 754 

temperature (1873-1972 CE) to derive a coefficient through which the index value could be transferred into a ‘real’ 755 

temperature. 756 

Table 3: Criteria used in the development of temperature indices in China. 757 
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Cold index values Temperature index values 

Wang, R. and Wang, S. (1990)  Wang, S. and Wang, R. (1990) Tan and Wu (2013), adapted from 

Chen and Shi (2002) 

Index 

value 

Criteria (winter) Index 

value 

Criteria (distinguishing 

four seasons; example of 

winter) 

Index 

value 

Criteria (winter and 

summer; example of 

winter) 

0 No record of ice/frost; 

no snow; light snow 

1.5 Warm records 1 Warm records such as 

‘winter warm as spring’ 

1 River/lake freezing; 

heavy snow over several 

days or several cm depth 

-0.5 Heavy snow; freezing 

rain; ice glaze on trees 

0 No specific records 

2 River/lake frozen for 

weeks to allow human 

passage; heavy snow for 

months; snow frozen for 

months 

-1.0 Frozen river or lake -1 Heavy snow; freezing rain; 

ice glaze on trees 

3 River/lake frozen for 

months to allow horse-

drawn wagons or 

carriages to cross; 

heavy snow for months; 

ice melt in following 

spring  

-2.0 Extreme cold; ocean 

water and large lakes or 

rivers frozen 

-2 River/lake frozen for 

months to allow horse-

drawn wagons or carriages 

to cross  

  -3.0 River/lake frozen for 

months to allow horse-

drawn wagons or 

carriages to cross  

  

 758 

Chen and Shi (2002) built upon Zhang (1980) and the Wangs’ approaches in developing an equation to calculate decadal 759 

temperature indices: 𝑇𝑖 = 10 − 2𝑛1 − 𝑛2 + 𝑛3, where 𝑛1= number of extremely cold years, 𝑛2= number of cold years, 𝑛3= 760 

number of warm years. A resulting decadal temperature index value of 10 denotes average conditions; <10 anomalous cold; 761 

and >10 anomalous warm. Successive work (Tan and Liao, 2012; Tan and Wu, 2013) adopted the Chen and Shi (2002) 762 

approach with a slight modification of the index criteria while retaining the four-point ordinal scale. The temperature series 763 

generated using this approach have been incorporated into multi-proxy temperature reconstructions (e.g. Yi et al., 2012; Ge 764 

et al., 2013). Zheng et al. (2007) and Ge et al. (2013) provide useful reviews of the approach used to generate temperature 765 

indices in China.  766 

As noted in section 3.2, drought-flood index reconstruction in China has a long tradition. Two main approaches are used. 767 

Earlier studies adopted a proportionality index approach (Zhu, 1926; Yao, 1943). As explained by Gong and Hameed (1991), 768 

Zhu used the equation 𝐼 = 𝐷/𝐹 to calculate the index, where 𝐷 represents the number of droughts and 𝐹 the number of 769 

floods in a given time period. This equation is poorly defined if F or D is zero. Brooks (1949) modified the equation and 770 

used the flood percentage, 𝐼 = 100 × 𝐹/(𝐹 + 𝐷), to derive moisture conditions in Britain and some European regions from 771 

100 BCE onwards at a 50-year resolution. Gong and Hameed (1991) further modified the equation as 𝐼 = 2𝐹(𝐹 + 𝐷) to 772 

derive indices at a 5-year resolution. Their index takes the values 0 ≤ 𝐼 ≤ 2, with larger values reflecting wetter conditions. 773 

Zhang and Zhang (1979) adopted a slightly different approach by counting the number of places with reported drought 774 

events: 𝐼𝐷 = 2𝐷/𝑁, where 𝐷 represents the number of places having extreme drought (grade 5) and drought (grade 4) events 775 

in a given year (see Table 4), and 𝑁 is the total number of places.  776 

The Academy of Meteorological Science of China Central Meteorological Administration (1981) adopted a five-point 777 

ordinal scale approach to reconstruct annually resolved drought-flood indices in China. The key descriptors for each 778 

classification (see Table 4) are mainly based on accounts of the onset, duration, areal extent and severity of each drought or 779 

flood event in each location. They then assume a probability distribution of the five grades following a normal distribution: 1 780 

(10%), 2 (25%), 3 (30%), 4 (25%), and 5 (10%). For the period of overlap between written and instrumental records (after 781 
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1950 CE), the graded series were compared against the observed May-September (major rainy season) precipitation and 782 

regressed to transform the indices into numerical series (Table 4). Based on the five-point ordinal scale, Wang et al. (1993) 783 

and Zheng et al. (2006) developed further formulae to calculate decadal drought-flood indices that can be applied to earlier 784 

periods (i.e. before 1470) when less information is available. 785 

Table 4: Criteria used in the generation of five-point drought-flood indices in China (Academy of Meteorological Science of 786 

China Central Meteorological Administration, 1981). For more details, see Zhang and Crowley (1989), Zhang et al. (1997), 787 

and Yi et al. (2012). 788 

Index value  Norm  Transfer function for precipitation amount 

1 (Very wet) Prolonged heavy rain, continuous flood over two 

seasons, extensive flood, unusually heavy typhoon rain 
𝑅𝑖 > (�̅� + 1.17𝜎), where, �̅� is mean May-Sep 

precipitation, 𝜎 is standard deviation, 𝑅𝑖 is 

precipitation in the ith year 

2 (Wet) Spring or autumn prolonged rain with moderate 

damage, local flood 
(�̅� + 0.33𝜎) <  𝑅𝑖 ≤ (�̅� + 1.17𝜎) 

3 (Normal) Favourable weather, usual case, or nothing special to be 

noted in records 
(�̅� − 0.33𝜎) <  𝑅𝑖 ≤ (�̅� + 0.33𝜎) 

