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Abstract

The aim of paleoclimate studies to resolve climate variability from noisy proxy records can in essence be
reduced to a statistical problem. The challenge is to extract meaningful information about climate variability
from these records by reducing measurement uncertainty through a combination of proxy data while
retaining the temporal resolution needed to assess the timing and duration of variations in climate
parameters. In this study, we explore the limits of this compromise by testing different methods for
combining proxy data (smoothing, binning and sample size optimization) on a particularly challenging
paleoclimate problem: resolving seasonal variability in stable isotope records. We test and evaluate the
effects of changes in the seasonal temperature and the hydrological cycle as well as changes in accretion
rate of the archive and parameters such as sampling resolution and age model uncertainty on the reliability
of seasonality reconstructions based on clumped and oxygen isotope analyses in 33 real and virtual
datasets. Our results show that strategic combinations of clumped isotope analyses can significantly
improve the accuracy of seasonality reconstructions compared to conventional stable oxygen isotope
analyses, especially in settings where the isotopic composition of the water is poorly constrained.
Smoothing data using a moving average often leads to an apparent dampening of the seasonal cycle,
significantly reducing the accuracy of reconstructions. A statistical sample size optimization protocol yields
more precise results than smoothing. However, the most accurate results are obtained through monthly
binning of proxy data, especially in cases where growth rate or water composition cycles obscure the
seasonal temperature cycle. Our analysis of a wide range of natural situations reveals that the effect of
temperature seasonality on oxygen isotope records almost invariably exceeds that of changes in water
composition. Thus, in most cases, oxygen isotope records allow reliable identification of growth seasonality
as a basis for age modelling in absence of independent chronological markers in the record. These specific
findings allow us to formulate general recommendations for sampling and combining data in paleoclimate
research and have implications beyond the reconstruction of seasonality. We briefly discuss the

implications of our results for solving common problems in paleoclimatology and stratigraphy.
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1. Introduction

Improving the resolution of climate reconstructions is a key objective in paleoclimate studies because it
allows climate variability to be studied on different timescales and sheds light on the continuum of climate
variability (Huybers and Curry, 2006). However, the temporal resolution of climate records is limited by the
accretion rate (growth or sedimentation rate) of the archive and the spatial resolution of sampling for climate
reconstructions, which is a function of the sample size required for a given climate proxy. This tradeoff
between sample size and sampling resolution is especially prevalent when using state-of-the-art climate
proxies which require large sample sizes, such as the carbonate clumped isotope paleothermometer (A47;
see applications in Rodriguez-Sanz et al., 2017; Briard et al., 2020; Caldarescu et al., 2021) or stable
isotope ratios in specific compounds or of rare isotopes (e.g. phosphate-oxygen isotopes in tooth apatite,
triple oxygen isotopes in speleothems or carbon isotopes of CO: in ice cores; Jones et al., 1999; Schmitt
etal., 2012; Sha et al., 2020). The challenge of sampling resolution persists on a wide range of timescales:
from attempts to resolve geologically short-lived (kyr-scale) climate events from deep sea cores with low
sedimentation rates (e.g. Stap et al., 2010; Rodriguez-Sanz et al., 2017) to efforts to characterize tidal or
daily variability in accretionary carbonate archives (e.g. Warter and Muller, 2017; de Winter et al., 2020a).

What constitutes “high-resolution” is therefore largely dependent on the specifics of the climate archive.

Sample size limitations are especially important in paleoseasonality reconstructions. Reliable archives for
seasonality (e.g. corals, mollusks and speleothem records) are in high demand in the paleoclimate
community, because the seasonal cycle is one of the most important cycles in Earth’s climate and
seasonality reconstructions complement more common long-term (kyr to -Myr) records of past climate
variability (e.g. Morgan and van Ommen, 1997; Tudhope et al., 2001; Steuber et al., 2005; Steffensen et
al., 2008; Denton et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2019). A more detailed
understanding of climate dynamics at the human timescale is increasingly relevant for improving climate
projections (IPCC, 2013). Unfortunately, the growth and mineralization rates of archives that capture high-
resolution variability (rarely exceeding 10 mm/yr) limit the number and size of samples that can be obtained
at high temporal resolutions (e.g. Mosley-Thompson et al., 1993; Passey and Cerling, 2002; Treble et al.,

2003; Goodwin et al., 2003). This problem is exacerbated by the fact that accurate methods for climate
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reconstructions often require comparatively large sample sizes while methods relying on smaller sample
sizes rely on uncertain assumptions. A case in point is the popular carbonate stable oxygen isotope
temperature proxy (8'80c¢) which relies on assumptions of the water composition (5'80w) that become
progressively more uncertain further back in geological history (e.g. Veizer and Prokoph, 2015). Contrarily,
the clumped isotope proxy (As7) does not rely on this assumption but requires larger amounts of sample

(e.g. Mlller et al., 2017)

A promising technique for circumventing sample size limitations is to analyze larger numbers of small
aliquots from the same sample or from similar parts of the climate archive. These smaller aliquots typically
have poor precision but averaging multiple aliquots into one estimate while propagating the measurement
uncertainty leads to a more reliable estimate of the climate variable (Dattalo, 2008; Meckler et al., 2014;
Mdller et al., 2017; Fernandez et al., 2017). This approach yields improved sampling flexibility since aliquots
can be combined in various ways after measurement. It also allows outlier detection at the level of individual
aliquots, thereby spreading the risk of instrumental failure and providing improved control on changes in

measurement conditions that may bias results.

Previous studies have applied several different methods for combining data from paleoclimate records to
reduce analytical noise or higher order variability, and extract variability with a specific frequency (e.g. a
specific orbital cycle or seasonality; e.g. Lisiecki and Raymo, 2004; Cramer et al., 2009). These data
reduction approaches can in general be categorized into smoothing techniques, in which a sliding window
or range of neighboring datapoints is used to smooth high resolution records (see e.g. Cramer et al., 2009)
or binning techniques, in which the record is divided into equal bins in sampling direction (e.g. time, depth
or length in growth direction; e.g. Lisiecki and Raymo, 2004; Rodriguez-Sanz et al., 2017). In addition, a
third approach is proposed here based on optimization of sample size for dynamic binning of data along
the climate cycle using a moving window in the domain of the climate variable (as opposed to the sampling
domain) combined with a T-test routine (see section 2.1). All three approaches have advantages and

caveats.

In this study, we explore the (dis)advantages of these three data reduction approaches by testing their

reliability in resolving seasonal variability in sea surface temperature (SST) and water stable oxygen isotope
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composition (5*¥0w), both highly sought-after variables in paleoclimate research. We compare
reconstructions of SST and 880w in real and virtual datasets from accretionary carbonate archives (e.g.
shells, corals and speleothems) using the clumped isotope thermometer (A47) combined with stable oxygen

isotope ratios of the carbonate (3180c).

2. Methods

2.1 Reconstruction approaches

Throughout the remainder of this work, the three approaches for combining data for reconstructions are

defined as follows (see also Fig. 1):

Smoothing refers to the reconstruction of SST and 580w based on moving averages of As7 and 3'80c
records (Fig. 1B). For every dataset, the full possible range of moving window sizes (from 1 sample to the
full length of the record) for SST and 880w reconstructions was explored. The window size that resulted in
the most significant difference between maximum and minimum A4z values (based on a student’s T-test)
was applied to reconstruct SST and 380w from As7 and 3'80c records. SST and 580w were calculated for
all case studies using a combination of empirical temperature relationships by Kim and O’Neil (1997; 6'80.-
0'80w-temperature relationship) and Bernasconi et al. (2018; As7-temperature relationship). Here and in
other approaches, a typical analytical uncertainty on measurements of A4z (one standard deviation of
0.04%o) and 580 (one standard deviation of 0.05%.) was used to include uncertainty due to measurement
precision. These analytical uncertainties were chosen based on typical uncertainties reported for these
measurements in the literature (e.g. Schone et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2016)
and long-term precision uncertainties obtained by measuring in-house standards using the MAT253+ with
Kiel IV setup in the clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). The
measurement uncertainty was propagated through all calculations using a Monte Carlo simulation (N =
1000) in which A47 and 880, records were randomly sampled from a normal distribution with the virtual A4z

and 8'80. values as means and analytical uncertainties as standard deviations.
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Binning refers to reconstructions of SST and &'80w based on binning of A4z and 5'8Q. records into monthly
time bins (Fig. 1C). The A47 and 880 data from each case study were grouped into monthly time bins and
converted to SST and 580w using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. Here
too, Monte Carlo simulation was applied to propagate measurement uncertainties onto monthly SST and
080w reconstructions. Note that the prerequisite for this method is that the data is aligned using a (floating)
age model accurate enough to allow samples to be placed in the right bin. The age of virtual samples in
this study is known so this prerequisite poses no problems in this case. However, in the fossil record this
alignment might be less certain in absence of accurate chronologies within the archive (e.g. through daily

growth increments in mollusk shells; e.g. Schone et al., 2008; Huyghe et al., 2019; see 4.1.3).

