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Abstract 10 

The aim of paleoclimate studies to resolvinge climate variability from noisy proxy records can in essence 11 

be reduced to a statistical problem. The challenge is to extract meaningful information about climate 12 

variability from these records by reducing measurement uncertainty through a combination combining 13 

measurements of for proxiesy data while retaining the temporal resolution needed to assess the timing and 14 

duration of variations in climate parameters. In this study, we explore the limits of this compromise by testing 15 

different methods for combining proxy data (smoothing, binning and sample size optimization) on a 16 

particularly challenging paleoclimate problem: resolving seasonal variability in stable isotope records. We 17 

test and evaluate the effects of changes in the seasonal temperature and the hydrological cycle as well as 18 

changes in accretion rate of the archive and parameters such as sampling resolution and age model 19 

uncertainty on the reliability of seasonality reconstructions based on clumped and oxygen isotope analyses 20 

in 33 real and virtual datasets. Our results show that strategic combinations of clumped isotope analyses 21 

can significantly improve the accuracy of seasonality reconstructions compared to conventional stable 22 

oxygen isotope analyses, especially in settings where the isotopic composition of the water is poorly 23 

constrained. Smoothing data using a moving average often leads to an apparent dampening of the seasonal 24 

cycle, significantly reducing the accuracy of reconstructions. A statistical sample size optimization protocol 25 

yields more precise results than smoothing. However, the most accurate results are obtained through 26 

monthly binning of proxy data, especially in cases where growth rate or water composition cycles obscure 27 

the seasonal temperature cycle. Our analysis of a wide range of natural situations reveals that the effect of 28 

temperature seasonality on oxygen isotope records almost invariably exceeds that of changes in water 29 

composition. Thus, in most cases, oxygen isotope records allow reliable identification of growth seasonality 30 

as a basis for age modelling in the absence of independent chronological markers in the record. These 31 

specific findings allow us to formulate general recommendations for sampling and combining data in 32 

paleoclimate research and have implications beyond the reconstruction of seasonality. We briefly discuss 33 

the implications of our results for solving common problems in paleoclimatology and stratigraphy. 34 

  35 
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1. Introduction 36 

Improving the resolution of climate reconstructions is a key objective in paleoclimate studies because it 37 

allows climate variability to be studied on different timescales and sheds light on the continuum of climate 38 

variability (Huybers and Curry, 2006). However, the temporal resolution of climate records is limited by the 39 

accretion rate (growth or sedimentation rate) of the archive and the spatial resolution of sampling for climate 40 

reconstructions, which is a function of the sample size required for a given climate proxy. This tradeoff 41 

between sample size and sampling resolution is especially prevalent when using state-of-the-art climate 42 

proxies which require large sample sizes, such as the carbonate clumped isotope paleothermometer (Δ 47; 43 

see applications in Rodríguez-Sanz et al., 2017; Briard et al., 2020; Caldarescu et al., 2021) or stable 44 

isotope ratios in specific compounds or of rare isotopes (e.g. phosphate-oxygen isotopes in tooth apatite, 45 

triple oxygen isotopes in speleothems or carbon isotopes of CO2 in ice cores; Jones et al., 1999; Schmitt 46 

et al., 2012; Sha et al., 2020). The challenge of sampling resolution persists on a wide range of timescales: 47 

from attempts to resolve geologically short-lived (kyr-scale) climate events from deep sea cores with low 48 

sedimentation rates (e.g. Stap et al., 2010; Rodríguez-Sanz et al., 2017) to efforts to characterize tidal or 49 

daily variability in accretionary carbonate archives (e.g. Warter and Müller, 2017; de Winter et al., 2020a). 50 

What constitutes “high-resolution” is therefore largely dependent on the specifics of the climate archive.  51 

