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Abstract 41 

In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), coupled climate models have been used 42 

to simulate an interglacial climate during the mid-Piacenzian warm period (mPWP, 3.264 to 3.025 Ma). 43 

Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), poleward ocean heat transport 44 

and sea surface warming in the Atlantic simulated with these models. In PlioMIP2, all models simulate an 45 

intensified mid-Pliocene AMOC. However, there is no consistent response in the simulated Atlantic ocean 46 

heat transport, or the depth of the Atlantic overturning cell. The models show a large spread in the simulated 47 

AMOC maximum, the Atlantic ocean heat transport, as well as the surface warming in the North Atlantic. 48 

Although a few models simulate a surface warming of ~8–12 ℃ in the North Atlantic, similar to the 49 

reconstruction from Pliocene Research, Interpretation and Synoptic Mapping (PRISM), most models 50 

underestimate this warming. The large model-spread and model-data discrepancies in the PlioMIP2 51 

ensemble does not support the hypothesis that an intensification of the AMOC, together with an increase in 52 

northward ocean heat transport, is the dominant forcing for the mid-Pliocene warm climate.  53 

 54 

 55 

1. Introduction 56 

The mid-Piacenzian warm period (mPWP, 3.264–3.025 Ma) was a recent period of sustained warmth in 57 

geological history, with land-sea distribution, topography and levels of greenhouse gases being comparable 58 

to today (Dowsett et al., 2010, 2016; Haywood et al., 2010, 2016a). The estimated global mean temperature 59 

during the mPWP was 2–4℃ higher than the pre-industrial (e.g., Dowsett et al., 2010, 2016; Haywood et al., 60 

2010, 2016a), and the atmospheric CO2 level was above 400ppmv (Badger et al., 2013). Thus, the mPWP 61 

climate is often thought of as a plausible test case that has the potential to provide insights for our future 62 

climate (e.g., Zubakov and Borzenkova, 1988; Haywood et al., 2016b; Burke et al., 2018).  63 

To understand the mPWP climate, the Pliocene Modelling Intercomparison Project (PlioMIP) phase 1 64 

was launched in 2010 (Haywood et al., 2010). The major forcing considered in PlioMIP1 was an increase 65 

(compared to pre-industrial) in the atmospheric CO2 level to 405 ppmv, combined with a modern land-sea 66 

distribution (Haywood et al., 2013). Based on the PlioMIP1 simulations (e.g., Chan et al., 2011; Bragg et al., 67 

2012; Contoux et al., 2012; Kamae and Ueda, 2012; Stepanek and Lohmann, 2012; Zhang et al., 2012; 68 

Chandler et al., 2013; Rosenbloom et al., 2013), numerous studies were carried out to investigate various 69 

aspects of the warm mid-Pliocene climate, including: the Hadley and Walker circulations (Sun et al., 2013; 70 

Corvec and Fletcher, 2017); tropical cyclones (Yan et al., 2016); monsoon circulations (Zhang et al., 2013a, 71 
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2016; Li et al., 2018); mid-latitude westerly winds (Li et al., 2015); Arctic sea ice (Howell et al., 2016); 72 

energy balance of the climate system (Hill et al., 2014); and climate sensitivity (Hargreaves and Annan 73 

2016). These PlioMIP1 simulations showed that the global annual mean surface air temperature (SAT) was 74 

1.9–3.6℃ warmer than pre-industrial in the multi-model ensemble mean (Haywood et al., 2013), while the 75 

strength of Atlantic Meridional Overturning Circulation (AMOC) was similar to the pre-industrial (Zhang et 76 

al., 2013b). However, when compared to marine and terrestrial reconstructions, there was a large model-data 77 

discrepancy in the North Atlantic (Dowsett et al., 2012, 2013; Haywood et al., 2013) and the land realm of 78 

the Northern Hemisphere (Salzmann et al. 2013). The simulated increases in the sea surface temperatures 79 

(SSTs) in the North Atlantic were ~4–6℃ less than the reconstructions (Dowsett et al., 2012, 2013; 80 

Haywood et al., 2013; Salzmann et al. 2013). Since the PlioMIP1 simulations (Zhang et al., 2013b, 2013c) 81 

did not support a stronger Pliocene AMOC (compared to preindustrial) and an inferred enhancement of 82 

