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Abstract 10 

The aim of paleoclimate studies to resolve climate variability from noisy proxy records can in essence be 11 

reduced to a statistical problem. The challenge is to extract meaningful information about climate variability 12 

from these records by reducing measurement uncertainty through a combination of proxy data while 13 

retaining the temporal resolution needed to assess the timing and duration of variations in climate 14 

parameters. In this study, we explore the limits of this compromise by testing different methods for 15 

combining proxy data (smoothing, binning and sample size optimization) on a particularly challenging 16 

paleoclimate problem: resolving seasonal variability in stable isotope records. We test and evaluate the 17 

effects of changes in the seasonal temperature and the hydrological cycle as well as changes in accretion 18 

rate of the archive and parameters such as sampling resolution and age model uncertainty on the reliability 19 

of seasonality reconstructions based on clumped and oxygen isotope analyses in 33 real and virtual 20 

datasets. Our results show that strategic combinations of clumped isotope analyses can significantly 21 

improve the accuracy of seasonality reconstructions compared to conventional stable oxygen isotope 22 

analyses, especially in settings where the isotopic composition of the water is poorly constrained. 23 

Smoothing data using a moving average often leads to an apparent dampening of the seasonal cycle, 24 

significantly reducing the accuracy of reconstructions. A statistical sample size optimization protocol yields 25 

more precise results than smoothing. However, the most accurate results are obtained through monthly 26 

binning of proxy data, especially in cases where growth rate or water composition cycles obscure the 27 

seasonal temperature cycle. Our analysis of a wide range of natural situations reveals that the effect of 28 

temperature seasonality on oxygen isotope records almost invariably exceeds that of changes in water 29 

composition. Thus, in most cases, oxygen isotope records allow reliable identification of growth seasonality 30 

as a basis for age modelling in absence of independent chronological markers in the record. These specific 31 

findings allow us to formulate general recommendations for sampling and combining data in paleoclimate 32 

research and have implications beyond the reconstruction of seasonality. We briefly discuss the 33 

implications of our results for solving common problems in paleoclimatology and stratigraphy. 34 

  35 
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1. Introduction 36 

Improving the resolution of climate reconstructions is a key objective in paleoclimate studies because it 37 

allows climate variability to be studied on different timescales and sheds light on the continuum of climate 38 

variability (Huybers and Curry, 2006). However, the temporal resolution of climate records is limited by the 39 

accretion rate (growth or sedimentation rate) of the archive and the spatial resolution of sampling for climate 40 

reconstructions, which is a function of the sample size required for a given climate proxy. This tradeoff 41 

between sample size and sampling resolution is especially prevalent when using state-of-the-art climate 42 

proxies which require large sample sizes, such as the carbonate clumped isotope paleothermometer (Δ47; 43 

see applications in Rodríguez-Sanz et al., 2017; Briard et al., 2020; Caldarescu et al., 2021) or stable 44 

isotope ratios in specific compounds or of rare isotopes (e.g. phosphate-oxygen isotopes in tooth apatite, 45 

triple oxygen isotopes in speleothems or carbon isotopes of CO2 in ice cores; Jones et al., 1999; Schmitt 46 

et al., 2012; Sha et al., 2020). The challenge of sampling resolution persists on a wide range of timescales: 47 

from attempts to resolve geologically short-lived (kyr-scale) climate events from deep sea cores with low 48 

sedimentation rates (e.g. Stap et al., 2010; Rodríguez-Sanz et al., 2017) to efforts to characterize tidal or 49 

daily variability in accretionary carbonate archives (e.g. Warter and Müller, 2017; de Winter et al., 2020a). 50 

What constitutes “high-resolution” is therefore largely dependent on the specifics of the climate archive. 51 

Sample size limitations are especially important in paleoseasonality reconstructions. Reliable archives for 52 

seasonality (e.g. corals, mollusks and speleothem records) are in high demand in the paleoclimate 53 

community, because the seasonal cycle is one of the most important cycles in Earth’s climate and 54 

seasonality reconstructions complement more common long-term (kyr to -Myr) records of past climate 55 

variability (e.g. Morgan and van Ommen, 1997; Tudhope et al., 2001; Steuber et al., 2005; Steffensen et 56 

al., 2008; Denton et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2019). A more detailed 57 

understanding of climate dynamics at the human timescale is increasingly relevant for improving climate 58 

projections (IPCC, 2013). Unfortunately, the growth and mineralization rates of archives that capture high-59 

resolution variability (rarely exceeding 10 mm/yr) limit the number and size of samples that can be obtained 60 

at high temporal resolutions (e.g. Mosley-Thompson et al., 1993; Passey and Cerling, 2002; Treble et al., 61 

2003; Goodwin et al., 2003). This problem is exacerbated by the fact that accurate methods for climate 62 
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reconstructions often require comparatively large sample sizes while methods relying on smaller sample 63 

sizes rely on uncertain assumptions. A case in point is the popular carbonate stable oxygen isotope 64 

temperature proxy (δ18Oc) which relies on assumptions of the water composition (δ18Ow) that become 65 

progressively more uncertain further back in geological history (e.g. Veizer and Prokoph, 2015). Contrarily, 66 

the clumped isotope proxy (∆47) does not rely on this assumption but requires larger amounts of sample 67 

(e.g. Müller et al., 2017) 68 

A promising technique for circumventing sample size limitations is to analyze larger numbers of small 69 

aliquots from the same sample or from similar parts of the climate archive. These smaller aliquots typically 70 

have poor precision but averaging multiple aliquots into one estimate while propagating the measurement 71 

uncertainty leads to a more reliable estimate of the climate variable (Dattalo, 2008; Meckler et al., 2014; 72 

Müller et al., 2017; Fernandez et al., 2017). This approach yields improved sampling flexibility since aliquots 73 

can be combined in various ways after measurement. It also allows outlier detection at the level of individual 74 

aliquots, thereby spreading the risk of instrumental failure and providing improved control on changes in 75 

measurement conditions that may bias results. 76 

Previous studies have applied several different methods for combining data from paleoclimate records to 77 

reduce analytical noise or higher order variability, and extract variability with a specific frequency (e.g. a 78 

specific orbital cycle or seasonality; e.g. Lisiecki and Raymo, 2004; Cramer et al., 2009). These data 79 

reduction approaches can in general be categorized into smoothing techniques, in which a sliding window 80 

or range of neighboring datapoints is used to smooth high resolution records (see e.g. Cramer et al., 2009) 81 

or binning techniques, in which the record is divided into equal bins in sampling direction (e.g. time, depth 82 

or length in growth direction; e.g. Lisiecki and Raymo, 2004; Rodríguez-Sanz et al., 2017). In addition, a 83 

third approach is proposed here based on optimization of sample size for dynamic binning of data along 84 

the climate cycle using a moving window in the domain of the climate variable (as opposed to the sampling 85 

domain) combined with a T-test routine (see section 2.1). All three approaches have advantages and 86 

caveats. 87 

In this study, we explore the (dis)advantages of these three data reduction approaches by testing their 88 

reliability in resolving seasonal variability in sea surface temperature (SST) and water stable oxygen isotope 89 
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composition (δ18Ow), both highly sought-after variables in paleoclimate research. We compare 90 

reconstructions of SST and δ18Ow in real and virtual datasets from accretionary carbonate archives (e.g. 91 

shells, corals and speleothems) using the clumped isotope thermometer (Δ47) combined with stable oxygen 92 

isotope ratios of the carbonate (δ18Oc). 93 

 94 

2. Methods 95 

2.1 Reconstruction approaches 96 

Throughout the remainder of this work, the three approaches for combining data for reconstructions are 97 

defined as follows (see also Fig. 1): 98 

Smoothing refers to the reconstruction of SST and δ18Ow based on moving averages of Δ47 and δ18Oc 99 

records (Fig. 1B). For every dataset, the full possible range of moving window sizes (from 1 sample to the 100 

full length of the record) for SST and δ18Ow reconstructions was explored. The window size that resulted in 101 

the most significant difference between maximum and minimum Δ47 values (based on a student’s T-test) 102 

was applied to reconstruct SST and δ18Ow from Δ47 and δ18Oc records. SST and δ18Ow were calculated for 103 

all case studies using a combination of empirical temperature relationships by Kim and O’Neil (1997; δ18Oc- 104 

δ18Ow-temperature relationship) and Bernasconi et al. (2018; Δ47-temperature relationship). Here and in 105 

other approaches, a typical analytical uncertainty on measurements of Δ47 (one standard deviation of 106 

0.04‰) and δ18Oc (one standard deviation of 0.05‰) was used to include uncertainty due to measurement 107 

precision. These analytical uncertainties were chosen based on typical uncertainties reported for these 108 

measurements in the literature (e.g. Schöne et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2016) 109 

and long-term precision uncertainties obtained by measuring in-house standards using the MAT253+ with 110 

Kiel IV setup in the clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). The 111 

measurement uncertainty was propagated through all calculations using a Monte Carlo simulation (N = 112 

1000) in which Δ47 and δ18Oc records were randomly sampled from a normal distribution with the virtual Δ47 113 

and δ18Oc values as means and analytical uncertainties as standard deviations. 114 
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Binning refers to reconstructions of SST and δ18Ow based on binning of Δ47 and δ18Oc records into monthly 115 

time bins (Fig. 1C). The Δ47 and δ18Oc data from each case study were grouped into monthly time bins and 116 

converted to SST and δ18Ow using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. Here 117 

too, Monte Carlo simulation was applied to propagate measurement uncertainties onto monthly SST and 118 

