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Abstract.

Global changes in the climate, especially the warming trend in mean temperature, have received increasing public and

scientific attention. Improving the understanding of changes in the mean and variability of climate variables as well as their

interrelation is crucial for reliable climate change projections.

Comparisons between general circulation models and paleoclimate archives using indirect proxies for temperature and/or5

precipitation have been used to test and validate the capability of climate models to represent climate changes. The oxygen

isotopic ratio δ18O is routinely measured in speleothem samples at decadal or higher resolution and single specimens can

cover full Glacial-Interglacial cycles. The calcium carbonate cave deposits are precisely dateable and provide well preserved

(semi-) continuous, albeit multivariate climate signals in the lower and mid-latitudes, where the measured δ18O in the mineral

does not directly represent temperature or precipitation. Therefore, speleothems represent suitable archives to assess simulated10

climate model abilities for the simulation of climate variability beyond the timescales covered by meteorological observations

(101− 102yr).

Here, we present three transient isotope enabled simulations from the Hadley Center Climate Model version 3 (iHadCM3)

covering the last millennium (850-1850CE) and compare these to a large global dataset of speleothem δ18O records from the

Speleothem Isotopes Synthesis and AnaLysis (SISAL) database version 2 (Comas-Bru et al., 2020). We evaluate systematically15

offsets in mean and variance of simulated δ18O and test for the main climate drivers for individual records or regions.

The time-mean spatial offsets between the simulated δ18O and the speleothem data are fairly small. However, using robust

filters and spectral analysis, we show that the observed proxy-based variability of δ18O is lower (higher) than simulated by

iHadCM3 on decadal (centennial) timescales. Most of this difference can likely be attributed to the records’ lower tempo-

ral resolution and averaging processes affecting the δ18O signal. Using cross-correlation analyses at site-level and modeled20

gridbox level, we find evidence for highly variable but generally low signal-to-noise ratios in the proxy data. This points at a

high influence of cave-internal processes and regional climate particularities and could suggest low regional representativity of

individual sites. Long-range strong positive correlations dominate the speleothem correlation network but are much weaker in

the simulation. One reason for this could lie in a lack of longterm internal climate variability in these model simulations, which

could be tested by repeating similar comparisons with other isotope-enabled climate models and paleoclimate databases.25
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1 Introduction

The impacts of a changing climate have been observed over the last century (IPCC, 2013) and indicate a strong sensitivity of

natural and human systems to changes in climate. While the mean state of the climate is well observed, direction and magnitude

of potential changes to its variability are still largely unclear (Franzke et al., 2020). However, changes in variability influence

the occurrence of extreme temperature and precipitation events (Katz and Brown, 1992) and have major impacts on society,30

economy (Hänsel et al., 2020), and ecosystems (Vasseur et al., 2014).

Past climate changes provide a testbed to evaluate climate models and to better understand projected changes in the fu-

ture (Schmidt et al., 2012; Braconnot et al., 2012). Instrumental records only cover a short period of time, since systematic

observations of climate variables only began in 1750 CE (black line in Fig. 1a, Morice et al., 2012). Therefore, for model

evaluation on longer than centennial time scales, we have to rely on evidence from paleoclimate archives, such as trees, ice35

cores, foraminifera from marine sediment cores, or speleothems. The δ18O -proxy can be measured on these, and quite a few

other paleoclimate archives with high precision (Schmidt et al., 2014). The climatic interpretation of δ18O changes, however,

are not always straightforward (Fairchild and Baker, 2012). Speleothem archives, which we rely on here, allow sampling of

a wide range of climates in the low- to mid-latitudes and provide (semi-) continuous precisely dated time series of oxygen

isotope ratios.40

Few other transient model-data comparison studies focused on δ18O (e.g., Wackerbarth, 2012; Dee et al., 2015; Parker

et al., 2020). For example, Sjolte et al. (2018) compared Greenland ice cores to the ECHAM5/MPI-OM model over the last

millennium and were able to differentiate between solar and volcanic forcing effects from their reconstructions. On orbital

timescales (150,000 yr), Caley et al. (2014) compared speleothem records from South East Asia to a transient isotope-enabled

simulation with the model of intermediate complexity iLOVECLIM. They found model-data similarity for the broad temporal45

trends, but differences at shorter timescales, highlighting the role of seasonality.

For our model-data comparison, we focus on the time period of the last millennium (850-1850AD Taylor et al. (2012))

for which a fairly high number of well-preserved datasets are available. This time period is characterized by stable, close-to-

present-day, boundary conditions (fairly constant greenhouse gas concentrations and sea level) and climate variability due to

natural, solar and volcanic, forcings (Schurer et al., 2014; PAGES2k-Consortium, 2019; Taylor et al., 2012; Neukom et al.,50

2019). It is also one of the key paleoclimate periods included in the joint experiments of the Paleoclimate Model Intercompari-

son Project Phase 3 and 4 (PMIP3/PMIP4, Jungclaus et al., 2010; Kageyama et al., 2018) and the overarching Coupled Model

Intercomparison Project Phase 5 and 6 (CMIP5/CMIP6, Taylor et al., 2012; Eyring et al., 2016).

Modeled climate variability can be a consequence of either internal interactions and processes (internal variability) or of

radiative forcings such as depicted in Fig. 1c-e (forced external variability), e.g. greenhouse gases, volcanic eruptions, or total55

solar irradiance. Previous studies have suggested that simulated temperature variability is systematically too low, especially

on the regional scale (Laepple and Huybers, 2014a). This has been attributed to too high diffusivity (Laepple and Huybers,

2014b) or to missing processes and feedbacks (Rehfeld et al., 2016). Variability induced by external radiative forcing only ac-

counts for a small fraction of the regional climate variance (Goosse et al., 2005; Laepple and Huybers, 2014b). Discrepancies
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Figure 1. Climate and main climatic drivers over the last millennium. (a) Global annual mean surface temperature (GMST) as modeled

(iHadCM3, blue), reconstructed (PAGES2k, red) (PAGES2k-Consortium, 2019) and observed (HadCRUT4, black) (Morice et al., 2012).

(b) Annual mean δ18O in precipitation at Bunker Cave, Germany as modeled (iHadCM3, green) and measured calcite δ18O (drip water

equivalent) from SISAL entity 240 (dark blue) and 242 (light blue) at the Bunker cave site (Comas-Bru et al., 2019; Fohlmeister et al.,

2012). Comparison plots for all entities are given in supplementary figures SF1-2. (c) Atmospheric CO2 concentration, (d) volcanic forcing

in units of aerosol optical depth (AOD) (Crowley and Unterman, 2013) and (e) total solar irradiance (TSI) as used in the model simulations

(Steinhilber et al., 2009; Wang et al., 2005).

increase towards longer timescales (Laepple and Huybers, 2014a), and are substantial already at the multidecadal to centennial60

timescales that we target here.