Sample size limitations are especially important in paleoseasonality reconstructions. Reliable archives for 52 

seasonality (e.g. corals, mollusks and speleothem records) are in high demand in the paleoclimate 53 

community, because the seasonal cycle is one of the most important cycles in Earth’s climate and 54 

seasonality reconstructions complement more common long-term (kyr to -Myr) records of past climate 55 

variability (e.g. Morgan and van Ommen, 1997; Tudhope et al., 2001; Steuber et al., 2005; Steffensen et 56 

al., 2008; Denton et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2019). A more detailed 57 

understanding of climate dynamics at the human timescale is increasingly relevant for improving climate 58 

projections (IPCC, 2013). Unfortunately, the growth and mineralization rates of archives that capture high-59 

resolution variability (rarely only exceeding 10 mm/yr in rare exceptions, e.g. Johnson et al., 2019) limit the 60 

number and size of samples that can be obtained at high temporal resolutions (e.g. Mosley-Thompson et 61 

al., 1993; Passey and Cerling, 2002; Treble et al., 2003; Goodwin et al., 2003). In addition, accurate dating 62 
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of climate archivespositioning of samples within the seasonal cycle is challenging. In absence of fine-scale 63 

growth markings (e.g. daily laminae in mollusk shells; e.g. Schöne et al., 2005; de Winter et al., 2020a), 64 

this dating problem relies on modelling or interpolation of the growth of the archive, which introduces 65 

uncertainty on the age of samples (e.g. Goodwin et al., 2009; Judd et al., 2018). Theise problems is are 66 

exacerbated by the fact that accurate methods for climate reconstructions often may require comparatively 67 

large sample sizes, while methods relying on smaller sample sizesor rely on uncertain assumptions. A case 68 

in point is the popular carbonate stable oxygen isotope temperature proxy (δ18Oc) which relies on 69 

assumptions of the water composition (δ18Ow) that become progressively more uncertain further back in 70 

geological history (e.g. Veizer and Prokoph, 2015). ContrarilyIn contrast, the clumped isotope proxy (∆47) 71 

does not rely on this assumption but requires larger amounts of sample (e.g. Müller et al., 2017)  72 

A promising technique for circumventing sample size limitations is to analyze larger numbers of small 73 

aliquots from the same sample or from similar parts of the climate archive. These smaller aliquots typically 74 

have poor precision but averaging multiple aliquots into one estimate while propagating the measurement 75 

uncertainty leads to a more reliable estimate of the climate variable (Dattalo, 2008; Meckler et al., 2014; 76 

Müller et al., 2017; Fernandez et al., 2017). This approach yields improved sampling flexibility since aliquots 77 

can be combined in various ways after measurement. It also allows outlier detection at the level of individual 78 

aliquots, thereby spreading the risk of instrumental failure and providing improved control on changes in 79 

measurement conditions that may bias results. 80 

Previous studies have applied several different methods for combining data from paleoclimate records to 81 

reduce analytical noise or higher order variability, and extract variability with a specific frequency (e.g. a 82 

specific orbital cycle or seasonality; e.g. Lisiecki and Raymo, 20054; Cramer et al., 2009). These data 83 

reduction approaches can in general be categorized into smoothing techniques, in which a sliding window 84 

or range of neighboring datapoints is used to smooth high resolution records (see e.g. Cramer et al., 2009) 85 

or binning techniques, in which the record is divided into equal bins in the sampling direction (e.g. time, 86 

depth or length in growth direction; e.g. Lisiecki and Raymo, 2004; Rodríguez-Sanz et al., 2017). In addition, 87 

a third approach is proposed here based on optimization of sample size for dynamic binning of data along 88 

the climate cycle using a moving window in the domain of the climate variable (as opposed to the sampling 89 
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domain) combined with a T-test routine (see section 2.1). All three approaches have advantages and 90 

caveats. 91 

In this study, we explore the (dis)advantages of these three data reduction approaches by testing their 92 

reliability in resolving seasonal variability in sea surface temperature (SST) and water stable oxygen isotope 93 

composition (δ18Ow), both highly sought-after variables in paleoclimate research. We compare 94 