δ18Ow reconstructions. Note that the prerequisite for this method is that the data is aligned using a (floating) 119 

age model accurate enough to allow samples to be placed in the right bin. The age of virtual samples in 120 

this study is known so this prerequisite poses no problems in this case. However, in the fossil record this 121 

alignment might be less certain in absence of accurate chronologies within the archive (e.g. through daily 122 

growth increments in mollusk shells; e.g. Schöne et al., 2008; Huyghe et al., 2019; see 4.1.3). 123 

Optimization refers to reconstructions of SST and δ18Ow based on sample size optimization in Δ47 records 124 

(Fig. 1D). In this approach aliquots of each virtual dataset are ordered from warm (low δ18Oc) to cold (high 125 

δ18Oc data) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset, 126 

increasingly large samples of multiple aliquots (from 2 aliquots to half the length of the record) are taken 127 

from both the warm (“summer”) and the cold (“winter”) side of the distribution. Summer and winter samples 128 

were kept equal (symmetrical grouping) to reduce the number of possible sample size combinations and 129 

allow for more efficient computation. However, asymmetrical grouping with differing sample sizes on the 130 

summer and winter ends of the δ18Oc-spectrum are possible (see 4.1.3 and 4.2.2). Sample sizes with 131 

significant difference in Δ47 value between summer and winter groups (p ≤ 0.05 based on a student’s T-132 

test) were selected as optimal sample sizes. The moving window T-test in the proxy domain ensures that 133 

an optimal compromise is reached between high precision and resolving differences between seasonal 134 

extremes. For each successful sample size, SST and δ18Ow values were calculated from Δ47 and δ18Oc data 135 

according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The relationship between SST 136 

and δ18Ow obtained from these reconstructions was used to convert all Δ47 and δ18Oc data to SST and 137 

δ18Ow, which are then grouped into monthly SST and δ18Ow reconstructions. Measurement uncertainties 138 

were propagated through the entire approach by Monte Carlo simulation (N = 1000). 139 

For comparison, we also include reconstructions based solely on δ18Oc measurements with an (often 140 

inaccurate) assumption of a constant δ18Ow (equal to the modern ocean value of 0‰ VSMOW), which form 141 
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the most common method for carbonate-based temperature reconstructions in paleoclimate research (see 142 

e.g. Schöne et al., 2005; Westerhold et al., 2020; Fig. 1A; hereafter: δ18O). For these reconstructions, δ18Oc 143 

records were grouped into monthly time bins with analytical uncertainties propagated using the Monte Carlo 144 

approach (N = 1000) and were directly converted to SST using the Kim and O’Neil (1997) temperature 145 

relationship. 146 

For each reconstruction, SST and δ18Ow results were aggregated into monthly averages, medians, standard 147 

deviations, and standard errors. Step by step documentation of calculations made for the three Δ47-based 148 

reconstruction approaches and the δ18Oc reconstructions are given in S7 and in the complementary R 149 

package (de Winter, 2021a). 150 

2.2 Benchmarks for accuracy and precision 151 

Accuracy and precision of reconstructions were evaluated against official USGS definitions of climate 152 

parameters (O’Donnell et al., 2012):  153 

1. mean annual SST (MAT), defined as the average of all 12 monthly temperature reconstructions. 154 

2. seasonal range in SST, defined as the temperature difference between warmest and coldest 155 

month. 156 

3. mean annual δ18Ow, defined as the average of all 12 monthly δ18Ow reconstructions. 157 

4. seasonal range in δ18Ow, defined as the δ18Ow difference between most enriched (highest δ18Ow) 158 

and most depleted (lowest δ18Ow) monthly reconstruction. 159 

Accuracy was defined as the absolute offset of the reconstructed climate parameter from the “true” value. 160 

Precision was defined as the (relative) standard deviation of the reconstruction, as calculated from the 161 

variability within monthly time bins resulting from Monte Carlo error propagation (see 2.1). An overview of 162 

monthly SST and δ18Ow reconstructions using the four approaches in all cases is given in S4. Raw data 163 

and figures of reconstructions of all cases using all sampling resolutions are compiled in S8. 164 
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 165 

Figure 1: Schematic overview of the four approaches for seasonality reconstructions: (A) δ18O-based 166 
reconstructions, assuming constant δ18Ow. (B) Reconstructions based on smoothing δ18Oc and Δ47 data 167 
using a moving average. (C) Reconstructions based on binning δ18Oc and Δ47 data in monthly time bins. 168 
(D) Reconstructions based on optimization of the sample size for combining δ18Oc and Δ47 data (see 169 
description in 2.1). Colored curves represent virtual δ18Oc (blue) and Δ47 (red) series in sampling domain. 170 
Black curves represent reconstructed monthly SST and δ18Ow averages. 171 

 172 

2.3 SST and δ18Ow datasets 173 

The three reconstruction approaches were tested and compared based on three types of data: Firstly, data 174 

from a real specimen of a Pacific oyster (Crassostrea gigas, syn. Magallana gigas) reported in Ullmann et 175 

al. (2010). Secondly, data based on actual measurements of natural variability in SST and sea surface 176 

salinity (SSS; case 30-33) converted to virtual Δ47 and δ18Oc records. Thirdly, a set of datasets based on 177 

fully artificial SST and δ18Ow data (case 1-29; see Fig. 2) converted to virtual Δ47 and δ18Oc records.178 
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 179 

Figure 2: Overview of time series of all virtual test cases. Colored curves represent time series of SST (red), δ18Ow (blue) and growth rate (orange, 180 
abbreviated as “GR”). Horizontal axes in all plots are 12 years long (see legend below case 6). Vertical axis of all plots has the same scale (SST: 181 
10 to 30°C; δ18Ow: -1 to +1‰; Growth rate: 0 –50 µm/day; see legend in bottom right corner). Horizontal error bars and labels on the right side of 182 
cases 25-29 represent standard errors introduced on the age model (bars not to scale). The δ18Oc and Δ47 records resulting from these virtual 183 
datasets are provided in S6 (see also Fig. 3 for natural examples). 184 
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Sensitivity cases Natural cases Varying seasonality 
Varying age 

model uncertainty 

 

7. δ18Ow 

seasonality 
in phase with 
SST 

 
19. Control case with 
reduced SST 
amplitude (~5°C) 

 

1. Control 

8. δ18Ow 

seasonality 
in antiphase 
with SST 

14. Full marine case 
with ontogenetic GR 
trend 

20. Control case with 
reduced SST 
amplitude (~3°C) 

25. Case 9 with ±1 
day age model 
uncertainty 

2. Growth 
stops <12°C 

9. δ18Ow 

seasonality 
lags SST by 
¼ year 

15. Coastal case with 

spring δ18Ow decrease 

and decreasing GR 
trend 

21. Control case with 
reduced SST 
amplitude (~1°C) 

26. Case 9 with ±5 
days age model 
uncertainty 

3. Growth 
stops >28°C 

10. Negative 

δ18Ow in 

spring 

16. Lagoonal case with 

summer δ18Ow increase 
Varying record 

length 

27. Case 9 with 
±15 days age 
model uncertainty 

4. Linear 
decrease in 
GR 

11. Positive 
δ18Ow in 

summer 

17. Tropical monsoon 
case with confined SST 
seasonality and strong 
multi-annual SST cycle 

22. Control case 
shortened to 6 yr 

28. Case 9 with 
±45 days age 
model uncertainty 

5. GR 
seasonality 
in phase with 
SST 

12. Multi-
annual (5 yr) 
SST cycle 

18. Worst-case scenario 
with growth limited to 
summer half of the year 

23. Control case 
shortened to 3 yr 

29. Case 9 with 
±90 days age 
model uncertainty 

6. GR 
seasonality 
lags SST by 
¼ year 

13. Multi-
annual (5 yr) 

δ18Ow cycle 
 

24. Control case 
shortened to 1 yr 

 

Table 1: Overview of virtual cases 1-29 used to test the reconstruction methods. Case descriptions are 185 
abbreviated. Details on the SST, growth rate and δ18Ow included in each case are described in detail in S1. 186 
SST, growth rate and δ18Ow records of all cases are shown in Fig. 2. “GR” = growth rate. 187 

 188 

2.3.1 Modern oyster data 189 

Environmental SST and δ18Ow data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the 190 

modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described 191 

in Ullmann et al. (2010). Since direct, in situ measurements of δ18Ow variability at a high temporal resolution 192 

were not available, δ18Ow was estimated from more widely available SSS data using a mass balance 193 

(equation 1 and 2; following e.g. Ullmann et al., 2010): 194 

𝛿18𝑂𝑠𝑤 = 𝛿18𝑂𝑤,𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 ∗ 𝑓 + 𝛿18𝑂𝑤,𝑜𝑐𝑒𝑎𝑛 ∗ (1 − 𝑓) (1) 195 
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𝑓 =
𝑆𝑆𝑆𝑠𝑎𝑚𝑝𝑙𝑒−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛

𝑆𝑆𝑆𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛
  (2) 196 

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity 197 

(δ18Ow,freshwater = -8.5‰; SSSfreshwater = 0 ) freshwater and a fraction (1-f) ocean water (δ18Ow,ocean = 0‰; 198 

SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation 199 

(SSSsample > SSSocean). The value for δ18Ow,freshwater was based on the discharge weighted average δ18Ow of 200 

water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All δ18Ow values throughout the text 201 

are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-33; see 2.3.2 and 2.3.3), 202 

the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling was 203 

required. 204 

2.3.2 Cases based on real climate data 205 

Four test cases were based on time series of real SST and SSS data from four different locations, selected 206 

to capture a variety of environments with different SST and SSS variability (see Fig. 3): 207 