The incorporation of an isotopic water cycle into isotope-enabled General Circulation Models (iGCM) provides additional

means for understanding the hydrology of the climate system(Werner et al., 2016; Sturm et al., 2010; Tindall et al., 2009). The

ratio of H2
18O to H2

16O is an indicator of evaporation temperature, precipitation amount, and altitude, as well as distance to65

source water (Dansgaard, 1964). It is given in the δ-notation as

δ18O = (

18O
16O sample
18O
16O standard

− 1) · 1000‰,

where standard indicates the Vienna Standard Mean Ocean Water standard V-SMOW (Kendall and Caldwell, 1998).
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On monthly to decadal time scales, the Global Network of Isotopes in Precipitation (GNIP) database (IAEA/WMO, 2020)

provides measurements of δ18O in collected precipitation water and these have been used in model-data comparisons for70

the present climate (Tindall et al., 2009; Werner et al., 2011; Comas-Bru et al., 2020). On decadal and longer timescales,

paleoclimate archives such as speleothems are crucial. δ18O variations in stalagmites, to first order, represent changes in δ18O

in the meteoric precipitation above the cave.

Speleothem cave deposits form in karst regions (Fairchild and Baker, 2012) under climatic conditions spanning from ex-

tremely cold (Lauritzen and Lundberg, 1999) and very arid (Neff et al., 2001) to extremely hot and humid conditions (Partin75

et al., 2007). As a terrestrial climate archive, they are able to store information on continental climate changes. They form

as calcite or aragonite matrix from calcium dissolved in acidic drip water and do, therefore, archive the oxygen isotope from

precipitation water in accumulated growth layers (Fairchild and Treble, 2009). δ18O can be regarded as a proxy for surface

temperature variations in higher latitudes, and precipitation amount in the tropics (Dansgaard, 1964), overlayed with distinct

observable signatures of source water evaporation and transportation over longer distances (Bradley, 1999; Dansgaard, 1964).80

These signatures are also visible in speleothem records, including additionally a fractionation process involved in the calcite

formation, which is primarily temperature-dependent (Urey, 1948; McCrea, 1950). The climatic interpretation of speleothem

δ18O variations in calcite or aragonite (hereafter δ18Ospeleo ) can be hampered by non-linear growth processes (Dreybrodt,

1980), and multiple cave-specific parameters such as vegetation cover (Haude, 1954; Wackerbarth et al., 2010), karst (Jean-

Baptiste et al., 2019), and inner cave processes (Fairchild et al., 2006), which influence δ18Ospeleo as well as dating uncertain-85

ties (Breitenbach et al., 2012). For speleothems, in particular, positive correlations to ice core δ18O , which is considered a

proxy for temperature, have been reported (McDermott et al., 2001) but also negative correlations to local annual mean tem-

peratures at the cave site (e.g. (Lauritzen and Lundberg, 1999)). This highlights the complexity of the system and the potential

regionality of the signal. In studies on drip water, δ18O and annual mean temperature, regions with different dominant climate

controls could be distinguished (Baker et al., 2019).90

Here, we present three new last millennium isotope-enabled simulations from the iGCM version 3 of the Hadley Model

(iHadCM3) and test how similar the δ18O variations in iHadCM3 and speleothem records are (Sec. 4.1). A characterization

of the datasets and relevant forcing can be found in Fig. 1. The robustness of the findings and methods are evaluated over the

last millennium, for which a large number of high-resolution proxy datasets from the SISAL v.2. database (Comas-Bru et al.,

2020) are available.95

We explore these similarities on both spatial and temporal scales, to distinguish patterns of the mean state (Sec. 4.1), the

variability (Sec. 4.2 and Sec. 4.3), and the spatial representativity of speleothem climate records (Sec. 4.4 and Sec. 4.5). We

examine the simulation’s capability to simulate and the records’ capability to capture variability on different time scales to

improve our understanding of processes and uncertainties of both.
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2 Data100

2.1 Model description and simulation overview

In this study, we use the coupled atmosphere-ocean isotope-enabled GCM iHadCM3, which has been widely used to simulate

present and future climate (Sime et al., 2008; Tindall et al., 2009; IPCC, 2013), as well as for past climates such as the late

Holocene and Last Glacial Maximum (Holloway et al., 2016), the last interglacial (Sime et al., 2009, 2013; Holloway et al.,

2016, 2018) and the Eocene (Tindall et al., 2010).105

The model consists of several components: the atmosphere model HadAM3 (Pope et al., 2000), the ocean model HadOM3

(Gordon et al., 2000), a sea ice model (Valdes et al., 2017) and a dynamic land surface and vegetation model (Cox, 2001).

The atmospheric component is run at a horizontal resolution of 2.5◦× 3.75◦, 19 vertical levels and time steps of 30min. The

oceanic output has a horizontal resolution of 1.25◦× 1.25◦, 20 vertical levels and time steps of 1h. For the isotope-enabled

version, water isotopes HD16O and H2
18O were added as two separate water species in the atmospheric model, and as tracers110

in the ocean model. Fixed isotope fractions are added to a fixed volume gridbox of the ocean and experience changes due

to evaporation, precipitation, and runoff through a virtual isotope flux, altering the δ18O ratio in the top level of the ocean

accordingly (Tindall et al., 2009). The land surface and vegetation evolves dynamically and is based on TRIFFID (Cox, 2001)

with timesteps of 5yr.

Compared to instrumental observations, the model represents sea surface temperature (SST), ice sheet, and ocean heat con-115

tent well (Gordon et al., 2000). The freshwater hydrological cycle in the model shows only a slight overestimation in the local

evaporation (Pardaens et al., 2003). The model simulates the major isotopic fractionation effects defined by Dansgaard (1964)

(e.g. the latitude effect, the amount effect, and the continental effect) appropriately compared to GNIP data (Zhang et al.,

2012). Additionally, a broad agreement in isotopic output with GNIP data in the general spatial distribution can be observed

and the general oxygen isotopic ratio features like latitude effect, amount effect, or the continental effect are captured well120

(Tindall et al., 2009). As such, iHadCM3 captures large scale features of climate and oxygen isotope ratios while remaining

computationally efficient for the simulation of timescales such as the last millennium. The basic characteristics and boundary

conditions of the last millennium simulations used in this analysis, which are identified with the LM prefix, are listed in Tab. 1.

2.2 The speleothem isotope dataset125

The oxygen isotope ratio measured in speleothems is subject to many processes, starting from the source water which is

influenced by the atmospheric circulation and climate. Therefore, the amount of precipitation, its composition, the annual

mean temperature, and the variability of these events is in part imprinted in the archive. A comprehensive summary of the

processes involving speleothem growth can be found in Fairchild and Baker (2012).

Vegetation above the cave has an impact on the source water through evapotranspiration, where the meteoric δ18O is subject130

to additional fractionation processes and seasonal effects (Haude, 1954; Thornthwaite and Mather, 1957; Wackerbarth et al.,

2010). Filter processes and transportation through the soil and upper karst influence the signal and may lead to varying transit
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Table 1. Basic characterization of the LM1, LM2 and LM3 last millennium simulations.

