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Abstract.

Improving the understanding of changes in the mean and variability of climate variables as well as their interrelation is

crucial for reliable climate change projections. Comparisons between general circulation models and paleoclimate archives

using indirect proxies for temperature or precipitation have been used to test and validate the capability of climate models to

represent climate changes. The oxygen isotopic ratio δ18O, a proxy for many different climate variables, is routinely measured5

in speleothem samples at decadal or higher resolution and single specimens can cover full Glacial-Interglacial cycles. The

calcium carbonate cave deposits are precisely dateable and provide well preserved (semi-) continuous, albeit multivariate

climate signals in the lower and mid-latitudes, where the measured δ18O in the mineral does not directly represent temperature

or precipitation. Therefore, speleothems represent suitable archives to assess climate model abilities of simulating climate

variability beyond the timescales covered by meteorological observations (101− 102 yr).10

Here, we present three transient isotope-enabled simulations from the Hadley Center Climate Model version 3 (iHadCM3)

covering the last millennium (850-1850CE) and compare them to a large global dataset of speleothem δ18O records from the

Speleothem Isotopes Synthesis and AnaLysis (SISAL) database version 2 (Comas-Bru et al., 2020). We systematically evaluate

offsets in mean and variance of simulated δ18O and test for the main climate drivers recorded in δ18O for individual records

or regions.15

The time-mean spatial offsets between the simulated δ18O and the speleothem data are fairly small. However, using robust

filters and spectral analysis, we show that the observed archive-based variability of δ18O is lower than simulated by iHadCM3

on decadal, and higher on centennial timescales. Most of this difference can likely be attributed to the records’ lower temporal

resolution and averaging or smoothing processes affecting the δ18O signal e.g. through soil water residence times. Using cross-

correlation analyses at site-level and modeled gridbox level, we find evidence for highly variable but generally low signal-to-20

noise ratios in the proxy data. This points at a high influence of cave-internal processes and regional climate particularities and

could suggest low regional representativity of individual sites. Long-range strong positive correlations dominate the speleothem

correlation network but are much weaker in the simulation. One reason for this could lie in a lack of longterm internal climate

variability in these model simulations, which could be tested by repeating similar comparisons with other isotope-enabled

climate models and paleoclimate databases.25
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1 Introduction

The impacts of a changing climate have been observed over the last century (IPCC, 2013) and indicate a strong sensitivity of

human societies and natural systems to changes in climate. While the mean state of the climate is well observed, direction and

magnitude of potential changes to its variability are still largely unclear (Franzke et al., 2020). However, changes in variability

influence the occurrence of extreme temperature and precipitation events (Katz and Brown, 1992) and have major impacts on30

society, economy (Hänsel et al., 2020), and ecosystems (Vasseur et al., 2014).

Past climate changes provide a testbed to evaluate climate models and to better understand projected changes in the future

(Schmidt et al., 2012; Braconnot et al., 2012). Instrumental records only cover a short period of time, since systematic obser-

vations of climate variables only began in 1750 CE (black line in Fig. 1a, Morice et al., 2012). For model evaluation on longer

than centennial time scales, we have to rely on evidence from paleoclimate archives, such as trees, ice cores, foraminifera35

from marine sediment cores, or speleothems. The abundance of the heavy oxygen isotope 18O, further denoted as δ18O, is a

proxy for many climate variables and can be measured on these, and quite a few other paleoclimate archives with high preci-

sion (Schmidt et al., 2014). The climatic interpretation of δ18O changes, however, are not always straightforward (Fairchild

and Baker, 2012). Speleothem archives, which we rely on here, allow sampling of a wide range of climates in the low- to

mid-latitudes and provide (semi-)continuous precisely dated time series of oxygen isotope ratios.40

Few other transient model-data comparison studies focused on δ18O (e.g., Wackerbarth et al., 2012; Dee et al., 2015; Colose

et al., 2016; Stevenson et al., 2019; Parker et al., 2020). For example, Sjolte et al. (2018) compared the variability of the

simulated ECHAM5/MPI-OM δ18O to Greenland ice cores over the last millennium assimilating the ice core data to produce

gridded reconstructions. They were able to differentiate between solar and volcanic forcing effects from their reconstructions.

On orbital timescales (150,000 yr), Caley et al. (2014) compared a transient isotope-enabled simulation with the model of45

intermediate complexity iLOVECLIM to speleothem records from South East Asia. They found model-data similarity for the

broad temporal trends, but differences at shorter timescales, highlighting the role of seasonality.

For our model-data comparison, we focus on the time period of the last millennium (850-1850CE Taylor et al. (2012))

for which a fairly high number of well-preserved datasets are available. This time period is characterized by stable, close-to-

present-day, boundary conditions (fairly constant greenhouse gas concentrations and sea level) and climate variability due to50

natural, solar and volcanic forcings (Schurer et al., 2014; PAGES2k-Consortium, 2019; Taylor et al., 2012; Neukom et al.,

2019). It is also one of the key paleoclimate periods included in the joint experiments of the Paleoclimate Model Intercompari-

son Project Phase 3 and 4 (PMIP3/PMIP4, Jungclaus et al., 2010; Kageyama et al., 2018) and the overarching Coupled Model

Intercomparison Project Phase 5 and 6 (CMIP5/CMIP6, Taylor et al., 2012; Eyring et al., 2016).

Modeled climate variability can be a consequence of either internal interactions and processes (internal variability) or of55

radiative forcings such as depicted in Fig. 1c-e (forced external variability), e.g. greenhouse gases, volcanic eruptions, or total

solar irradiance.

Previous studies have suggested that simulated temperature variability is systematically too low on decadal and longer time

scales, especially on the regional scale (Laepple and Huybers, 2014a). This has been attributed to models being too diffusive,
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Figure 1. Climate and main climatic drivers over the last millennium. (a) Global annual mean surface temperature (GMST) as modeled

(iHadCM3, blue), reconstructed (PAGES2k, red) (PAGES2k-Consortium, 2019) and observed (HadCRUT4, black) (Morice et al., 2012).

(b) Annual mean δ18O in precipitation at Bunker Cave, Germany as modeled (iHadCM3, green) and measured calcite δ18O (drip water

equivalent) from SISAL entity 240 (dark blue) and 242 (light blue) at the Bunker cave site (Comas-Bru et al., 2019; Fohlmeister et al.,

2012). Comparison plots for all entities are given in supplementary figures SF1-2. (c) Atmospheric CO2 concentration, (d) volcanic forcing

in units of aerosol optical depth (AOD) (Crowley and Unterman, 2013) and (e) total solar irradiance (TSI) as used in the model simulations

(Steinhilber et al., 2009; Wang et al., 2005).

denoting energy being dissipated too quickly across temporal scales (Laepple and Huybers, 2014b), or to missing processes60

and feedbacks (Rehfeld et al., 2016). Variability induced by external radiative forcing only accounts for a small fraction of the

regional climate variance (Goosse et al., 2005; Laepple and Huybers, 2014b). Discrepancies increase towards longer timescales

(Laepple and Huybers, 2014a), and are substantial already at the multidecadal to centennial timescales that we target here.