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30) 208 

2. Great Barrier Reef in Australia (case 31) 209 

3. Gulf of Aqaba between Egypt and Saudi Arabia (case 32) 210 

4. Northern Atlantic Ocean east of Iceland (case 33). 211 

Daily measurements of SST and SSS for case 31-33 were obtained from worldwide open-access datasets 212 

of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA, 213 

2020) respectively. Hourly SST and SSS measured in situ in the Wadden Sea (case 30) were obtained 214 

from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, in situ 215 

measurements of δ18Ow variability at a high temporal resolution are scarce, δ18Ow was estimated from (more 216 

widely available) SSS data using the same mass balance described in 2.3.1. The value for δ18Ow,freshwater 217 

was based on the δ18Ow of rain in the Netherlands (-8‰; Mook, 1970; Bowen, 2020). Applying this mass 218 

balance on the SSS record of the Wadden Sea tidal flats (case 30) results in δ18Ow values and a SSS-δ18Ow 219 

relationship in agreement with measurements in this region (Harwood et al., 2008). SST and δ18Ow time 220 

series for all cases are given in S4 and natural cases are plotted in Fig. 3. 221 
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For all virtual datasets (cases 1-33), records of SST and δ18Ow were converted to the sampling domain 222 

(along the length of the record) by defining a virtual growth rate in the sampling direction. Adding this growth 223 

rate as a variable allowed us to test the sensitivity of approaches to changes in the extension rate of the 224 

archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear extension rate 225 

and periods in which no mineralization occurs (hiatuses or growth cessations) are common in all climate 226 

archives (e.g. Treble et al., 2003; Ivany, 2012). After conversion to the sampling domain, virtual aliquots 227 

were subsampled at equal distance from the SST and δ18Ow series of all cases using six sampling intervals: 228 

0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals were 229 

chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling interval 230 

(e.g. 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling the same 231 

parts of the seasonal cycle (e.g. same months) every year, which biases both the mean value and the 232 

precision of monthly SST and δ18Ow reconstructions. This bias towards certain parts of the seasonal cycle 233 

is much stronger at low sample sizes (large sampling intervals) and is illustrated in the Supplementary 234 

Information. 235 
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 236 

Figure 3: Overview of the four cases of virtual data based on natural SST and SSS measurements explored 237 
in this study. (A) Case 30: Tidal flats on the Wadden Sea, Texel, the Netherlands. (B) Case 31 Great Barrier 238 
Reef, Australia). (C) Case 32: Gulf of Aqaba between Egypt and Saudi Arabia. (D) Case 33: Atlantic Ocean 239 
east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red, δ18Ow in 240 
blue and growth rate (abbreviated as “GR”) in orange (as in Fig. 2). The graph below shows virtual δ18Oc 241 
(blue) and Δ47 (red) records created from these data series using a sampling interval of 0.45 mm and 242 
including analytical noise (see 3.3). Note that the scale of vertical axes varies between plots.  243 

 244 

2.3.3 Virtual cases 245 
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Virtual SST and δ18Ow time series were artificially constructed to test the effect of various SST and δ18Ow 246 

scenarios on the effectivity of the reconstruction methods. The default test case (case 1) contained an ideal, 247 

12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal 248 

amplitude of 10°C, a constant δ18Ow value of 0‰ and a constant growth rate of 10 mm/yr. Other cases 249 

contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1): 250 

• Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18) 251 

• Seasonal and/or multi-annual changes in δ18Ow (cases 7-11, 13-18) 252 

• Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17) 253 

• Variations in the seasonal SST amplitude (cases 19-21) 254 

• Change in the total length of the time series (cases 22-24). 255 

• Variation in uncertainty on the age of each virtual datapoint (cases 25-29) 256 

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3) 257 

shows that the virtual cases are not realistic approximations of natural variability in SST and δ18Ow. Natural 258 

SST and δ18Ow variability are not limited to the seasonal or multi-annual scale but contain a fair amount of 259 

higher order (daily to weekly scale) variability. To simulate this natural variability, we extracted the seasonal 260 

component of SST and δ18Ow variability from our highest resolution record of measured natural SST and 261 

SSS data (case 30: data from Texel, the Netherlands, see 2.3.2 and Fig. 3). The standard deviation of 262 

residual variability of this data after subtraction of the seasonal cycle was used to add random high-263 

frequency noise to the SST and δ18Ow variability in virtual cases. Note that while sub-annual environmental 264 

variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002), this representation is an 265 

oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not normally 266 

distributed (Kolmogorov-Smirnov test: D = 0.010; p = 7.2*10-14 and D = 0.039; p < 2.2*10-16 for SST and 267 

SSS residuals respectively; see S2-4). SST and δ18Ow data from cases 1-29 was converted to the sampling 268 

domain and subsampled at a range of sampling resolutions following the same procedure applied to cases 269 

30-33 (see 2.3.2). 270 

  271 
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2.4 Conversion to δ18Oc and Δ47 data 272 

After subsampling, SST and δ18Ow series (cases 1-33) were converted to δ18Oc and Δ47 using a carbonate 273 

model based on empirical relationships between Δ47 and δ18Oc with and SST and δ18Ow (equation 3 and 4; 274 

Kim and O’Neil, 1997; Kele et al., 2015; Bernasconi et al., 2018) and the conversion of δ18O values from 275 

VSMOW to VPDB scale (equation 5; Brand et al., 2014).  276 

𝛥47 =
0.0449∗106

(𝑆𝑆𝑇+273.15)2
+ 0.167 (3) 277 

1000 ∗ ln

(
𝑂18

𝑂16⁄ )
𝐶𝑎𝐶𝑂3

(
𝑂18

𝑂16⁄ )
𝐻2𝑂

= 18.03 ∗ (
103

(𝑆𝑆𝑇+273.15)
) − 32.42 (4) 278 

𝛿18𝑂𝑉𝑃𝐷𝐵 = 0.97002 ∗ 𝛿18𝑂𝑉𝑆𝑀𝑂𝑊 − 29.98 (5) 279 

For the real oyster data (Ullmann et al., 2010; see 2.3.1), only the Δ47 data needed to be created because 280 

δ18Oc was directly measured. As a result, each case study yielded records of Δ47 and δ18Oc in the sampling 281 

domain and corresponding “true” SST and δ18Ow records in the time domain, allowing assessment of the 282 

reliability of the reconstruction approaches in different scenarios. (Figure 4). The result of applying these 283 

steps is illustrated on case 31 (Great Barrier reef data, Fig. 5). All calculations for creating Δ47 and δ18Oc 284 

series in sampling domain were carried out using the open-source computational software R (R core team, 285 

2013), and scripts for these calculations are given in S7 and compiled in the documented R package 286 

“seasonalclumped” (de Winter, 2021a). All Δ47 and δ18Oc datasets are provided in S6. 287 

  288 
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 289 

Figure 4: Flow diagram showing the steps taken to create virtual data (Δ47 and δ18Oc; cases 1-33) and 290 
compare results of SST and δ18Ow reconstructions with the actual SST and δ18Ow data the record was 291 
based on (counterclockwise direction). Steps 1-3 outline the procedure for creating virtual Δ47 and δ18Oc 292 
datasets (see sections 2.3 and 2.4), step 4 shows the application of the different reconstruction methods 293 
on this virtual data (see Fig. 2 for details) and step 5 illustrates how the reconstructions are compared with 294 
the original (“true”) SST and δ18Ow data to calculate accuracy and precision of the reconstruction 295 
approaches. Note that step 1 is different for cases 1-29 (based on fully artificial SST and δ18Ow records; 296 
2.3.3) than for cases 30-33 (SST and δ18Ow records based on real SST and SSS data; see 2.3.2). 297 
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 298 

Figure 5: An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) to illustrate 299 
the data processing steps. Virtual data plots include normally distributed measurement uncertainty on Δ47 300 
and δ18Oc 301 

  302 
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3. Results 303 

3.1 Real example 304 

Measured (δ18Oc) and simulated (Δ47) data from the Pacific oyster from the Danish List Basin yielded 305 

estimates of SST and δ18Ow seasonality using all reconstruction approaches (Fig. 6). While a model of shell 306 

δ18Oc based on SST and SSS data closely approximates the measured δ18Oc record (Fig. 6C), basing SST 307 

reconstructions solely on δ18Oc data without any a priori knowledge of δ18Ow variability (assuming constant 308 

δ18Ow equal to the global marine value) leads to high inaccuracy in SST seasonality and mean annual SST 309 

(Fig. 6D). The in-phase relationship between SST and SSS (Fig. 6B) dampens the seasonal δ18Oc cycle, 310 

causing underestimation of temperature seasonality, while a negative mean annual δ18Ow value in the List 311 

Basin biases SST reconstructions towards higher temperatures. In terms of SST reconstructions, the 312 

smoothing, binning and optimization approaches based on Δ47 and δ18Oc data yield more accurate 313 

reconstructions, albeit with a reduced seasonality and a bias towards the summer season. The latter is a 314 

result of severely reduced growth rates in the winter season, which was therefore undersampled (see Fig. 315 

6A and 6C). Approaches including Δ47 data also yield far more accurate δ18Ow estimates than the δ18O 316 

approach. However, the accuracy of δ18Ow seasonality and mean annual δ18Ow estimates is low in these 317 

approaches too, largely because of the limited sampling resolution, especially in winter. The optimization 318 

approach suffers from the strong in-phase relationship between SST and SSS, which obscures the 319 

difference between the δ18Ow effect and the temperature effect on shell carbonate. Yet, disentangling SST 320 

from δ18Ow seasonality is central to the success of the approach (see 3.4). Fig. 6D does not show the 321 

reproducibility error on SST and δ18Ow estimates, which is much larger for the smoothing approach than 322 

for the binning an optimization approaches due to the limited data in the winter seasons (see S5). These 323 

results show that several properties of carbonate archives, such as growth rate variability, phase 324 

relationships between SST and δ18Ow seasonality and sampling resolution, can impact the reliability of 325 

paleoseasonality reconstructions. The virtual and real data cases in this study were tailored to test the 326 

effects of these archive properties more thoroughly. 327 
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 328 