Years 850-1850 CE

1100 - 100BP

Orography fixed to 0BP

Orbital Parameter fixed to 0BP

GHG well mixed CO2, CH4, NO2 and

other trace gases Schurer et al. (2014),

Schmidt et al. (2012)

Vegetation dynamic (TRIFFID (Cox, 2001))

Total Solar Irradiance Steinhilber et al. (2009)

Wang et al. (2005)

Schurer et al. (2014)

Volcanic Forcing Crowley and Unterman (2013)

times between several minutes and multiple years (Jean-Baptiste et al., 2019) at different drip sites within the same cave. The

change in the partial CO2 pressure conditions between the cave environment and the surface (Fairchild and Baker, 2012) in

the lower epikarst makes the drip water degas and precipitate calcite in a fractionation process, which consequently forms a135

speleothem (Tremaine et al., 2011).

Varying environmental conditions within the cave can also be imprinted in the isotopic signal and may pronounce or atten-

uate the climate signal (Fairchild and Baker, 2012). Inside the speleothem, interactions with the cave environment or water

inclusions within the mineral are still possible and, therefore, may further change the δ18Ospeleo archived in the speleothem.

The oxygen isotope composition of dripwater is influenced by all above-mentioned factors. Due to the multivariate processes140

impacting speleothem growth, the interpretation of the δ18Ospeleo signal is not straightforward, although systematic evaluation

has identified patterns of similar climate influence based on modern observations (Baker et al., 2019). Proxy System Models

(PSMs), where the input signal modification is modeled based on known processes in the karst may also help with the inter-

pretation (Evans et al., 2013; Dee et al., 2015). PSMs of varying complexity have been proposed from the simple exponential

decay filter, mimicking karst mixing (Dee et al., 2015) with the delay time as the single tunable parameter, to full-blown karst145

system models with numerous parameters describing soil water and gas equilibration or carbonate bedrock dissolution (Owen

et al., 2018).
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Figure 2. Site locations of the SISAL database on a global karst map (brown shadings Williams and Ford, 2006). The sites with entities

that pass the prerequisites for our analysis are marked in colored triangles. These entities cover at least a period of 600yr within the last

millennium and have a minimum of 30 (red), 20 (orange), or 10 (purple) δ18O measurements and two dating points in this period. All other

sites in the SISAL database v.2. are marked with a black dot. The nine clusters used in the analysis here are North America (c1, 12 entities),

South America (c2, 13 entities), Europe with North Africa (c3, 21 entities), Southern Africa (c4, 2 entities - too few for systematic analysis),

Middle East (c5, 6 entities), India and Central Asia (c6, 8 entities), East Asia (c7, 18 entities), South East Asia (c8, 4 entities), and New

Zealand (c9, 3 entities).

The Speleothem Isotopes Synthesis and Analysis is an international working group, collecting speleothem datasets in a

quality-controlled and cross-references database with rich metadata for samples and dating procedures (Atsawawanunt et al.,

2018; Comas-Bru et al., 2020). The second version of the database SISAL v.2. includes measurements of stable 13C and150
18O isotopes on speleothems of 691 individual entities from 294 globally distributed sites (Comas-Bru et al., 2020). In order

to provide a comprehensive and reliable analysis, we only use data from entities which are not superseded (entity_state=

current) and that cover at least a 600y period within the analysis period (850-1850CE). Furthermore, records considered must

have at least two radiometric dates, or one radiometric date (in the analysis period) and be marked as actively forming at the

time of collection, or be lamina counted. We only check for dates that are marked as used, indicating that they are known155

to have been used in the original chronology in the database. Samples without sample or depth information, are omitted. In

the analysis, we filter the database adapted to the requirements of the different analyses, as depicted in Fig. 2. For the last

millennium, we remain with 112 records from 92 different sites with at least ten isotopic measurements, that we used for the

assessment of the mean δ18O offset, and 85 records from 71 sites with at least 30 isotope samples for the correlation and

network analyses.160

For each U/Th-dated speleothem, SISAL v.2. provides the original age model (if available), and new possible age-models

based on up to seven methods. On average, four new age-models are available. Methods include linear interpolation, linear

regression, Bchron (Haslett and Parnell, 2008) as adapted by Roesch and Rehfeld (2019), Bacon (Blaauw and Christeny,

2011), Oxcal (Ramsey, 2009), copRa (Comas-Bru et al., 2020, modified R version after Breitenbach et al. (2012)), and StalAge

(Scholz and Hoffmann, 2011). Details on the automated age modeling procedure are given in Roesch and Rehfeld (2019) and165

Comas-Bru et al. (2020). For each entity and ensemble method, one median best-fit estimate with confidence intervals, and
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between 129 and 7737 age-models based on perturbations of the radiometric ages are available (Comas-Bru et al., 2020). These

ensembles are available for 69 of the 87 entities that we used in the network analysis, resulting in a total of 464383 ensemble

age-models in our analysis.

3 Methods170

3.1 Speleothem analysis and drip water conversion

To increase the robustness of the results, we maximize the number of records by adaptive filtering of the database (Fig. 2). For

calculations involving the time-averaged δ18O -values, we only use speleothem data with at least 10 δ18Ospeleo measurements

and two dating points within a 600yr period in 850-1850CE. For variance analyses, we demand at least 20 and for spectral as

well as correlation and network analyses 30 δ18Ospeleo measurements. For the investigation of spatial correlation patterns by175

network analysis, as explained in detail in Sec. 3.3, the set of speleothems is divided into nine regional clusters (Fig. 2). We

primarily use the chronologies provided by the original authors, but test for the sensitivity to age-modeling choice by consid-

ering the age model ensembles (details below in Sec. 3.3.)

Within the last millennium, we remain with 17 aragonite and 89 calcite speleothems with 10 or more δ18O sampled. We180

exclude six speleothems of mixed mineralogy. The δ18Ospeleo signal of calcite and aragonite speleothems is converted to its

drip-water equivalent (δ18Odw.eq ) relative to the V-SMOW standard as in Comas-Bru et al. (2019). For calcite, we use the

empirically-based fractionation formula of Tremaine et al. (2011)

δ18Odw.eq = δ18Ocalcite−
((16.1 · 1000

T

)
− 24.6

)
, (1)

where T is in K and δ18O in units of ‰. For aragonite, we use the fractionation factor from Grossman and Ku (1986)185

δ18Odw.eq = δ18Oarag.−
((18.34 · 1000

T

)
− 31.954

)
. (2)

Here, temperature values T represent the local cave temperature in units of K. These are often not available. The annual

mean temperature on the surface above the cave can, however, serve as a surrogate for local cave air temperatures (Fairchild

and Baker, 2012). Both for aragonite and calcite drip water conversion, we use the simulated annual mean temperatures at the

cave location, down-sampled to the temporal resolution of the record. Note that, as a consequence, the conversion changes the190

time-averaged mean and the variance in our analysis. Finally, the V-PDB to V-SMOW conversion from Coplen et al. (1983) is

used.