Atlantic northward ocean heat transport (OHT) suggested by proxies (Dowsett, 1992; Raymo et al., 1996), it 83 

was difficult to explain the reconstructed strong surface warming in the high-latitude North Atlantic during 84 

the mid-Pliocene. 85 

To further understand the mPWP climate and to improve upon the model-data discrepancy, the PlioMIP 86 

phase 2 was initiated in 2016 (Haywood et al., 2016a). PlioMIP2 employs state-of-the-art boundary 87 

conditions from the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) version 4 (Dowsett et 88 

al., 2016a), and focuses on the KM5c interglacial period in the mid-Pliocene (Haywood et al., 2016a). The 89 

PRISM4 boundary conditions include reconstructed ocean bathymetry and land–ice surface topography, and 90 

also incorporate Pliocene soils and lakes (Dowsett et al., 2016; Haywood et al., 2016a). The most important 91 

change in boundary conditions in the northern high latitudes is the closure of the Canadian Archipelago and 92 

the Bering Strait (Haywood et al., 2016a). When incorporating the PRISM4 boundary conditions in 93 

PlioMIP2, the global annual mean SAT increases by 1.7–5.2°C relative to the pre-industrial, with a 94 

multi-model mean SAT increase of 3.2°C (Haywood et al., 2020). In the Arctic, simulated annual mean SAT 95 

increases by 3.7–11.6 °C compared to the pre-industrial, with a multi-model mean increase of 7.2 °C (de 96 

Nooijer et al., 2020).  97 

In this study, we compare the simulated AMOC in PlioMIP2, in order to further address the question 98 

whether an intensified AMOC and enhanced Atlantic OHT can explain the reconstructed North 99 

Atlantic-Arctic sea surface warming during the mPWP. In section 2, we briefly introduce the models 100 

participated in PlioMIP2. In section 3, we compare the simulated AMOC and Atlantic OHT between 101 

PlioMIP1 and PlioMIP2. In section 4, we investigate the relationship between the simulated AMOC 102 
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response and changes in North Atlantic SST. Finally, the results are discussed and summarized in section 5.    103 

 104 

2. Introduction of models used in PlioMIP2 105 

In this study, we analyze simulations with the fifteen models that have participated and provided the 106 

simulated AMOC results to PlioMIP2 (Table 1). They are CCSM4 (Feng et al., 2020), CCSM4-UoT 107 

(Chandan and Peltier, 2017; 2018), CCSM4-Utrecht (Baatsen et al. 2020, in prep), CESM1.2 (Feng et al., 108 

2020), CESM2 (Feng et al., 2020), COSMOS (Stepanek et al., 2020), EC-Earth3-LR (Döscher et al., 2020, 109 

in prep), GISS-E2-1-G, HadCM3 (Hunter et al., 2019), IPSLCM5A2 (Tan et al., 2020), IPSLCM5A (Tan et 110 

al., 2020), IPSLCM6A-LR (Lurton et al., 2020), MIROC4m (Chan and Abe-Ouchi, 2020), NorESM1-F (Li 111 

et al., 2020), and NorESM-L (Li et al., 2020). All fifteen models have performed simulations according to 112 

the PlioMIP2 experimental protocol (Haywood et al., 2016). They provide the pre-industrial control 113 

experiment (pi-E280) and the mid-Pliocene experiment (midPliocene-Eoi400) as a minimum. In the 114 

mid-Pliocene experiment, a land-sea mask with the Arctic gateways closed and an atmospheric CO2 level of 115 

400ppmv are used. The atmospheric CO2 level is in line with the very latest high-resolution proxy 116 

reconstruction based on Boron isotopes for ~3.2 Ma (Chalk et al. 2018). More details on the individual 117 

models and experimental design are introduced in a recent synthesis study (Haywood et al., 2020) and 118 

several individual modeling studies (Chandan and Peltier, 2017; 2018; Hunter et al., 2019; Chan and 119 

Abe-Ouchi, 2020; Döscher et al., 2020; Feng et al., 2020; Li et al., 2020; Lurton et al., 2020; Stepanek et al., 120 

2020; Tan et al., 2020). In addition to these fifteen models, MRI-CGCM (Kamae et al., 2016) and 121 