Figure 6: (A) Plot of δ18Oc and (virtual) Δ47 data from a modern Pacific oyster (Crassostrea gigas; see 329 
Ullmann et al., 2010). (B) shows SST and δ18Ow data from the List Basin (Denmark) in which the oyster 330 
grew. (C) shows the fit between δ18Oc data and modelled δ18Oc calculated from SST and δ18Ow on which 331 
the shell age model was based. (D) Shows a summary of the results of different approaches for 332 
reconstructing SST and δ18Ow from the δ18Oc and Δ47 data. The vertical colored bars show the reconstructed 333 
seasonal variability using all methods with ticks indicating warmest month, coldest month, and annual 334 
mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision errors on 335 
monthly reconstructions are not shown but are given in S4. 336 

 337 

3.2 Case-specific results 338 

A case-by-case breakdown of the precision (Fig. 7) and accuracy (Fig. 8) of reconstructions using the four 339 

approaches shows that reliability of reconstructions varies significantly between approaches and is highly 340 

case-specific. In general, precision is highest in δ18O reconstructions, followed by optimization and 341 

binning with smoothing generally yielding the worst precision. Average precision standard deviations of 342 

the underperforming methods (binning and smoothing) are up to 2-3 times larger than those of δ18O (e.g. 343 

respectively 3.9°C and 3.5°C vs. 1.3°C for δ18O MAT reconstructions; see also Supplementary 344 

Information). It is worth noting that precision on δ18O-based estimates is mainly driven by measurement 345 
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precision (which is better for δ18Oc than for ∆47 measurements, see section 4.1.1). ∆47-based reconstructions 346 

lose precision due to the higher measurement error on ∆47 measurements and the method used for 347 

combining measurements for seasonality reconstructions. On a case-by-case basis, the hierarchy of 348 

approaches can vary, especially if strong variability in growth rate is introduced, such as in case 14, where 349 

the size of hiatuses in the record increases progressively, or in case 18, in which half of the year is missing 350 

due to growth hiatuses (see Table 1, S1 and S4). Of the Δ47-based methods (smoothing, binning and 351 

optimization), optimization is rarely outcompeted in terms of precision in both SST and δ18Ow 352 

reconstructions. 353 

The comparison based on precision alone is misleading, as the most precise approach (δ18O) runs the risk 354 

of being highly inaccurate (offsets exceeding 4°C on some MAT reconstructions; see Fig. 7C), especially 355 

in cases based on natural SST and SSS (case 30-33). The smoothing approach also often yields highly 356 

inaccurate results, especially in cases with substantial variability in δ18Ow (e.g. case 9-11). Accuracy of 357 

optimization and binning outcompete the other methods in most circumstances. Binning outperforms 358 

optimization in reconstructions of δ18Ow seasonality, making it overall the most accurate approach. 359 

Interestingly, optimization is less accurate specifically in cases with sharp changes in growth rate in 360 

summer (e.g. cases 11, 14, 16 and 17), while binning performs better in these cases. Reconstructions of 361 

mean annual SST and δ18Ow in case 18 are especially inaccurate regardless of which method is applied. 362 

This extreme case with growth only during one half of the year combined with seasonal fluctuations in both 363 

SST and δ18Ow presents a worst-case scenario for seasonality reconstructions leading to strong biases in 364 

mean annual temperature reconstructions. In situations like case 18, the optimization approach is most 365 

accurate in MAT and SST seasonality reconstructions, but δ18Ow is more accurately reconstructed using 366 

the binning approach. Finally, it is worth noting that in natural situations (Fig. 3), variability in SST almost 367 

invariably has a larger influence on δ18Oc and ∆47 records than δ18Ow, such that fluctuations in δ18Oc records 368 

closely follow the SST seasonality even in cases with relatively large δ18Ow variability (e.g. case 30). 369 

Chronologies based on these δ18Oc fluctuations are therefore generally accurate. 370 
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 371 

Figure 7: Overview of precision (propagated standard deviation of variability within reconstructions, see 372 
2.2) of reconstructions of mean annual temperature (A), seasonal temperature range (B), mean annual 373 
δ18Ow (C) and seasonal range in δ18Ow (D), with higher values (darker colors) indicating lower precision 374 
(more variability between reconstructions) based on average sampling resolution (sampling interval of 0.45 375 
mm). The different cases on the horizontal axis are color coded by their difference from the control case 376 
(case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were not 377 
successful. All data on precision (standard deviation values) is provided in S4. 378 
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 379 

Figure 8: Overview of accuracy (absolute offset from “true” values) of reconstructions of mean annual 380 
temperature (A), seasonal temperature range (B), mean annual δ18Ow (C) and seasonal range in δ18Ow (D), 381 
with higher values (darker colors) indicating lower accuracy (higher offsets) based on average sampling 382 
resolution (sampling interval of 0.45 mm). The different cases on the horizontal axis are color coded by 383 
their difference from the control case (case 1; see legend on the right-hand side). Grey boxes indicate 384 
cases for which reconstructions were not successful. All data on accuracy (difference between 385 
reconstructed and “true” values) is provided in S4.386 
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 387 

 388 

Figure 9: Effect of sampling resolution (in samples per year, see S5) on the precision (one standard deviation) of results of reconstructions of mean 389 
annual δ18Ow (A), seasonal range in δ18Ow (B), mean annual SST (C) and seasonal range in SST (D). Effect on the accuracy (absolute offset from 390 
actual value) of results of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), mean annual SST (G) and seasonal range in 391 
SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.392 
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3.3 Effect of sampling resolution 393 

As expected, increasing the temporal sampling resolution (i.e. number of samples per year) almost 394 

invariably increases the precision and accuracy (Fig. 9) of reconstructions using all methods. An exception 395 

to this rule is the precision of δ18O reconstructions, which decreases with increasing sampling resolution. 396 

Precision errors of all Δ47-based approaches eventually converge with the initially much lower precision 397 

error of δ18O reconstructions when sampling resolution increases. However, the sampling resolution 398 

required for Δ47-based reconstructions to rival or outcompete the δ18O reconstructions differs, with 399 

optimization requiring lower sampling resolutions than the other methods (e.g. 20-40 samples/year 400 

compared to 40-80 samples/year for smoothing and binning; Fig. 9A-D). Accuracy also improves with 401 

sampling resolution (Fig. 9E-H). When grouping all cases together, it becomes clear that δ18O 402 

reconstructions can only approach the accuracy of Δ47-based approaches for reconstructions of MAT. 403 

Seasonality in both SST and δ18Ow is most accurately reconstructed using binning, and the smoothing 404 

approach once again performs worst. 405 

 406 

Figure 10: Effect of SST seasonality range (difference between warmest and coldest month) in the record 407 
on the relative precision of SST seasonality reconstructions (“RSD”, defined as one standard deviation 408 
divided by the mean value). Panel A shows precision results if random variability (“weather patterns”) in 409 
both SST and δ18Ow as well as measurement uncertainty is added to the records (see 2.3.3 and S1). Panel 410 
B shows precision of records with random variability in SST and measurement uncertainty only. Panel C 411 
shows precision if only measurement uncertainty is considered. Color coding follows the scheme in Fig. 1 412 
and Fig. 4. Shaded dots represent results at various sampling resolutions, while bold lines are averages 413 
for all reconstruction approaches. Black circles highlight the places where curves cross the threshold of two 414 
standard deviations, which indicates the minimum SST seasonality that can be resolved within 2 standard 415 
deviations (~95% confidence level) using the reconstruction approach. 416 

 417 
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3.4 Resolving SST seasonality 418 

Comparison of cases 19, 20 and 21 (SST seasonality of 9.7°C, 5.7°C and 2.1°C respectively) with control 419 

case 1 (SST seasonality of 19.3°C) shows how changes in the seasonal SST range affect the precision of 420 

measurements (Fig. 10; see also Table 1 and S1). The data reconfirms that δ18O reconstructions are most 421 

precise; a deceptive statistic given the risk of highly inaccurate results this approach yields (see Fig. 8). 422 

Taking into consideration only analytical uncertainty, all approaches except for smoothing can confidently 423 

resolve at least the highest SST seasonality within a significance level of two standard deviations (~95%) 424 

using a moderate sampling resolution (mean of all resolutions shown in Fig. 10). Increasing sampling 425 

resolution improves the precision of Δ47-based reconstructions (see Fig. 9D), so high sampling resolutions 426 

(0.1 or 0.2 mm) allow smaller seasonal differences to be resolved. When random sub-annual variability is 427 

added to the SST and δ18Ow records (see 2.3.3), the minimum seasonal SST extent that can be resolved 428 

decreases for all approaches (Fig. 10B and 10C). Nevertheless, δ18O and optimization reconstructions 429 

remain able to resolve a relatively small SST seasonality of 2-4°C. 430 

  431 
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 432 

Figure 11: Effect of record length (in years) on the relative precision (one standard deviation as fraction of 433 
the mean value) of results of reconstructions of mean annual SST (A) and SST seasonality (B). Shaded 434 
dots represent results for the six different sampling resolutions. Solid lines connect averages for cases 1, 435 
22, 23 and 24 for each reconstruction approach. 436 

 437 

3.5 Effect of record length 438 

The effect of variation in the length of the record was investigated by comparing cases 22, 23 and 24 (record 439 

lengths of 6 years, 3 years and 1 year, respectively) with the control case (record length of 12 years; see 440 