δ18OSMOW = 1.03092 · δ18OPDB + 30.92. (3)
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Whenever we directly compare simulation output values with the speleothem records, e.g. when comparing means, variances,

or spectra, we use δ18Odw.eq, accounting for the different mineralogies. The conversion would, however, add an extra source of195

uncertainty in correlation analyses, as it implicitly builds on transient simulation data. Therefore, we denote the raw values of

δ18O measured directly in calcite or aragonite matrix by δ18Ospeleo and focus on those in the network and correlation analyses.

3.2 Statistical tests and time series processing

Speleothems form naturally, and therefore provide irregular time series with reconstructed and uncertain observation time

series (Rehfeld and Kurths, 2014).200

We account for this in our assessment as outlined below. Temperature, precipitation, and isotopic data are extracted from

the simulation at cave locations by bi-linear interpolation. Annual mean values for temperature and precipitation are formed

by averaging over all months from April onwards to March of the following year. Differences in mean are given in ∆δ18O =

δ18O−δ18Odw.eq (model-data difference) and variance ratios in the record’s variance divided by the variance of the simulation

at the cave location (VarRec/VarSim). If not explicitly stated otherwise, we always provide 90% confidence intervals by boot-205

strapping (Efron and Tibshirani, 1986) with 1000 repetitions. To reduce potential bias due to the irregular spatial distribution

of cave sites, we use area-weighting in spatial mean estimates, where stated. This is done by calculating gridbox-means of all

speleothems within a 3.75◦× 2.5◦ gridbox similar to the simulation, which is then area-weighted across latitudes, following

Marcott et al. (2013).

210

While the simulation data is available at monthly basis, the proxy time series are irregular and at annual or lower resolution.

Therefore, the simulation data at cave location is down-sampled to the record’s reconstructed time axis by block averaging.

The power spectral density (PSD) of a time series over a finite interval of time describes the distribution of power in frequency

components of the time series. The integration over all spectral components yields the variance of the time series (Chatfield,

2003). For spectral analyses, the proxy records are interpolated to their mean resolution in a double interpolation and filtering215

procedure (following Laepple and Huybers, 2014a, b; Rehfeld et al., 2018; Dolman et al., 2020). Spectra of sufficient resolution

can then be averaged to a mean spectrum over a certain frequency range (Kunz et al., 2020).

We test the impact of karst storage of drip water (Gelhar and Wilson, 1974; Dee et al., 2015) by applying an additional

simplified aquifer recharge model style filter (hereafter karst filter). The impulse response of the Green’s function depends

solely on the transit time τ , as g(t) = 1/τ ·e−t/τ , with t > 0. The Green’s function is convolved with the simulated input δ18O220

or δ18Opw signal to obtain the simulated karst-filtered signal in the cave.

The correlation of irregular time series is estimated by Person-correlation for irregular time series (Rehfeld et al., 2011;

Rehfeld and Kurths, 2014). The signal-to-noise ratio (SNR) is estimated from the estimated cross-correlation r̂ij between

two time series i and j by calculating SNR = r̂ij/(1− r̂ij), as described by Fisher et al. (1985). If more than two estimates225

are available, e.g. at the gridbox level, the median between all possible combinations of cross-correlations between the time

series is used. We account for age-model sensitivity by calculating cross-correlation estimates for all possible combinations of
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available age-model ensembles (Comas-Bru et al., 2020). The resulting best selection tuning indicates the strongest absolute

significant correlation that can be obtained from age-model selection a pair of records.

3.3 Spatial correlation via network analysis230

Networks are practical representations for complex systems with interacting components and can be used to analyze dynamics

in the climate system (Tsonis et al., 2006; Tupikina et al., 2014; Rehfeld et al., 2013). Here we use a network with n nodes,

where n is the number of SISAL v.2. entities that fulfill the sampling criteria. The speleothem entities are joined in pairs by

edges or links, where the n · (n−1) links are formed if the cross-correlations r̂i,j between two speleothem entities i and j, are

significantly different from zero with a p-value of pi,j .235

We split the network into sub-networks by hierarchial distance-based clustering of the node locations. The cluster that

includes all East Asian caves is manually split into two clusters, one for East Asia (all caves above 20◦N) and a cluster of

South East Asia (all caves below 20◦N). Links in the plots (Fig. 8) are visualized if they are stronger than a certain threshold

|r|> r5%, where r5% is minimum correlation strength of the 5% absolute strongest correlations (’fixed link density’).

4 Results240

4.1 Assessing model-data differences in time-averaged δ18O

We first compare the mean SISAL v.2.-record δ18Odw.eq and iHadCM3 δ18O to assess potential model biases. Annual mean

temperature and precipitation fields (Fig. 3a,b), and the mean modeled δ18O together with the mean δ18Odw.eq in the SISAL

records (Fig. 3c) is shown in Fig. 3. Shown and described are the fields and results for LM1, results for the other ensemble

members are generally very similar and given in supplementary table ST1. The major oxygen isotope ratio depletion features245

as described by Dansgaard (1964), can be distinguished. Modeled values show progressive depletion towards higher latitudes,

the interior of continents, and towards regions with high precipitation amounts.

These offsets between modeled and measured δ18O (∆δ18O = δ18O− δ18Odw.eq) show a heterogeneous pattern (Fig. 3d).

Generally, modeled values appear to be more depleted overall than the mean values of speleothem δ18Odw.eq, except in the NH

extratropics. There are some localized clusters and individual sites with large positive and negative differences. One example250

is site 159 (eID = 531, Qunf cave in Oman) which is visible as a dark blue dot in Fig. 3d. The δ18Odw.eq record shows a mean

enrichment in calcite (δ18Odw.eq = 0.49‰), while the simulation shows much more depletion (δ18O =−6.9‰). This results

in a fairly large model-data difference of ∆δ18O =−7.4‰. The site stands out against the regional cluster, pointing towards a

local site-specific factor influencing the offset. Site 277 (eID = 598, Huagapo cave in Peru) visible as a dark red dot in Fig. 3d,

shows a strong depletion in calcite (δ18Odw.eq =−13.7‰) while the simulation is not as strongly depleted (δ18O =−5.3‰).255

This results in a large positive offset of ∆δ18O = 8.4‰. The cave is located at an altitude of 3850m above sea level, whereas

model altitude at the gridbox is close to sea-level. This should explain part of the offset.
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Figure 3. Characterization of the mean state of the simulation (LM1): Shown are (a) mean annual surface temperature, (b) precipitation, and

(c) δ18Opw, including δ18Odw.eq at cave sites in drip water equivalents. Note the logarithmic color scale. Point-wise differences between

the mean simulated δ18O and proxy-based δ18Odw.eq (d) show anomalies. Spatially aggregated differences at the global and cluster level

for simulations LM1-LM3 are given in supplementary table ST1.