The incorporation of an isotopic water cycle into isotope-enabled General Circulation Models (iGCM) provides additional65

means for understanding the hydrology of the climate system (Werner et al., 2016; Sturm et al., 2010; Tindall et al., 2009). The

ratio of H2
18O to H2

16O in precipitation is an indicator of evaporation temperature, precipitation amount, and altitude, as well

as distance to source water (Dansgaard, 1964). It is given in the δ-notation as

δ18O = (

18O
16O sample
18O
16O standard

− 1) · 1000‰,
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where standard indicates the Vienna Standard Mean Ocean Water standard V-SMOW (Kendall and Caldwell, 1998).70

On monthly to decadal time scales, the Global Network of Isotopes in Precipitation (GNIP) database (IAEA/WMO, 2020)

provides measurements of δ18O in collected precipitation water, which have been used in model-data comparisons for the

present climate (Tindall et al., 2009; Werner et al., 2011; Comas-Bru et al., 2020). On decadal and longer timescales, paleocli-

mate archives such as speleothems are crucial. δ18O variations in stalagmites, to first order, represent changes in δ18O in the

meteoric precipitation above the cave.75

Speleothem cave deposits form in karst regions (Fairchild and Baker, 2012) under climatic conditions spanning from ex-

tremely cold (Lauritzen and Lundberg, 1999) and very arid (Neff et al., 2001) to extremely hot and humid conditions (Partin

et al., 2007). As a terrestrial climate archive, they are able to store information on continental climate changes. They form as a

calcite or aragonite matrix from calcium dissolved in acidic drip water and hence archive the oxygen isotope from precipitation

water in accumulated growth layers (Fairchild and Treble, 2009). δ18O can be regarded as a proxy e.g. for surface temper-80

ature variations in higher latitudes, or precipitation amount in the tropics (Dansgaard, 1964). The proxy signal is, however,

overlayed with distinct observable signatures of source water evaporation, transportation over longer distances (Bradley, 1999;

Dansgaard, 1964), and large scale-climate patterns of circulation such as e.g. the North Atlantic Oscillation (NAO) (e.g. Vinther

et al., 2010) or the El-Niño Southern Oscillation (ENSO) (Tindall et al., 2009). All these δ18O signatures in precipitation may

be visible in speleothem records, including additionally fractionation processes involved in the calcite formation, which is85

primarily temperature-dependent (Urey, 1948; McCrea, 1950). The climatic interpretation of speleothem δ18O variations in

calcite or aragonite (hereafter δ18Ospeleo) can be hampered by non-linear growth processes (Dreybrodt and Scholz, 2011),

and multiple cave-specific parameters such as vegetation cover (Haude, 1954; Wackerbarth et al., 2010), karst (Jean-Baptiste

et al., 2019), and inner cave processes (Fairchild et al., 2006), which influence δ18Ospeleo. Especially in the comparison be-

tween δ18Ospeleo of different speleothems, dating uncertainties complicate the assessment of climatic drivers, as they increase90

the uncertainty in pairwise comparisons and similarity estimates (Breitenbach et al., 2012; Rehfeld and Kurths, 2014). For

speleothems, in particular, positive correlations to ice core δ18O, which is considered a proxy for temperature, have been re-

ported (McDermott et al., 2001) but also negative correlations to local annual mean temperatures at the cave site (e.g. Lauritzen

and Lundberg (1999)). This highlights the complexity of the system and the potential regionality of the signal. In studies on

drip water, δ18O and annual mean temperature, regions with different dominant climate controls could be distinguished (Baker95

et al., 2019).

Here, we present three new last millennium isotope-enabled simulations from the iGCM version 3 of the Hadley Model

(iHadCM3) and test how similar the δ18O variations in iHadCM3 and speleothem records are (Sec. 4.1). A characterization

of the datasets and relevant forcing can be found in Fig. 1. The robustness of the findings and methods are evaluated over

the last millennium, for which a large number of high-resolution proxy datasets from the SISAL v.2. database (Comas-Bru100

et al., 2020) are available. Our key questions are: i) how similar are the modeled δ18O signatures to the speleothem records

especially regarding variability, ii) can we distinguish main drivers for these signatures, and iii) how representative are the

speleothem records for their region. To address these questions, we explore similarities on both spatial and temporal scales,

to distinguish patterns of the mean state (Sec. 4.1), the variability (Sec. 4.2 and Sec. 4.3), and the spatial representativity
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of speleothem climate records (Sec. 4.4 and Sec. 4.5). We examine the simulation’s capability to simulate and the records’105

capability to capture variability on different time scales to improve our understanding of processes and uncertainties of both.

2 Data

2.1 Model description and simulation overview

In this study, we use the coupled atmosphere-ocean isotope-enabled GCM iHadCM3, which has been widely used to simulate

present and future climate (Sime et al., 2008; Tindall et al., 2009; IPCC, 2013), as well as for past climates such as the late110

Holocene and Last Glacial Maximum (Holloway et al., 2016), the last interglacial (Sime et al., 2009, 2013; Holloway et al.,

2016, 2018) and the Eocene (Tindall et al., 2010).

The model consists of several components: the atmosphere model HadAM3 (Pope et al., 2000), the ocean model HadOM3

(Gordon et al., 2000), a sea ice model (Valdes et al., 2017) and a dynamic land surface and vegetation model (Cox, 2001).

The atmospheric component is run at a horizontal resolution of 2.5◦× 3.75◦, 19 vertical levels and time steps of 30 min. The115

oceanic output has a horizontal resolution of 1.25◦× 1.25◦, 20 vertical levels and time steps of 1h. For the isotope-enabled

version, water isotopes HD16O and H2
18O were added as two separate water species in the atmospheric model, and as tracers

in the ocean model. Fixed isotope fractions are added to a fixed volume gridbox of the ocean and experience changes due

to evaporation, precipitation, and runoff through a virtual isotope flux, altering the δ18O ratio in the top level of the ocean

accordingly (Tindall et al., 2009). The land surface and vegetation evolve dynamically and are based on TRIFFID (Cox, 2001)120

with timesteps of 5 yr.

Compared to instrumental observations, the model represents sea surface temperature (SST), sea ice, and ocean heat content

well (Gordon et al., 2000). The freshwater hydrological cycle in the model shows only a slight overestimation in the local

evaporation (Pardaens et al., 2003). The model simulates the major isotopic fractionation effects as in Dansgaard (1964) (e.g.

the latitude effect, the amount effect, and the continental effect) appropriately compared to GNIP data (Zhang et al., 2012).125

Additionally, a broad agreement in isotopic output with GNIP data in the general spatial distribution can be observed and the

above mentioned general oxygen isotopic ratio features are represented well (Tindall et al., 2009). As such, iHadCM3 cap-

tures large scale features of climate and oxygen isotope ratios while remaining computationally efficient for the simulation of

timescales such as the last millennium. The three ensemble members, which are identified with the LM prefix, were initialized

from different years of the same spinup simulation. The basic characteristics and boundary conditions of the last millennium130

simulations used in this analysis are listed in Tab. 1.

2.2 The speleothem isotope dataset

The oxygen isotope ratio measured in speleothems is subject to many processes, starting from the source water which is

influenced by the atmospheric circulation and climate. Therefore, the amount of precipitation, its composition, the annual135
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Table 1. Basic characterization of the LM1, LM2 and LM3 last millennium simulations.

Years 850-1850 CE

1100 - 100BP

Orography fixed to 0BP

Orbital Parameter fixed to 0BP

GHG well mixed CO2, CH4, NO2 and

other trace gases; Schurer et al. (2014),

Schmidt et al. (2012)

Vegetation dynamic; based on Cox (2001)

Total Solar Irradiance Steinhilber et al. (2009)

Wang et al. (2005)

Schurer et al. (2014)

Volcanic Forcing Crowley and Unterman (2013)

mean temperature, and the variability of these events are in part imprinted in the archive. A comprehensive summary of the

processes involving speleothem growth can be found in Fairchild and Baker (2012).