HadGEM3 have taken part in PlioMIP2. However, MRI-CGCM has not provided the AMOC results to the 122 

PlioMIP2 database, while HadGEM3 has not used the land-sea distribution condition with the Arctic 123 

gateways closed.  124 

Of the fifteen PlioMIP2 models used here, six of them also took part in PlioMIP1. They are CCSM4, 125 

COSMOS, HadCM3, IPSLCM5A, MIROC4m and NorESM-L. However, all these six models have 126 

submitted new pre-industrial control experiments to the PlioMIP2 database, and some of these pre-industrial 127 

experiments have been extended. CCSM4 has also been used by other modelling groups, as CCSM4-UoT 128 

and CCSM-Utrecht. Therefore, the pre-industrial AMOC maximums and depths in PlioMIP2 are slightly 129 

different to the values in PlioMIP1.  130 

 131 

3. Simulated AMOC and OHT 132 

3.1 Simulated AMOC in PlioMIP2 133 
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The PlioMIP2 models produce reasonable simulations for the pre-industrial AMOC. The pre-industrial 134 

AMOC maximums (the maximum of the Atlantic meridional overturning streamfunction) range from ~10 to 135 

28 Sv (1 Sv ≡ 106 m3 s-1; Table 1, Fig. 1). The multi-model median value of the AMOC maximums is 19.8 136 

Sv, which is comparable to the observational estimates of 18.7 ± 2.1 Sv (Kanzow et al. 2010). The depths of 137 

the Atlantic overturning cell range from 2300 m to 3800 m. 138 

In PlioMIP2, the models show that the maximum AMOC is enhanced by 1% to 53% in the 139 

mid-Pliocene, relative to the pre-industrial (Table 1, Fig. 1). The median value of the enhancement is 19%. 140 

Seven models (CCSM-UoT, COSMOS, GISS-E2-1-G, HadCM3, IPSLCM5A, IPSLCM5A2, 141 

IPSLCM6A-LR) show insignificant changes in the depth of the mid-Pliocene Atlantic overturning cell (with 142 

depth changes of less than 100 m), when compared to the pre-industrial. However, five models, CCSM4, 143 

CESM1.2, CESM2, EC-Earth3-LR and MIROC4m, simulate a shoaling of the Atlantic overturning cell for 144 

the mid-Pliocene, with a shoaling of ~1190m, ~1330m, ~820m, ~350 m and ~440 m. On the other hand, 145 

three models, CCSM4-Utrecht, NorESM1-F, and NorESM-L, simulate a deeper mid-Pliocene Atlantic 146 

overturning cell with increases in the depth of ~540m, ~1590 m and ~1330 m (Fig. 1, 2).  147 

  Compared to PlioMIP1 (Zhang et al., 2013b), the simulated AMOC responses to Pliocene boundary 148 

conditions are different in PlioMIP2 (Fig. 2). In PlioMIP1, there was no consistent increase in the maximum 149 

strength of the AMOC, while there was a consistent shoaling of the Atlantic overturning cell. However, in 150 

PlioMIP2, there is a consistent increase in the maximum strength of the AMOC, while there is no consistent 151 

change in the depth of Atlantic overturning cell. 152 

 153 

3.2 Simulated Atlantic OHT in PlioMIP2 154 

As expected from the intensified AMOC, most models simulate an enhanced Atlantic OHT (averaged 155 

between 30oS and 80oN) in the mid-Pliocene experiments relative to the pre-industrial (Table 1, Fig. 3). The 156 

increases range from 4% to 39%. The largest enhancement is found in the simulation with IPSLCM5A2, 157 

while the smallest one is simulated with NorESM1-F. In contrast, six models, CCSM4, CESM1.2, CESM2, 158 

GISS-E2-1-G, MIROC4m and NorESM-L show a decrease (ranged from -1% to -17%) in Atlantic OHT. 159 

Obviously, there is no linear relationship between the intensification in AMOC and the changes in mean 160 

Atlantic OHT in the PlioMIP2 simulations (Fig. 2b). For example, GISS-E2-1-G and IPSLCM6A-LR both 161 

simulate increases of 24% in the AMOC maximum. However, GISS-E2-1-G shows a decrease in mean 162 