4 (Dry) Minor impacts of drought in a single season, local 

minor drought disaster 
(�̅� − 1.17𝜎) <  𝑅𝑖 ≤ (�̅� − 1.33𝜎) 

5 (Very dry) Severe drought over a season, drought continued for 

several months, severe drought over an extensive area, 

or records describing extensive areas of barren land 

𝑅𝑖 ≤ (�̅� − 1.17𝜎) 

 789 

8.3. Climate index development in Africa  790 

Historical climate reconstructions for Africa use two different approaches to index development. The continent-wide rainfall 791 

reconstruction by Nicholson et al. (2012a) is based upon 90 regions that are homogeneous with respect to interannual rainfall 792 

variability. An underpinning assumption is that historical information for any location within a region – be it narrative or 793 

instrumental – can be used to produce a precipitation time series representing that region. Instrumental rainfall data are 794 

converted into seven “wetness” classes (-3 to +3) based on standard deviations from the long-term mean. A wetness index 795 

value of zero corresponds to annual rainfall totals within +/-0.25 standard deviations of the mean. Index values of −1/+1 are 796 

assigned to annual values between −0.25/+0.25 and −0.75/+0.75 standard deviations. Values of −2/+2 are given to annual 797 

totals between −0.75/+0.75 and −1.25/+1.25 standard deviations, with more extreme departures classed as −/+3.  798 

Documentary data are integrated by first assigning individual pieces of narrative evidence to a specific region; each piece of 799 

evidence is then classified into one of the seven “wetness” categories. Like the approach used by Pfister, the presence of key 800 

descriptors of climate conditions is used to distinguish these categories. The scores for each item of evidence for a specific 801 

region/year are summed and averaged. Where there are several sources, a ‘0 index’ value represents an average of 802 

conditions. Where only single sources are available, some contain so much climate-related information that, as in China, 803 

absence of evidence for a specific season is taken to infer "normal” conditions; such cases are indicated in the original data 804 

file accompanying the Nicholson et al. (2012a) reconstruction.  Algorithms are then used to weight and combine 805 

documentary and instrumental data for each region and year. These are defined subjectively according to the accuracy of the 806 

quantitative versus qualitative indicators. For example, when one of each type is available, the qualitative indicator is 807 

weighted twice as much as the gauge because of the inherent spatial variability within African rainfall. A second assumption 808 

is that when the correlation between rainfall in two regions is >0.5 the regions are appropriate substitutes for each other 809 

(Nicholson, 2001). In this way, classifications for regions without evidence for a given year can be derived by substitution. 810 

Statistical inference (termed ‘spatial reconstruction’ by Nicholson) is then used to generate classifications for any remaining 811 
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regions. The cutoff of 0.5 was selected based on examination of time series that correlate with each other at various levels. 812 

Those with a correlation of 0.5 showed marked similarity, though it should be noted that, in most cases, the correlation was 813 

much higher, with the statistical significance being >0.001.  814 

Regional rainfall reconstructions in southern Africa use an approach much closer to the Pfister method to classify 815 

documentary evidence into one of five rainfall classes (-2 to +2); these classes are ordinal rather than based on statistical 816 

distributions. Like the Pfister method, a ‘0 index’ value is only awarded where narrative evidence suggests normal 817 

conditions – years with inconclusive or no data are left unclassified. Owing to the relatively paucity of documentary data for 818 

Africa compared to Europe, conditions for specific rainy seasons are categorised at a quarterly (e.g. Nash et al., 2016) or 819 

more commonly annual level. Again, key descriptors are used to distinguish the various index classes. The main point of 820 

divergence with the approach used by Nicholson is that – rather than assigning individual pieces of evidence to wetness 821 

classes and averaging – qualitative analysis is undertaken of all quotations describing weather and related conditions for an 822 

entire quarter/year (see Nash, 2017). These different methodological approaches, as well as the type of documentary 823 

evidence used, can introduce discrepancies between rainfall series for overlapping regions. Hannaford and Nash (2016) and 824 

Nash et al. (2018) note, for example, that the reconstructions in Nicholson et al. (2012a) for KwaZulu-Natal during the first 825 

decade of the 19th century and Malawi for the 1880s-1890s show generally drier conditions than overlapping series 826 

generated using different methods.  827 

8.4. Climate index development in the Americas  828 

Temperature, precipitation and phenological indices for North America have been based on a distinctive content analysis 829 

approach. This method was first applied to historical climatology in the 1970s to reconstruct freeze and break-up dates 830 

around Hudson Bay for the period 1714-1871 CE by quantifying the frequency and co-occurrence of key weather descriptors 831 

in Hudson’s Bay Company records (Catchpole et al., 1970; Moodie and Catchpole, 1975). The resulting indices are open-832 

ended, since more and stronger descriptors in the sources could generate indefinitely larger (positive or negative) values. 833 

Baron (1980) adapted content analysis to analyse historical New England diaries, by ranking and then numerically weighting 834 

descriptors of several types of weather found in those sources. In subsequent publications, he and collaborators adopted 835 

different scales for annual and seasonal temperature and precipitation depending on the level of detail in the underlying 836 

sources (e.g. Baron, 1995). 837 

In Mexico, Mendoza et al. (2007) constructed a series of historical droughts for the Yucatan Peninsula using the method of 838 

Holmes and Lipo (2003). In this investigation, historical drought data were transformed into a series of pulse width 839 

modulation types (1 drought, 0 no drought) and linked to the Atlantic Multidecadal Oscillation and Southern Oscillation 840 

Index. Other studies have used key descriptors as the basis for index development. Garza Merodio (2017), for example, 841 

classified rogation ceremonies into five ordinal levels based on Garza and Barriendos (1998), creating drought series for 842 