At the regional scale, the largest cluster offset can be seen over China and East Asia (c7) ∆δ18O = +2.2‰ (−0.5,4.9, 90%

confidence interval). However, the most consistent negative difference is visible over neighboring Indonesia (c8) ∆δ18O =

−2.7‰ (−4.9,−0.6). The smallest differences are found in Europe with ∆δ18O = +0.5‰ (−1.8,2.7) and India and Cen-260

tral Asia ∆δ18O = 0.7‰ (−4.4,5.7). Overall, the simulated δ18O is smaller than the δ18Odw.eq measured in speleothems

(∆δ18O =−0.1‰ (−4.6,4.4), with no clear spatial pattern for the offsets distiguishable from the map. The gridbox-level area

weighted global mean difference is −0.02‰ (−0.22,1.00) for LM1.

We further explore the impact of site conditions on the model-data offset (Fig. 4). We find a decreasing δ18Odw.eq to-265

wards northern higher latitudes (Fig. 4a), and most notably, a dependency of δ18Odw.eq on the local mean annual temperature

(Fig. 4b). We see more positive offsets in the northern hemisphere and mostly negative offsets in the southern hemispheres

(Fig. 4c).

The offsets also show a strong influence of temperature (Fig. 4d) and elevation (Fig. 4i), which are both controlling factors

during the isotopic fractionation process. The elevation difference between the simulation and the record spans from a 1332m270

higher elevation in the simulation (eID = 538 in Shenqi cave in China) and 3065m higher elevation in the records (eID = 598 in

Huagapo cave in Peru, visible outlier in Fig. 4c,d). Here, the offsets increase with increasing absolute difference (Fig. 4j). The

offset shows a weak correlation with precipitation (Fig. 4f), both in the annual mean andfor the boreal winter/summer season
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Figure 4. Systematic comparison of climate variables and cave parameters on δ18Odw.eq and the offset ∆δ18O to the simulation. Shown are

the absolute values of δ18Odw.eq against: (a) site latitude, and (b) simulated local annual mean temperature, and the model-data difference

against (c) latitude, (d) simulated mean annual temperature, (e) geology surrounding the cave (’?’ means unknown geology), (f) mean annual

(g) DJF and (h) JJA precipitation amount as well as (i) cave elevation, (j) the elevation difference between the model grid and actual cave,

and (k) the overall cover thickness above cave. Symbols denote calcite (black circles) or aragonite (blue triangles) specimens. An unweighted

linear regression (red line) is added for illustration, but without consideration of significance.

(see DJF and JJA precipitation in Fig. 4g,h). No relation can be seen with mineralogy, parent rock (Fig. 4e) or cover thickness

(Fig. 4k).275

4.2 Assessing model-data differences in the local variance of δ18O

To analyze how similar the variability of the isotopic signal is in speleothems and the iHadCM3 climate model, we compare

the total variance in both over the last millennium. The global distribution of variance ratios between δ18Odw.eq and δ18O

(Fig. 5a) shows overall higher variability in the speleothem records than in the simulation, with local exceptions. This is also

corroborated by the density plots of the ratio for both δ18O and δ18Opw in Fig. 5b,c. Generally, the observed proxy variance280

is roughly two times higher than that of the down-sampled simulation δ18O at the cave location (median of the histogram

at 2.0 (1.4,2.8) in Fig. 5b,c). This is consistent with the predominance of red-shaded variance ratio visualizations in the
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Figure 5. (a) Spatial visualization of the site-based dimensionless variance ratio VRec/VSim based on LM1. Aggregated density plots of the

variance ratio of d18O (b) and precipitation-weighted d18O (c) for the raw records (’full’, black lines) and where the simulation has been

down-sampled to the record resolution (’down-sampled’, red lines) illustrate the variance loss due to temporal averaging in the archive (uses

LM1-3).

spatial view indicating VarRec/VarSim > 1 (Fig. 5a). However, there is a clear impact of averaging on the total variance, as

down-sampling results in a variance ration above unity. Overall, this shows a discrepancy between the variance observed in

δ18Odw.eq and the simulated variance at the cave location over the total time period.285

The highest variance ratio for down-sampled δ18Opw is found in Jiuxian cave in China (eID 330, with a variance ratio of

41.2), the lowest variance ratio in Dandak cave in India (eID 130, with a variance ratio of 0.2), while neighboring caves show

very different variance ratios. As the modeled patterns are fairly smooth (Fig. 5a), this indicates a large heterogeneity of the

speleothem data from the cave environment. We find no strong or significant relationship between variance or variance ratios

to any tested climate or cave parameter (SF4 where we show a similar figure to Fig. 4 but for variance ratios).290

4.3 Assessing δ18O variability at interannual to centennial timescales

We extend the analysis of total variance (Fig. 5) to the time scale dependent variance (Fig. 6) to better explore variability

on interannual, decadal, and centennial time scales as compared to the total variance over the last millennium. The spectra

in Fig. 6d give an insight into the variability over different time scales and the representativity of records for reconstruction

resolution.295

On the left side (Fig. 6a-c), the time series of δ18Odw.eq of eID 240 (Bunker cave, Germany) is depicted (Fig. 6a), together

with the simulated δ18O at the cave site at different temporal resolutions (Fig. 6b,c), including karst-filtered δ18O. Comparing

Fig. 6a-c visually, different levels of variance can already be distinguished e.g. between the filtered and unfiltered simulated

data. The iHadCM3 δ18O spectrum of the yearly resolved signal has similar variance over all frequencies, and shows a fairly

constant PSD (Fig. 6d). Variance at decadal timescales (i.e. the PSD for higher frequencies) is just as high as the variance on300

centennial time scales (i.e the PSD for lower frequencies).
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Figure 6. Variability on different time scales through comparison of measured δ18Odw.eq and simulated δ18O time series as well as of

their spectra. (a-c) Example time series of eID 240 in Bunker cave (Germany) (Fohlmeister et al., 2012). (a) The measured δ18Odw.eq in

the speleothem, (b) the iHadCM3 simulated δ18Opw at the cave location with two filters (3 and 9 years) and (c) the simulated δ18Opw but

down-sampled to the same temporal resolution as in (a) with 3 year filter. (d) Power spectral density (PSD) of mean spectra of simulated

δ18Opw at the cave site in yearly resolution (blue), down-sampled to the caves resolution (red) and mean spectrum of the δ18Odw.eq of the

records (black), including the karst-filteres as shown in (a-c). The spectra are area-weighted and averaged over the three simulations (LM1,

LM2 and LM3). The colors for the example eID in (a-c) correspond to the colors of the mean spectra over all entities in (d).

After down-sampling to the irregular resolution of the record, the simulated spectrum loses power in the higher frequency

range. Comparing for example the time series in Fig. 6c to the spectra in Fig. 6d, the down-sampled spectrum indicates lower

variability than the annual resolution spectrum on decadal timescales. On centennial timescales, both spectra display similar

variability. Contrasting Fig. 6b to Fig. 6c, this loss in decadal time scale variability is also visible on the time series level.305

The proxies’ spectra have even fewer frequency components in the high frequency range, due to the lower temporal reso-

lution. They do, however, show a higher PSD at lower frequencies. The records are, therefore, less variable on decadal time

scales, and more variable than both the down-sampled and the full resolution simulated δ18Opw on centennial time scales.