Fig. 11 and Table 1). Precision of MAT and SST seasonality reconstructions slightly increase in larger 441 

datasets (longer records) for optimization and binning, but not for smoothing and δ18O reconstructions. 442 

Differences between reconstruction approaches remain relatively constant regardless of the length of the 443 

record, with general precision hierarchy remaining intact (δ18O > optimization > binning > smoothing). 444 

However, in very short records (1-2 years) smoothing gains an advantage over other Δ47-based methods 445 

due to its lack of sensitivity to changes in the record length and binning reconstructions are not precise 446 

enough to resolve MAT and SST seasonality within two standard deviations (~95% confidence level). 447 

Variation in precision is largely driven by very high precision errors of reconstructions in records with low 448 

sampling resolutions (sampling intervals of 1.55 mm or 3.25 mm; see also Fig. 9A-D). As a result, most of 449 

the reduction in precision in shorter records can be mitigated by denser sampling. 450 
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 451 

Figure 12: Effect of uncertainty in age model on the reproducibility (standard deviation on estimate) of 452 
results of reconstructions of mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean annual SST 453 
(C) and seasonal range in SST (D). Effect of uncertainty in age model on the accuracy (offset from true 454 
value) of results of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), mean annual 455 
SST (G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4. 456 

 457 

3.6 Effect of age model uncertainty 458 

Uncertainty on the age model has a significant effect on both the precision and the accuracy (Fig. 12) of 459 
reconstructions using all approaches. The δ18O reconstructions are most strongly affected by 460 
uncertainties in the age model and suffer from a large decrease in precision with increasing age model 461 
uncertainty (Fig. 12C-D). The high reproducibility of the δ18O approach in comparison with the Δ47 462 
approaches quickly disappears when age model uncertainty increases beyond 20-30 days. Accuracy of 463 
δ18Oc-based SST seasonality reconstructions initially improves with age model uncertainty (Fig. 12H). 464 
However, this observation is likely caused by the fact that age model uncertainty was compared based on 465 
conditions in case 9, which features a phase offset between SST and δ18Ow seasonality causing the δ18O 466 
method to be highly inaccurate even without age model uncertainty. The precision of smoothing and 467 
optimization approaches also decreases with increasing age model uncertainty (Fig 12A-D), and the 468 
optimization approach loses its precision advantage over the binning and smoothing approaches when 469 
age model uncertainty increases beyond 30 days. The monthly binning approach is most resilient 470 
against increasing age model uncertainty. Seasonality reconstructions through both the binning and 471 
optimization approach quickly lose accuracy when age model uncertainty increases but the accuracy of 472 
the smoothing approach remains the worst of all approaches in regardless of age model uncertainty 473 
(Fig. 12E-H).  474 
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 475 

Figure 13: Overview of averages and ranges of accuracy (absolute offset from real value) and precision 476 
(one standard deviation from the mean) on mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean 477 
annual SST (C) and seasonal range in SST (D) within all cases using the four different reconstruction 478 
approaches. Color coding follows the scheme in Fig. 1 and Fig. 4. Box-whisker plots for precision and 479 
accuracy cross at their median values and outliers (colored symbols) are identified based on 2x the 480 
interquartile difference. 481 

  482 
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4. Discussion 483 

4.1 Performance of reconstruction approaches 484 

4.1.1 δ18Oc vs Δ47-based reconstructions 485 

Figure 13 summarizes the general reliability of the four approaches. δ18O reconstructions are generally 486 

less accurate than Δ47-based reconstructions (especially binning and optimization; see also S9). This is 487 

a consequence of the assumption that δ18Ow remains constant year-round, and that one knows its true 488 

value. Both these assumptions are problematic in absence of independent evidence of the value of δ18Ow, 489 

especially in deep time settings (see e.g. Veizer and Prokoph, 2015; Henkes et al., 2018). The risk of this 490 

assumption is made clear when comparing cases in which δ18Ow is indeed constant year-round at the 491 

assumed value (0‰; e.g. cases 1-6 and 19-24) with cases in which shifts in δ18Ow occur, especially when 492 

these shifts are out of phase with respect to the SST seasonality (e.g. cases 9-11, 18 and 25-33; Fig. 8C-493 

D). Cases mimicking or based on natural SST and SSS variability (cases 14-18 and 30-33) as well as the 494 

modern oyster data (Fig. 6) yield stronger inaccuracies in MAT and seasonality reconstructions, showing 495 

that even in many modern natural circumstances the assumption of constant δ18Ow is problematic. 496 

It is important to consider that the value of mean annual δ18Ow remained very close to the assumed value 497 

of 0‰ (within 0.15‰) in all cases except for natural data cases 30 (-1.55‰), 32 (1.01‰; see S5) and the 498 

real oyster data (-1.42‰; Fig. 5). The SST values of these cases reconstructed using δ18Oc data show 499 

large offsets from their actual values (+6.7°C, -4.7°C and +10.3°C for case 30, case 32 and the real oyster 500 

data respectively; see Fig. 6 and 8 and S5). These offsets are equivalent to the temperature offset one 501 

might expect from inaccurately estimating δ18Ow (~-4.6 °C/‰; Kim and O’Neil, 1997) and are only rivaled 502 

by the offset in MAT reconstructions of case 18 (+5.0°C), which has growth hiatuses obscuring the coldest 503 

half of the seasonal cycle. The fact that such differences in δ18Ow exist even in modern environments should 504 

not come as a surprise, given the available data on variability of δ18Ow (at least -3‰ to +2‰; e.g. LeGrande 505 

and Schmidt, 2006) and SSS (30 to 40; ESA, 2020) in modern ocean basins. However, it should warrant 506 

caution in using δ18Oc data for SST reconstructions even in modern settings. Implications for deep time 507 

reconstructions are even greater, given the uncertainty on and variability in global average (let alone local) 508 

δ18Ow values (Jaffrés et al., 2007; Veizer and Prokoph, 2015). The complications of using δ18Oc as a proxy 509 
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for marine temperatures in deep time are discussed in detail in O’Brien et al. (2017), and Tagliavento et al. 510 

(2019). 511 

The analytical uncertainty of individual δ18Oc aliquots (typically 1 S.D. of 0.05‰; e.g. de Winter et al., 2018) 512 

represents only ~1.1% of the variability in δ18Oc over the seasonal cycle (~4.3‰ for the default 20°C 513 

seasonality in case 1, following Kim and O’Neil, 1997). This is much smaller than the analytical uncertainty 514 

of Δ47 (typically 1 S.D. of 0.02-0.04‰; e.g. Fernandez et al., 2018; de Winter et al., 2020b), which equates 515 

to 25-50% of the seasonal variability in Δ47 (~0.08‰ for 20°C seasonality, following Bernasconi et al., 2018; 516 

see S7). This roughly 20-fold difference in relative precision causes δ18Oc based SST reconstructions to be 517 

much more precise (see Figs 7, 9-12) than those based on Δ47, and forces the necessity for grouping Δ47 518 

data in reconstructions. However, as discussed above, the high precision of δ18O reconstructions is a 519 

misleading statistic if they are highly inaccurate. 520 

Our results show that paleoseasonality reconstructions based on δ18Oc can only be relied upon if there is 521 

strong independent evidence of the value of δ18Ow and if significant sub-annual variability in δ18Ow (>0.3‰, 522 

equivalent to a 2-3°C SST variability; see Fig. 9-10; Kim and O’Neil, 1997) can be excluded with confidence. 523 

Examples of such cases include fully marine environments unaffected by influxes of (isotopically light) 524 

freshwater or evaporation (increasing δ18Ow; Rohling, 2013). Carbonate records from environments with 525 

more stable δ18Ow conditions include, for example, the A. islandica bivalves from considerable depth (30-526 

50m) in the open marine Northern Atlantic (e.g. Schöne et al., 2005, on which case 33 is based). However, 527 

even here variability in δ18Osw due to, for example, shifting influence of different bottom water masses 528 

cannot be fully excluded. Previous reconstruction studies show that δ18Ow in smaller basins are heavily 529 

influenced by the processes affecting δ18Ow on smaller scales, such as local evaporation and freshwater 530 

influx from nearby rivers (e.g. Surge et al., 2001; Petersen et al., 2016). Consequently, accurate quantitative 531 

reconstructions of seasonal range in shallow marine environments with extreme seasonality may not be 532 

feasible using the δ18O approach, because these environments are invariably characterized by significant 533 

fluctuations in δ18Ow and growth rate. 534 

While variability in δ18Ow compromises accurate δ18O-based seasonality reconstructions, the compilation 535 

in Fig. 3 shows that its influence on the δ18O records is too small to affect the shape of the record to such 536 
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a degree that seasonality is fully obscured. While natural situations with δ18Ow fluctuations large enough to 537 

totally counterbalance the effect of temperature seasonality on δ18O records are imaginable, these cases 538 

are likely rare. This means that chronologies based on δ18O seasonality, which are a useful tool to anchor 539 

seasonal variability in absence of independent growth markers (e.g. Judd et al., 2018; de Winter, 2021b), 540 

are reliable in most natural cases. 541 

4.1.2 Seasonality reconstructions using moving averages (smoothing) 542 

Of the three methods for combining Δ47 data, the smoothing approach clearly performs worst in all four 543 

reconstructed parameters (MAT, SST seasonality, mean annual δ18Ow and δ18Ow seasonality), both in 544 

terms of accuracy and precision (Fig. 13). While applying a moving average may be a good strategy for 545 

lowering the uncertainty of Δ47-based temperature reconstructions in a long time series (e.g. Rodríguez-546 