México, Puebla, Morelia, Guadalajara, Oaxaca, Durango, Sonora, Chiapas and Yucatán. Dominguez-Castro et al. (2019) 843 

generated binary series (presence or absence) for precipitation, frost, hail, fog, thunderstorm and wind in Mexico City. 844 

Temperature indices for Mexico have been developed using the applied content analysis approach of Baron (1982) and 845 

Prieto et al. (2005). 846 

In South America, the methodology used to analyse historical sources for climate reconstruction initially followed Moodie 847 

and Catchpole’s (1975) content analysis approach, but was later adapted in a number of papers by María del Rosario Prieto 848 

(e.g. Prieto et al., 2005). As noted in section 5, most historical rainfall and river flow index series use 5–7 annually- or 849 

seasonally-resolved classes based on key descriptors, while most temperature-related series use 3 classes. To date, all South 850 

American rainfall and temperature series are ordinal in nature and do not make background assumptions about the statistical 851 

distribution of climate-related phenomena. However, the method used to derive ‘0 index’ values is not always clearly stated, 852 
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and many series do not discriminate between ‘no data’ and ‘normal’ years (both of which are expressed as zero values). For 853 

example, in many studies that use rogation ceremonies as the basis for rainfall index development, months when there are no 854 

ceremonies are categorised as zero.  There are exceptions, e.g. Dominguez-Castro et al. (2018), who explicitly identify an 855 

absence of ceremonies as ‘no data’, and Prieto and Rojas (2015), who clearly differentiate between normal years and no data. 856 

A systematic reanalysis of many series would be useful to determine exactly how each was constructed. 857 

The approach used by Quinn et al. (1987) and Quinn and Neal (1992) to construct El Niño series over the past four and a 858 

half centuries is slightly different. The relative strengths of individual El Niño events were based on a range of subjective 859 

and objective measures in documentary sources from coastal Peru. These include descriptions of relative rainfall, the extent 860 

of flooding and the degree of physical damage and destruction associated with each event, alongside accounts of impacts on 861 

shipping (e.g. wind and current effects on travel times between ports), fisheries (e.g. changes to fish catches, changes in fish 862 

meal production), and marine life (e.g. mass mortality of endemic marine organisms and guano birds, extent of invasion by 863 

tropical nekton) (Quinn et al., 1987). This broad approach was continued in subsequent studies by Ortlieb (1994, 1995, 864 

2000), García-Herrera et al. (2008) and others. 865 

8.5. Climate index development in Australia  866 

Australian efforts have largely been based on the Pfister approach (section 8.1) and regional-scale historical climatology 867 

investigations in southern Africa (section 8.3), although instrumental and documentary sources have been analysed 868 

separately. Fenby and Gergis (2013) and Gergis and Ashcroft (2013) converted documentary and instrumental data into a 869 

three-point scale of wet, normal and drought conditions. Historical data availability along with high spatial variability and 870 

known non-linearities in Australian rainfall meant that wet and dry conditions were assessed differently. Years were 871 

classified as ‘normal’ if they failed to reach either wet or dry criteria. To avoid introducing errors or biases in the record, 872 

years with missing data were marked as missing, rather than given a value of zero. 873 

For droughts, agreement between a minimum of three of the twelve documentary sources used was required for drought 874 

conditions to be identified in a given month. Droughts were identified regionally in one of five modern southeastern 875 

Australian states. To avoid issues associated with exaggerated accounts of dry conditions and/or localised drought, a year 876 

was classified as a ‘drought year’ only when at least 40% of historical sources indicated dry conditions for at least six 877 

consecutive months during the May-April ‘ENSO’ year (the period with strongest association between south-eastern 878 

Australian rainfall variations and ENSO; Fenby and Gergis, 2013). Dry conditions were defined as times where a lack of 879 

rainfall was perceived as severe by society, or negatively impacted upon agriculture or water availability.  880 

Months of above average rainfall in coastal New South Wales were identified using the annual rainfall summaries of Russell 881 

(1877), as this was the only source with consistent yearly information about rainfall events and impacts. Along with specific 882 

reports of good rainfall, monthly classifications of wet conditions were also based on accounts of flooding, abundant crops, 883 

excellent pasture and the occurrence of insect plagues (Fenby and Gergis, 2013). Six months of high rainfall were required 884 

for a year (May-April) to be defined as wet.  885 

Combining the documentary-based indices with an instrumentally-derived index enabled the development of a single index 886 

of wet and dry conditions for eastern New South Wales from 1788 to 2008 CE. Each year of the instrumental rainfall 887 

datasets – the nine-station network for the Sydney region (1832-1860 CE) and a larger 45-station network representing the 888 

wider south-eastern Australian region – was assigned an index value of wet (1), normal (0) or dry (–1) based on normalised 889 

precipitation anomalies. Years with a normalised precipitation anomaly greater than the 70th percentile were counted as wet 890 

for that station, while those with an anomaly below the 30th percentile were counted as dry. Overall, a year was classified as 891 

wet or dry for the region if at least 40% of the stations with data available were in agreement, in line with the documentary 892 

classification of Fenby and Gergis (2013). Similar methods were employed by Ashcroft et al. (2014a) who used half a 893 
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standard deviation above or below the 1835–1859 CE mean to build three-point indices of temperature, rainfall and pressure 894 

variability in southeastern Australia before 1860 CE using early instrumental data.  895 

8.6. Climate index development in the oceans 896 

The most common indices for marine climate reconstruction quantify shifts in prevailing wind direction. Most convert 897 

directional measurements from the 32-point system used by mariners in logbooks to one, four- or (very recently) eight-point 898 

indices – in part, because sailors were biased towards four, eight, and 16-point compass readings (Wheeler, 2004, 2005a). 899 