Atlantic OHT by -1%, while IPSLCM6A-LR shows an increase of 29%. CCSM4 and CCSM4-Utrecht also 163 

show the same increase of 11% in the AMOC maximum, but opposite responses in the mean Atlantic OHT. 164 
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This large model-spread in PlioMIP2 suggests that the responses within AMOC strength and Atlantic 165 

northward OHT are highly model-dependent.  166 

 167 

4. Simulated North Atlantic sea surface warming  168 

In PlioMIP2, the simulated mid-Pliocene global annual mean SST is between 1.2 and 4.0 ℃ warmer 169 

than the pre-industrial. Most models show that the strongest sea surface warming appears in the mid-to-high 170 

latitude North Atlantic (Fig. 4, 5). The median of multi-model ensemble shows that SST increases by ~2-8 ℃ 171 

in the North Atlantic between 30oN and 80oN (Fig. 6). The largest increase in ensemble median by 6-8 ℃ 172 

appears in the Labrador Sea on the Cape Farewell (the southernmost point) of Greenland. EC-Earth3-LR 173 

simulates the largest increase in the North Atlantic SST above 12℃ in the mid-Pliocene experiment (Fig. 4, 174 

5).  175 

However, the SST increases in the North Atlantic (averaged between 30oN and 80oN) in response to the 176 

changes in AMOC maximum and North Atlantic OHT (averaged between 30oN and 80oN) are highly 177 

model-dependent (Fig. 5). Of the fifteen PlioMIP2 models, eleven models (CCSM4, CESM1.2, COSMOS, 178 

HadCM3, GISS-E2-1-G, IPSLCM5A, IPSLCM5A2, IPSLCM6A-LR, MIROC4m, NorESM1-F, NorESM-L) 179 

simulate a mean SST increase between 2 and 4 ℃ in the North Atlantic. However, the ranges of the changes 180 

in AMOC maximum (from 1% to 53%) and mean North Atlantic OHT (from -13% to 43%) are large. 181 

Meanwhile, EC-Earth3-LR produces an increase of ~8 ℃ in mean North Atlantic SST, which is associated 182 

with an intensification of 3.2 Sv (19%) in the AMOC maximum and an enhancement of 0.16 PW (41%) in 183 

the mean North Atlantic OHT. CCSM4-UoT, CCSM4-Utrecht, CESM2 produce a similar increase of ~5 ℃ 184 

in the mean North Atlantic SST, while the intensification in AMOC maximum shows a large range covering 185 

0.9 Sv (4%), 2.1 Sv (11%), and 4.7 Sv (21%), whereas the mean North Atlantic OHT changes by 0.06 PW 186 

(9%), 0.04 PW (6%), -0.02 PW (-4%).    187 

In PlioMIP2, the surface warming simulated with CCSM4-UoT, CCSM4-Utrecht, CESM2 and 188 

EC-Earth3-LR is close to or warmer than the PRISM4 reconstructions (Foley and Dowsett, 2019) in the 189 

North Atlantic between 30oN and 80oN, whereas the other models still underestimate the North Atlantic SST 190 

(Fig. 6). A previous study (Otto-Bliesner et al., 2017) showed that the closing of the Arctic gateways led to 191 

warmer North Atlantic SSTs in the mid-Pliocene experiment, when compared to the pre-industrial. However, 192 

in the PlioMIP2 simulations analyzed here the Arctic gateways are closed, while not all models simulate the 193 

warm North Atlantic SSTs as reconstructed in the PRISM4 data set (Foley and Dowsett, 2019). Although 194 

the Arctic gateways may lead to a better agreement between simulated and reconstructed mid-Pliocene 195 
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North Atlantic SSTs in some models, the effect is either not present for all of the models or it is not of 196 

sufficient amplitude to fully resolve the model-data discord. The PlioMIP2 models show a larger 197 

model-spread in the simulated mid-Pliocene SST increases in the high-latitude North Atlantic, as well as the 198 

responses in AMOC and North Atlantic OHT, relative to PlioMIP1. This reduced agreement is not surprising 199 

as the model spread in global average surface temperatures is likewise more pronounced in PlioMIP2 (1.86–200 

3.60 °C in PlioMIP1 (Haywood et al., 2013) compared to 1.7–5.2 °C in PlioMIP2 (Haywood et al., 2020)). 201 