Sanz et al., 2017), the method underperforms in cases where baseline and amplitude of a periodic 547 

component (e.g. MAT and SST seasonality) are extracted from a record. This is likely due to the smoothing 548 

effect of the moving average, which reduces the seasonal cycle and causes highly inaccurate seasonality 549 

reconstructions (offsets mounting to >6°C; Fig. 13). This bias is especially detrimental in cases where the 550 

seasonal cycle is obscured by seasonal growth halts (e.g. case 18), multi-annual trends in growth (e.g. 551 

case 4, 14 and 17) and multi-annual trends in SST (e.g. case 15 and 17; see Fig. 7 and 8). The poor 552 

performance of the smoothing approach can be slightly mitigated by increasing sampling resolution (Fig 553 

9), but even at high sampling resolutions (every 0.1 or 0.2 mm) the method still fails to reliably resolve 554 

seasonal SST ranges below 5°C even in idealized cases (case 19-21; Fig. 10). Increasing the number of 555 

samples by analyzing longer records does not improve the result, because smoothing of the seasonal cycle 556 

by a moving average window introduces the same dampening bias if the temporal sampling resolution 557 

(number of samples per year) remains equal (Fig. 11). 558 

More critically, employing the smoothing method may give the illusion that seasonality is more reduced, 559 

and severely bias reconstructions. This bias highlights the importance of using the official meteorological 560 

definition of seasonality as the difference between the averages of warmest and coldest month in 561 

paleoseasonality work (O’Donnell et al., 2012). This definition is much more robust than the “annual range” 562 

often cited based on maxima and minima in δ18Oc records. This “annual range” strongly depends on 563 
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sampling resolution, which is typically <12 samples/yr (Goodwin et al., 2003), equivalent to the third lowest 564 

sampling interval (0.75 mm) simulated in this study. Therefore, we strongly recommend future studies to 565 

adhere to the monthly definition of seasonality to foster comparison between studies. While inter-annual 566 

variability is lost by combining data from multiple years into monthly averages, this approach increases 567 

precision, accuracy and comparability of paleoseasonality results. Inter-annual variability can still be 568 

discussed from plots of raw data plotted in time or sampling domain. 569 

4.1.3 Monthly binning, sample size optimization and age model uncertainty 570 

Overall, the most reliable paleoseasonality reconstructions can be obtained from either binning or 571 

optimization (Fig. 13). In general, optimization is slightly more precise, while binning yields more 572 

accurate estimates of seasonal range in SST and δ18Ow (Fig. 13B and D). The more flexible combination 573 

of aliquots in the optimization routine yields improved precision (especially on mean annual averages) in 574 

cases where parts of the record are undersampled or affected by hiatuses and simultaneous fluctuations 575 

in both SST and δ18Ow (e.g. case 3-6, 14-18, 30-33). The downside of this flexibility is that in case of larger 576 

sample sizes, the seasonal variability may be dampened, like in the smoothing approach (see 4.1.2). This 577 

apparent dampening effect may be reduced by allowing the sample size of summer and winter samples to 578 

vary independently in the optimization routine, at the cost of higher computational intensity due to the 579 

larger number of sample size combinations (see 2.1 and 4.2.2). The rigid grouping of data in monthly bins 580 

in binning prevents this dampening and therefore yields slightly more accurate estimates of seasonal 581 

ranges in SST and δ18Ow. A caveat of binning is that it requires a very reliable age model of the record, at 582 

least on a monthly scale. If the age model has a large uncertainty, there is a risk that samples are grouped 583 

in the wrong month, which compromises the accuracy of binning reconstructions, especially for 584 

reconstructions of seasonal range (Fig 12H). This problem is exacerbated by potential phase shifts between 585 

seasonality in paleoclimate variables (SST and δ18Ow) and calendar dates, which may occur in the presence 586 

of a reliable age model. 587 

Previous authors attempted to circumvent the dating problem by analyzing high-resolution δ18Oc transects 588 

and subsequently sampling the seasonal extremes for clumped isotope analyses (Keating-Bitonti et al., 589 

2011; Briard et al., 2020). While this approach does not require sub-annual age models, it has several 590 
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disadvantages compared with the binning and optimization approaches: Firstly, it requires separate 591 

sampling for δ18Oc and Δ47, which may not be possible in high-resolution carbonate archives due to sample 592 

size limitations. Analyzing small aliquots for combined δ18Oc and Δ47 analyses consumes less material. 593 

Secondly, individual summer and winter temperature reconstructions require large (> 1.5 mg; e.g. 594 

Fernandez et al., 2017) Δ47 samples from seasonal extremes, which causes more time-averaging than the 595 

approaches combining small aliquots. Finally, the position of seasonal extremes estimated from the δ18Oc 596 

record may not reflect the true seasonal extent if seasonal SST and δ18Ow cycles are not in phase (as in 597 

case 9), causing the seasonal Δ47-based SST reconstructions to underestimate the temperature 598 

seasonality. In such cases, δ18Oc and Δ47 analyses on small aliquots allow the seasonality in SST and δ18Ow 599 

to be disentangled, yielding more accurate seasonality reconstructions.  600 

Techniques for establishing independent age models for climate archives range from counting of growth 601 

layers or increments (Schöne et al., 2008; Huyghe et al., 2019), modelling and extracting of rhythmic 602 

variability in climate proxies through statistical approaches (e.g. De Ridder et al., 2007; Goodwin et al., 603 

2009; Judd et al., 2018; de Winter, 2021b) and interpolation of uncertainty on absolute dates (e.g. Scholz 604 

and Hoffman, 2011; Meyers, 2019; Sinnesael et al., 2019). While propagating uncertainty in the data on 605 

which age models are based onto the age model is relatively straightforward, errors on underlying a priori 606 

assumptions such as linear growth rate between dated intervals, (quasi-)sinusoidal forcing of climate cycles 607 

and the uncertainty on human-generated data such as layer counting are very difficult to quantify (e.g. 608 

Comboul et al., 2014) and may not be normally distributed. Results of cases 25-29 show that uncertainties 609 

in the age domain can significantly compromise reconstructions (Fig. 12). Within the scope of this study, 610 

only the effect of symmetrical, normally distributed uncertainties on an artificial case with phase decoupled 611 

SST and δ18Ow seasonality (case 9) was tested. The effects of other types of uncertainties on the 612 

reconstructions remain unknown, highlighting an unknown uncertainty in paleoseasonality and other high-613 

resolution paleoclimate studies that may introduce bias or lead to over-optimistic uncertainties on 614 

reconstructions. Future research could quantify this unknown uncertainty by propagating estimates of 615 

various types of uncertainty on depth values of samples and on the conversion from sampling to time 616 

domain in age models. 617 
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4.2 Conditions influencing success of reconstructions 618 

The reliability (accuracy and precision) of SST and δ18Ow reconstructions depend on case-specific 619 

conditions. The range of case studies tested in this study allowed us to evaluate the effect of variability in 620 

SST, growth rate, δ18Ow, sampling resolution and record length relative to the control case (case 1; see 621 

S1). A summary of the effects of these changes is given in Table 2. 622 

  623 



35 
 

Variable cases Metric 
Effect on reconstructions 

δ18O smoothing binning optimization 

SST 

12 
15 
17 
19-21 
30-33 

Precision 0 +++ + 0 

Accuracy + + 0 + 

Growth rate 
2-6 
14-18 
30-33 

Precision + ++ ++ + 

Accuracy + ++ 0 + 

δ18Ow 
7-11 
13-18 
30-33 

Precision + ++ 0 0 

Accuracy +++ +++ + ++ 

Sampling resolution 1-33 
Precision 0 +++ ++ ++ 

Accuracy + + +++ + 

Record length 22-24 
Precision 0 0 +++ ++ 

Accuracy + 0 ++ ++ 

Age model 
uncertainty? 

25-29 
Precision +++ ++ 0 ++ 

Accuracy + + ++ ++ 

Table 2: Qualitative summary of the effects of changes in variables relative from the ideal case on 624 
reconstructions using the four approaches. The “cases” column lists cases in which the changes in the 625 
respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” = 626 
negligible effect, “+“ = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong 627 
increase in uncertainty. Precision and accuracy of all tests is given in S9. 628 

 629 

4.2.1 SST variability 630 

Variability in water temperature most directly affects the proxies under study. By default (case 1), SST 631 

varies sinusoidally around a MAT of 20°C with an amplitude of 10°C (see 2.3.3, Fig. 2 and S1). In cases in 632 

which multi-annual variability in SST is simulated (e.g. case 15 and 17), the accuracy of SST reconstructions 633 

using δ18O and optimization are reduced, while the binning approach is less strongly affected. Examples 634 

of such multi-annual cyclicity are El-Niño Southern Oscillation (ENSO; Philander, 1983) or North Atlantic 635 

Oscillation (NOA; Hurrell, 1995). The effect is especially large in case 17, which simulates a tropical 636 

environment with reduced SST seasonality and a strong multi-annual cyclicity. This type of environment is 637 

analogous to the environment of tropical shallow water corals, which are often used as archives for ENSO 638 

variability (e.g. Charles et al., 1997; Fairbanks et al., 1997) and is similar to tropical cases from the 639 

Australian Great Barrier Reef (case 31) and Red Sea (case 32; see Fig. 3). We therefore recommend using 640 

the binning approach on carbonate records where multi-annual cyclicity is prevalent and if a reliable age 641 

model can be established for these records (as in e.g. Sato, 1999; Scourse et al., 2006; Miyaji et al., 2010). 642 
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4.2.2 Growth rate variability and hiatuses 643 