An additional impact of karst processes and storage on the δ18O variability could be expected. To test the impact of this, we

apply simple karst filters (see Sec. 3) with increasing filter length and test whether they reduce the spectral mismatch. Filters310

of different length resulted in increasing spectral slopes with increasing transit times. A 3yr filter for the down-sampled δ18O

achieves equivalent variance trends as the record spectrum with less power on decadal timescales. It eventually flattens again

for longer timescales, without exceeding the PSD of the unfiltered signal, such that it is less variable than the proxies on longer

time scales. A full set of individual spectra (full simulation, down-sampled, record spectrum, and all filters) for all entities used

in this analysis can be found in SF5 and SF6.315
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Figure 7. Correlation fields of simulated δ18O and the related climate variables surface temperature (a) and precipitation (b) for simulation

LM1 (|c|> 0.2,p < 0.1). Colored symbols give the correlation between simulated climate variables and the δ18Odw.eq of the speleothem

records. Empty tiles mask insignificant correlations. Black dots show cave locations with insignificant correlations.

4.4 Climatic drivers of δ18O variability

To distinguish main important climatic drivers for specific areas for δ18O both in the simulation and in speleothems, we

correlate simulated δ18O with the simulated temperature (Fig. 7a) and the precipitation signal (Fig. 7b) on a gridbox level after

temporal down-sampling. Grey (empty) tiles indicate insignificant correlation estimates. The correlation between δ18Ospeleo

and the climate variable is shown.320

We see strong correlations of simulated δ18O to simulated temperature at high latitudes as well as over some landmasses

(background in Fig. 7). The speleothem signals show positive as well as strong negative correlations. The absolute highest

correlation is found for eID 124 in Leviathan cave in the USA (c=−0.4 (−0.7,0.1)). In the simulation, this correlation is

locally positive, which indicates that the simulated temperature is a positive δ18O driver in the general area in the model. The

correlation of the simulated climate and the record’s δ18Ospeleo is, however, negative.325

The correlation between the simulated precipitation and δ18O is especially strong in the tropics. We find the highest absolute

correlation for eID 523 in Gempa Bumi cave in Indonesia (c=−0.5 (−0.7,−0.1)). Here, the background also shows a negative

correlation.

Comparing the two proposed climatic drivers of δ18O variability, we observe that the correlations to temperature are higher

in the higher latitudes, while correlations to the precipitation appear more important in the tropics. A fairly clear zonal structure330

of correlations between the climate and oxygen isotope ratio fields are visible in the model. However, only few records show

a significant correlation (p < 0.1). We find 18, 15 and 22 significant correlations from 87 entities for temperature for the three

LM ensemble runs respectively, and 14, 7, and 10, respectively, for precipitation. No clear climatic driver can, therefore, be

extracted alone from record correlation results. Fewer records show significant correlation to both climate variables. The direct

correlation of the time series of the simulated and proxy-based δ18O results in only 19, 17, and 19 significant correlations from335

87, i.e. at around 20% of the sites.
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Figure 8. Network spanned by the 5% strongest absolute correlations of simulated iHadCM3 δ18O at the SISAL cave sites (a, down-

sampled). All model-based between-site-correlations are shown in the distance-binned boxplot (b). Network visualizations (c) and distance-

binned boxplot (d) of the cross-correlations between SISAL site δ18Ospeleo for the original age models. The color values indicate the 5%

strongest correlations in network and boxplot. The LOESS smoother (span = 0.2) in the boxplots indicat the correlation for the original

chronology (red) as well as the absolute highest correlation through selection of age-models (blue).

4.5 Similarity measures and network analysis

Computing all statistical similarity between the δ18Ospeleo signals within a cave (’site-level-correlation’) or across nearby

caves (regional or gridbox-level correlation) yields a measure of representativity useful for model comparison and uncertainty

assessment. The networks in Fig. 8 are based on the simulated signal (down-sampled) δ18O (Fig. 8a,b) and for δ18Ospeleo340

(Fig. 8c,d).

Network links are based on the 5% highest absolute correlations. The highest correlations are found at close proximity for

the models (Fig. 8a,b), whereas links across a wide range of distance can be seen in the proxy data (Fig. 8c,d). High local

correlations for the model data can be expected, as the simulated δ18O within one cave will be the same, and only differs on a

temporal scale after the adjustment to the entity’s temporal resolution (down-sampling). The mean absolute correlation for the345

5% strongest significant links in Fig. 8a) is c= 0.42 (0.41,0.43). Comparing the down-sampled distance-to-correlation plot

(Fig. 8b) to that on annual resolution analysis, an additional scattering of correlation estimates at longer than 2000km distance

is visible. Results for annual resolution can be found in SF7.

The network of δ18Ospeleo does not display large-scale spatial patterns and no observable relationship between correlation

and distance. The mean absolute correlation for the 5% strongest significant links shown in Fig. 8c is c= 0.52 (0.52,0.53).350

Computing the networks based on the ensemble age models, and selecting the age models that maximize the absolute correla-

tion between sites, amplifies both positive and negative correlation estimatess, but does not change the correlation-to-distance

relationship. Comparing the results for simulated δ18O (Fig. 8a,b), and δ18Ospeleo (Fig. 8c,d), we obtain low correlations at the
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Figure 9. Cross-correlation on site, gridboxe, clusters and global scale for speleothem records and the locally interpolated model output for

δ18O. 12 (18) sites (gridboxes) contain more than one speleothem entity with a total of 27 (45). At each aggregation level the correlations

between all entities is shown for δ18Ospeleo (white bars), and the down-sampled model output δ18O at cave locations (blue bars). Different

temporal scales (original resolution and 100yr-timescale (t.sc)) are compared as well as the age-model ensemble that gives the highest

absolute correlation (dark green bars). Clusters are indicated with the number of speleothem entities in brackets, where c4, c5, c8, and c9

are not included because they contain too few entities. c6/ICA is the India and Central Asia cluster, c7/CEA is the China and Eastern Asia

cluster.

local scale.

355

We can also investigate relationships using regional networks. For this, we look at correlation on different spatial levels and

separate the network analysis from Fig. 8 by sites, gridboxes, and clusters. Cluster c4, c8, and c9 contain less than four entities

and are excluded. We check for representativity on different time scales of record resolution (white, and dark blue) and a 100yr

Gaussian smoothing filter (grey and light blue) and on different spatial scales using boxplots (Fig. 9).

At the site level, we find 27 entities within 12 sites that contain at least 2 entities. The median correlation of these 28 pairs is360

craw = 0.25 (−0.17,0.33). On a 100yr timescale, this increases to c100 = 0.42 (−0.46,0.49)). The SNR gives a measure of

the relative importance of non-climatic overprints on the proxy signal. We obtain a local SNR estimate of 0.5 (0.4,1.1). On the

gridbox level (45 entities in 18 gridboxes), we find a median correlation of craw = 0.23 (0.2,0.25) (100yr timescale: c100 =

0.34 (0.27,0.47)). As on spatial resolutions below gridbox level, correlations between simulated δ18O are not meaningful,

which is why the analysis in Fig. 9 shows only the correlations between record δ18Ospeleo and not those of the simulated δ18O365

on a site and gridbox level.