Vegetation above the cave can alter the amount of infiltrating water and its isotopic signature, where the meteoric δ18O is

subject to additional fractionation processes and seasonal effects (Haude, 1954; Thornthwaite and Mather, 1957; Wackerbarth

et al., 2010). Filter processes and transportation through the soil and upper karst influence the signal and may lead to varying140

transit times between several minutes and multiple years (Jean-Baptiste et al., 2019) at different drip sites within the same

cave. Infiltrating surface water is charged with soil gas CO2, where the partial CO2 pressure is larger than in the atmosphere,

facilitating the carbonic acid-driven CaCO3 dissolution of the host rock. The generally lower partial pCO2 pressure conditions

in the cave environment compared to that of the soil and epikarst makes the drip water degas and precipitate calcite in a

fractionation process, which consequently forms a speleothem (Tremaine et al., 2011).145

Varying environmental conditions within the cave can also be imprinted in the isotopic signal and may pronounce or attenuate

the climate signal (Fairchild and Baker, 2012). During the calcification process, interactions with the cave environment or water

inclusions within the mineral are still possible and, therefore, may further change the δ18Ospeleo archived in the speleothem.

The oxygen isotope composition of dripwater is influenced by all above-mentioned factors. Due to the multivariate processes

impacting speleothem growth, the interpretation of the δ18Ospeleo signal is not straightforward, although systematic evaluation150

has identified patterns of similar climate influence based on modern observations (Baker et al., 2019). Proxy System Models
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Figure 2. Site locations of the SISAL database on a global karst map (brown shadings Williams and Ford, 2006). The sites with entities

that fulfill the prerequisites for our analysis are marked in colored triangles. These entities cover at least a period of 600 yr within the last

millennium and have a minimum of 30 (red), 20 (orange), or 10 (purple) δ18O measurements and two dating points in this period. All other

sites in the SISAL database v.2. are marked with a black dot. The nine clusters used in the network analysis contain sites in North America

(c1, 12 entities), South America (c2, 12 entities), Europe with North Africa (c3, 21 entities), Southern Africa (c4, 2 entities - too few for

systematic analysis), Middle East (c5, 6 entities), India and Central Asia (c6, 8 entities), East Asia (c7, 18 entities), South East Asia (c8, 3

entities), and New Zealand (c9, 3 entities).

(PSMs), where the input signal modification is modeled based on known processes in the karst may also help with the inter-

pretation (Evans et al., 2013; Dee et al., 2015). PSMs of varying complexity have been proposed from the simple exponential

decay filter, mimicking karst mixing (Dee et al., 2015) with the delay time as the single tunable parameter, to full-blown karst

system models with numerous parameters describing soil water and gas equilibration or carbonate bedrock dissolution (Owen155

et al., 2018).

The Speleothem Isotopes Synthesis and Analysis is an international working group, collecting speleothem datasets in a

quality-controlled and cross-references database with rich metadata for samples and dating procedures (Atsawawanunt et al.,

2018; Comas-Bru et al., 2020). The second version of the database SISAL v.2. includes measurements of stable 13C and
18O isotopes on speleothems of 691 individual entities from 294 globally distributed sites (Comas-Bru et al., 2020). In order160

to provide a comprehensive and reliable analysis, we only use data from entities which are not superseded (entity_state=

current) and that cover at least a 600 y period within the analysis period (850-1850CE). Furthermore, records considered

must have at least two radiometric dates, or one radiometric date (in the analysis period) and be marked as actively forming at

the time of collection, or be lamina counted. We only check for dates that are marked as used, indicating that they are known

to have been used in the original chronology in the database. Samples without sample or depth information, are omitted. In165

the analysis, we filter the database adapted to the requirements of the different analyses, as depicted in Fig. 2. For the last

millennium, we remain with 110 records from 91 different sites with at least ten isotopic measurements, that we used for the

assessment of the mean δ18O offset, and 85 records from 71 sites with at least 30 isotope samples for the correlation and

network analyses.
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For each U/Th-dated speleothem, SISAL v.2. provides the original age model (if available), and new possible age-models170

based on up to seven methods. Methods include linear interpolation, linear regression, Bchron (Haslett and Parnell, 2008) as

adapted by Roesch and Rehfeld (2019), Bacon (Blaauw and Christeny, 2011), Oxcal (Ramsey, 2009), copRa (Comas-Bru et al.,

2020, modified R version after Breitenbach et al. (2012)), and StalAge (Scholz and Hoffmann, 2011). Details on the automated

age modeling procedure are given in Roesch and Rehfeld (2019) and Comas-Bru et al. (2020). For each entity and ensemble

method, one median best-fit estimate with confidence intervals, and between 129 and 7737 age-models based on perturbations175

of the radiometric ages are available (Comas-Bru et al., 2020). These ensembles are available for 69 of the 85 entities that

we used in the network-correlation analysis, resulting in a total of 464383 ensemble age-models in our analysis. In all other

analyses, we use the corresponding original age model as provided by the original authors.

3 Methods

3.1 Speleothem analysis and drip water conversion180

To increase the robustness of the results, we maximize the number of records by adaptive filtering of the database (Fig. 2). For

calculations involving the time-averaged δ18O -values, we only use speleothem data with at least 10 δ18Ospeleo measurements

and two dating points within a 600 yr period in 850-1850CE. For variance analyses, we demand at least 20 and for spectral,

correlation, and network analyses 30 δ18Ospeleo measurements. For the investigation of spatial correlation patterns by network

analysis, the set of speleothems is divided into nine regional clusters (Fig. 2), as explained in detail in Sec. 3.3. We primarily185

use the chronologies provided by the original authors, but test for the sensitivity to age-modeling choice by considering the age

model ensembles (details below in Sec. 3.3).

Within the last millennium, we remain with 15 aragonite and 89 calcite speleothems with 10 or more δ18O samples. Follow-

ing Comas-Bru et al. (2019), we exclude six speleothems of mixed mineralogy, as the extent, to which the applied conversion190

is appropriate, is unclear. The δ18Ospeleo signal of calcite and aragonite speleothems is converted to its drip-water equiva-

lent (δ18Odw.eq ) relative to the V-SMOW standard as in Comas-Bru et al. (2019). For calcite, we use the empirically-based

fractionation formula of Tremaine et al. (2011)

δ18Odw.eq = δ18Ocalcite−
((16.1 · 1000

T

)
− 24.6

)
, (1)

where T is in K and δ18O in units of ‰. For aragonite, we use the fractionation factor from Grossman and Ku (1986)195

δ18Odw.eq = δ18Oarag.−
((18.34 · 1000

T

)
− 31.954

)
. (2)

Here, temperature values T represent the local cave temperature in units of K. These are often not available. The annual

mean temperature on the surface above the cave can, however, serve as a surrogate for local cave air temperatures (Fairchild

8



and Baker, 2012). Both for aragonite and calcite drip water conversion, we use the simulated annual mean temperatures at the

cave location, down-sampled to the temporal resolution of the record. Note that, as a consequence, the conversion changes the200

time-averaged mean and the variance in our analysis. Finally, the V-PDB to V-SMOW conversion from Coplen et al. (1983) is

used.

δ18OSMOW = 1.03092 · δ18OPDB + 30.92. (3)

Whenever we directly compare simulation output values with the speleothem records, e.g. when comparing means, variances,

or spectra, we use δ18Odw.eq, accounting for the different mineralogies. The conversion would, however, add an extra source205

of uncertainty in correlation analyses, as it implicitly builds on transient simulation data. Therefore, we denote the raw values

of δ18O measured directly in the calcite or aragonite matrix by δ18Ospeleo and focus on those in the network and correlation

analyses.