reconstructions of SST and δ18Ow in real and virtual datasets from accretionary carbonate archives (e.g. 95 

shells, corals and speleothems) using the clumped isotope thermometer (Δ47) combined with stable oxygen 96 

isotope ratios of the carbonate (δ18Oc). 97 

 98 

2. Methods 99 

2.1 Reconstruction approaches 100 

Throughout the remainder of this work, the three approaches for combining data for reconstructions are 101 

defined as follows (see also Fig. 1): 102 

Smoothing refers to the reconstruction of SST and δ18Ow based on moving averages of Δ47 and δ18Oc 103 

records (Fig. 1B). For every dataset, the full possible range of moving window sizes (from 1 sample to the 104 

full length of the record) for SST and δ18Ow reconstructions was explored. The window size that resulted in 105 

the most significant difference between maximum and minimum Δ47 values (based on a student’s T-test) 106 

was applied to reconstruct SST and δ18Ow from Δ47 and δ18Oc records. SST and δ18Ow were calculated for 107 

all case studies using a combination of empirical temperature relationships by Kim and O’Neil (1997; δ18Oc- 108 

δ18Ow-temperature relationship) and Bernasconi et al. (2018; Δ47-temperature relationship). To obtain δ18Ow 109 

values, the δ18Oc- δ18Ow-temperature relationship (Kim and O’Neil, 1997) was solved for δ18Ow using the 110 

temperature reconstruction obtained from Δ47 measurements. Here and in other approaches, a typical 111 

analytical uncertainty on measurements of Δ47 (one standard deviation of 0.04‰) and δ18Oc (one standard 112 

deviation of 0.05‰) was used to include uncertainty due to measurement precision. These analytical 113 

uncertainties were chosen based on typical uncertainties reported for these measurements in the literature 114 

(e.g. Schöne et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2016) and long-term precision 115 
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uncertainties obtained by measuring in-house standards using the MAT253+ with Kiel IV setup in the 116 

clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). The measurement uncertainty 117 

was propagated through all calculations using a Monte Carlo simulation (N = 1000) in which Δ47 and δ18Oc 118 

records were randomly sampled from a normal distribution with the virtual Δ47 and δ18Oc values as means 119 

and analytical uncertainties as standard deviations. Resulting SST and δ18Ow values were grouped into 120 

monthly time bins using the age model of the archive. 121 

Binning refers to reconstructions of SST and δ18Ow based on binning of Δ47 and δ18Oc records into monthly 122 

time bins (Fig. 1C). The Δ47 and δ18Oc data from each case study were grouped into monthly time bins and 123 

converted to SST and δ18Ow using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. Here 124 

too, Monte Carlo simulation (N = 1000) was applied to propagate measurement uncertainties onto monthly 125 

SST and δ18Ow reconstructions. Note that the prerequisite for this method is that the data is aligned using 126 

a (floating) age model accurate enough to allow samples to be placed in the right bin. The age of virtual 127 

samples in this study is known so this prerequisite poses no problems in this case. However, in the fossil 128 

record this alignment might be less certain in the absence of accurate chronologies within the archive (e.g. 129 

through daily growth increments in mollusk shells; e.g. Schöne et al., 2008; Huyghe et al., 2019; see 4.1.3). 130 

Optimization refers to reconstructions of SST and δ18Ow based on sample size optimization in Δ47 records 131 

(Fig. 1D). In this approach aliquots of each virtual dataset are ordered from warm (low δ18Oc) to cold (high 132 