These “directional indices” resemble the ordinal scales used to quantify qualitative temperature and rainfall observations on 900 

land. Few calculate error or confidence in their reconstructions, in part because those considerations are difficult to quantify 901 

(see García‐Herrera et al., 2018). Recent studies have quantified the uncertainty involved in connecting logbook observations 902 

to broadscale circulation changes by using a calibration process that correlates wind directions in a target area traversed by 903 

ships to, for example, the strength of a monsoon (Gallego et al., 2015; Gallego et al., 2017). 904 

Wind velocity and storm intensity or frequency indices have also made use of observations recorded in logbooks. Beginning 905 

in the 19th century, mariners made these measurements using the 12-point Beaufort wind force scale. Before that, 906 

measurements refer to the sails that mariners needed to furl or unfurl in winds of different velocity. The measurements are 907 

therefore more subjective than those of wind direction, yet they can still be roughly translated into Beaufort indices (see 908 

García-Herrera et al., 2003; Koek and Konnen, 2005). It is therefore possible to use these indices to develop high-resolution 909 

reconstructions of trends in average wind velocities and storm frequency and intensity (Degroot, 2014). Yet because shifts in 910 

wind direction were more objectively recorded by sailors than changes in wind velocity, and are equally indicative of 911 

broadscale circulation changes, directional reconstructions are generally favoured by historical climatologists (Ordóñez et 912 

al., 2016). 913 

 914 

9. Calibration, verification and dealing with uncertainty 915 

9.1. Calibration and verification in index development 916 

There are several approaches for calibrating and verifying index series used globally. Where overlapping meteorological data 917 

are available, long series of temperature and precipitation indices can be converted into quantitative meteorological units by 918 

using statistical climate reconstruction procedures; some of these have been inherited from fields such as dendroclimatology 919 

(see Brázdil et al., 2010, for a full discussion of statistical methods). For regions of the world lacking long instrumental 920 

records, simple cross-checking of climate indices against shorter periods of overlapping data is often used.  921 

In Europe, Pfister (1984) was the first to use a calibration and verification process in the development of his indices. His 922 

approach – an example of best practice for regions where there is a lengthy period of instrumental overlap with the 923 

documentary record – is summarised by Brázdil et al. (2010) and Dobrovolný (2018) and illustrated in Figure 11. However, 924 

even where a period of overlap is lacking, indices from documentary sources can still be used to cross-check reconstructions 925 

from proxy data (e.g. Bauch et al., 2020) or modelling results and observations (e.g. Bothe et al., 2019). The aim of 926 

calibration is to develop a transfer function between an index series and the measured climate variable, with verification 927 

against an independent period or subset of the overlapping meteorological data used to check the validity of this transfer 928 

function. In studies where there is a multi-decadal period of overlap, the instrumental data are normally divided into two 929 

subperiods; the index series is first calibrated to the earlier subperiod and then verified against the later subperiod 930 

(Dobrovolný, 2018). If only a short period of overlap is available, then cross-validation procedures are required.  931 

The transfer function derived from a calibration period is normally evaluated by statistical measures (e.g. squared correlation 932 

r2, standard error of the estimate) before being applied in the verification period. During verification, index values calibrated 933 
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to physical units (e.g. temperature degrees or precipitation amount) are compared with the instrumental data and, again, 934 

evaluated statistically using r2, reduction of error and the coefficient of efficiency (see Cook et al., 1994; Wilson et al., 935 

2006). If the calibrated data series, derived by applying the transfer function obtained for the calibration period, expresses 936 

the variability of the climate factor under consideration with satisfactory accuracy in the verification period, then the index 937 

series can be considered as useful for climate reconstruction back beyond the instrumental period (Brázdil et al., 2010). 938 

Caution is needed, however, as transfer functions, which are usually derived from relatively modern periods, may not be 939 

stable through time (e.g. where phenological series have been influenced by the introduction of new varieties or different 940 

harvesting technologies; Pfister, 1984; Meier et al., 2007).  941 

 942 

Figure 11: The main steps in quantitative climate reconstruction based on temperature or precipitation indices derived from 943 

documentary evidence. Historical documentary sources are analysed to generate seven-point monthly indices (step 1), which 944 

are then summed to produce annual index series (step 2). Calibration and verification are carried out on periods of 945 

overlapping instrumental data (step 3), with statistical results from verification used to define error bars for the final 946 
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reconstruction (step 4). Reprinted by permission from: Brázdil, R., Dobrovolný, P., Luterbacher, J., Moberg, A., Pfister, C., 947 

Wheeler, D., and Zorita, E.: European climate of the past 500 years: new challenges for historical climatology, Climatic 948 

Change, 101, 7-40 (© Springer 2010). 949 

Like the European approach, calibration and verification methods in China are applied to reconstructed temperature and 950 

drought-flood indices by comparing the series overlap between instrumental and documentary periods. Shanghai has the 951 

longest instrumental data coverage (1873 CE onwards), with Beijing, Suzhou, Nanjing, and Hangzhou also having century-952 

long data series (Chen and Shi, 2002; Zhang and Liu, 2002). As a result, most calibration is performed with reference to 953 

these cities. Wang and Wang (1990a) compared their temperature series with these instrumental data to estimate correlation 954 

coefficients and allocate corresponding values to their indices. A transfer function was also estimated between the number of 955 

snow days (or number of lake freezing days) and observed temperatures by using multiple regression methods (Zhang, 1980; 956 