Figures 7 and 8 show that variations in the growth rate of records, including the occurrence of hiatuses, 644 

have a strong effect on reconstructions, especially using the smoothing approach. In general, hiatuses 645 

and slower growth reduce precision of monthly SST and δ18Ow reconstructions by reducing mean temporal 646 

sampling resolution (samples/yr; see Fig. 9), and because parts of the record are undersampled. The effect 647 

on accuracy depends strongly on the timing of changes in growth rate or the occurrence of hiatuses. Cases 648 

2-6 simulate specific growth rate effects and can be used to test these differences. The smoothing method 649 

is especially sensitive to changes in growth rate that take place in specific seasons, such as hiatuses in 650 

winter (case 2) or summer (case 3) and growth peaks in summer (case 5) or spring (case 6). The other 651 

reconstruction approaches are less affected by this bias, because they generally do not mix samples from 652 

different seasons. The δ18O method is especially well suited to deal with changes in growth rate because 653 

it does not require combining different aliquots for accurate SST reconstructions. The binning and 654 

optimization approaches are slightly less reliable in cases where growth rate decreases linearly or 655 

seasonally along the entire record (cases 4-6; Fig. 2). Because these two methods consider all samples in 656 

the records at once, they are more sensitive to changes in temporal sampling resolution along the record. 657 

It is worth noting that optimization is especially sensitive to sharp changes in growth rate in summer (e.g. 658 

cases 11, 14, 16 and 17) because those conditions force the optimization routine to use larger sample 659 

sizes or include samples outside the warmest month for summer temperature estimates. A potential solution 660 

to this problem could be to allow sample sizes of summer and winter groups to vary independently in the 661 

optimization routine (see 2.1). This would allow sample size in the undersampled season (in this case: 662 

summer) to become larger than that at the other end of the δ18Oc spectrum, reducing uncertainty on the 663 

more densely sampled season and therefore improving the entire seasonality reconstruction. 664 

A worst-case scenario is represented by case 18, where the cold half of the year is not recorded. Such 665 

cases result in strong biases in reconstructions of mean annual and seasonal ranges in SST and δ18Ow, 666 

regardless of which method is used. In such extreme cases the record simply contains insufficient 667 

information to reconstruct variability in growth rate, SST and δ18Ow, and it seems that no statistical method 668 

would enable this missing information to be recovered. The solution for these reconstructions would be to 669 
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establish reliable age models, independent of δ18O or ∆47 data, which show that a large part of the seasonal 670 

cycle is missing. All methods used in this study rely on a conversion of SST and δ18Ow reconstructions to 671 

the time domain to define monthly time bins. This conversion breaks down in fossil examples when the 672 

seasonal cycle cannot be extracted from the archive, which happens when half of the seasonal cycle or 673 

more is obscured by growth hiatuses, as exemplified in case 18. 674 

While hiatuses encompassing half of the seasonal cycle are uncommon, changes in growth rate are 675 

common in accretionary carbonate archives because conditions for (biotic or abiotic) carbonate 676 

mineralization often vary over time. This variability is either driven by biological constraints, such as 677 

senescence (e.g. Schöne, 2008; Hendriks et al., 2012), the reproductive cycle (Gaspar et al., 1999) or 678 

stress (Surge et al., 2001; Compton et al., 2007) or by variations in the environment that promote or inhibit 679 

carbonate production, such as seasonal variations in temperature (Crossland, 1984; Bahr et al., 2017) or 680 

precipitation (Dayem et al., 2010; Van Rampelbergh et al., 2014). In general, such conditions occur more 681 

frequently in mid- to high-latitude environments than in low-latitudes, and in more coastal environments 682 

rather than in open marine settings, because these environments contain stronger variations in the factors 683 

that influence growth rates (e.g. temperature, precipitation or freshwater influx; e.g. Surge et al., 2001; 684 

Ullmann et al., 2010). This difference was simulated in the cases representing natural variability (case 14-685 

18 and 30-33). Accuracy in the coastal high-latitude settings (cases 16, 18 and 29) are indeed more strongly 686 

affected by changes in growth rate. Because in such highly variable environments growth rate variability 687 

often co-occurs with variability in δ18Ow, using δ18Oc-based reconstructions is not advised, unless δ18Ow 688 

variability can be constrained or neglected (which is rare in these environments). 689 

Additional complications include that the lack of constraint on growth rate variability because of 690 

uncertainties in the record’s age model (see 4.1.3) and the effect of growth rate variability on the sampling 691 

resolution. The effect of growth rate on time-averaging within samples was not specifically tested in this 692 

study but introduces uncertainty in practice when archives with variable growth rate are sampled at a 693 

constant sampling resolution in the depth domain. In this case, parts of the archive with a lower growth rate 694 

yield more time-averaged samples, potentially dampening one extreme of the seasonal cycle (e.g. Goodwin 695 

et al., 2003). In highly dynamic environments it is challenging to isolate all variables that introduce bias, and 696 
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irregular variability in growth rate and δ18Ow will invariably introduce uncertainty in SST reconstructions, 697 

even when applying the best Δ47-based approaches (e.g. binning and optimization). In such examples, 698 

the results of natural variability cases (14-18 and 30-33) and of the real oyster data (Fig. 6) serve as 699 

benchmarks for the degree of uncertainty that may remain unexplained in these records. 700 

4.2.3 Variability in δ18Ow 701 

As discussed in 4.1.1, these variations in δ18Ow have a large effect on the accuracy of δ18Oc-based 702 

reconstructions, and their occurrence constitutes the main advantage of applying the Δ47 thermometer 703 

(Eiler, 2011). However, results of cases 7-11 in Fig. 8 and Table 2 show that δ18Ow variations can also bias 704 

Δ47-based reconstructions, especially those of seasonal ranges and using the smoothing approach. 705 

Smoothing reconstructions are biased by these δ18Ow shifts in much the same way as they are affected 706 

by shifts in growth rate (see 4.2.2). The optimization approach is sensitive to seasonal changes in δ18Ow 707 

in antiphase with SST seasonality and by increases in δ18Ow in summer (e.g. due to excess evaporation; 708 

e.g. case 11), especially when used for reconstructions of δ18Ow seasonality. This effect arises because 709 

the optimization approach orders data based on δ18Oc and Δ47 seasonality to isolate the δ18Ow-SST 710 

relationship. Both antiphase δ18Ow seasonality and summer evaporation dampen the seasonal δ18Oc cycle 711 

and therefore influences the reconstruction of the δ18Ow-SST relationship. A good example of this is seen 712 

in the real oyster data (Fig. 6), where δ18Ow and SST vary in phase and δ18Ow dampens the SST 713 

seasonality. The binning approach is more robust against δ18Ow variability that dampens the seasonal 714 

cycle and is therefore a better choice for absolute SST reconstructions in environments where summer 715 

evaporation or other δ18Ow variability in phase with SST seasonality is expected to occur, if the age model 716 

is reliable enough to allow monthly binning of raw data (see 4.1.3). Indeed, reconstructions from the 717 

lagoonal environment (case 16) and Red Sea case (case 32 which is characterized by strong summer 718 

evaporation; e.g. Titschack et al., 2010) show that binning is the most reliable choice in these 719 

environments. 720 

4.2.4 Variability in sampling resolution and record length 721 

Other factors influencing the effectivity of reconstructions are the sampling resolution and the length of the 722 

record. Many of the cases discussed in this study represent idealized cases with comparatively high 723 
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sampling resolutions over comparatively long (12 yr) paleoseasonality records, which yield large sample 724 

sizes. By comparison, the typical age of mollusks, which are often used as paleoseasonality archives, is 2-725 

5 years (Ivany, 2012). Records with the highest sampling resolutions (0.1 and 0.2 mm) contain up to 1200 726 

samples. Generating such records is not impossible, but it is highly unlikely to be applied in paleoclimate 727 

studies given the limitation of resources (e.g. instrument time) and the desire to analyze multiple records 728 

from different specimens, species, localities or ages to gain a better understanding of the variability in 729 

paleoseasonality (e.g. Goodwin et al., 2003; Schöne et al., 2006; Petersen et al., 2016). In some cases 730 

large datasets are meticulously collected from single carbonate records (e.g. Schöne et al., 2005; 731 

Vansteenberge et al., 2016; de Winter et al., 2020a; Shao et al., 2020). However, in such studies, the aim 732 

is often to investigate variability at a higher (e.g. daily; de Winter et al., 2020a) resolution or longer 733 

timescales (e.g. decadal to millennial; Schöne et al., 2005; Vansteenberge et al., 2016; Shao et al., 2020) 734 

in addition to the seasonal cycle, rather than to improve the reliability of reconstructing one type of variability 735 

(e.g. seasonality) alone. 736 

Fig. 9 shows that increasing temporal sampling resolution (samples/yr) improves both the accuracy and 737 

precision of all Δ47-based reconstructions. This occurs because Δ47 samples have a large analytical 738 

uncertainty (see 4.1.2) and grouping of data therefore improves reconstructions. The decrease in precision 739 

of δ18Oc-based reconstructions (Fig. 9C-D) is explained by the fact that the analytical uncertainty of δ18Oc 740 

measurements is much smaller than the variability introduced by natural sub-annual variability in SST and 741 

δ18Ow unrelated to the seasonal cycle (see S4). Therefore, higher sampling resolutions allow δ18Oc records 742 

to better capture this sub-seasonal variability, which introduces more noise on the seasonal cycle (reducing 743 

precision) but causes monthly mean SST and δ18Ow to be more accurately reconstructed. Towards higher 744 

sampling resolutions, the gap in precision between δ18Oc- and Δ47-based reconstructions closes, eventually 745 

(in an ideal case) diminishing the advantage of high analytical precision in δ18Oc measurements (Fig. 9C-746 