3.2 Statistical tests and time series processing

Speleothems form naturally, and therefore provide irregular time series with reconstructed and uncertain observation time210

series (Rehfeld and Kurths, 2014). We account for this in our assessment as outlined below. Temperature, precipitation, and

isotopic data are extracted from the simulation at cave locations by bi-linear interpolation. Annual mean values for temperature,

precipitation, and isotopic composition of precipitation are formed by averaging over all months from April onwards to March

of the following year. This is also the time span for which precipitation weighted δ18O (δ18Opw) values are calculated, all

for each simulation individually. This allows examining the dynamic response in the signal. All analyses are conducted using215

both simulated δ18O and δ18Opw. Differences in mean are given in ∆δ18O = δ18O− δ18Odw.eq (model-data difference) and

variance ratios in the record’s variance divided by the variance of the simulation at the cave location (VarRec/VarSim). If not

explicitly stated otherwise, we always provide 90% confidence intervals by bootstrapping (Efron and Tibshirani, 1986) with

1000 repetitions. To reduce potential bias due to the irregular spatial distribution of cave sites, we use area-weighting in spatial

mean estimates, where stated. This is done by calculating gridbox-means of all speleothems within a 3.75◦× 2.5◦ gridbox220

similar to the simulation, which is then area-weighted across latitudes, following Marcott et al. (2013).

While the simulation data is available at monthly basis, the proxy time series are irregular and at annual or lower resolution.

Therefore, the simulation data at cave location is down-sampled to the record’s reconstructed time axis by block averaging.

The power spectral density (PSD) of a time series over a finite interval of time describes the distribution of power in frequency225

components of the time series. The integration over all spectral components yields the variance of the time series (Chatfield,

2003). For spectral analyses, the proxy records are interpolated to their mean resolution in a double interpolation and filtering

procedure (following Laepple and Huybers, 2014a, b; Rehfeld et al., 2018; Dolman et al., 2020). Spectra of sufficient resolution

can then be averaged to a mean spectrum over a certain frequency range (Kunz et al., 2020).

9



We test the impact of karst storage of drip water (Gelhar and Wilson, 1974; Dee et al., 2015) by applying an additional230

simplified aquifer recharge model style filter (hereafter karst filter). The impulse response of the Green’s function depends

solely on the transit time τ , as g(t) = 1/τ ·e−t/τ , with t > 0. The Green’s function is convolved with the simulated input δ18O

or δ18Opw signal to obtain the simulated karst-filtered signal in the cave. Following Dee et al. (2015) we use a normalization

such that
∫
g(t)dt= 1, integrated over the length of the respective time series. For the down-sampled case, we first apply the

filter to the annual resolution simulated δ18O, and down-sample to record resolution afterward.235

The correlation of irregular time series is estimated by Person-correlation adapted for irregular time series (Rehfeld et al.,

2011; Rehfeld and Kurths, 2014). The signal-to-noise ratio (SNR) is estimated from the estimated cross-correlation r̂ij be-

tween two time series i and j by calculating SNR = r̂ij/(1− r̂ij), as described by Fisher et al. (1985). If more than two

estimates are available, e.g. at the gridbox level, the median between all possible combinations of cross-correlations be-240

tween the time series is used. For correlation estimated, we choose a significance level of α= 0.1. In balancing the strict-

ness and the expected level of false positives against that of data demands and the available number of samples N , the

level is appropriate for both paleoclimate archive and model data time series. The p-values for irregular series are esti-

mated based on a t-distribution, with the degrees of freedom estimated from the temporal coverages Rx,y and the persistence

time τx,y as Neff = min(max(Rx/τx,Ry/τy,na.rm=TRUE),max(Nx,Ny)). This is implemented in the R package nest245

(https://github.com/krehfeld/nest, Rehfeld et al., 2011; Rehfeld and Kurths, 2014). In the case of the speleothem records, the

estimated effective degrees of freedom range from Neff = 20 to Neff = 470, and they are generally similar to the length of

the records. For the regular time series, p-values are calculated via Pearson’s product moment correlation (via the function

cor.test). We account for age-model sensitivity by calculating cross-correlation estimates for all possible combinations of

available age-model ensembles (Comas-Bru et al., 2020). The provided age-models are not a priori ranked by likelihood and250

are all consistent with the radiometric chronological constraints. The age-model pair that results in the strongest significant

absolute correlation estimate (p < 0.1) between two records is selected for the best selection tuning.

3.3 Spatial correlation via network analysis

Networks are practical representations for complex systems with interacting components and can be used to analyze dynamics

in the climate system (Tsonis et al., 2006; Tupikina et al., 2014; Rehfeld et al., 2013). Here we use a network with n nodes,255

where n is the number of SISAL v.2. entities that fulfill the sampling criteria. The speleothem entities are joined in pairs by

edges or links, where the n · (n−1) links are formed if the cross-correlations r̂i,j between two speleothem entities i and j, are

significantly different from zero with a p-value of pi,j .

We split the network into eight sub-networks by hierarchial distance-based clustering of the node locations. The cluster that

includes all East Asian caves is manually split into two clusters, one for East Asia (all caves above 20◦N) and a cluster of260

South East Asia (all caves below 20◦N). With this, we end up with nine clusters as depicted in Fig. 2. Links in the plots (Fig. 8)

are visualized if they are stronger than a certain threshold |r|> r5%, where r5% is minimum correlation strength of the 5%

absolute strongest correlations (’fixed link density’).
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Figure 3. Characterization of the mean state of the simulation (LM1): Shown are (a) mean annual surface temperature, (b) precipitation, and

(c) δ18Opw, including δ18Odw.eq at cave sites in drip water equivalents. Note the logarithmic color scale. Point-wise differences between

the mean simulated δ18O and proxy-based δ18Odw.eq (d) show anomalies. Spatially aggregated differences at the global and cluster level

for simulations LM1-LM3 are given in supplementary table ST1.

4 Results

4.1 Assessing model-data differences in time-averaged δ18O265

We first compare the mean SISAL v.2.-record δ18Odw.eq and iHadCM3 δ18Opw to assess potential model biases, using the 104

records with more than 10 δ18Ospeleo measurements within the last millennium. Annual mean temperature and precipitation

fields (Fig. 3a,b), and the mean modeled δ18Opw together with the mean δ18Odw.eq in the SISAL records (Fig. 3c) is shown

in Fig. 3. Shown and described are the fields and results for LM1, results for the other ensemble members are generally very

similar and given in supplementary table ST1. The major oxygen isotope ratio depletion features as described by Dansgaard270

(1964), can be distinguished. Modeled values show progressive depletion towards higher latitudes, the interior of continents,

and towards regions with high precipitation amounts.

The offsets between modeled and measured δ18Opw (∆δ18O = δ18Opw−δ18Odw.eq) show a heterogeneous pattern (Fig. 3d).

Generally, modeled values appear to be more depleted overall than the mean values of speleothem δ18Odw.eq, except in the NH

extratropics. There are some localized clusters and individual sites with large positive and negative differences. One example is275

site 38 (eID = 113, Diva cave in Brasil) which is visible as a dark blue dot in Fig. 3d. The δ18Odw.eq record shows only slightly

depleted δ18O in calcite (δ18Odw.eq =−2.89‰), while the simulation shows much more depletion (δ18Opw =−7.68‰). This

11



results in a model-data difference of ∆δ18O =−4.79‰. The surrounding sites in Brasil are also less depleted as in the sim-

ulation. Site 277 (eID = 598, Huagapo cave in Peru) visible as a dark red dot in Fig. 3d, shows a strong depletion in calcite

(δ18Odw.eq =−13.7‰) while the simulation is not as strongly depleted (δ18Opw =−6.47‰). This results in a large positive280

offset of ∆δ18O = 7.33‰. The cave is located at an altitude of 3850m above sea level, whereas model altitude at the gridbox

is close to sea-level. This should explain part of the offset.