     202 

5. Discussion and summary 203 

Compared to the PlioMIP1 ensemble, all PlioMIP2 models forced with the PRISM4 reconstructions 204 

that considers closed Arctic gateways simulate an intensification in the mid-Pliocene AMOC. CCSM4, 205 

COSMOS, HadCM3, IPSLCM5A, MIROC4m and NorESM-L have all participated in both PlioMIP1 and 2. 206 

Simulated with these six models, the increase (compared to the pre-industrial) in the mid-Pliocene AMOC 207 

maximum is larger in PlioMIP2 than in PlioMIP1, supporting the suggestion that closed Arctic gateways is a 208 

key forcing for the intensified mid-Pliocene AMOC in PlioMIP2. There are several further lines of evidence 209 

that support the suggestion. HadGEM3, which carried out the mid-Pliocene experiment forced with the 210 

PlioMIP2 boundary conditions, except that the land-sea distribution condition was identical to the 211 

pre-industrial, produces a weaker mid-Pliocene AMOC (with a maximum of 14.3 Sv) compared to the 212 

pre-industrial (with a maximum of 16.1 Sv). With COSMOS, a sensitivity experiment forced with the 213 

modern land-sea distribution (the Arctic gateways opened) also shows a weaker AMOC, when compared to 214 

the core mid-Pliocene simulation (Stepanek et al., 2020). As revealed in the early study (Otto-Bliesner et al., 215 

2017), the closed Arctic gateways lead to a stronger AMOC by inhibiting Arctic freshwater export to the 216 

North Atlantic. However, the amount in intensification of AMOC due to the closed Arctic gateways seems 217 

highly model-dependent, which remains to be shown in more dedicated sensitivity experiments for the 218 

PlioMIP2 models. 219 

In PlioMIP2, the large-model spread does not support that the intensified mid-Pliocene AMOC is the 220 

only forcing responsible for the simulated warm North Atlantic SSTs. Compared to CCSM4, both 221 

CCSM4-UoT and CCSM4-Utrecht simulate warmer SSTs in the North Atlantic, indicating that the increased 222 

background ocean vertical mixing parameters also contribute to the strong mid-Pliocene North Atlantic 223 

warming simulated with these two models. Each model’s climate sensitivity also influences the simulated 224 

mid-Pliocene warming in PlioMIP2. For example, relative to CCSM4 and CESM1.2, CESM2 has the largest 225 

equilibrium climate sensitivity (Feng et al., 2020; Haywood et al., 2020) and simulates the strongest North 226 
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Atlantic warming in the mid-Pliocene experiment. Moreover, a new lake and soil condition is involved in 227 

PlioMIP2 (Haywood et al., 2016). Methods for modifying the soil condition and their impacts on climate in 228 

the models are highly model-dependent, due to the large variety of land surface schemes included in the 229 

PlioMIP2 models, which could further amplify the diversity of warming signals in high latitude regions. 230 

Since not all models carry out the sensitivity experiments designed in PlioMIP2, it remains difficult to 231 

distinguish which change in boundary conditions is more dominant for the strong mid-Pliocene North 232 

Atlantic surface warming. Earlier energy balance analyses (Hill, 2015; Feng et al., 2017) suggest that the 233 

simulated mid-Pliocene North Atlantic warming is dominated by regional radiative feedbacks from changed 234 

surface albedo and increased water vapor, instead of the Atlantic OHT, even with an enhanced AMOC by 235 

gateway closure.  236 

Nevertheless, the PlioMIP2 experiments simulate a sea surface warming that is in better agreement 237 

with the PRISM4 reconstructions (Foley and Dowsett, 2019) in the North Atlantic, relative to the PlioMIP1 238 

ensemble. As shown in the synthesis paper by Haywood et al. (2020), the multi-model means (with equal 239 

weight for each model) agree well with the reconstructions at Sites 609, 1308, and show small differences to 240 

the reconstructions at Sites 982, 642. The comparison between the PlioMIP2 simulations and the SST 241 

reconstructions in the KM5c interglacial (McClymont et al., 2020) also demonstrates the reduced model-data 242 

discord.  243 

However, the improved model-data agreement in the North Atlantic is primarily caused by the 244 

relatively warm mid-Pliocene simulations run with EC-Earth3-LR and the five models from the 245 

CCSM/CESM family (Fig. 6). For the other models, the range of warming at these sites is similar to that of 246 