For regional clusters, the correlation between proxies shows positive and negative median values. In the simulation, the

median values are always positive. For clusters containing more than ten records detailed correlation maps including correlation

matrices are depicted for Europe (SF8), China and Eastern Asia (SF9), South America (SF10), and North America (SF11)

where very red maps and matrices can be found, indicating mostly positive correlations for the down-sampled simulation when370
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compared to more blue ones in the records, indicating that also negative correlations are present. On the global scale, the median

correlation between all records is slightly positive (craw = 0.1 (−0.09,0.11), 100yr timescale: c100 = 0.13 (−0.14,0.17)),

whereas for the simulation this median is positive (craw = 0.06 (0.06,0.06)) and strongly enhanced at centennial timescale to

c100 = 0.76 (0.73,0.81).

By the selection of the age-model that maximizes the absolute correlation, we obtain a significant positive correlation at375

site level and a stronger significantly positive correlation at gridbox level. A detailed table with median correlations and SNR

using the original chronologies as well as using the described age-model selection on different spatial levels is shown in ST2.

Calculating correlations for different age-model ensembles was only done for the 69 entities, where both age-model ensembles

were available (U/Th-dated entities) in Comas-Bru et al. (2020), and our strongest criteria were matched.

5 Discussion380

5.1 δ18O model-data comparison in mean and variance

In our study, we found the last millennium mean iHadCM3-simulated δ18O to agree well with the mean state of the measured

δ18Odw.eq (Fig. 3). The average unweighted offset of ∆δ18O = 0.1‰ (−4.6,4.4) was small compared to the total δ18O and

the area weighted standard deviation of σ2 = 0.78‰2 (0.77,0.8) of the global simulated mean δ18Opw. Measured δ18Odw.eq

followed general isotopic signature patterns as described by Dansgaard (1964) but spatial pattern for the offsets were not385

distinguishable.

Baker et al. (2019) distinguished between temperature zones of climatic controls on δ18O in offset analyses on drip water.

They find a stronger influence of seasonality of precipitation in warmer climates, highlighting the importance of a karst-

recharge model. Here, we also observed a strong temperature dependency reflected in the offset and δ18Odw.eq over the last

millennium, showing the influence of fractionation and other cave internal processes on the δ18O in drip water (Fig. 4). The390

highest offsets on the Northern Hemisphere possibly indicate a stronger influence of the continental effect. Still, from the

records alone and with no karst-recharge information, we were not able to distinguish specific climatic control regions. This

requires a more thorough analysis including monitoring data.

We found no evidence that the variance ratio between record variance and simulated variance is related to the offset between

simulation and records (SF4 is similar to Fig. 4, with variance vatios instead of ∆δ18O). Specifically, there is no correlation395

between site-level offset and site-level variance ratio (results not shown, r = 0.1 (0.0,0.3), p= 0.2). In general, the results

based on the total variance over the last millennium are highly consistent, where variability in models is mostly due to volcanic

forcing (Jungclaus et al., 2010). Differences in variance can, to some extent, be attributed to the sample resolution of the

records, whereas down-sampling of simulated δ18O decreases the variability on decadal time scales. The resolution to which

the simulation is temporally aggregated impacts whether the variance in the simulation appears to be larger or smaller than400

in the records. The variance over the last millennium in the records is, overall 2.0 (1.4,2.8) times as high as the simulated

down-sampled variance in Fig. 5.

18

https://doi.org/10.5194/cp-2020-121
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Furthermore, the simulated δ18O time series at the cave sites show less variability on centennial timescales than the time

series of the records. This is true even when comparing the same temporal resolutions (time scale dependent variance depicted

in SF12 for δ18Odw.eq, yearly-resolution δ18O and down-sampled δ18O). This is in agreement with the findings of Laepple405

and Huybers (2014b), who compared simulated and reconstructed temperature variability across different timescales and found

that the model-data discrepancies increased with time scale, particularly on a regional level.

If we assume that paleoclimate archives record climate variability correctly, and that the proxy-climate relationships are

not timescale-dependent or transient, discrepancies at the centennial timescale could in part be explained by the models’

underestimation of variability, in particular on centennial time scales. However, we find little regional consistency and high410

heterogeneity in the variance estimates from the speleothem records. These findings point to the strong influence of cave

internal processes or the impact of seasonally filtered data captured by speleothems, which is in agreement with McDermott

et al. (2001).

5.2 Influence of the karst-filter

By delaying the simulated down-sampled signal through a simplified karst-filter with a transit time of 3yr, we obtained match-415

ing equivalent power spectra for the simulation and the records. Studies observing transit time in karst systems find increases in

drip rate after an increase in precipitation e.g. after days (Riechelmann et al., 2011). More complex tritium measurements show

actual transit times of e.g. years for the Bunker cave in Germany (Kluge et al., 2010) to decades in the Villars cave in France

(Jean-Baptiste et al., 2019), depending on the karst hydrology. The karst filter effectively reduces the temporal resolution of

the record beyond the nominal median of 5.6yr (Fig. 6). Such low-pass filtering to model drip water transit times has been used420

(Wackerbarth et al., 2010; Dee et al., 2015; Lohmann et al., 2013) to produce similar time lags of 2− 10yr, indicating that the

best fit mean time lag for our karst filter of 3yr (down-sampled) is a realistic estimate for transit times.

We find low interannual to decadal variability in the δ18Ospeleo signals recorded by speleothems (Fig. 6). In part, this is

likely due to the average resolution of the records, which lies close to these timescales. Furthermore, mixing processes in the

soil and karst could play an important role, where soil δ18O is found to have much lower variability than precipitation δ18O425

(Tang and Feng, 2001).

On decadal timescales (shorter than 50yr), the karst filter reduced the resolution-adjusted variance by 34% (20,43), on

longer timescales (longer than50yr) by 4% (3,4) of the non-filtered down-sampled variance. The total filtered and down-

sampled variance over the last millennium decreased by 14% (9,27) of the unfiltered down-sampled variance. Still, this is

equivalent to only 29% (23,38) of the record variance, as the filter only decreases variance on annual to decadal time scales.430

On centennial time scales the filter has little to no effect, so the record’s variance on these time scales is not strongly affected.

5.3 Representativity of δ18O at different spatial levels

A clear picture of the relationship between the climatic drivers for the simulation was distinguishable. However, no system-

atic pattern and few significant correlations were found for the speleothem records (Fig. 7). Accounting for seasonal sensi-

tivity could enhance the number of simulation-to-record correlations of SF13, which shows the selected strongest seasonal435
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correlation. However, this does neither enhance the overall correlation (histogram of correlation distribution using annual

down-sampled time series and seasonal down-sampled time series in SF14), nor the SNR (results not shown). Still, the strong

influence of seasonality suggests a dependency of δ18Ospeleo on certain seasons rather than the annual mean. Supporting this,

SF15 shows a correlation map with the strongest seasonal correlation of δ18Ospeleo to the simulated climate variables tem-

perature, precipitation, and δ18O in precipitation. Further dripwater monitoring studies that characterize the seasonality of440

individual caves could help the understanding of which climatic signal is captured by speleothems and enhance comparability

between different caves.