At the regional scale, the largest cluster offset can be seen over China and East Asia (c7) ∆δ18O = +2.2‰ (−0.18,4.65,

90% confidence interval). However, the most consistent negative difference is visible over neighboring Indonesia (c8) ∆δ18O =

−2.95‰ (−5.89,−0.02). The smallest differences are found in Europe with ∆δ18O = +0.51‰ (−1.95,2.96). Overall, the285

simulated δ18O is smaller than the δ18Odw.eq measured in speleothems (∆δ18O =−0.07‰ (−4.31,4.17)). The gridbox-level

area weighted global mean difference is −0.02‰ (−0.22,1.00) for LM1.

We further explore the impact of site conditions on the model-data offset (Fig. 4). We find a decreasing δ18Odw.eq to-

wards northern higher latitudes (Fig. 4a), and most notably, a dependency of δ18Odw.eq on the local mean annual temperature290

(Fig. 4b). We see more positive offsets in the northern hemisphere and mostly negative offsets in the southern hemispheres

(Fig. 4c) as was also distinguishable in the map in Fig. 3d.

The offsets also show a strong influence of temperature (Fig. 4d) and elevation (Fig. 4i), which are both controlling factors

during the isotopic fractionation process. The elevation difference between the simulation and the record spans from a 1332m

higher elevation in the simulation (eID = 538 in Shenqi cave in China) and 3065m higher elevation in the records (eID = 598 in295

Huagapo cave in Peru, visible outlier in Fig. 4c,d. Here, the offsets increase with increasing absolute difference (Fig. 4j). The

offset shows a weak correlation with precipitation (Fig. 4f), both in the annual mean and for the boreal winter/summer season

(see DJF and JJA precipitation in Fig. 4g,h). No relation can be seen with mineralogy, parent rock (Fig. 4e) or cover thickness

(Fig. 4k).

4.2 Assessing model-data differences in the local variance of δ18O300

To analyze how similar the variability of the isotopic signal is in the iHadCM3 climate model and the speleothems, we compare

the total variance of the simulation to that of the 92 speleothem records with more than 20 δ18Ospeleo measurements over the

last millennium. The global distribution of variance ratios between δ18Odw.eq and down-sampled δ18O (Fig. 5a) shows overall

higher variability in the speleothem records than in the simulation, with local exceptions. This is also corroborated by the

density plots of the ratio for both δ18O and δ18Opw in Fig. 5b,c. Generally, the observed proxy variance is roughly two times305

higher than that of the down-sampled simulation δ18Opw at the cave location (median of the histogram at 1.8 (1.4,2.6) in

Fig. 5b,c). This is consistent with the predominance of red-shaded variance ratio visualizations in the spatial view indicating

VarRec/VarSim > 1 (Fig. 5a). However, there is a clear impact of averaging on the total variance, as down-sampling results in

a variance ratio above unity. Overall, this shows a discrepancy between the variance observed in δ18Odw.eq and the simulated

variance at the cave location over the total time period.310
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Figure 4. Systematic comparison of climate variables from LM1 and cave parameters on δ18Odw.eq and the offset ∆δ18O to the simulation.

Shown are the absolute values of δ18Odw.eq against: (a) site latitude, and (b) simulated local annual mean temperature, and the model-data

difference against (c) latitude, (d) simulated mean annual temperature, (e) geology surrounding the cave (’?’ means unknown geology), (f)

mean annual (g) DJF and (h) JJA precipitation amount as well as (i) cave elevation, (j) the elevation difference between the model grid and

actual cave, and (k) the overall cover thickness above cave. Symbols denote calcite (black circles) or aragonite (blue triangles) specimens.

An unweighted linear regression (red line) is added for illustration, but without consideration of significance.
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Figure 5. (a) Spatial visualization of the site-based dimensionless variance ratio VRec/VSim, where the simulated δ18O is down-sampled

to record resolution, based on LM1. Aggregated density plots of the variance ratio of δ18O (b) and precipitation-weighted δ18Opw (c) for

the raw records (’full’, black lines) and where the simulation has been down-sampled to the record resolution (’down-sampled’, red lines)

illustrate the variance loss due to temporal averaging in the archive (uses LM1-3).

The highest variance ratio for down-sampled δ18Opw is found in Jiuxian cave in China (eID 330, with a variance ratio of

49.5), the lowest variance ratio in Dandak cave in India (eID 130, with a variance ratio of 0.2), while neighboring caves show

very different variance ratios. As the modeled patterns are fairly smooth, this indicates a large heterogeneity of the speleothem

data from the cave environment. We find no strong or significant relationship between variance or variance ratios to any tested

climate or cave parameter (SF4 where we show a similar figure to Fig. 4 but for variance ratios).315

4.3 Assessing δ18O variability at interannual to centennial timescales

We extend the analysis of total variance (Fig. 5) to the time scale dependent variance (Fig. 6) to better explore variability on

interannual, decadal, and centennial time scales as compared to the total variance over the last millennium. We set stronger cri-

teria on the speleothem records and only analyze the 85 with more than 30 measurements over the last millennium. The spectra

in Fig. 6d give an insight into the variability over different time scales and the representativity of records for reconstruction320

resolution.

On the left side (Fig. 6a-c), the time series of δ18Odw.eq of eID 240 (Bunker cave, Germany) is depicted (Fig. 6a), to-

gether with the simulated δ18Opw at the cave site at different temporal resolutions (Fig. 6b,c), including karst-filtered δ18Opw

. Comparing Fig. 6a-c visually, different levels of variance can already be distinguished e.g. between the filtered and unfiltered

simulated data. The iHadCM3 δ18Opw spectrum of the yearly resolved signal has similar variance over all frequencies and325

shows a fairly constant PSD (Fig. 6d). Variance at decadal timescales (i.e. the PSD for higher frequencies) is just as high as the

variance on centennial time scales (i.e the PSD for lower frequencies).

After down-sampling to the irregular resolution of the record, the simulated spectrum loses power in the higher frequency

range. Comparing for example the time series in Fig. 6c to the spectra in Fig. 6d, the down-sampled spectrum indicates lower
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Figure 6. Variability on different time scales through comparison of measured δ18Odw.eq and simulated δ18Opw time series as well as of

their spectra. (a-c) Example time series of eID 240 in Bunker cave (Germany) (Fohlmeister et al., 2012). (a) The measured δ18Odw.eq in

the speleothem, (b) the iHadCM3 simulated δ18Opw at the cave location with two filters (3 and 9 years) and (c) the simulated δ18Opw but

down-sampled to the same temporal resolution as in (a) with 3 year filter. (d) Power spectral density (PSD) of mean spectra of simulated

δ18Opw at the cave site in yearly resolution (blue), down-sampled to the caves resolution (red) and mean spectrum of the δ18Odw.eq of the

records (black), including the karst-filteres as shown in (a-c). The spectra are area-weighted and averaged over the three simulations (LM1,

LM2 and LM3). The colors for the example eID in (a-c) correspond to the colors of the mean spectra over all entities in (d).

variability than the annual resolution spectrum on decadal timescales. On centennial timescales, both spectra display similar330

variability. Contrasting Fig. 6b to Fig. 6c, this loss in decadal time scale variability is also visible on the time series level.

The proxies’ spectra have even fewer frequency components in the high frequency range, due to the lower temporal reso-

lution. They do, however, show a higher PSD at lower frequencies. The records are, therefore, less variable on decadal time

scales, and more variable than both the down-sampled and the full resolution simulated δ18Opw on centennial time scales.

An additional impact of karst processes and storage on the δ18Opw variability could be expected. To test the impact of335

this, we apply simple karst filters (see Sec. 3) with increasing filter length and test whether they reduce the spectral mismatch.