Gong et al., 1983; Zhang and Liu, 1987; Wang and Gong, 2000; Ge et al., 2003). However, the statistical correlation reports 957 

in these earlier studies appear incomplete. 958 

The Academy of Meteorological Science of China Central Meteorological Administration (1981) have used precipitation 959 

data (1951-2000 CE) to validate drought-flood indices. However, the approach used focused on determining the probability 960 

distribution function of their five index classes to make the series comparable with instrumental data, rather than calibration 961 

per se (Yi et al., 2012; Shi et al., 2017). A special feature of calibration and verification in China is the utilisation of records 962 

in the Qing Yu Lu and Yu Xue Fen Cun (Hao et al., 2018; see section 3.2), where comparisons can be made between 963 

reconstructed drought-flood indices and observed precipitation patterns (Zhang and Wang, 1990). Such correlations can 964 

further be compared and calibrated using instrumental data, for example for Beijing (Zhang and Liu, 2002), Suzhou, Nanjing 965 

and Hangzhou (Zhang and Wang, 1990). 966 

Validation within the Nicholson et al. (2012a) rainfall reconstruction for continental Africa was carried out by comparing 967 

time series based on those entries with instrumental rainfall data available for the same time and region. Quality control in 968 

the final seven-class combined instrumental-historical reconstruction was provided by comparing the spread of estimates 969 

from the various sources. If more than a two-class spread existed among the entries for an individual region and year, each of 970 

those entries was re-evaluated. In most, it was found that an error was made in determining the location or year of a piece of 971 

documentary evidence. Only eight “conflicts” in the Nicholson series could not be resolved in this way. The various regional 972 

studies in southern Africa employ a simpler approach, using short periods of overlap with available instrumental data for 973 

qualitative cross-checking/validation purposes (e.g. Nash and Endfield, 2002; Kelso and Vogel, 2007; Nash and Grab, 2010; 974 

Nash et al., 2016). 975 

The content analysis method developed for North American historical climatology uses replication by other researchers to 976 

test the reliability of the quantification process and compared results from multiple independent sources to test validity 977 

(Baron, 1980, pp.150-170). Subsequent studies have elaborated on this method, but many also draw on the Pfister index 978 

approach as summarised in section 8.1. For South America, Neukom et al. (2009) created “pseudo-documentary” series to 979 

quantify the relationship between document-derived  precipitation indices and instrumental data (see also Mann and 980 

Rutherford, 2002; Pauling et al., 2003; Xoplaki et al., 2005; Küttel et al., 2007). Following European conventions, index 981 

series were transformed to instrumental units by linear regression with overlapping instrumental data. The skill measures 982 

were quantified based on two calibration/verification intervals, using the first and second half of the overlap periods as 983 

calibration and verification period, respectively and vice versa (Neukom et al., 2009). A similar approach has been used in 984 

southern Africa to integrate documentary-derived index series with other annually-resolved proxy data for the 19th century 985 

as part of multiproxy rainfall reconstructions (Neukom et al., 2014a; Nash et al., 2016). 986 
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Calibration and verification of indices in Australia (Figure 12) has been conducted using overlapping and largely 987 

independent instrumental data products, similar to approaches used in African reconstructions. In an example of good 988 

practice for future studies, independent high-resolution palaeoclimate reconstructions and records of water availability, such 989 

as lake levels, were also used for verification (Gergis and Ashcroft, 2013). Disagreements between these different sources 990 

were examined closely and often attributed to spatial variability in individual sources. For example, the 1820s in south-991 

eastern Australia were identified as wetter than average in a regional palaeoclimate reconstruction (Gergis et al., 2012), but 992 

drier than average in a documentary-derived index and in historical information about water levels in Lake George, New 993 

South Wales (Gergis and Ashcroft, 2013). This was put down to geographical differences between the datasets – the 994 

palaeoclimate reconstruction was biased towards rainfall variability in southern parts of south-eastern Australia while the 995 

lake records and documentary index represented the east.  996 

 997 

Figure 12: Wet and dry years for eastern New South Wales (Australia) identified using the nine-station network (1860–998 

2008, purple) and a documentary index (1788–1860, grey). The median rainfall reconstruction (1788–1988) from Gergis et 999 

al. (2012) is also plotted as anomalies (mm) relative to a 1900–1988 base period. Note that 1841, 1844, 1846 and 1859 have 1000 

been classified as wet, in accordance with a rainfall index derived from observations in the Sydney region (blue). Adapted 1001 

from Gergis and Ashcroft (2013). 1002 

It is a long-standing best practice in marine historical climatology to verify weather observations by comparing different 1003 

kinds of documentary evidence, or alternative different examples of the same evidence (e.g. multiple logbooks in the same 1004 

fleet). Despite the very real challenges of interpreting measurements even in logbooks, there are indications that 1005 

reconstructions that use these sources are reliable. There appears to be a high consistency and homogeneity both within wind 1006 

measurements derived entirely from ships’ logbooks, and between such measurements and data obtained from diverse 1007 

sources that register the marine climate. Researchers have therefore linked documentary weather observations in, for 1008 

example, the CLIWOC database, with datasets that homogenise and synthesise evidence from both textual and natural 1009 

proxies, such as the National Oceanic and Atmospheric Administration’s International Comprehensive Ocean-Atmosphere 1010 

Data Set (ICOADS) (Jones and Salmon, 2005; Barriopedro et al., 2014).  1011 

9.2. Reporting confidence and uncertainty in index-based climate series 1012 

Two forms of uncertainty are encountered when developing index-based climate series: (i) uncertainties related to the 1013 

compilation of the index series themselves from documentary evidence; and (ii) uncertainties within any resulting index-1014 
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based climate reconstruction. The first form of uncertainty relates mainly to the nature of information contained within 1015 

specific source types. A detailed discussion is beyond the scope of this review. However, where indices are compiled from a 1016 

unique documentary source – such as a private diary or diaries (e.g. Brázdil et al., 2008; Adamson, 2015; Domínguez-Castro 1017 

et al., 2015), a series of correspondence (e.g. Rodrigo et al., 1998; Nash and Endfield, 2002; Fernández-Fernández et al., 1018 