PlioMIP1. This large model-spread suggests that the reconstructed strong mid-Pliocene sea surface warming 247 

in the North Atlantic is not necessarily caused by the intensified AMOC and enhanced Atlantic northward 248 

OHT as suggested previously (Dowsett, 1992; Raymo et al., 1996). Even given the intensified AMOC in 249 

PlioMIP2 due to the closed Arctic gateways, most models underestimate the mid-Pliocene North Atlantic 250 

sea surface warming as given by the PRISM4 reconstruction (Foley and Dowsett, 2019). 251 

Although the model-data discrepancy is reduced in the North Atlantic partly due to the intensified 252 

AMOC, the model-data mismatch remains large in the upwelling regions in PlioMIP2, for example Sites 253 

1081, 1082, 1084, 1087 in the Benguela upwelling region (Fig. 6). The PRISM4 (Foley and Dowsett, 2019) 254 

and other syntheses of Pliocene SST (Fedorov et al., 2013, McClymont et al., 2020) show that the SSTs are 255 

about 6–8 ℃ warmer than today in the Benguela upwelling region. All PlioMIP2 models underestimate this 256 

warming in the PlioMIP2 (Fig. 6). Even EC-Earth3-LR, which produces the warmest mid-Pliocene 257 
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simulation in the North Atlantic, only simulates 2–4 ℃ sea surface warming in the Benguela upwelling 258 

region.  259 

A major feature of the mid-Pliocene seems to be the large increase in SST (about 2–10 ℃) in the 260 

mid-latitude coastal upwelling regions and the relatively smaller increases in SST (about 2–4 ℃) in the mid- 261 

to high latitudes (Fedorov et al., 2013) compared to the pre-industrial, though some studies suggest that SST 262 

reconstructions in upwelling regions are highly proxy-dependent (e.g., Leduc et al., 2014). For example, in 263 

the Benguela upwelling region, the Mg/Ca-based SST is colder than the alkenone-based SST by ~3-10 ℃ 264 

(Leduc et al., 2014). In the California upwelling region, Foley and Dowsett (2019) show that the Pliocene 265 

SST is similar to today, whereas Fedorov et al. (2013) show the regional SST is about 2-8 ℃ warmer than 266 

today. Despite the uncertainties in reconstructions, the simulated warming in the mid-latitude upwelling 267 

regions in PlioMIP2 can be found in the low end of the proxy-estimated range. Realistic simulations in 268 

upwelling regions require good model-abilities in simulating large‐scale ocean stratification and sea surface 269 

wind stress (Miller and Tziperman, 2017; Li et al., 2019), which are partly model-resolution dependent 270 

(Small et al., 2015).  271 

Taken together, these model-data discrepancies make it difficult to associate the intensified AMOC and 272 

enhanced of Atlantic northward OHT with the reconstructed high mid-Pliocene SSTs. Fedorov et al. (2013) 273 

have suggested a possible mechanism for understanding the warm SSTs during the mPWP. Increased mixing 274 

in the subtropical ocean and reduced extratropical cloud albedo cause a strong warming in the mid-latitudes, 275 

including some upwelling regions. In PlioMIP2, CCSM4-UoT and CCSM4-Utrecht have considered 276 

increasing the ocean background mixing parameters, but no model has tested the impact of a reduction of the 277 

extratropical cloud albedo in the mid-Pliocene experiments. This mechanism can be further addressed in 278 

future to investigate whether it is a suitable candidate for improving the simulation for upwelling regions. 279 

Furthermore, it remains problematic to use the intensified AMOC to explain other features of the 280 

mid-Pliocene ocean circulation. During the mPWP, the vertical and meridional δ13C gradients are reduced in 281 

the Atlantic. This can be explained with the increased ventilation in the Southern Ocean and does not 282 

necessarily depend on an intensified AMOC (Zhang et al., 2013c). However, simulations of Southern Ocean 283 

dynamics are highly model-dependent (Zhang et al., 2013b). In addition to the Southern Ocean, the Pliocene 284 

deep ocean circulation in the North Pacific appears different to the present day. In the subarctic North 285 