Filters of different lengths resulted in increasing spectral slopes with increasing transit times. A 3 yr filter for the down-sampled

δ18Opw achieves equivalent variance trends as the record spectrum with less power on decadal timescales. It eventually flattens

again for longer timescales, without exceeding the PSD of the unfiltered signal, such that it is less variable than the proxies
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Figure 7. Correlation fields of simulated δ18Opw and the related climate variables surface temperature (a) and precipitation (b) for simulation

LM1 (|c|> 0.2,p < 0.1). Colored symbols give the correlation between simulated climate variables and the δ18Odw.eq of the speleothem

records. Empty tiles mask non-significant correlations. Black dots show cave locations with non-significant correlations.

on longer time scales. A full set of individual spectra (full simulation, down-sampled, record spectrum, and all filters) for all340

entities used in this analysis can be found in SF5 and SF6.

4.4 Climatic drivers of δ18O variability

To distinguish main important climatic drivers for specific areas for δ18O both in the simulation and in speleothems, we cor-

relate simulated δ18Opw with the simulated temperature (Fig. 7a) and the precipitation signal (Fig. 7b) on a gridbox level after

temporal down-sampling. Grey (empty) tiles indicate non-significant correlation estimates. The correlation between δ18Ospeleo345

and the climate variable is also shown.

We see strong correlations of simulated δ18Opw to simulated temperature at high latitudes as well as over some landmasses

(background in Fig. 7). The speleothem signals show positive as well as strong negative correlations. The absolute highest

correlation is found for eID 124 in Leviathan cave in the USA (c=−0.4 (−0.7,0.1)). In the simulation, this correlation is

locally positive, which indicates that the simulated temperature is a positive δ18Opw driver in the general area in the model.350

The correlation of the simulated climate and the record’s δ18Ospeleo is, however, negative.

The correlation between the simulated precipitation and δ18Opw is especially strong in the tropics. We find the highest

absolute correlation for eID 523 in Gempa Bumi cave in Indonesia (c=−0.5 (−0.7,−0.1)). Here, the background also shows

a negative correlation.

Comparing the two proposed climatic drivers of δ18Opw variability, we observe that the correlations to temperature are355

higher in the higher latitudes, while correlations to the precipitation appear more important in the tropics. A fairly clear zonal

structure of correlations between the climate and oxygen isotope ratio fields is visible in the model. However, only few of the

records show a significant correlation (p < 0.1). We find 18, 15 and 22 significant correlations from 85 entities for temperature

for the three LM ensemble runs respectively. 44 of these are from entities that show significance in 2 of the 3 LM runs. For

precipitation, we find 14, 7, and 10 significant correlations where 54 entities are significant in at least 2 of the 3 LM runs.360

No clear climatic driver can, therefore, be extracted alone from record correlation results. Fewer records show significant
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Figure 8. Network spanned by the 5% strongest absolute correlations of simulated iHadCM3 LM1 δ18Opw at the SISAL cave sites ( a) full

i.e. annual resolution, c) down-sampled). All model-based between-site-correlations are shown in the distance-binned boxplot (b,d). Network

visualizations (e) and distance-binned boxplot (f) of the cross-correlations between SISAL site δ18Ospeleo for the original age models. The

color values indicate the 5% strongest correlations in network and boxplot. The LOESS smoother (span = 0.2) in the boxplots indicate the

correlation for the original chronology (black) as well as the absolute highest correlation through selection of age-models (orange).

correlation to both climate variables. The direct correlation of the time series of the simulated and proxy-based δ18O results

in only 19, 17, and 19 significant correlations from 85, i.e. at around 20% of the sites. Here, 45 entities show significant

correlations in 2 or 3 of the LM runs.

4.5 Similarity measures and network analysis365

Computing all statistical similarity between the δ18Ospeleo signals within a cave (’site-level-correlation’) or across nearby

caves (regional or gridbox-level correlation) yields a measure of representativity useful for model comparison and uncertainty

assessment. The networks in Fig. 8 are based on the simulated signal (annual resolution and down-sampled) δ18Opw (Fig. 8a-d)

and for δ18Ospeleo (Fig. 8e,f) for 85 entities.

Network links are based on the 5% highest absolute correlations. The highest correlations are found at close proximity for370

the models (Fig. 8a-d), whereas links across a wide range of distance can be seen in the proxy data (Fig. 8e,f). High local

correlations for the model data can be expected, as the simulated δ18Opw within one cave will be the same, and only differs

on a temporal scale after the adjustment to the entity’s temporal resolution (down-sampling). The mean absolute correlation

for the 5% strongest significant links in Fig. 8c) is c= 0.42 (0.41,0.43). Comparing the down-sampled distance-to-correlation
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Figure 9. Cross-correlation on site, gridboxes, clusters and global scale for speleothem records and the locally interpolated model output for

δ18Opw. 12 (18) sites (gridboxes) contain more than one speleothem entity with a total of 27 (45). At each aggregation level the correlation

estimates between all entities is shown for δ18Ospeleo (white bars), and the down-sampled model output δ18Opw of LM1-3 at cave locations

(blue bars). Different temporal scales (original resolution and 100 yr-timescale (t.sc)) are compared as well as the age-model ensemble that

gives the highest absolute correlation (dark green bars). Clusters are indicated with the number of speleothem entities in brackets, where c4,

c5, c8, and c9 are not included because they contain too few entities. c6/ICA is the India and Central Asia cluster, c7/CEA is the China and

Eastern Asia cluster.

plot (Fig. 8d) to that on annual resolution analysis(Fig. 8b), an additional scattering of correlation estimates at longer than 2000375

km distance is visible.

The network of δ18Ospeleo does not display large-scale spatial patterns and no observable relationship between correlation

and distance. The mean absolute correlation for the 5% strongest significant links shown in Fig. 8e is c= 0.52 (0.52,0.53).

Computing the networks based on the ensemble age models, and selecting the age models that maximize the absolute corre-

lation between sites, amplifies both positive and negative correlation estimates but does not change the correlation-to-distance380

relationship. The sensitivity test performed on the simulated down-sampled δ18Opw still shows strong yet weaker correlation

estimates at short distances. Comparing the results for simulated δ18Opw (Fig. 8a-d), and δ18Ospeleo (Fig. 8e,f), we obtain low

correlation estimates at the local scale.

We can also investigate relationships using regional networks. For this, we look at correlation on different spatial levels and385

separate the network analysis from Fig. 8 by sites, gridboxes, and clusters. Cluster c4, c8, and c9 contain less than four entities

and are excluded. We check for representativity on different time scales of record resolution (white, and dark blue) and a 100

yr Gaussian smoothing filter (grey and light blue) and on different spatial scales using boxplots (Fig. 9).

At the site level, we find 27 entities within 12 sites that contain at least 2 entities. The median correlation of these 28 pairs is

craw = 0.25 (−0.17,0.33). On a 100 yr timescale, this increases to c100 = 0.42 (−0.46,0.49)). The SNR gives a measure of390

the relative importance of non-climatic overprints on the proxy signal. We obtain a local SNR estimate of 0.5 (0.4,1.1). On the
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gridbox level (45 entities in 18 gridboxes), we find a median correlation of craw = 0.23 (0.2,0.25) (100 yr timescale: c100 =

0.34 (0.27,0.47)). As on spatial resolutions below gridbox level, correlations between simulated δ18Opw are not meaningful,

which is why the analysis in Fig. 9 shows only the correlations between record δ18Ospeleo and not those of the simulated

δ18Opw on a site and gridbox level.395

For regional clusters, the correlation between proxies shows positive and negative median values. In the simulation, the

median values are always positive. For clusters containing more than ten records detailed correlation maps including correlation

matrices are depicted for Europe (SF7), China and Eastern Asia (SF8), South America (SF9), and North America (SF10)

where very red maps and matrices can be found, indicating mostly positive correlations for the down-sampled simulation when

compared to more blue ones in the records, indicating that also negative correlations are present. On the global scale, the median400

correlation between all records is slightly positive (craw = 0.1 (−0.09,0.11), 100 yr timescale: c100 = 0.13 (−0.14,0.17)),

whereas for the simulation this median is positive (craw = 0.06 (0.06,0.06)) and strongly enhanced at centennial timescale to

c100 = 0.76 (0.73,0.81).