We found low spatial representativity of individual speleothems for sites, gridboxes, and regions when compared to the

simulation (Fig. 8 and Fig. 9). We obtained stronger correlations between entities by selection of the best-matching age-model

ensemble for entities where these ensembles were available. This age-model ensemble ’tuning’ increased the median of corre-445

lations on site and gridbox-level by roughly a factor of 2, while also increasing the SNR by a factor of 3 and 2.5, respectively.

However, no improvement could be observed on the cluster and global level. A detailed table of correlations and SNRs us-

ing the original chronologies as well as using the age-model ensemble selection that gives the highest absolute correlation is

showed in the supplement table ST2. Testing other ‘tuning’ options, such as the consideration of only the 50% of the records at

closest proximity within a cluster, or the 50% with the smallest mean offset showed no improvement (boxplot similar to Fig. 9450

for the other selection criteria in SF16). We also found no correlation between the total variance and the number of significant

links in the network (c=−0.02(−0.23,0.19),p= 0.8).

A strong between-site variability has been attributed to controls of regional atmospheric circulation according to Lachniet

(2009). We also find a strong heterogeneity in the recorded variance of δ18O at the gridbox and cluster levels. In part, this can

be due to heterogeneous temporal resolution, but could also be influenced by non-climatic overprints on the δ18O signal up to455

the centennial scale.

This could be investigated by comparing the δ18O and the δ13C signal recorded within the cave to vegetation, climate, and

landscape evolution archives in the region. However, representativity tests across Western Europe noted coherent δ18Ospeleo

trends on glacial-interglacial time scales, where trends are less clearly expressed during the Holocene (Lechleitner et al., 2018).

Therefore, this study could be extended to longer time scales, when longer transient isotope-enabled simulations become460

available.

5.4 Limitations

Simulated isotope variability is primarily dictated by the model’s climatology and the complexity of its dynamics and hy-

drological cycle. We use a three member initial-condition ensemble from a single iGCM in this study. Therefore, all results

relate to these iHadCM3 last millennium ensemble runs and the chosen radiative forcings. In this respect, a more thorough465

comparison with more simulations is needed in order to estimate the capability of models to simulate variability and to find

common biases. However, the establishment of isotope-enabled GCMs requires substantial work for the addition of isotopic

tracers and their evaluation, and the computational costs increase. This still inhibits the simulation of large transient ensembles

with iGCMs over centennial to millennial and orbital time scales. Nevertheless, the three-member ensemble we provide could
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also be used to test offline data assimilation methods, as suggested by Dalaiden et al. (2020). This might also help to better470

identify the climate factors that govern the speleothem archiving of δ18O and its variability.

An uncertainty factor in our study comes from the temperature-dependence of the calcite- and aragonite-to-drip-water con-

version. We calculated the adjustment factors using the simulated annual mean temperature at the cave location, sampled to the

speleothem’s temporal resolution. We take this simulated temperature as a surrogate for the longterm-changes of the inside-

cave air temperature. Knowing the actual temperature history of the caves better could strongly reduce the uncertainty, as a475

bias of ∆1◦C in the simulated temperature would account for a change in δ18Odw.eq of approximately ∆2‰. A bias of ∆1‰

in the δ18Odw.eq however, accounts for a temperature change of 0.1◦C for the lowest simulated annual mean cave temperature

(3.1◦C in Norway), and a change of 13.1◦C for the highest simulated annual mean cave temperature (32.5◦C in the tropics).

Also, our study focussed solely on δ18O as one particular proxy for climate and environmental changes and not other

geochemical proxies that can be measured on speleothem samples (Kaufmann, 2003; Schwarcz et al., 1976) or a combination480

of proxies, which have the potential of a more thorough interpretation of a climate signal. A multi-proxy approach, such as

in Fohlmeister et al. (2017) or Baker et al. (2017) who also include δ13C along with δ18O, could offer deeper insights. Many

proxies for climate processes, such as δ13C cannot (yet) be implemented in GCMs, as their representation of the biology,

physics and ecology is not sufficiently complex. Therefore, in order to consider those in the evaluation, time series have to be

calibrated to climatic and environmental parameters that are explicitly modeled. This would introduce additional uncertainty,485

that could counteract the added value of considering multiple proxies in the first place.

We have considered a regional to global view on speleothem δ18O signal. Therefore, influences and processes known for

individual cave systems could not be considered. For example, Kluge et al. (2013) account for kinetic fractionation changes

over time via clumped isotope measurements, and Jean-Baptiste et al. (2019) were able to extract transit times of dripwater in

Villar cave. Considering these and other local factors might give deeper insight into individual speleothem records, but it is490

difficult to scale quantitatively and systematically. Nevertheless, including monitoring datasets from different caves globally

might give deeper insight into the filter and fractionation processes involved, and PSM studies informed by the monitoring and

local expertise throughout the database could help in further comparison studies.

6 Conclusions

We presented an ensemble of iHadCM3 last millennium simulations and compared the oxygen isotope ratios, temperature, and495

precipitation variability to oxygen isotope ratio observations from a large speleothem dataset (a subset of SISAL v.2.). Overall,

time-mean patterns of oxygen isotope ratio were fairly similar in both. Considering total variance as well as the variability on

different time scales, we observed that the effects of resolution adjustment and a convolution karst filter were sufficient to bring

simulated and observed δ18O spectra into good agreement. Still, total variability in the speleothem records is much higher than

in the simulation. This supports previous studies that found that climate models currently do not capture appropriate variability500

on centennial time scales.
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However, we find that the climatological and environmental interpretation of δ18Ospeleo is not straightforward. We found

low signal-to-noise ratios, which imply a low spatial representativity of individual entities. Furthermore, while regional cli-

matic signals were distinguished in the simulation, the main climatic drivers for δ18Ospeleo at the regional scale were difficult

to isolate. It is difficult to establish the size of the spatial footprint of representativity, the seasonality, and the relevant clima-505

tological and environmental parameters for reconstructions. Here, expert knowledge on local cave processes, environmental

history, and, in particular, the availability of monitoring data are crucial to aid the interpretation of the climate signal. Inner

cave and karst processes, which influence the seasonality of the input signal above the cave and inside the cave, may need to be

taken under consideration. However, monitoring data for evaluation and potentially calibration of reconstructions are currently

only available for a few sites (e.g. Tremaine et al. (2011)). Furthermore, some parameters, such as transit times, are difficult to510

measure (Jean-Baptiste et al., 2019).

Proxy system models that account for the cave internal fractionation processes may give a deeper insight into how climate

variability is captured in speleothem archives. To gain a deeper understanding of the underlying concepts that influence the

capability of speleothems to capture and resolve climate variability and the capability of models to simulate them, further

model-data comparison studies are required.515
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