2014) or a series of acts of municipal and ecclesiastical institutions for a location (e.g. Barriendos, 1997; Dominguez-Castro 1019 

et al., 2018) – it is easier to identify and correct unexpected bias or homogeneity problems. Other index series draw together 1020 

information from many different documentary sources (e.g. Camuffo et al., 2010; Nash and Grab, 2010; Fenby and Gergis, 1021 

2013; Brázdil et al., 2016), allowing the analysis of longer periods or larger regions but at the risk of incorporating non-1022 

homogeneities. Methodological differences – for example in the way in which ‘0 index’ values are derived (see section 8) – 1023 

may also mask uncertainties introduced by data gaps. 1024 

While compiling this review, it became apparent that relatively few index-based climate series provide an assessment of the 1025 

degree of uncertainty in the compilation of their indices – in effect, something akin to the error bars used in quantitative 1026 

climate reconstructions (e.g. Dobrovolný et al., 2010). Further, very few studies report directly on potential biases in their 1027 

series due to the well-known tendency for documentary evidence to better record extreme events. The incorporation of 1028 

statistical error is achievable where index-based series have been subject to full calibration and verification (section 9.1). 1029 

However, it is less straightforward for climate reconstructions in regions (or for time periods) where a lack of overlapping 1030 

instrumental data renders full calibration impossible.  1031 

To overcome this issue, Australian studies include some assessment of confidence by showing details of the number of 1032 

sources in agreement, and the proportion of the study regions affected (see Fenby and Gergis, 2013). Independent high-1033 

resolution palaeoclimate and historical records were also used to verify each year of the reconstruction to assess confidence 1034 

in the results (Fenby and Gergis, 2013; Gergis and Ashcroft, 2013). 1035 

One innovation from African historical climatology is the introduction by Clare Kelso and Coleen Vogel (2007) of a 1036 

qualitative three-point ‘confidence rating’ (CR) for the classification of each rainy season in their climate history of 1037 

Namaqualand (South Africa). The rating for each season (Figure 13) was derived from the number of sources consulted 1038 

combined with the number of references to that particular climatological condition. CR=1 was awarded where there was only 1039 

one source referring to the climatic condition. In contrast, years awarded CR=3 were those that had more than three date- and 1040 

place-specific references describing climatic conditions. This approach has been adopted in subsequent studies in southern 1041 

Africa by Nash et al. (2016), Nash et al. (2018) and Grab and Zumthurm (2018), with slight variations in the criteria used to 1042 

award specific ratings according to source density. 1043 
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 1044 

Figure 13: Five-point index of rainfall variability in Namaqualand (South Africa) during the 1800s, including the first use of 1045 

confidence ratings in relation to annual classifications in a documentary-derived index series (1 = low confidence, 3 = high 1046 

confidence). Data from  Kelso and Vogel (2007). 1047 

A similar approach was adopted by Quinn et al. (1987) and Quinn and Neal (1992) in their development of El Niño indices 1048 

for Peru. El Niño events with a confidence rating of 1 were those that lacked a source reference or informational basis; these 1049 

were not incorporated into the final list of reconstructed events. CR=2 was awarded when an event was based on limited or 1050 

circumstantial evidence; CR=3, when additional information was needed to confirm the time of occurrence or intensity of an 1051 

event; CR=4, when the occurrence time and intensity information was generally satisfactory, but additional evidence was 1052 

needed to confirm the spatial extent of the event; and CR=5, when the available information concerning the occurrence and 1053 

intensity of the event was considered to be satisfactory. 1054 

The second form of uncertainty relates specifically to index-based climate reconstruction. Where uncertainties can be 1055 

quantified (either formally with statistics or less formally by comparison with other reconstructions), index-based 1056 

reconstructions can be made fully comparable to natural proxy-based quantitative reconstructions. One example of this 1057 

approach is the central Europe temperature series by Dobrovolný et al. (2010), the only documentary series used as part of 1058 

the PAGES 2k Consortium (2013) continent-by-continent temperature reconstruction. Calibrated temperature series from 1059 

China, including Zhang (1980) and Wang and Wang (1990a), are also incorporated into the PAGES 2k Consortium (2017) 1060 

community-sourced database of temperature-sensitive proxy records.  1061 

10. Towards best practice in the use of climate indices for historical climate reconstruction 1062 

10.1. Regional variations in the development and application of climate indices 1063 

This review has shown that there are multiple approaches globally to the development and application of indices for 1064 

historical climate reconstruction. Returning to the themes identified in the introduction, three categories of variability can be 1065 

recognised. First, there is variability in the types of climate phenomena reconstructed in different regions (Table 5). Studies 1066 

of the historical climatology of Europe and Asia span the greatest range of climate phenomena. This is partly a product of the 1067 

range of climate zones present in these continents, and therefore the diversity of weather phenomena to which observers 1068 

might be exposed and document. However, it also reflects the relative abundance of documentary materials available for 1069 

analysis and the richness of climate-related information they contain. Where smaller volumes of documentary evidence are 1070 
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available, reconstructions naturally tend to be skewed towards the climate parameters that were of sufficient importance to 1071 

people that they captured them in writing or as artefacts – hence the emphasis on precipitation reconstructions for Africa and 1072 

Australia and on winds and storm events over the oceans. 1073 

Table 5: Types of historical environmental phenomena reconstructed using an index approach in different parts of the world, 1074 

with a qualitative indication of the relative emphasis of studies in each region (3 indicates a large number of studies, 1 a 1075 

small number of studies, - indicates no studies). 1076 

Region Temperature Precipitation Floods Drought Snow/ice 
Wind/ 

storms 

Europe 3 3 3 2 1 1 

Africa 1 2 - 1 1 1 

Americas 1 1 1 -1 -1 1 

Asia 2 2 2 1 1 1 

Australia - 1 1 1 - - 

Oceans - 1 - - -1 2 

 1077 

Second, there is variability in the way that historical evidence is treated to develop individual index series. Such variability 1078 

arises, in part, from the extent to which analytical methods have developed independently. Thus, approaches to index-based 1079 

climate reconstruction in parts of Asia are very different to those used in Europe. Chains of influence in practice can also be 1080 

identified with, for example, elements of the ‘Pfister method’ from Europe being adopted by regional studies in southern 1081 