By the selection of the age-model that maximizes the absolute correlation, we obtain a significant positive correlation at

site level and a stronger significantly positive correlation at gridbox level. A detailed table with median correlations and SNR405

using the original chronologies as well as using the described age-model selection on different spatial levels is shown in ST2.

Calculating correlations for different age-model ensembles was only done for the 69 entities, where both age-model ensembles

were available (U/Th-dated entities) in Comas-Bru et al. (2020), and our strongest criteria were matched.

5 Discussion

5.1 δ18O model-data comparison in mean and variance410

In our study, we found the last millennium mean iHadCM3-simulated δ18O to agree well with the mean state of the measured

δ18Odw.eq (Fig. 3). The average unweighted offset of ∆δ18O = 0.1‰ (−4.6,4.4) was small compared to the total δ18Opw and

the area weighted standard deviation of σ2 = 0.78‰2 (0.77,0.8) of the global simulated mean δ18Opw. Measured δ18Odw.eq

followed general isotopic signature patterns as described by Dansgaard (1964). The offsets are more positive in the extratropics

of the Northern Hemisphere, which is also shown by their temperature dependency (Fig. 4).415

Baker et al. (2019) distinguished between temperature zones of climatic controls on δ18O in offset analyses on drip water.

They find a stronger influence of seasonality of precipitation in warmer climates, highlighting the importance of a karst-

recharge model. Here, we also observed a strong temperature dependency reflected in the offset and δ18Odw.eq over the last

millennium, showing the influence of fractionation and other cave internal processes on the δ18O in drip water (Fig. 4) but

also additional fractionation processes of weighting through evaporation before the precipitated water enters the epikarst. The420

higher offsets on the Northern Hemisphere possibly indicate a stronger influence of the continental effect. Still, from the records

alone and with no karst-recharge or evaporation information, we were not able to distinguish specific climatic control regions.

This requires a more thorough analysis including monitoring data as well as more simulated variables.
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We found no evidence that the variance ratio between record variance and simulated variance is related to the offset between

simulation and records (SF4 is similar to Fig. 4, with variance vatios instead of ∆δ18O). Specifically, there is no correlation425

between site-level offset and site-level variance ratio (results not shown, r = 0.1 (0.0,0.3), p= 0.2). In general, the total

variance of the simulated δ18Opw and of the speleothem isotopic signatures over the last millennium are consistent. Differences

in variance can, to some extent, be attributed to the sample resolution of the records, whereas down-sampling of simulated

δ18Opw decreases the variability on decadal time scales. The resolution to which the simulation is temporally aggregated

impacts whether the variance in the simulation appears to be larger or smaller than in the records. The variance over the last430

millennium in the records is, overall 1.8 (1.4,2.6) times as high as the simulated down-sampled variance in Fig. 5.

Furthermore, the simulated δ18O time series at the cave sites show less variability on centennial timescales than the time

series of the records. This is true even when comparing the same temporal resolutions (time scale dependent variance depicted

in SF11 for δ18Odw.eq, yearly-resolution δ18O and down-sampled δ18O). This is in agreement with the findings of Laepple

and Huybers (2014b), who compared simulated and reconstructed temperature variability across different timescales and found435

that the model-data discrepancies increased with time scale, particularly on a regional level.

If we assume that paleoclimate archives record climate variability correctly and that the proxy-climate relationships are

not timescale-dependent or transient, discrepancies at the centennial timescale could in part be explained by the models’

underestimation of variability, in particular on centennial time scales. However, we find little regional consistency and high

heterogeneity in the variance estimates from the speleothem records. These findings point to the influence of karst and cave440

internal processes on meteoric δ18O or the impact of seasonally filtered data captured by speleothems e.g. through strong

evaporation in warm months, which is in agreement with McDermott et al. (2001). Age uncertainties, that are not covered by

the age-model ensembles, could also be responsible for the low similarity between isotopic signals of neighboring speleothem

entities.

5.2 Influence of the karst-filter445

By delaying the simulated down-sampled signal through a simplified karst-filter with a transit time of 3 yr, we obtained

matching equivalent power spectra for the simulation and the records. Studies observing cave reaction time in karst systems

find increases in drip rate after an increase in precipitation e.g. after days (Riechelmann et al., 2011). More complex tritium

measurements show actual transit times of e.g. years for the Bunker cave in Germany (Kluge et al., 2010) to decades in the

Villars cave in France (Jean-Baptiste et al., 2019), depending on the karst hydrology. The karst filter effectively reduces the450

temporal resolution of the record beyond the nominal median of 5.6 yr (Fig. 6). Such low-pass filtering to model drip water

transit times has been used (Wackerbarth et al., 2010; Dee et al., 2015; Lohmann et al., 2013) to produce similar time lags of

2− 10 yr, indicating that the best fit mean time lag for our karst filter of 3 yr (down-sampled) is a realistic estimate for transit

times.

We find low interannual to decadal variability in the δ18Ospeleo signals recorded by speleothems (Fig. 6). In part, this is455

likely due to the average resolution of the records, which lies close to these timescales. Furthermore, mixing processes in the
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soil and karst could play an important role, where soil δ18O is found to have much lower variability than precipitation δ18O

(Tang and Feng, 2001).

On decadal timescales (shorter than 50 yr), the karst filter reduced the resolution-adjusted variance by 34% (20,43), on

longer timescales (longer than50 yr) by 4.0% (3.3,4.4) of the non-filtered down-sampled variance. The total filtered and460

down-sampled variance over the last millennium decreased by 14% (9,27) of the unfiltered down-sampled variance. Still, this

is equivalent to only 29% (23,38) of the record variance, as the filter only decreases variance on annual to decadal time scales.

On centennial time scales the filter has little to no effect, so the record’s variance on these time scales is not strongly affected.

5.3 Representativity of δ18O at different spatial levels

A clear picture of the relationship between the climatic drivers for the simulation was distinguishable. However, no system-465

atic pattern and few significant correlations were found for the speleothem records (Fig. 7). Accounting for seasonal sensi-

tivity could enhance the number of simulation-to-record correlations of SF12, which shows the selected strongest seasonal

correlation. However, this does neither enhance the overall correlation (histogram of correlation distribution using annual

down-sampled time series and seasonal down-sampled time series in SF13), nor the SNR (results not shown). Still, the strong

influence of seasonality suggests a dependency of δ18Ospeleo on certain seasons rather than the annual mean. Supporting this,470

SF14 shows a correlation map with the strongest seasonal correlation of δ18Ospeleo to the simulated climate variables tempera-

ture, precipitation, and δ18O in precipitation. Further drip water monitoring studies combined with a comparison to model data

output and observation data would help to characterize the seasonality of individual caves and would, therefore, lead to deeper

understanding of which climatic signal is captured by speleothems and enhance comparability between different caves.

We found low spatial representativity of individual speleothems for sites, gridboxes, and regions when compared to the475

simulation (Fig. 8 and Fig. 9). We obtained stronger correlations between entities by selection of the best-matching age-model

ensemble for entities where these ensembles were available. This age-model ensemble ’tuning’ increased the median of corre-

lations on site and gridbox-level by roughly a factor of 2, while also increasing the SNR by a factor of 3 and 2.5, respectively.