Optimization refers to reconstructions of SST and 680w based on sample size optimization in A4z records
(Fig. 1D). In this approach aliquots of each virtual dataset are ordered from warm (low 5'8Qc) to cold (high
080, data) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset,
increasingly large samples of multiple aliquots (from 2 aliquots to half the length of the record) are taken
from both the warm (“summer”) and the cold (“winter”) side of the distribution. Summer and winter samples
were kept equal (symmetrical grouping) to reduce the number of possible sample size combinations and
allow for more efficient computation. However, asymmetrical grouping with differing sample sizes on the
summer and winter ends of the 3'Oc-spectrum are possible (see 4.1.3 and 4.2.2). Sample sizes with
significant difference in A4z value between summer and winter groups (p < 0.05 based on a student’s T-
test) were selected as optimal sample sizes. The moving window T-test in the proxy domain ensures that
an optimal compromise is reached between high precision and resolving differences between seasonal
extremes. For each successful sample size, SST and 580w values were calculated from A4z and 580 data
according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The relationship between SST
and 680w obtained from these reconstructions was used to convert all As7 and 38O data to SST and
00w, which are then grouped into monthly SST and 380w reconstructions. Measurement uncertainties

were propagated through the entire approach by Monte Carlo simulation (N = 1000).

For comparison, we also include reconstructions based solely on 80 measurements with an (often

inaccurate) assumption of a constant 8180w (equal to the modern ocean value of 0%, VSMOW), which form



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

the most common method for carbonate-based temperature reconstructions in paleoclimate research (see
e.g. Schone et al., 2005; Westerhold et al., 2020; Fig. 1A; hereafter: 8'80). For these reconstructions, 380¢
records were grouped into monthly time bins with analytical uncertainties propagated using the Monte Carlo
approach (N = 1000) and were directly converted to SST using the Kim and O’Neil (1997) temperature

relationship.

For each reconstruction, SST and 580w results were aggregated into monthly averages, medians, standard
deviations, and standard errors. Step by step documentation of calculations made for the three As7-based
reconstruction approaches and the &'8QOc reconstructions are given in S7 and in the complementary R

package (de Winter, 2021a).

2.2 Benchmarks for accuracy and precision

Accuracy and precision of reconstructions were evaluated against official USGS definitions of climate

parameters (O’Donnell et al., 2012):

1. mean annual SST (MAT), defined as the average of all 12 monthly temperature reconstructions.

2. seasonal range in SST, defined as the temperature difference between warmest and coldest
month.

3. mean annual 580y, defined as the average of all 12 monthly 80w reconstructions.

4. seasonal range in 880w, defined as the 380y difference between most enriched (highest 580w)

and most depleted (lowest 580w) monthly reconstruction.

Accuracy was defined as the absolute offset of the reconstructed climate parameter from the “true” value.
Precision was defined as the (relative) standard deviation of the reconstruction, as calculated from the
variability within monthly time bins resulting from Monte Carlo error propagation (see 2.1). An overview of
monthly SST and 880w reconstructions using the four approaches in all cases is given in S4. Raw data

and figures of reconstructions of all cases using all sampling resolutions are compiled in S8.
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Figure 1: Schematic overview of the four approaches for seasonality reconstructions: (A) &*€0-based
reconstructions, assuming constant 8'80w. (B) Reconstructions based on smoothing 680, and A4; data
using a moving average. (C) Reconstructions based on binning 680, and A4z data in monthly time bins.
(D) Reconstructions based on optimization of the sample size for combining 680, and A4; data (see
description in 2.1). Colored curves represent virtual 6*0. (blue) and A4 (red) series in sampling domain.
Black curves represent reconstructed monthly SST and 6'80w averages.

2.3 SST and 880w datasets

The three reconstruction approaches were tested and compared based on three types of data: Firstly, data
from a real specimen of a Pacific oyster (Crassostrea gigas, syn. Magallana gigas) reported in Ullmann et
al. (2010). Secondly, data based on actual measurements of natural variability in SST and sea surface
salinity (SSS; case 30-33) converted to virtual A4z and 8'80c records. Thirdly, a set of datasets based on

fully artificial SST and 580w data (case 1-29; see Fig. 2) converted to virtual A4z and 5*8Oc records.
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Figure 2: Overview of time series of all virtual test cases. Colored curves represent time series of SST (red), 620, (blue) and growth rate (orange,
abbreviated as “GR”). Horizontal axes in all plots are 12 years long (see legend below case 6). Vertical axis of all plots has the same scale (SST:
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datasets are provided in S6 (see also Fig. 3 for natural examples).
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Sensitivity cases

Natural cases

Varying seasonality

Varying age
model uncertainty

1. Control

2. Growth
stops <12°C

3. Growth
stops >28°C

4, Linear
decrease in
GR

5.GR
seasonality
in phase with
SST

6. GR
seasonality
lags SST by
Ya year

7. 680w
seasonality
in phase with
SST

8. 6180w
seasonality
in antiphase
with SST

9. 6180w
seasonality
lags SST by
Ya year

10. Negative
5180w in
spring

11. Positive
6180w in
summer

12. Multi-
annual (5 yr)
SST cycle

13. Multi-
annual (5 yr)
580w cycle

14. Full marine case
with ontogenetic GR
trend

15. Coastal case with
spring 680w decrease
and decreasing GR
trend

16. Lagoonal case with
summer 580w increase

17. Tropical monsoon
case with confined SST
seasonality and strong
multi-annual SST cycle

18. Worst-case scenario
with growth limited to
summer half of the year

19. Control case with
reduced SST
amplitude (~5°C)

20. Control case with
reduced SST
amplitude (~3°C)

21. Control case with
reduced SST
amplitude (~1°C)

Varying record
length

22. Control case
shortened to 6 yr

23. Control case
shortened to 3 yr

24. Control case
shortened to 1 yr

25. Case 9 with +1
day age model
uncertainty

26. Case 9 with 5
days age model
uncertainty

27. Case 9 with
+15 days age
model uncertainty

28. Case 9 with
+45 days age
model uncertainty

29. Case 9 with
190 days age
model uncertainty

Table 1: Overview of virtual cases 1-29 used to test the reconstruction methods. Case descriptions are
abbreviated. Details on the SST, growth rate and 680, included in each case are described in detail in S1.
SST, growth rate and 680, records of all cases are shown in Fig. 2. “GR” = growth rate.

2.3.1 Modern oyster data

Environmental SST and 5'¥0w data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the

modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described

in Ullmann et al. (2010). Since direct, in situ measurements of 8180y variability at a high temporal resolution

were not available, 880w was estimated from more widely available SSS data using a mass balance

(equation 1 and 2; following e.g. Ullmann et al., 2010):

61805w = 6180w,freshwater * f + 6180w,ocean * (1 - f)

10

1)
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f Ssssample_sssocean (2)

SSSfreshwater_Sssocean

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity
(080w freshwater = -8.5%0; SSSteshwater = 0 ) freshwater and a fraction (1-f) ocean water (880w ocean = 0%so;
SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation
(SSSsample > SSSocean). The value for 580w freshwater Was based on the discharge weighted average 580w of
water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All 8180w values throughout the text
are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-33; see 2.3.2 and 2.3.3),
the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling was

required.
2.3.2 Cases based on real climate data

Four test cases were based on time series of real SST and SSS data from four different locations, selected

to capture a variety of environments with different SST and SSS variability (see Fig. 3):

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30)
2. Great Barrier Reef in Australia (case 31)
3. Gulf of Agaba between Egypt and Saudi Arabia (case 32)

4. Northern Atlantic Ocean east of Iceland (case 33).

Daily measurements of SST and SSS for case 31-33 were obtained from worldwide open-access datasets
of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA,
2020) respectively. Hourly SST and SSS measured in situ in the Wadden Sea (case 30) were obtained
from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, in situ
measurements of 5180y, variability at a high temporal resolution are scarce, 580w was estimated from (more
widely available) SSS data using the same mass balance described in 2.3.1. The value for 38Ow,freshwater
was based on the 580y of rain in the Netherlands (-8%o; Mook, 1970; Bowen, 2020). Applying this mass
balance on the SSS record of the Wadden Sea tidal flats (case 30) results in 880w values and a SSS-50w
relationship in agreement with measurements in this region (Harwood et al., 2008). SST and 30y time

series for all cases are given in S4 and natural cases are plotted in Fig. 3.