Africa from the 1980s and then feeding into more recent precipitation reconstructions in Australia. There are common 1082 

features of most historical treatments, regardless of tradition. These include the use of key descriptors or indicator criteria to 1083 

match either individual observations (e.g. the continent-wide precipitation series for Africa developed by Nicholson) or sets 1084 

of monthly, seasonal or annual observations (as per the Pfister method) to specific index classes. Most reconstructions are 1085 

ordinal but, particularly where long runs of overlapping instrumental data are available, many are grounded in statistical 1086 

distributions and present semi- or fully-quantified climate series.  1087 

The final source of variability across index-based investigations is in the number of index points used in individual 1088 

reconstructions. A snapshot of this variability can be seen from investigations in Europe (Table 6). While most index-based 1089 

reconstructions of European temperature and precipitation published since the 1990s employ the seven-point Pfister 1090 

approach, some use up to nine classes. The number of classes used in European flood and drought reconstruction is usually 1091 

smaller but, even here, may extend to seven-point classifications. There are also some commonalities. For example, most 1092 

temperature and precipitation reconstructions use an odd number of classes – to allow the mid-point of the reconstruction to 1093 

reflect ‘normal’ conditions – while open-ended unidirectional climate-related phenomena such as droughts and floods may 1094 

be classified using either an even or odd number of classes. Similar patterns can be seen in other parts of the world (Table 7). 1095 

In the rare instances where authors justify the number of index categories they use, most point to limitations in the quantity 1096 

and/or richness of the historical evidence available for reconstruction as the reason for a smaller number of index categories. 1097 

Table 6: Variability in the number of index classes used in index-based historical climate reconstructions across Europe. 1098 

Climate 

phenomenon 

Number of index classes used 

in climate reconstructions 
Examples 

Temperature 7-point most common (but also 

2-, 3-, 5- and 9- point)   

e.g. Pfister (1984), Alexandre (1987), Brázdil and 

Kotyza (1995, 2000), Van Engelen et al. (2001), Glaser 

(2013), Litzenburger (2015) 
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Precipitation 7-point most common (but also 

3- and 5-point)  

e.g. Alexandre (1987), Pfister (1992), Glaser et al. 

(1999), Van Engelen et al. (2001), Rodrigo and 

Barriendos (2008) 

Floods 3-, 4- 5-point all common e.g. Pfister (1999), Rohr (2006, 2013), Wetter et al. 

(2011), Brázdil et al. (2012), Garnier (2015), Kiss (2019) 

Drought 3-point most common (but also 

5- and 7-point) 

e.g. Pfister et al. (2006), Brázdil et al. (2013b), Garnier 

(2018), Erfurt and Glaser (2019) 

Table 7: Variability in the number of index classes used in index-based historical climate reconstructions in Africa, the 1099 

Americas, Asia, Australia and over the oceans. 1100 

Region 
Number of index classes used 

in climate reconstructions 
Examples 

Africa 3-point for temperature; 

5- or 7-point for precipitation 

e.g. Nicholson (2001), Nash and Endfield (2002), Kelso 

and Vogel (2007), Grab and Nash (2010), Nicholson et 

al. (2012a), Nash et al. (2016), Grab and Zumthurm 

(2018) 

Americas 3-point for temperature, 5- or 7-

point for floods / precipitation; 

3-point for snowfall 

e.g. Baron et al. (1984), Prieto (1984), Baron (1989, 

1995), Prieto et al. (1999), Prieto and Rojas (2015), Gil-

Guirado et al. (2016) 

Asia 4- or 5-point most common for 

temperature / precipitation and 

floods/drought 

e.g. Zhu (1926), Zhang and Zhang (1979), Wang and 

Wang (1990a), Academy of Meteorological Science of 

China Central Meteorological Administration (1981), 

Wang and Wang (1990b), Wang et al. (1998), Tan and 

Wu (2013), Tan et al. (2014), Ge et al. (2018) 

Australia 3-point for precipitation e.g. Fenby and Gergis (2013), Gergis and Ashcroft 

(2013), Gergis et al. (2018)  

Oceans 1-, 4- or 8-point for wind 

direction, 12-point for wind 

speed 

e.g. Garcia et al. (2001), Prieto et al. (2005), Küttel et al. 

(2010), Barriopedro et al. (2014), Barrett et al. (2018), 

García‐Herrera et al. (2018) 

 1101 

10.2. Guidelines for generating future documentary-based indices 1102 

The diversity of practice revealed in this review raises two issues. First, different approaches to index development make it 1103 

harder for climate historians and historical climatologists working in different parts of the world to compare their climate 1104 

indices directly, since each will include indices with differing climatological boundaries. Second, they make it harder for 1105 

(palaeo)climatologists to use the resulting time series in synthesis and modelling studies without recourse to the 1106 

methodology used in each original study. As noted in section 9.2, fully calibrated series have been included within global 1107 

climate compilations such as the PAGES 2k Consortium (2013, 2017) temperature syntheses. Non-calibrated index series 1108 

have also been incorporated into multi-proxy reconstructions using the “Pseudo proxy” approach of Mann and Rutherford 1109 