D). 747 

An optimum sample resolution can be defined for each method after which improving sampling resolution 748 

does not significantly improve the reliability of the reconstruction (as in de Winter et al., 2017). Figure 9 749 

shows that this optimum varies depending on which variable (MAT, SST seasonality, mean annual δ18Ow 750 
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or δ18Ow seasonality) is reconstructed. Therefore, Fig. 9 will allow future researchers to determine the 751 

sampling resolution that is tailored to their purpose. In general, the improvement after a sample size of 20-752 

30 samples per year is negligible for the binning and optimization methods if the total number of samples 753 

(depending on both sampling resolution and record length) is sufficient for monthly temperature 754 

reconstructions. Our data show that 200-250 paired δ18Oc and Δ47 measurements are in general sufficient 755 

for a standard deviation of 2-3°C on monthly SST reconstructions using the binning or optimization 756 

approach (Fig. 10; S5). 757 

Record length only has a minimal influence on the optimization method but for very short records (≤2 758 

years) binning becomes very imprecise, especially at low sampling resolutions (Fig. 11). The reason is 759 

that the sample size within monthly time bins becomes too small in these cases, while the more flexible 760 

sample size window of the optimization routine circumvents this problem. The choice between these two 761 

approaches should therefore be based on a tradeoff between the length of the record (in time) and the 762 

number of samples that can be retrieved from it. As a result, shorter-lived, fast-growing climate archives, 763 

such as large or fast-growing (e.g. juvenile) mollusk shells, are best sampled using a high temporal 764 

resolution (>30 samples/yr) sampling strategy with the optimization approach. Longer lived archives with 765 

a lower mineralization rate, such as annually laminated speleothems, corals and gerontic mollusks, are 766 

best sampled using long time series at monthly resolution using the binning approach. 767 

A simplified decision tree that could guide sampling strategies for future paleoseasonality studies is shown 768 

in Figure 14. Note that choices and tradeoffs for these reconstructions may differ depending on the archive 769 

and environment in which it formed (see discussion above). 770 
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 771 

Figure 15: Schematic guide to choosing the right approach for reconstructing annual mean or seasonality 772 
in SST and δ18Ow from accretionary carbonate archives. Recommendations are based on the results of 773 
testing all four approaches on the entire range of cases. Researchers can follow the six steps (questions 774 
Q1-6) to decide on the right approach for reconstructing the target variable. Guidelines are based on 775 
minimizing both accuracy and precision (see details in S9). Note that the smoothing approach is never the 776 
best choice. The choice between the two remaining Δ47-based approaches (binning and optimization) 777 
relies heavily on the situation and may be driven by a preference for more accurate or more precise results. 778 

 779 

4.3 Implications for clumped isotope sample size 780 

The optimization technique for grouping Δ47 aliquots for accurate SST and δ18Ow reconstructions allows 781 

us to assess the limitations of the clumped isotope thermometer for temperature reconstructions from high-782 

resolution carbonate archives. The optimal sample size given by the approach is different for different cases 783 

and depends on the temporal sampling resolution and the characteristics of the record (see S4). As 784 

expected, in cases more like the ideal case (case 1), optimal sample sizes are low (~14-24), while sample 785 

sizes increase in more complicated cases based on simulated natural environments (case 14-18) or cases 786 

based on actual SST and SSS data (cases 30-33). More confined SST seasonality (cases 19-21) also 787 

requires larger samples to reconstruct (up to 100 samples in some cases). This is not surprising, because 788 
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variability within samples will increase in records in which the seasonality is smaller or more obscured by 789 

other environmental variability. The optimal sample size between cases and sampling resolutions is not 790 

normally distributed but tails towards high sample sizes with some extreme outliers (Shapiro Wilk test p << 791 

0.05; S10). The median sample size of all our simulations is 17 aliquots. This number lies between the 792 

minimum number of 14 ~100 μg replicates of standards calculated by Fernandez et al. (2017) and the 793 

minimum of 20-40 ~100 μg aliquots required for optimal paleoseasonality reconstruction from fossil bivalves 794 

by de Winter et al. (2020b). This is to be expected since many of the cases explored in this study represent 795 

ideal cases compared with the natural situation. However, in these virtual cases a measure of random sub-796 

annual variability in SST and δ18Ow was added (see Fig. 4 and S2), simulating a more realistic environment 797 

and resulting in poorer precision than replicates of a carbonate standard (as in Fernandez et al., 2017). Our 798 

simulations show that the optimum number of samples to be combined in seasonality studies depends on 799 

both the analytical uncertainty of Δ47 measurements (as represented by the estimate in Fernandez et al., 800 

2017) and the variability between aliquots pooled within a sample that is attributed to actual variability within 801 

the record (as represented by our simulations and the estimate in de Winter et al. 2020b). The optimal 802 

sample size is therefore a good measure for the limitations of temperature variability that can be resolved 803 

in a record and can help researchers decide which strategy to apply for combining measurements to obtain 804 

the most reliable paleoseasonality estimates, or to decide whether extra sampling is required, even if the 805 

chosen approach is not to use the optimization routine itself. Note that the optimum sample size is kept 806 

equal for summer and winter samples in this study, and that the optimization approach can likely achieve 807 

better performance by considering unequal sample sizes in opposite seasons (see 4.1.3 and 4.2.2). While 808 

this added flexibility comes at a higher computational cost due to the increased number of possible sample 809 

size combinations to be considered, future studies should investigate whether this updated optimization 810 

approach could yield more reliable seasonality reconstructions. 811 

4.4 Implications for other sample size problems 812 

While the discussion above focuses on optimizing approaches for combining samples for clumped 813 

isotope analyses in paleoseasonality reconstructions, the problem of combining samples to reduce 814 

uncertainty and isolate variation in datasets is very common (e.g. Zhang et al., 2004; Merz and Thieken, 815 
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2005; Tsukakoshi, 2011). Therefore, the approaches outlined and tested in this study have applications 816 

beyond paleoseasonality reconstructions. Examples of other problems that could benefit from applying 817 

similar approaches for reducing the uncertainty of estimates of target variables while minimizing the 818 

number of analyses required to meet analytical requirements include: (1) reconstructing 819 

paleoenvironmental variability in the terrestrial realm from tooth bioapatite (e.g. Passey and Cerling, 820 

2002; Kohn, 2004; Van Dam and Reichart, 2009; de Winter et al., 2016), (2) quantitative time series 821 

analysis of orbital cycles in stratigraphic records (e.g. Lourens et al., 2010; de Vleeschouwer et al., 2017; 822 

Noorbergen et al., 2017; Westerhold et al., 2020), (3) strontium isotope dating (e.g McArthur et al., 2012; 823 

de Winter et al., 2020c), (4) reconstructing sub-seasonal variability from ultra-high-resolution records (e.g. 824 

from fast-growing mollusks and gastropods; e.g. Sano et al., 2012; Warter and Müller, 2017, de Winter et 825 

al., 2020d; Yan et al., 2020), and (5) reconstructing sea surface and deep-sea temperatures across short-826 

lived (10–100 kyr) episodes of climate change or climate shifts from deep marine archives characterized 827 

by low sedimentation rates (e.g. Lear et al., 2008; Jenkyns, 2010; Stap et al., 2010; Lauretano et al., 828 

2018). A more detailed discussion of the implications for other sample size problems is provided in the 829 

Supplementary Information. 830 

  831 
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5. Conclusions and recommendations 832 

The performance of three Δ47-based approaches to reconstruct seasonality from accretionary carbonate 833 

archives was evaluated in comparison with conventional δ18Oc-based reconstructions in a wide range of 834 

case studies. From the results, we conclude that while δ18Oc-based reconstructions (δ18O) yield superior 835 

precision for SST reconstructions, this method runs a high risk of yielding inaccurate results due to innate 836 

assumptions about the value of δ18Ow, which must be estimated and assumed constant year-round. Unless 837 

δ18Ow can be independently constrained or variability in δ18Ow can be neglected, Δ47-based reconstructions 838 

should be the method of choice for absolute mean annual temperature and SST seasonality 839 

reconstructions. Various techniques for combining Δ47 data were evaluated. Our findings suggest that 840 

smoothing Δ47 data using a moving average almost allways cases in a dampening of the seasonal cycle 841 

which severely hampers recovery of seasonality. Applying the smoothing approach results in inaccuracies 842 

in reconstructions of MAT as well, especially in cases where part of the seasonal cycle is obscured by 843 

variability in growth rate or multi-annual trends. More reliable seasonality reconstructions are achieved with 844 

two approaches for combining Δ47 data using time binning (binning) or applying a flexible sample size 845 

optimization (optimization) approach. Of these two approaches, optimization achieves better precision 846 

and can resolve smaller seasonal temperature differences with confidence. However, binning is often more 847 

accurate, and outperforms optimization as the most reliable approach. This is especially true in cases with 848 

growth stops or δ18Ow changes in phase with temperature seasonality (e.g. strong seasonal evaporation or 849 

freshwater influx) and in longer multi-annual time series with a reliable age model. Optimization is the 850 

better choice for shorter (<3 years) records, especially if the sampling resolution can be increased, such as 851 

in short, fast growing climate archives. 852 

Despite the focus on the problem of resolving seasonality in carbonate archives, the findings in this study 853 

have applications for other problems in earth science where sample size and sampling resolution put limits 854 

on the ability to resolve specific trends, events, and cycles from time series. While the above-mentioned 855 

recommendations of the optimization and binning methods are likely valid for most studies aiming to 856 

quantify the mean and amplitude of a specific cycle or event (equivalent to MAT and SST seasonality), 857 
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(dynamic) moving averages (smoothing) are expected to yield the best results in studies quantifying 858 

aperiodic trends from longer data series. 859 
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