11



222

223

224

225

226

227

228

229

230

231

232

233

234

235

For all virtual datasets (cases 1-33), records of SST and &'®0w were converted to the sampling domain
(along the length of the record) by defining a virtual growth rate in the sampling direction. Adding this growth
rate as a variable allowed us to test the sensitivity of approaches to changes in the extension rate of the
archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear extension rate
and periods in which no mineralization occurs (hiatuses or growth cessations) are common in all climate
archives (e.g. Treble et al., 2003; Ivany, 2012). After conversion to the sampling domain, virtual aliquots
were subsampled at equal distance from the SST and 580w series of all cases using six sampling intervals:
0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals were
chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling interval
(e.g. 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling the same
parts of the seasonal cycle (e.g. same months) every year, which biases both the mean value and the
precision of monthly SST and 60w reconstructions. This bias towards certain parts of the seasonal cycle
is much stronger at low sample sizes (large sampling intervals) and is illustrated in the Supplementary

Information.
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Figure 3: Overview of the four cases of virtual data based on natural SST and SSS measurements explored
in this study. (A) Case 30: Tidal flats on the Wadden Sea, Texel, the Netherlands. (B) Case 31 Great Barrier
Reef, Australia). (C) Case 32: Gulf of Agaba between Egypt and Saudi Arabia. (D) Case 33: Atlantic Ocean
east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red, 680y, in
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2.3.3 Virtual cases
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Virtual SST and 380w time series were atrtificially constructed to test the effect of various SST and 880w
scenarios on the effectivity of the reconstruction methods. The default test case (case 1) contained an ideal,
12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal
amplitude of 10°C, a constant 580w value of 0% and a constant growth rate of 10 mm/yr. Other cases

contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1):

e Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18)
e Seasonal and/or multi-annual changes in 5*¥Ow (cases 7-11, 13-18)

e Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17)

e Variations in the seasonal SST amplitude (cases 19-21)

¢ Change in the total length of the time series (cases 22-24).

Variation in uncertainty on the age of each virtual datapoint (cases 25-29)

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3)
shows that the virtual cases are not realistic approximations of natural variability in SST and 5'80w. Natural
SST and 680w variability are not limited to the seasonal or multi-annual scale but contain a fair amount of
higher order (daily to weekly scale) variability. To simulate this natural variability, we extracted the seasonal
component of SST and 880w variability from our highest resolution record of measured natural SST and
SSS data (case 30: data from Texel, the Netherlands, see 2.3.2 and Fig. 3). The standard deviation of
residual variability of this data after subtraction of the seasonal cycle was used to add random high-
frequency noise to the SST and 880 variability in virtual cases. Note that while sub-annual environmental
variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002), this representation is an
oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not normally
distributed (Kolmogorov-Smirnov test: D = 0.010; p = 7.2*10* and D = 0.039; p < 2.2*10%¢ for SST and
SSS residuals respectively; see S2-4). SST and 880w data from cases 1-29 was converted to the sampling
domain and subsampled at a range of sampling resolutions following the same procedure applied to cases

30-33 (see 2.3.2).
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2.4 Conversion to ®0. and A4 data

After subsampling, SST and 3880w series (cases 1-33) were converted to 580 and A47 using a carbonate
model based on empirical relationships between A47 and 8'80¢ with and SST and 8'80w (equation 3 and 4;
Kim and O’Neil, 1997; Kele et al., 2015; Bernasconi et al., 2018) and the conversion of 5180 values from

VSMOW to VPDB scale (equation 5; Brand et al., 2014).

0.0449%10°
Aoy = (SST+273.15)2 +0.167 (3)
18
____ ‘tatOs _ )\ _
1000 * In 5 =18.03 + ( (SST+273_15)) 3242 (4)
( /160)H20
6180VPDB = 097002 * 6180VSMOW - 2998 (5)

For the real oyster data (Ullmann et al., 2010; see 2.3.1), only the A47 data needed to be created because
080 was directly measured. As a result, each case study yielded records of As7 and 680 in the sampling
domain and corresponding “true” SST and 880w records in the time domain, allowing assessment of the
reliability of the reconstruction approaches in different scenarios. (Figure 4). The result of applying these
steps is illustrated on case 31 (Great Barrier reef data, Fig. 5). All calculations for creating A4z and 680,
series in sampling domain were carried out using the open-source computational software R (R core team,
2013), and scripts for these calculations are given in S7 and compiled in the documented R package

“seasonalclumped” (de Winter, 2021a). All A4z and 58O datasets are provided in S6.
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Workflow for creating virtual datasets and testing reconstruction approaches
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("True” SST and 80 values in time domain)
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)
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of MAT, SST seasonality,
mean annual 'O _ and 5'°0O, seasonality

v v
+SST salinity +3"0,
noise mass noise
balance
v

]

Compare reconstructed SST and 5'°0, data with
» “true” values to calculate accuracy and precision
for all cases and all reconstruction approaches

modelled
56'%0
¥
| Subsampling based on artificial sampling resolutions |

N4

A

2. "True” SST and &'®0 values

in sampling domain

4. Reconstructed SST and 6180wvalues
in time domain

¥

Convert SST and 3"0Q, data to carbonate 8'*0_ and A, values
based on empirical relationships in
Kim and O’Neil (1997) and Bernasconi et al. (2018)
and add analytical noise to simulate measurement

2

3. Artificial 5'°0_and A, records

in sampling domain

A

Apply reconstruction approaches on artificial datasets
and group result in monthly time bins

5'*0_-based
reconstruction

6130c

A, -based
reconstruction

optimization

Figure 4: Flow diagram showing the steps taken to create virtual data (447 and 80, cases 1-33) and
compare results of SST and 680, reconstructions with the actual SST and §80,, data the record was
based on (counterclockwise direction). Steps 1-3 outline the procedure for creating virtual A4z and 680
datasets (see sections 2.3 and 2.4), step 4 shows the application of the different reconstruction methods
on this virtual data (see Fig. 2 for details) and step 5 illustrates how the reconstructions are compared with
the original (“true”) SST and 6'®0, data to calculate accuracy and precision of the reconstruction
approaches. Note that step 1 is different for cases 1-29 (based on fully artificial SST and 680, records;
2.3.3) than for cases 30-33 (SST and 680, records based on real SST and SSS data; see 2.3.2).
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Workflow for creating virtual datasets and testing reconstruction approaches:
Example for case 31 (Great Barrier Reef satellite data)
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299 Figure 5: An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) to illustrate
300 the data processing steps. Virtual data plots include normally distributed measurement uncertainty on As7
301 and 680,
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3. Results

3.1 Real example

Measured (8'80c¢) and simulated (A47) data from the Pacific oyster from the Danish List Basin yielded
estimates of SST and 680w seasonality using all reconstruction approaches (Fig. 6). While a model of shell
080 based on SST and SSS data closely approximates the measured 6'80. record (Fig. 6C), basing SST
reconstructions solely on 580 data without any a priori knowledge of 580w variability (assuming constant
080w equal to the global marine value) leads to high inaccuracy in SST seasonality and mean annual SST
(Fig. 6D). The in-phase relationship between SST and SSS (Fig. 6B) dampens the seasonal 8180 cycle,
causing underestimation of temperature seasonality, while a negative mean annual 580y value in the List
Basin biases SST reconstructions towards higher temperatures. In terms of SST reconstructions, the
smoothing, binning and optimization approaches based on As7 and 680 data yield more accurate
reconstructions, albeit with a reduced seasonality and a bias towards the summer season. The latter is a
result of severely reduced growth rates in the winter season, which was therefore undersampled (see Fig.
6A and 6C). Approaches including A4 data also yield far more accurate 380w estimates than the &0
approach. However, the accuracy of 680w seasonality and mean annual 380w estimates is low in these
approaches too, largely because of the limited sampling resolution, especially in winter. The optimization
approach suffers from the strong in-phase relationship between SST and SSS, which obscures the
difference between the 580y effect and the temperature effect on shell carbonate. Yet, disentangling SST
from 580w seasonality is central to the success of the approach (see 3.4). Fig. 6D does not show the
reproducibility error on SST and 680w estimates, which is much larger for the smoothing approach than
for the binning an optimization approaches due to the limited data in the winter seasons (see S5). These
results show that several properties of carbonate archives, such as growth rate variability, phase
relationships between SST and 680w seasonality and sampling resolution, can impact the reliability of
paleoseasonality reconstructions. The virtual and real data cases in this study were tailored to test the

effects of these archive properties more thoroughly.
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Figure 6: (A) Plot of 6'80. and (virtual) As7 data from a modern Pacific oyster (Crassostrea gigas; see
Ullmann et al., 2010). (B) shows SST and 580w data from the List Basin (Denmark) in which the oyster
grew. (C) shows the fit between 680, data and modelled 6'80. calculated from SST and 680w on which
the shell age model was based. (D) Shows a summary of the results of different approaches for
reconstructing SST and 520w from the 680, and A4z data. The vertical colored bars show the reconstructed
seasonal variability using all methods with ticks indicating warmest month, coldest month, and annual
mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision errors on
monthly reconstructions are not shown but are given in S4.