However, no improvement could be observed on the cluster and global level. A detailed table of correlations and SNRs us-

ing the original chronologies as well as using the age-model ensemble selection that gives the highest absolute correlation is480

showed in the supplement table ST2. Testing other ‘tuning’ options, such as the consideration of only the 50% of the records at

closest proximity within a cluster, or the 50% with the smallest mean offset showed no improvement (boxplot similar to Fig. 9

for the other selection criteria in SF15). We also found no correlation between the total variance and the number of significant

links in the network (c=−0.02(−0.23,0.19),p= 0.8). Testing for age-model sensitivity and analyzing the resulting ’tuning’

for the down-sampled simulated δ18O in Fig. 8, however, yielded that the method is useful but better selection criteria are485

needed.

Examining climatic modes such as ENSO, NAO, and others (as shown in SF18 for LM1), which modulate hydroclimate

variability across spatio-temporal scales, may provide additional help in the interpretation of the climatic drivers (e.g., following

the recent example of Midhun et al., 2021). They found that changes in modeled climatic mode strengths lead to small changes

in δ18Ospeleo. The methods applied, especially regarding teleconnections could provide deeper insight into climatic controls490

21



on speleothem isotopic signals. In particular Midhun et al. (2021) point out the potential to use of speleothem networks in the

reconstruction of climatic modes.

A strong between-site variability has been attributed to controls of regional atmospheric circulation according to Lachniet

(2009). We also find a strong heterogeneity in the recorded variance of δ18O at the gridbox and cluster levels. In part, this

can be due to heterogeneous temporal resolution, but could also be influenced by non-climatic environmental overprints on the495

δ18O signal up to the centennial scale. This could be investigated by comparing the δ18O and the δ13C signal recorded within

the cave to vegetation, climate, and landscape evolution archives in the region. However, representativity tests across Western

Europe noted coherent δ18Ospeleo trends on glacial-interglacial time scales, where trends are less clearly expressed during

the Holocene (Lechleitner et al., 2018). Therefore, this study could be extended to longer time scales, when longer transient

isotope-enabled simulations become available.500

5.4 Limitations

Simulated isotope variability is primarily dictated by the model’s climatology and the complexity of its dynamics and hydro-

logical cycle. We use a three-member initial-condition ensemble from a single iGCM in this study. Therefore, all results relate

to these iHadCM3 last millennium ensemble runs and the chosen radiative forcings. While solar forcing has little influence

on simulated δ18O , the impact of volcanic forcing is much clearer yet still weak (SF16). In this respect, a more thorough505

comparison with more simulations is needed in order to estimate the capability of models to simulate variability and to find

common biases. However, the establishment of isotope-enabled GCMs requires substantial work for the addition of isotopic

tracers and their evaluation, and the computational costs increase. This still inhibits the simulation of large transient ensembles

with iGCMs over centennial to millennial and orbital time scales. Nevertheless, the three-member ensemble we provide could

also be used to test offline data assimilation methods, as suggested by Dalaiden et al. (2020) or Sjolte et al. (2020). With their510

precise U/Th-dating, speleothems are a well-suited archive for this method and age uncertainties can be accounted for similar

to this study by the available age-model ensembles in Comas-Bru et al. (2020). This might also help to better identify the

climate factors that govern the speleothem archiving of δ18O and its variability.

An uncertainty factor in our study comes from the temperature-dependence of the calcite- and aragonite-to-drip-water con-

version. We calculated the adjustment factors using the simulated annual mean temperature at the cave location, sampled to the515

speleothem’s temporal resolution. We take this simulated temperature as a surrogate for the longterm-changes of the inside-

cave air temperature. Knowing the actual temperature history of the caves better could strongly reduce the uncertainty, as a

bias of ∆1◦C in the simulated temperature would account for a change in δ18Odw.eq of approximately ∆0.2‰. Following Eq.

(1)-(3), a bias of ∆1‰ in the δ18Odw.eq however, accounts for a temperature change of 4.5◦C for the lowest simulated annual

mean cave temperature (3.1◦C in Norway), and a change of 5.5◦C for the highest simulated annual mean cave temperature520

(32.5◦C in the tropics).

This model-data comparison focuses on the comparison between simulated δ18O and precipitation-weighted δ18Opw to

the drip-water-converted δ18Ospeleo . Especially in the more arid regions, evaporation processes play an important role and

δ18Ospeleo might be in better agreement with simulated infiltration-weighted δ18O or a karst recharge model. Further studies
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explicitly addressing evaporative effects might help in the interpretation of the results, for example in the region of South525

America.

Furthermore, our study focussed solely on δ18O as one particular proxy for climate and environmental changes and not other

geochemical proxies that can be measured on speleothem samples (Kaufmann, 2003; Schwarcz et al., 1976) or a combination

of proxies, which have the potential of a more thorough interpretation of a climate signal. A multi-proxy approach, such

as in Fohlmeister et al. (2017) or Baker et al. (2017) who also include δ13C along with δ18O, could offer deeper insights.530

Many proxies for climate processes, such as δ13C have not (yet) been implemented in comprehensive GCMs, as it requires

a detailed and complex representation of the biology, physics, and ecology and dedicated model development. Therefore, in

order to consider the vast majority of models in the evaluation, time series have to be calibrated to climatic and environmental

parameters that are explicitly modeled. This would introduce additional uncertainty, that could counteract the added value of

considering multiple proxies in the first place.535

We have considered a regional to global view on speleothem δ18O signal. Therefore, influences and processes known for

individual cave systems could not be considered. For example, Kluge et al. (2013) account for kinetic fractionation changes

over time via clumped isotope measurements, and Jean-Baptiste et al. (2019) were able to extract transit times of dripwater in

Villar cave. Considering these and other local factors might give deeper insight into individual speleothem records, but it is

difficult to scale quantitatively and systematically. Nevertheless, including monitoring datasets from different caves globally540

might give deeper insight into the filter and fractionation processes involved, and PSM studies informed by the monitoring and

local expertise throughout the database could help in further comparison studies.

6 Conclusions

We presented an ensemble of iHadCM3 last millennium simulations and compared the oxygen isotope ratios, temperature, and

precipitation variability to oxygen isotope ratio observations from a large speleothem dataset (a subset of SISAL v.2.). Overall,545

time-mean patterns of oxygen isotope ratio were fairly similar in both. Considering total variance as well as the variability on

different time scales, we observed that the effects of resolution adjustment and a convolution karst filter were sufficient to bring

simulated and observed δ18O spectra into good agreement. Still, total variability in the speleothem records is much higher than

in the simulation. This supports previous studies that found that climate models currently do not capture appropriate variability

on centennial time scales.550

However, we find that the climatological and environmental interpretation of δ18Ospeleo is not straightforward. We found

low signal-to-noise ratios for the isotopic signatures in the speleothem records, which imply a low spatial representativity

of individual entities. Furthermore, while regional climatic signals were distinguished in the simulation, the main climatic

drivers for δ18Ospeleo at the regional scale were difficult to isolate. It is difficult to establish the size of the spatial footprint of

representativity, the seasonality, and the relevant climatological and environmental parameters for reconstructions. Here, expert555

knowledge on local cave processes, environmental history, and, in particular, the availability of monitoring data are crucial to

aid the interpretation of the climate signal. Inner cave and karst processes, which influence the seasonality of the input signal
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above the cave and inside the cave, may need to be taken under consideration. However, monitoring data for evaluation and

potential calibration of reconstructions are currently only available for a few sites (e.g. Tremaine et al. (2011)). Furthermore,

some parameters, such as transit times, are difficult to measure (Jean-Baptiste et al., 2019).560

Proxy system models that account for the cave internal fractionation processes may give a deeper insight into how climate

variability is captured in speleothem archives. To gain a deeper understanding of the underlying concepts that influence the

capability of speleothems to capture and resolve climate variability and the capability of models to simulate them, further

model-data comparison studies are required.
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