(2002) – see, for example, Neukom et al. (2014a) and Neukom et al. (2014b) – but these types of reconstruction are 1110 

relatively rare.  1111 

Having a standard approach to index-based climate reconstruction would clearly have its benefits. However, we recognise 1112 

that a ‘one size fits all’ approach is neither appropriate for all climate phenomena nor for all source types. The reconstruction 1113 

of historical wind patterns over the oceans from ships’ logbooks and the identification of precipitation variability through the 1114 

analysis of descriptions of rogation ceremonies, for example, already have well-developed methodologies and protocols. We 1115 

further recognise that the most widely used approaches such as the Pfister method would require modification to be useful 1116 

for temperature and/or rainfall reconstruction in all regions, since climates with strong seasonality may not have 1117 

documentary evidence available year-round. Their use would, in some areas, also override the legacy of decades of 1118 

methodological effort and require the reanalysis of enormous volumes of documentary evidence.  1119 
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Rather than suggest a prescriptive method, we instead offer a series of guidelines as best practice for generating indices from 1120 

collections of historical evidence. The guidelines are of greatest relevance to index-based reconstructions of temperature and 1121 

precipitation from multiple source types but also have resonance for other climate phenomena (e.g. winter severity) and for 1122 

many single source types (e.g. annals, chronicles, letters, diaries/journals, newspapers). The guidelines are based, in part, on 1123 

the excellent reviews by Brázdil et al. (2010) and Pfister et al. (2018), but also incorporate insights from this study:  1124 

1. Researchers should be familiar with the climatology of their study region, as this may influence the temporal 1125 

distribution of documentary evidence. Indices should, ideally, be based on collections of historical records that 1126 

overlap with a climatically homogenous region with respect to the phenomena to be reconstructed. 1127 

2. Researchers should be familiar with the strengths and weaknesses of each of their historical sources prior to their 1128 

use in climate reconstruction. 1129 

3. Researchers should select an appropriate temporal resolution for their index series according to the quantity, quality 1130 

and richness (in terms of climate information) of available historical sources. This may be monthly, seasonal, 1131 

annual or longer. For information-rich areas, a monthly resolution is optimal as it offers the greatest potential for 1132 

comparison with early instrumental series (which may be published as monthly averages prior to the wider 1133 

availability of daily data) and the greatest flexibility for comparison with more coarsely-resolved sources, such as 1134 

palaeoclimate reconstructions. For regions with marked variations in the quantity and quality of climate information 1135 

across the year, the choice of resolution may be dictated by the length of period during the year when information is 1136 

most sparse. 1137 

4. Whether to develop a three-, five- or seven- (or more) point index series may also be influenced by the legacy of 1138 

previous studies in a region if direct comparisons are required; however, following guideline 3, researchers should 1139 

only generate series with higher numbers of index classes if source density and richness permit. 1140 

5. Transforming the information in historical documents to numbers on a scale requires a high degree of expertise to 1141 

minimise subjectivity and should, ideally, be undertaken by experienced researchers with a good knowledge of the 1142 

climate of a region and an understanding of the language of the time period in which sources were written. 1143 

6. Historical records should ideally be sorted chronologically prior to analysis, with indices developed in a stepwise 1144 

manner. Pfister et al. (2018, p.120) recommend that indexing begin with the most recent period (a process referred 1145 

to by Brázdil et al., 2010, as 'hind-casting'), which for most studies will also be the period with the greatest volume 1146 

of documentary evidence. This allows researchers to become familiar with the vagaries of their evidence during 1147 

well-documented periods before working backwards to periods where information may be less complete. 1148 

7. For regions and periods where large volumes of historical information are available, indices should always be 1149 

generated using evidence from more than one independent contemporary observer or record. If weather in a region 1150 

is documented within a single contemporary recordWhere reconstruction must rely on a single observer or record, 1151 

or on secondary sources, appropriate levels of uncertainty should be noted in the final reconstruction (see Pfister et 1152 

al., 2018). 1153 

8. It is advisable to sum-up index series – either in time (i.e. from monthly to seasonal or annual) or in space (i.e. by 1154 

combining several index series from a climatologically homogeneous region). This approach may well approximate 1155 

index series to natural climate variability. Careful assessment is needed, however, to avoid any loss of information 1156 

during the process of summation, particularly for extreme events (see section 8.1). Potential seasonal biases within 1157 

documentary sources should also be considered as these will influence annual totals. 1158 

9. Where possible, index series should be developed independently from the same set of historical sources by more 1159 

than one researcher to minimise subjectivity. The final index series for southeast Africa produced by Nash et al. 1160 

(2016), for example, was first developed independently by two members of the research team who then met to agree 1161 

the final series. 1162 
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10. To maximise their wider usefulness, index series should, ideally, overlap with runs of local or regional instrumental 1163 

data to permit calibration and verification. Where instrumental data are not available, overlaps with independent 1164 

high-resolution palaeoclimate records may be useful for comparison and testing, noting that palaeoclimate records 1165 

may have their own biases. 1166 

11. If fully calibrated, statistical measures of error should be incorporated into the presentation of any reconstruction. 1167 

12. Where insufficient overlapping instrumental data are available to permit full calibration and verification, some form 1168 

of “Confidence Rating” (see section 9.2 and Kelso and Vogel, 2007) should be incorporated into the presentation of 1169 

any reconstruction. 1170 

13. Finally, as Pfister et al. (2018, p.121) identify, the purpose and process of index development should be “fully 1171 

transparent and open to critical evaluation”, with the method of index development described in detail and a source-1172 

critical evaluation of the underlying evidence included.  1173 

There remain vast collections of documentary evidence from all parts of the globe that that have yet to be explored for 1174 

information about past climate. We hope that, if such collections are scrutinised following these guidelines, they will lead to 1175 

index-based reconstructions of climate variability that can be used to both extend climate records and contextualise studies 1176 

of climate-society relationships to the wider benefit of humankind. 1177 
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