3.2 Case-specific results

A case-by-case breakdown of the precision (Fig. 7) and accuracy (Fig. 8) of reconstructions using the four
approaches shows that reliability of reconstructions varies significantly between approaches and is highly
case-specific. In general, precision is highest in 80 reconstructions, followed by optimization and
binning with smoothing generally yielding the worst precision. Average precision standard deviations of
the underperforming methods (binning and smoothing) are up to 2-3 times larger than those of %0 (e.qg.
respectively 3.9°C and 3.5°C vs. 1.3°C for &0 MAT reconstructions; see also Supplementary

Information). It is worth noting that precision on &'®0-based estimates is mainly driven by measurement
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precision (which is better for 580. than for A4z measurements, see section 4.1.1). As7-based reconstructions
lose precision due to the higher measurement error on As7 measurements and the method used for
combining measurements for seasonality reconstructions. On a case-by-case basis, the hierarchy of
approaches can vary, especially if strong variability in growth rate is introduced, such as in case 14, where
the size of hiatuses in the record increases progressively, or in case 18, in which half of the year is missing
due to growth hiatuses (see Table 1, S1 and S4). Of the As7-based methods (smoothing, binning and
optimization), optimization is rarely outcompeted in terms of precision in both SST and &'8Ow

reconstructions.

The comparison based on precision alone is misleading, as the most precise approach (8*20) runs the risk
of being highly inaccurate (offsets exceeding 4°C on some MAT reconstructions; see Fig. 7C), especially
in cases based on natural SST and SSS (case 30-33). The smoothing approach also often yields highly
inaccurate results, especially in cases with substantial variability in 580w (e.g. case 9-11). Accuracy of
optimization and binning outcompete the other methods in most circumstances. Binning outperforms
optimization in reconstructions of 880w seasonality, making it overall the most accurate approach.
Interestingly, optimization is less accurate specifically in cases with sharp changes in growth rate in
summer (e.g. cases 11, 14, 16 and 17), while binning performs better in these cases. Reconstructions of
mean annual SST and 380w in case 18 are especially inaccurate regardless of which method is applied.
This extreme case with growth only during one half of the year combined with seasonal fluctuations in both
SST and 580w presents a worst-case scenario for seasonality reconstructions leading to strong biases in
mean annual temperature reconstructions. In situations like case 18, the optimization approach is most
accurate in MAT and SST seasonality reconstructions, but 880w is more accurately reconstructed using
the binning approach. Finally, it is worth noting that in natural situations (Fig. 3), variability in SST almost
invariably has a larger influence on 880 and A47 records than 880w, such that fluctuations in 8'80¢ records
closely follow the SST seasonality even in cases with relatively large 60w variability (e.g. case 30).

Chronologies based on these 580 fluctuations are therefore generally accurate.
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Figure 7: Overview of precision (propagated standard deviation of variability within reconstructions, see
2.2) of reconstructions of mean annual temperature (A), seasonal temperature range (B), mean annual
00y (C) and seasonal range in 6'80,, (D), with higher values (darker colors) indicating lower precision
(more variability between reconstructions) based on average sampling resolution (sampling interval of 0.45
mm). The different cases on the horizontal axis are color coded by their difference from the control case
(case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were not
successful. All data on precision (standard deviation values) is provided in S4.

21




379

380
381
382
383
384
385
386

Accuracy on Mean Annual Temperature reconstructions LEGEND

5"0 . ._._ e Legend to
. . 4°C case types

I | Control
2C Variability i
. - . ariapiity in
optimization 0ec record length
Accuracy on temperature seasonality reconstructions Variability in
" 15 °C age model
60 . uncertainty
- 10°C Variability in
growth rate
5°C Variability in
18,
optimization . 6"0uy
- 0°c Variability in
Accuracy on Mean Annual 5"°0, reconstructions SST
0.9 %e Variability in
growth rate
. . 0.6 %o and 5"0,,
optimization 0.3 %o Variability in
0.0 %o growth rate,
Accuracy on 6‘30w seasonality reconstructions 5"0,, and
2.0 %o SST
I 1.5 %o
T N n
optimization . gg :“
— .0 %o
Case#|[1]2 3 4 5 6 7 8 9 10 11 12 13[14 15 16 17 18|19 20 21|22 23 24|25 26 27 28 29|30 31 32 33
Sensitivity cases Natural J . ving Varviné; Varying age | Real SST/SSS
cases [seasonality ::ﬁcg}:h model uncertain data

Figure 8: Overview of accuracy (absolute offset from “frue” values) of reconstructions of mean annual
temperature (A), seasonal temperature range (B), mean annual 6'80,, (C) and seasonal range in 5680, (D),
with higher values (darker colors) indicating lower accuracy (higher offsets) based on average sampling
resolution (sampling interval of 0.45 mm). The different cases on the horizontal axis are color coded by
their difference from the control case (case 1; see legend on the right-hand side). Grey boxes indicate
cases for which reconstructions were not successful. All data on accuracy (difference between
reconstructed and “true” values) is provided in S4.
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389 Figure 9: Effect of sampling resolution (in samples per year, see S5) on the precision (one standard deviation) of results of reconstructions of mean
390 annual 680, (A), seasonal range in 680y, (B), mean annual SST (C) and seasonal range in SST (D). Effect on the accuracy (absolute offset from
391  actual value) of results of reconstructions of mean annual 580, (E) and seasonal range in 50y (F), mean annual SST (G) and seasonal range in
392 SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.
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3.3 Effect of sampling resolution

As expected, increasing the temporal sampling resolution (i.e. number of samples per year) almost
invariably increases the precision and accuracy (Fig. 9) of reconstructions using all methods. An exception
to this rule is the precision of &80 reconstructions, which decreases with increasing sampling resolution.
Precision errors of all As7-based approaches eventually converge with the initially much lower precision
error of 80 reconstructions when sampling resolution increases. However, the sampling resolution
required for Asr-based reconstructions to rival or outcompete the &80 reconstructions differs, with
optimization requiring lower sampling resolutions than the other methods (e.g. 20-40 samples/year
compared to 40-80 samples/year for smoothing and binning; Fig. 9A-D). Accuracy also improves with
sampling resolution (Fig. 9E-H). When grouping all cases together, it becomes clear that &0
reconstructions can only approach the accuracy of As7-based approaches for reconstructions of MAT.
Seasonality in both SST and 880w is most accurately reconstructed using binning, and the smoothing

approach once again performs worst.
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Figure 10: Effect of SST seasonality range (difference between warmest and coldest month) in the record
on the relative precision of SST seasonality reconstructions (“RSD”, defined as one standard deviation
divided by the mean value). Panel A shows precision results if random variability (“weather patterns”) in
both SST and 6'80 as well as measurement uncertainty is added to the records (see 2.3.3 and S1). Panel
B shows precision of records with random variability in SST and measurement uncertainty only. Panel C
shows precision if only measurement uncertainty is considered. Color coding follows the scheme in Fig. 1
and Fig. 4. Shaded dots represent results at various sampling resolutions, while bold lines are averages
for all reconstruction approaches. Black circles highlight the places where curves cross the threshold of two
standard deviations, which indicates the minimum SST seasonality that can be resolved within 2 standard
deviations (~95% confidence level) using the reconstruction approach.

24



418

419

420

421

422

423

424

425

426

427

428

429

430

431

3.4 Resolving SST seasonality

Comparison of cases 19, 20 and 21 (SST seasonality of 9.7°C, 5.7°C and 2.1°C respectively) with control
case 1 (SST seasonality of 19.3°C) shows how changes in the seasonal SST range affect the precision of
measurements (Fig. 10; see also Table 1 and S1). The data reconfirms that 80 reconstructions are most
precise; a deceptive statistic given the risk of highly inaccurate results this approach yields (see Fig. 8).
Taking into consideration only analytical uncertainty, all approaches except for smoothing can confidently
resolve at least the highest SST seasonality within a significance level of two standard deviations (~95%)
using a moderate sampling resolution (mean of all resolutions shown in Fig. 10). Increasing sampling
resolution improves the precision of As7-based reconstructions (see Fig. 9D), so high sampling resolutions
(0.1 or 0.2 mm) allow smaller seasonal differences to be resolved. When random sub-annual variability is
added to the SST and 880w records (see 2.3.3), the minimum seasonal SST extent that can be resolved
decreases for all approaches (Fig. 10B and 10C). Nevertheless, 880 and optimization reconstructions

remain able to resolve a relatively small SST seasonality of 2-4°C.
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Figure 11: Effect of record length (in years) on the relative precision (one standard deviation as fraction of
the mean value) of results of reconstructions of mean annual SST (A) and SST seasonality (B). Shaded

dots represent results for the six different sampling resolutions. Solid lines connect averages for cases 1,
22, 23 and 24 for each reconstruction approach.