Pacific, high accumulation rates of calcium carbonate and biogenic opal suggest a strong deep convection 286 

there, thus the existence of North Pacific deep-water formation and a Pacific meridional overturning 287 

circulation (PMOC, Burls et al., 2017). However, with an intensified AMOC, a PMOC remains absent in the 288 
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PlioMIP2 simulations. 289 

 In summary, all fifteen coupled models in PlioMIP2 used in this study (CCSM4, CCSM4-UoT, 290 

CCSM4-Utrecht, CESM1.2, CESM2, COSMOS, EC-Earth3.3-LR, GISS-E2-1-G, HadCM3, IPSLCM5A2, 291 

IPSLCM5A, IPSLCM6A-LR, MIROC4m, NorESM1-F, and NorESM-L) simulate an intensified 292 

mid-Pliocene AMOC, relative to the pre-industrial. The simulated AMOC maximum (the maximum of the 293 

Atlantic meridional overturning streamfunction) increases by between 1% to 53%. However, these models 294 

do not simulate a consistent change in the depth of the Atlantic overturning cell and the Atlantic OHT. The 295 

spread in the responses of AMOC and Atlantic OHT in the models becomes larger in PlioMIP2, when 296 

compared to PlioMIP1. In the North Atlantic, EC-Earth3-LR and the models from the CCSM/CESM family 297 

can simulate an SST increase (~8–12 ℃) close to the PRISM4 reconstruction, while other models 298 

underestimate the sea surface warming. In PlioMIP2, the model-data discrepancy is reduced in the North 299 

Atlantic, but the discrepancy remains large in the upwelling regions. The large model-spread and the 300 

remaining model-data discrepancy suggests that an intensified AMOC and an enhanced Atlantic northward 301 

OHT, cannot explain the reconstructed warm climate of the mid-Pliocene surface oceans. 302 

 303 
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 513 
Fig. 1. The simulated AMOC (unit: Sv) in PlioMIP2. PI means the pre-industrial. MP means the 514 
mid-Pliocene. 515 
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 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

Fig. 2. Simulated changes in AMOC maximum, depth and Atlantic northward OHT. (a) Changes in 524 
AMOC maximum (unit: %) vs. responses in the mean depth of AMOC cell (unit: m). (b) Changes in AMOC 525 
maximum (unit: %) vs. responses in the mean ocean heat transport in Atlantic between 30 °S and 80 °N 526 
(unit: %). The blue markers show the PlioMIP1 simulations. The red markers show the PlioMIP2 527 
simulations. The vertical and horizontal lines show the model range, while the intersection of these lines 528 
indicates the median value. 529 

 530 
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 538 

 539 

 540 

 541 

 542 

 543 
Fig. 3. Simulated Atlantic poleward oceanic heat transport in the PlioMIP2 (unit: PW). Blue dashed 544 
lines show the pre-industrial, and red solid lines show the mid-Pliocene. 545 

 546 
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 549 
Fig. 4. Simulated mid-Pliocene annual SST anomalies in PlioMIP2 (units: ℃). μ means the global 550 
mean.  551 
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 552 

 553 

 554 

 555 

 556 

 557 

Fig. 5. Simulated changes in AMOC maximum, North Atlantic OHT, and responses in high-latitude 558 
North Atlantic SST.  The North Atlantic OHT is the averaged value between 30 °N and 80 °N (unit: Pw). 559 
The high-latitude North Atlantic includes the Atlantic and Greenland-Iceland-Norwegian (GIN) seas 560 
between 30 °N and 80 °N.     561 

 562 
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 564 

Fig. 6. PlioMIP2 and PRSIM4 SST comparison in the Atlantic. (a) PRISM4 SST anomalies and data 565 
sites in the Atlantic and the Mediterranean, against with the multi-model ensemble median of SST anomalies 566 
(the mid-Pliocene vs. the pre-industrial) in PlioMIP2 (unit: ℃). (b) Black dots show the PRISM4 SST 567 
anomalies (unit: ℃). Vertical blue lines and dots show the PlioMIP1 ranges and median values of changes in 568 
SST for each site. Colored markers show SST changes simulated by each model in the PlioMIP2. The 569 
PRISM4 SST anomalies are calculated based on the PRISM4 mid-Pliocene reconstructions (3.19–3.22 Ma, 570 
Foley and Dowsett, 2019) and the modern observation (1870-1899, Rayner et al., 2003).  571 
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