3.5 Effect of record length

The effect of variation in the length of the record was investigated by comparing cases 22, 23 and 24 (record
lengths of 6 years, 3 years and 1 year, respectively) with the control case (record length of 12 years; see
Fig. 11 and Table 1). Precision of MAT and SST seasonality reconstructions slightly increase in larger
datasets (longer records) for optimization and binning, but not for smoothing and &0 reconstructions.
Differences between reconstruction approaches remain relatively constant regardless of the length of the
record, with general precision hierarchy remaining intact (8'80 > optimization > binning > smoothing).
However, in very short records (1-2 years) smoothing gains an advantage over other As7-based methods
due to its lack of sensitivity to changes in the record length and binning reconstructions are not precise
enough to resolve MAT and SST seasonality within two standard deviations (~95% confidence level).
Variation in precision is largely driven by very high precision errors of reconstructions in records with low
sampling resolutions (sampling intervals of 1.55 mm or 3.25 mm; see also Fig. 9A-D). As a result, most of

the reduction in precision in shorter records can be mitigated by denser sampling.
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Figure 12: Effect of uncertainty in age model on the reproducibility (standard deviation on estimate) of
results of reconstructions of mean annual 6'80,, (A) and seasonal range in 680, (B), mean annual SST
(C) and seasonal range in SST (D). Effect of uncertainty in age model on the accuracy (offset from true
value) of results of reconstructions of mean annual 6'80,, (E) and seasonal range in 680, (F), mean annual
SST (G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.

3.6 Effect of age model uncertainty

Uncertainty on the age model has a significant effect on both the precision and the accuracy (Fig. 12) of
reconstructions using all approaches. The 80 reconstructions are most strongly affected by
uncertainties in the age model and suffer from a large decrease in precision with increasing age model
uncertainty (Fig. 12C-D). The high reproducibility of the 880 approach in comparison with the A4z
approaches quickly disappears when age model uncertainty increases beyond 20-30 days. Accuracy of
0'80c-based SST seasonality reconstructions initially improves with age model uncertainty (Fig. 12H).
However, this observation is likely caused by the fact that age model uncertainty was compared based on
conditions in case 9, which features a phase offset between SST and §'80w seasonality causing the &80
method to be highly inaccurate even without age model uncertainty. The precision of smoothing and
optimization approaches also decreases with increasing age model uncertainty (Fig 12A-D), and the
optimization approach loses its precision advantage over the binning and smoothing approaches when
age model uncertainty increases beyond 30 days. The monthly binning approach is most resilient
against increasing age model uncertainty. Seasonality reconstructions through both the binning and
optimization approach quickly lose accuracy when age model uncertainty increases but the accuracy of
the smoothing approach remains the worst of all approaches in regardless of age model uncertainty
(Fig. 12E-H).
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Figure 13: Overview of averages and ranges of accuracy (absolute offset from real value) and precision
(one standard deviation from the mean) on mean annual 6*20,, (A) and seasonal range in 6*20y, (B), mean
annual SST (C) and seasonal range in SST (D) within all cases using the four different reconstruction
approaches. Color coding follows the scheme in Fig. 1 and Fig. 4. Box-whisker plots for precision and
accuracy cross at their median values and outliers (colored symbols) are identified based on 2x the

interquartile difference.
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4. Discussion

4.1 Performance of reconstruction approaches

4.1.1 5180, vs As7-based reconstructions

Figure 13 summarizes the general reliability of the four approaches. 80 reconstructions are generally
less accurate than A47-based reconstructions (especially binning and optimization; see also S9). This is
a consequence of the assumption that 880w remains constant year-round, and that one knows its true
value. Both these assumptions are problematic in absence of independent evidence of the value of 580w,
especially in deep time settings (see e.g. Veizer and Prokoph, 2015; Henkes et al., 2018). The risk of this
assumption is made clear when comparing cases in which 880y is indeed constant year-round at the
assumed value (0%o; e.g. cases 1-6 and 19-24) with cases in which shifts in 880w occur, especially when
these shifts are out of phase with respect to the SST seasonality (e.g. cases 9-11, 18 and 25-33; Fig. 8C-
D). Cases mimicking or based on natural SST and SSS variability (cases 14-18 and 30-33) as well as the
modern oyster data (Fig. 6) yield stronger inaccuracies in MAT and seasonality reconstructions, showing

that even in many modern natural circumstances the assumption of constant 580y is problematic.

It is important to consider that the value of mean annual 80w remained very close to the assumed value
of 0%o (within 0.15%o) in all cases except for natural data cases 30 (-1.55%o), 32 (1.01%0; see S5) and the
real oyster data (-1.42%o; Fig. 5). The SST values of these cases reconstructed using 580, data show
large offsets from their actual values (+6.7°C, -4.7°C and +10.3°C for case 30, case 32 and the real oyster
data respectively; see Fig. 6 and 8 and S5). These offsets are equivalent to the temperature offset one
might expect from inaccurately estimating 880w (~-4.6 °C/%o; Kim and O’Neil, 1997) and are only rivaled
by the offset in MAT reconstructions of case 18 (+5.0°C), which has growth hiatuses obscuring the coldest
half of the seasonal cycle. The fact that such differences in 880w exist even in modern environments should
not come as a surprise, given the available data on variability of 8180w (at least -3%o to +2%o; €.g. LeGrande
and Schmidt, 2006) and SSS (30 to 40; ESA, 2020) in modern ocean basins. However, it should warrant
caution in using 680 data for SST reconstructions even in modern settings. Implications for deep time
reconstructions are even greater, given the uncertainty on and variability in global average (let alone local)

0180w values (Jaffrés et al., 2007; Veizer and Prokoph, 2015). The complications of using 58Q. as a proxy
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for marine temperatures in deep time are discussed in detail in O’'Brien et al. (2017), and Tagliavento et al.

(2019).

The analytical uncertainty of individual 58O aliquots (typically 1 S.D. of 0.05%o; e.g. de Winter et al., 2018)
represents only ~1.1% of the variability in 380c over the seasonal cycle (~4.3%. for the default 20°C
seasonality in case 1, following Kim and O’Neil, 1997). This is much smaller than the analytical uncertainty
of A4z (typically 1 S.D. of 0.02-0.04%o; e.g. Fernandez et al., 2018; de Winter et al., 2020b), which equates
to 25-50% of the seasonal variability in A47 (~0.08%. for 20°C seasonality, following Bernasconi et al., 2018;
see S7). This roughly 20-fold difference in relative precision causes 5'80¢ based SST reconstructions to be
much more precise (see Figs 7, 9-12) than those based on A47, and forces the necessity for grouping A4z
data in reconstructions. However, as discussed above, the high precision of &0 reconstructions is a

misleading statistic if they are highly inaccurate.

Our results show that paleoseasonality reconstructions based on 880 can only be relied upon if there is
strong independent evidence of the value of 880w and if significant sub-annual variability in 380w (>0.3%o,
equivalent to a 2-3°C SST variability; see Fig. 9-10; Kim and O’Neil, 1997) can be excluded with confidence.
Examples of such cases include fully marine environments unaffected by influxes of (isotopically light)
freshwater or evaporation (increasing 80w; Rohling, 2013). Carbonate records from environments with
more stable 80w conditions include, for example, the A. islandica bivalves from considerable depth (30-
50m) in the open marine Northern Atlantic (e.g. Schone et al., 2005, on which case 33 is based). However,
even here variability in 380sw due to, for example, shifting influence of different bottom water masses
cannot be fully excluded. Previous reconstruction studies show that 380w in smaller basins are heavily
influenced by the processes affecting 680w on smaller scales, such as local evaporation and freshwater
influx from nearby rivers (e.g. Surge et al., 2001; Petersen et al., 2016). Consequently, accurate quantitative
reconstructions of seasonal range in shallow marine environments with extreme seasonality may not be
feasible using the &80 approach, because these environments are invariably characterized by significant

fluctuations in 880w and growth rate.

While variability in 880w compromises accurate 8'80-based seasonality reconstructions, the compilation

in Fig. 3 shows that its influence on the 80 records is too small to affect the shape of the record to such
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a degree that seasonality is fully obscured. While natural situations with 380w fluctuations large enough to
totally counterbalance the effect of temperature seasonality on 80 records are imaginable, these cases
are likely rare. This means that chronologies based on 5180 seasonality, which are a useful tool to anchor
seasonal variability in absence of independent growth markers (e.g. Judd et al., 2018; de Winter, 2021b),

are reliable in most natural cases.

4.1.2 Seasonality reconstructions using moving averages (smoothing)

Of the three methods for combining A4z data, the smoothing approach clearly performs worst in all four
reconstructed parameters (MAT, SST seasonality, mean annual 30w and 880w seasonality), both in
terms of accuracy and precision (Fig. 13). While applying a moving average may be a good strategy for
lowering the uncertainty of As7-based temperature reconstructions in a long time series (e.g. Rodriguez-
Sanz et al., 2017), the method underperforms in cases where baseline and amplitude of a periodic
component (e.g. MAT and SST seasonality) are extracted from a record. This is likely due to the smoothing
effect of the moving average, which reduces the seasonal cycle and causes highly inaccurate seasonality
reconstructions (offsets mounting to >6°C; Fig. 13). This bias is especially detrimental in cases where the
seasonal cycle is obscured by seasonal growth halts (e.g. case 18), multi-annual trends in growth (e.g.
case 4, 14 and 17) and multi-annual trends in SST (e.g. case 15 and 17; see Fig. 7 and 8). The poor
performance of the smoothing approach can be slightly mitigated by increasing sampling resolution (Fig
9), but even at high sampling resolutions (every 0.1 or 0.2 mm) the method still fails to reliably resolve
seasonal SST ranges below 5°C even in idealized cases (case 19-21; Fig. 10). Increasing the number of
samples by analyzing longer records does not improve the result, because smoothing of the seasonal cycle
by a moving average window introduces the same dampening bias if the temporal sampling resolution

(number of samples per year) remains equal (Fig. 11).

More critically, employing the smoothing method may give the illusion that seasonality is more reduced,
and severely bias reconstructions. This bias highlights the importance of using the official meteorological
definition of seasonality as the difference between the averages of warmest and coldest month in
paleoseasonality work (O’Donnell et al., 2012). This definition is much more robust than the “annual range”

often cited based on maxima and minima in 8'8QO. records. This “annual range” strongly depends on
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sampling resolution, which is typically <12 samples/yr (Goodwin et al., 2003), equivalent to the third lowest
sampling interval (0.75 mm) simulated in this study. Therefore, we strongly recommend future studies to
adhere to the monthly definition of seasonality to foster comparison between studies. While inter-annual
variability is lost by combining data from multiple years into monthly averages, this approach increases
precision, accuracy and comparability of paleoseasonality results. Inter-annual variability can still be

discussed from plots of raw data plotted in time or sampling domain.

4.1.3 Monthly binning, sample size optimization and age model uncertainty

Overall, the most reliable paleoseasonality reconstructions can be obtained from either binning or
optimization (Fig. 13). In general, optimization is slightly more precise, while binning yields more
accurate estimates of seasonal range in SST and 680w (Fig. 13B and D). The more flexible combination
of aliquots in the optimization routine yields improved precision (especially on mean annual averages) in
cases where parts of the record are undersampled or affected by hiatuses and simultaneous fluctuations
in both SST and 880w (e.g. case 3-6, 14-18, 30-33). The downside of this flexibility is that in case of larger
sample sizes, the seasonal variability may be dampened, like in the smoothing approach (see 4.1.2). This
apparent dampening effect may be reduced by allowing the sample size of summer and winter samples to
vary independently in the optimization routine, at the cost of higher computational intensity due to the
larger number of sample size combinations (see 2.1 and 4.2.2). The rigid grouping of data in monthly bins
in binning prevents this dampening and therefore yields slightly more accurate estimates of seasonal
ranges in SST and d'80w. A caveat of binning is that it requires a very reliable age model of the record, at
least on a monthly scale. If the age model has a large uncertainty, there is a risk that samples are grouped
in the wrong month, which compromises the accuracy of binning reconstructions, especially for
reconstructions of seasonal range (Fig 12H). This problem is exacerbated by potential phase shifts between
seasonality in paleoclimate variables (SST and 580w) and calendar dates, which may occur in the presence

of a reliable age model.

Previous authors attempted to circumvent the dating problem by analyzing high-resolution 880 transects
and subsequently sampling the seasonal extremes for clumped isotope analyses (Keating-Bitonti et al.,

2011; Briard et al., 2020). While this approach does not require sub-annual age models, it has several
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disadvantages compared with the binning and optimization approaches: Firstly, it requires separate
sampling for 580 and A47, which may not be possible in high-resolution carbonate archives due to sample
size limitations. Analyzing small aliquots for combined &'80¢ and As47 analyses consumes less material.
Secondly, individual summer and winter temperature reconstructions require large (> 1.5 mg; e.g.
Fernandez et al., 2017) A4z samples from seasonal extremes, which causes more time-averaging than the
approaches combining small aliquots. Finally, the position of seasonal extremes estimated from the 3'80c
record may not reflect the true seasonal extent if seasonal SST and 380w cycles are not in phase (as in
case 9), causing the seasonal As7-based SST reconstructions to underestimate the temperature
seasonality. In such cases, 8180¢ and A47 analyses on small aliquots allow the seasonality in SST and 580w

to be disentangled, yielding more accurate seasonality reconstructions.

Techniques for establishing independent age models for climate archives range from counting of growth
layers or increments (Schéne et al., 2008; Huyghe et al., 2019), modelling and extracting of rhythmic
variability in climate proxies through statistical approaches (e.g. De Ridder et al., 2007; Goodwin et al.,
2009; Judd et al., 2018; de Winter, 2021b) and interpolation of uncertainty on absolute dates (e.g. Scholz
and Hoffman, 2011; Meyers, 2019; Sinnesael et al., 2019). While propagating uncertainty in the data on
which age models are based onto the age model is relatively straightforward, errors on underlying a priori
assumptions such as linear growth rate between dated intervals, (quasi-)sinusoidal forcing of climate cycles
and the uncertainty on human-generated data such as layer counting are very difficult to quantify (e.g.
Comboul et al., 2014) and may not be normally distributed. Results of cases 25-29 show that uncertainties
in the age domain can significantly compromise reconstructions (Fig. 12). Within the scope of this study,
only the effect of symmetrical, normally distributed uncertainties on an artificial case with phase decoupled
SST and 680w seasonality (case 9) was tested. The effects of other types of uncertainties on the
reconstructions remain unknown, highlighting an unknown uncertainty in paleoseasonality and other high-
resolution paleoclimate studies that may introduce bias or lead to over-optimistic uncertainties on
reconstructions. Future research could quantify this unknown uncertainty by propagating estimates of
various types of uncertainty on depth values of samples and on the conversion from sampling to time

domain in age models.
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4.2 Conditions influencing success of reconstructions

The reliability (accuracy and precision) of SST and 6'Ow reconstructions depend on case-specific
conditions. The range of case studies tested in this study allowed us to evaluate the effect of variability in
SST, growth rate, 680w, sampling resolution and record length relative to the control case (case 1; see

S1). A summary of the effects of these changes is given in Table 2.
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. . Effect on reconstructions
Variable cases | Metric N L
50 optimization
12 Precision 0 F++ + 0
15
SST 17
19-21 | Accuracy + + 0 +
30-33
2-6 Precision + ++ ++ +
Growth rate 14-18
30-33 Accuracy + ++ 0 +
7-11 | Precision + ++ 0 0
50, 13-18
30-.33 | Accuracy +++ +++ + ++
. _ Precision 0 +++ ++ ++
Sampling resolution | 1-33
Accuracy + + +++ +
Precision 0 0 +++ ++
Record length 22-24
Accuracy + 0 ++ ++
Age model 2529 Precision +++ ++ 0 ++
uncertainty? Accuracy + + ++ ++

Table 2: Qualitative summary of the effects of changes in variables relative from the ideal case on
reconstructions using the four approaches. The “cases” column lists cases in which the changes in the
respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” =
negligible effect, “+“ = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong
increase in uncertainty. Precision and accuracy of all tests is given in S9.

4.2.1 SST variability

Variability in water temperature most directly affects the proxies under study. By default (case 1), SST
varies sinusoidally around a MAT of 20°C with an amplitude of 10°C (see 2.3.3, Fig. 2 and S1). In cases in
which multi-annual variability in SST is simulated (e.g. case 15 and 17), the accuracy of SST reconstructions
using 880 and optimization are reduced, while the binning approach is less strongly affected. Examples
of such multi-annual cyclicity are EI-Nifio Southern Oscillation (ENSO; Philander, 1983) or North Atlantic
Oscillation (NOA; Hurrell, 1995). The effect is especially large in case 17, which simulates a tropical
environment with reduced SST seasonality and a strong multi-annual cyclicity. This type of environment is
analogous to the environment of tropical shallow water corals, which are often used as archives for ENSO
variability (e.g. Charles et al., 1997; Fairbanks et al., 1997) and is similar to tropical cases from the
Australian Great Barrier Reef (case 31) and Red Sea (case 32; see Fig. 3). We therefore recommend using
the binning approach on carbonate records where multi-annual cyclicity is prevalent and if a reliable age

model can be established for these records (as in e.g. Sato, 1999; Scourse et al., 2006; Miyaji et al., 2010).
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4.2.2 Growth rate variability and hiatuses

Figures 7 and 8 show that variations in the growth rate of records, including the occurrence of hiatuses,
have a strong effect on reconstructions, especially using the smoothing approach. In general, hiatuses
and slower growth reduce precision of monthly SST and 680w reconstructions by reducing mean temporal
sampling resolution (samples/yr; see Fig. 9), and because parts of the record are undersampled. The effect
on accuracy depends strongly on the timing of changes in growth rate or the occurrence of hiatuses. Cases
2-6 simulate specific growth rate effects and can be used to test these differences. The smoothing method
is especially sensitive to changes in growth rate that take place in specific seasons, such as hiatuses in
winter (case 2) or summer (case 3) and growth peaks in summer (case 5) or spring (case 6). The other
reconstruction approaches are less affected by this bias, because they generally do not mix samples from
different seasons. The &80 method is especially well suited to deal with changes in growth rate because
it does not require combining different aliquots for accurate SST reconstructions. The binning and
optimization approaches are slightly less reliable in cases where growth rate decreases linearly or
seasonally along the entire record (cases 4-6; Fig. 2). Because these two methods consider all samples in
the records at once, they are more sensitive to changes in temporal sampling resolution along the record.
It is worth noting that optimization is especially sensitive to sharp changes in growth rate in summer (e.g.
cases 11, 14, 16 and 17) because those conditions force the optimization routine to use larger sample
sizes or include samples outside the warmest month for summer temperature estimates. A potential solution
to this problem could be to allow sample sizes of summer and winter groups to vary independently in the
optimization routine (see 2.1). This would allow sample size in the undersampled season (in this case:
summer) to become larger than that at the other end of the 8'80¢ spectrum, reducing uncertainty on the

more densely sampled season and therefore improving the entire seasonality reconstruction.

A worst-case scenario is represented by case 18, where the cold half of the year is not recorded. Such
cases result in strong biases in reconstructions of mean annual and seasonal ranges in SST and 680w,
regardless of which method is used. In such extreme cases the record simply contains insufficient
information to reconstruct variability in growth rate, SST and 6'80w, and it seems that no statistical method

would enable this missing information to be recovered. The solution for these reconstructions would be to
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establish reliable age models, independent of 6180 or As47 data, which show that a large part of the seasonal
cycle is missing. All methods used in this study rely on a conversion of SST and &'80w reconstructions to
the time domain to define monthly time bins. This conversion breaks down in fossil examples when the
seasonal cycle cannot be extracted from the archive, which happens when half of the seasonal cycle or

more is obscured by growth hiatuses, as exemplified in case 18.

While hiatuses encompassing half of the seasonal cycle are uncommon, changes in growth rate are
common in accretionary carbonate archives because conditions for (biotic or abiotic) carbonate
mineralization often vary over time. This variability is either driven by biological constraints, such as
senescence (e.g. Schone, 2008; Hendriks et al., 2012), the reproductive cycle (Gaspar et al., 1999) or
stress (Surge et al., 2001; Compton et al., 2007) or by variations in the environment that promote or inhibit
carbonate production, such as seasonal variations in temperature (Crossland, 1984; Bahr et al., 2017) or
precipitation (Dayem et al., 2010; Van Rampelbergh et al., 2014). In general, such conditions occur more
frequently in mid- to high-latitude environments than in low-latitudes, and in more coastal environments
rather than in open marine settings, because these environments contain stronger variations in the factors
that influence growth rates (e.g. temperature, precipitation or freshwater influx; e.g. Surge et al., 2001;
Ullmann et al., 2010). This difference was simulated in the cases representing natural variability (case 14-
18 and 30-33). Accuracy in the coastal high-latitude settings (cases 16, 18 and 29) are indeed more strongly
affected by changes in growth rate. Because in such highly variable environments growth rate variability
often co-occurs with variability in 880w, using 8'80c-based reconstructions is not advised, unless 880w

variability can be constrained or neglected (which is rare in these environments).

Additional complications include that the lack of constraint on growth rate variability because of
uncertainties in the record’s age model (see 4.1.3) and the effect of growth rate variability on the sampling
resolution. The effect of growth rate on time-averaging within samples was not specifically tested in this
study but introduces uncertainty in practice when archives with variable growth rate are sampled at a
constant sampling resolution in the depth domain. In this case, parts of the archive with a lower growth rate
yield more time-averaged samples, potentially dampening one extreme of the seasonal cycle (e.g. Goodwin

et al., 2003). In highly dynamic environments it is challenging to isolate all variables that introduce bias, and
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irregular variability in growth rate and &'80w will invariably introduce uncertainty in SST reconstructions,
even when applying the best As47-based approaches (e.g. binning and optimization). In such examples,
the results of natural variability cases (14-18 and 30-33) and of the real oyster data (Fig. 6) serve as

benchmarks for the degree of uncertainty that may remain unexplained in these records.

4.2.3 Variability in 5180w

As discussed in 4.1.1, these variations in 880w have a large effect on the accuracy of 5Qc-based
reconstructions, and their occurrence constitutes the main advantage of applying the A4z thermometer
(Eiler, 2011). However, results of cases 7-11 in Fig. 8 and Table 2 show that 580w variations can also bias
As7-based reconstructions, especially those of seasonal ranges and using the smoothing approach.
Smoothing reconstructions are biased by these 380w shifts in much the same way as they are affected
by shifts in growth rate (see 4.2.2). The optimization approach is sensitive to seasonal changes in 380y
in antiphase with SST seasonality and by increases in 580w in summer (e.g. due to excess evaporation;
e.g. case 11), especially when used for reconstructions of 80w seasonality. This effect arises because
the optimization approach orders data based on 8'80. and As47 seasonality to isolate the 3'80w-SST
relationship. Both antiphase 580w seasonality and summer evaporation dampen the seasonal 58Q¢ cycle
and therefore influences the reconstruction of the 8'80w-SST relationship. A good example of this is seen
in the real oyster data (Fig. 6), where 380w and SST vary in phase and 580w dampens the SST
seasonality. The binning approach is more robust against 520w variability that dampens the seasonal
cycle and is therefore a better choice for absolute SST reconstructions in environments where summer
evaporation or other 680w variability in phase with SST seasonality is expected to occur, if the age model
is reliable enough to allow monthly binning of raw data (see 4.1.3). Indeed, reconstructions from the
lagoonal environment (case 16) and Red Sea case (case 32 which is characterized by strong summer
evaporation; e.g. Titschack et al., 2010) show that binning is the most reliable choice in these

environments.

4.2.4 Variability in sampling resolution and record length

Other factors influencing the effectivity of reconstructions are the sampling resolution and the length of the
record. Many of the cases discussed in this study represent idealized cases with comparatively high
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sampling resolutions over comparatively long (12 yr) paleoseasonality records, which yield large sample
sizes. By comparison, the typical age of mollusks, which are often used as paleoseasonality archives, is 2-
5 years (Ilvany, 2012). Records with the highest sampling resolutions (0.1 and 0.2 mm) contain up to 1200
samples. Generating such records is not impossible, but it is highly unlikely to be applied in paleoclimate
studies given the limitation of resources (e.g. instrument time) and the desire to analyze multiple records
from different specimens, species, localities or ages to gain a better understanding of the variability in
paleoseasonality (e.g. Goodwin et al., 2003; Schoéne et al., 2006; Petersen et al., 2016). In some cases
large datasets are meticulously collected from single carbonate records (e.g. Schone et al., 2005;
Vansteenberge et al., 2016; de Winter et al., 2020a; Shao et al., 2020). However, in such studies, the aim
is often to investigate variability at a higher (e.g. daily; de Winter et al., 2020a) resolution or longer
timescales (e.g. decadal to millennial; Schéne et al., 2005; Vansteenberge et al., 2016; Shao et al., 2020)
in addition to the seasonal cycle, rather than to improve the reliability of reconstructing one type of variability

(e.g. seasonality) alone.

Fig. 9 shows that increasing temporal sampling resolution (samples/yr) improves both the accuracy and
precision of all As7-based reconstructions. This occurs because As7 samples have a large analytical
uncertainty (see 4.1.2) and grouping of data therefore improves reconstructions. The decrease in precision
of 5'80c¢-based reconstructions (Fig. 9C-D) is explained by the fact that the analytical uncertainty of 580c
measurements is much smaller than the variability introduced by natural sub-annual variability in SST and
080w unrelated to the seasonal cycle (see S4). Therefore, higher sampling resolutions allow 580¢ records
to better capture this sub-seasonal variability, which introduces more noise on the seasonal cycle (reducing
precision) but causes monthly mean SST and 680w to be more accurately reconstructed. Towards higher
sampling resolutions, the gap in precision between 5'80¢- and As7-based reconstructions closes, eventually
(in an ideal case) diminishing the advantage of high analytical precision in 5180 measurements (Fig. 9C-

D).

An optimum sample resolution can be defined for each method after which improving sampling resolution
does not significantly improve the reliability of the reconstruction (as in de Winter et al., 2017). Figure 9

shows that this optimum varies depending on which variable (MAT, SST seasonality, mean annual 520w
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or 580w seasonality) is reconstructed. Therefore, Fig. 9 will allow future researchers to determine the
sampling resolution that is tailored to their purpose. In general, the improvement after a sample size of 20-
30 samples per year is negligible for the binning and optimization methods if the total number of samples
(depending on both sampling resolution and record length) is sufficient for monthly temperature
reconstructions. Our data show that 200-250 paired 6'80¢ and A4z measurements are in general sufficient
for a standard deviation of 2-3°C on monthly SST reconstructions using the binning or optimization

approach (Fig. 10; S5).

Record length only has a minimal influence on the optimization method but for very short records (<2
years) binning becomes very imprecise, especially at low sampling resolutions (Fig. 11). The reason is
that the sample size within monthly time bins becomes too small in these cases, while the more flexible
sample size window of the optimization routine circumvents this problem. The choice between these two
approaches should therefore be based on a tradeoff between the length of the record (in time) and the
number of samples that can be retrieved from it. As a result, shorter-lived, fast-growing climate archives,
such as large or fast-growing (e.g. juvenile) mollusk shells, are best sampled using a high temporal
resolution (>30 samples/yr) sampling strategy with the optimization approach. Longer lived archives with
a lower mineralization rate, such as annually laminated speleothems, corals and gerontic mollusks, are

best sampled using long time series at monthly resolution using the binning approach.

A simplified decision tree that could guide sampling strategies for future paleoseasonality studies is shown
in Figure 14. Note that choices and tradeoffs for these reconstructions may differ depending on the archive

and environment in which it formed (see discussion above).
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Schematic guide to reconstructing SST and 5'°0,, from accretionary
carbonate archives

Q1: What is the main target variable
for reconstruction?

ificati 5"°0,, or
calcification 18 P
temperature 0 0,, and calcification
temperature
Q2: Can seasonal changes no Q4: Can large shifts in
in 3'°0,, be neglected? » 5°0,, or summer growth
stops be expected?
yes no yes no
Q3: Can mean 50, be Q5: Does the record have ¢ yes | Q6: Is the record
independently estimated? a high-resolution (15d) short (<2 years)?
age model?
yes yei o no
5'°0 optimization

Figure 15: Schematic guide to choosing the right approach for reconstructing annual mean or seasonality
in SST and d'80w from accretionary carbonate archives. Recommendations are based on the results of
testing all four approaches on the entire range of cases. Researchers can follow the six steps (questions
Q1-6) to decide on the right approach for reconstructing the target variable. Guidelines are based on
minimizing both accuracy and precision (see details in S9). Note that the smoothing approach is never the
best choice. The choice between the two remaining As7-based approaches (binning and optimization)
relies heavily on the situation and may be driven by a preference for more accurate or more precise results.

4.3 Implications for clumped isotope sample size

The optimization technique for grouping A4z aliquots for accurate SST and 880w reconstructions allows
us to assess the limitations of the clumped isotope thermometer for temperature reconstructions from high-
resolution carbonate archives. The optimal sample size given by the approach is different for different cases
and depends on the temporal sampling resolution and the characteristics of the record (see S4). As
expected, in cases more like the ideal case (case 1), optimal sample sizes are low (~14-24), while sample
sizes increase in more complicated cases based on simulated natural environments (case 14-18) or cases
based on actual SST and SSS data (cases 30-33). More confined SST seasonality (cases 19-21) also

requires larger samples to reconstruct (up to 100 samples in some cases). This is not surprising, because
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variability within samples will increase in records in which the seasonality is smaller or more obscured by
other environmental variability. The optimal sample size between cases and sampling resolutions is not
normally distributed but tails towards high sample sizes with some extreme outliers (Shapiro Wilk test p <<
0.05; S10). The median sample size of all our simulations is 17 aliquots. This number lies between the
minimum number of 14 ~100 ug replicates of standards calculated by Fernandez et al. (2017) and the
minimum of 20-40 ~100 ug aliquots required for optimal paleoseasonality reconstruction from fossil bivalves
by de Winter et al. (2020b). This is to be expected since many of the cases explored in this study represent
ideal cases compared with the natural situation. However, in these virtual cases a measure of random sub-
annual variability in SST and 580w was added (see Fig. 4 and S2), simulating a more realistic environment
and resulting in poorer precision than replicates of a carbonate standard (as in Fernandez et al., 2017). Our
simulations show that the optimum number of samples to be combined in seasonality studies depends on
both the analytical uncertainty of A4z measurements (as represented by the estimate in Fernandez et al.,
2017) and the variability between aliquots pooled within a sample that is attributed to actual variability within
the record (as represented by our simulations and the estimate in de Winter et al. 2020b). The optimal
sample size is therefore a good measure for the limitations of temperature variability that can be resolved
in a record and can help researchers decide which strategy to apply for combining measurements to obtain
the most reliable paleoseasonality estimates, or to decide whether extra sampling is required, even if the
chosen approach is not to use the optimization routine itself. Note that the optimum sample size is kept
equal for summer and winter samples in this study, and that the optimization approach can likely achieve
better performance by considering unequal sample sizes in opposite seasons (see 4.1.3 and 4.2.2). While
this added flexibility comes at a higher computational cost due to the increased number of possible sample
size combinations to be considered, future studies should investigate whether this updated optimization

approach could yield more reliable seasonality reconstructions.

4.4 Implications for other sample size problems

While the discussion above focuses on optimizing approaches for combining samples for clumped
isotope analyses in paleoseasonality reconstructions, the problem of combining samples to reduce

uncertainty and isolate variation in datasets is very common (e.g. Zhang et al., 2004; Merz and Thieken,
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2005; Tsukakoshi, 2011). Therefore, the approaches outlined and tested in this study have applications
beyond paleoseasonality reconstructions. Examples of other problems that could benefit from applying
similar approaches for reducing the uncertainty of estimates of target variables while minimizing the
number of analyses required to meet analytical requirements include: (1) reconstructing
paleoenvironmental variability in the terrestrial realm from tooth bioapatite (e.g. Passey and Cerling,
2002; Kohn, 2004; Van Dam and Reichart, 2009; de Winter et al., 2016), (2) quantitative time series
analysis of orbital cycles in stratigraphic records (e.g. Lourens et al., 2010; de Vleeschouwer et al., 2017;
Noorbergen et al., 2017; Westerhold et al., 2020), (3) strontium isotope dating (e.g McArthur et al., 2012;
de Winter et al., 2020c), (4) reconstructing sub-seasonal variability from ultra-high-resolution records (e.g.
from fast-growing mollusks and gastropods; e.g. Sano et al., 2012; Warter and Miiller, 2017, de Winter et
al., 2020d; Yan et al., 2020), and (5) reconstructing sea surface and deep-sea temperatures across short-
lived (10-100 kyr) episodes of climate change or climate shifts from deep marine archives characterized
by low sedimentation rates (e.g. Lear et al., 2008; Jenkyns, 2010; Stap et al., 2010; Lauretano et al.,
2018). A more detailed discussion of the implications for other sample size problems is provided in the

Supplementary Information.
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5. Conclusions and recommendations

The performance of three As7-based approaches to reconstruct seasonality from accretionary carbonate
archives was evaluated in comparison with conventional '80c¢-based reconstructions in a wide range of
case studies. From the results, we conclude that while 8'80c-based reconstructions (8'20) yield superior
precision for SST reconstructions, this method runs a high risk of yielding inaccurate results due to innate
assumptions about the value of 580w, which must be estimated and assumed constant year-round. Unless
080w can be independently constrained or variability in 50w can be neglected, As7-based reconstructions
should be the method of choice for absolute mean annual temperature and SST seasonality
reconstructions. Various techniques for combining A4z data were evaluated. Our findings suggest that
smoothing A47 data using a moving average almost allways cases in a dampening of the seasonal cycle
which severely hampers recovery of seasonality. Applying the smoothing approach results in inaccuracies
in reconstructions of MAT as well, especially in cases where part of the seasonal cycle is obscured by
variability in growth rate or multi-annual trends. More reliable seasonality reconstructions are achieved with
two approaches for combining A4z data using time binning (binning) or applying a flexible sample size
optimization (optimization) approach. Of these two approaches, optimization achieves better precision
and can resolve smaller seasonal temperature differences with confidence. However, binning is often more
accurate, and outperforms optimization as the most reliable approach. This is especially true in cases with
growth stops or 580w changes in phase with temperature seasonality (e.g. strong seasonal evaporation or
freshwater influx) and in longer multi-annual time series with a reliable age model. Optimization is the
better choice for shorter (<3 years) records, especially if the sampling resolution can be increased, such as

in short, fast growing climate archives.

Despite the focus on the problem of resolving seasonality in carbonate archives, the findings in this study
have applications for other problems in earth science where sample size and sampling resolution put limits
on the ability to resolve specific trends, events, and cycles from time series. While the above-mentioned
recommendations of the optimization and binning methods are likely valid for most studies aiming to

guantify the mean and amplitude of a specific cycle or event (equivalent to MAT and SST seasonality),
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(dynamic) moving averages (smoothing) are expected to yield the best results in studies quantifying

aperiodic trends from longer data series.

Code availability

All scripts used to make the calculations described in this study are compiled in the documented R package
“seasonalclumped”, which is freely available on the open-source online R-database CRAN (de Winter,

2021a; https://cran.r-project.org/web/packages/seasonalclumped). Annotated R scripts used to make

calculations for this study are available in the digital supplement uploaded to the open-source online

repository Zenodo (www.doi.org/10.5281/zen0do.3899926).

Data availability

Supplementary data, figures and tables as well as all scripts used to do the calculations and create the
virtual datasets used in this study are deposited in the open-source online repository Zenodo

(www.doi.org/10.5281/zeno0d0.3899926). Virtual datasets generated within the context of this study are also

made available as datafiles within the R package that contains the scripts used for this study

(“seasonalclumped”; de Winter, 2021a; see https://cran.r-project.org/web/packages/seasonalclumped).
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