δ18Oc data) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset, 133 

increasingly large samples of multiple aliquots (from 2 aliquots to half the length of the record) are taken 134 

from both the warm (“summer”) and the cold (“winter”) side of the distribution. Summer and winter samples 135 

were kept equal (symmetrical grouping) to reduce the number of possible sample size combinations and 136 

allow for more efficient computation. However, asymmetrical grouping with differing sample sizes on the 137 

summer and winter ends of the δ18Oc-spectrum are possible (see 4.1.3 and 4.2.2). Sample sizes with 138 

significant difference in Δ47 value between summer and winter groups (p ≤ 0.05 based on a student’s T-139 

test) were selected as optimal sample sizes. The moving window T-test in the proxy domain ensures that 140 

an optimal compromise is reached between high precision and resolving differences between seasonal 141 

extremes. For each successful sample size, SST and δ18Ow values were calculated from Δ47 and δ18Oc data 142 
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according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The relationship between SST 143 

and δ18Ow obtained from these reconstructions was used to convert all Δ47 and δ18Oc data to SST and 144 

δ18Ow, which are then grouped into monthly SST and δ18Ow reconstructions along the archive’s age model. 145 

Measurement uncertainties were propagated through the entire approach by Monte Carlo simulation (N = 146 

1000). 147 

For comparison, we also include reconstructions based solely on δ18Oc measurements with an (often 148 

inaccurate) assumption of a constant δ18Ow (equal to the modern ocean value of 0‰ VSMOW), which form 149 

the most common method for carbonate-based temperature reconstructions in paleoclimate research (see 150 

e.g. Schöne et al., 2005; Westerhold et al., 2020; Fig. 1A; hereafter: δ18O). For these reconstructions, δ18Oc 151 

records were grouped into monthly time bins with analytical uncertainties propagated using the Monte Carlo 152 

approach (N = 1000) and were directly converted to SST using the Kim and O’Neil (1997) temperature 153 

relationship. 154 

For each reconstruction, SST and δ18Ow results were aggregated into monthly averages, medians, standard 155 

deviations, and standard errors. Step by step documentation of calculations made for the three Δ47-based 156 

reconstruction approaches and the δ18Oc reconstructions are given in Supplmentary Data S7 and in the 157 

complementary R package (de Winter, 2021a). 158 

2.2 Benchmarks for accuracy and precision 159 

Accuracy and precision of reconstructions were evaluated against official USGS definitions of climate 160 

parameters (O’Donnell et al.and Ignizio, 2012):  161 

1. mean annual SST (MAT), defined as the average of all 12 monthly temperature reconstructions. 162 

2. seasonal range in SST, defined as the temperature difference between warmest and coldest 163 

month. 164 

3. mean annual δ18Ow, defined as the average of all 12 monthly δ18Ow reconstructions. 165 

4. seasonal range in δ18Ow, defined as the δ18Ow difference between most enriched (highest δ18Ow) 166 

and most depleted (lowest δ18Ow) monthly reconstruction. 167 
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Accuracy was defined as the absolute offset of the reconstructed climate parameter from the “true” value. 168 

Precision was defined as the (relative) standard deviation of the reconstruction, as calculated from the 169 

variability within monthly time bins resulting from Monte Carlo error propagation (see 2.1). An overview of 170 

monthly SST and δ18Ow reconstructions using the four approaches in all cases is given in S4. Raw data 171 

and figures of reconstructions of all cases using all sampling resolutions are compiled in S8. 172 

 173 

Figure 1: Schematic overview of the four approaches for seasonality reconstructions: (A) δ18O-based 174 
reconstructions, assuming constant δ18Ow. (B) Reconstructions based on smoothing δ18Oc and Δ47 data 175 
using a moving average. (C) Reconstructions based on binning δ18Oc and Δ47 data in monthly time bins. 176 
(D) Reconstructions based on optimization of the sample size for combining δ18Oc and Δ47 data (see 177 
description in 2.1). Colored curves points represent virtual δ18Oc (blue) and Δ47 (red) series in sampling 178 
domain. Black curves represent reconstructed monthly SST and δ18Ow averages. 179 

 180 

2.3 SST and δ18Ow datasets 181 

The three reconstruction approaches were tested and compared based on three types of data.: Firstly, a 182 

set of datasets based on fully artificial environmental SST and δ18Ow data (case 1-29; see Fig. 2) converted 183 

to virtual Δ47 and δ18Oc records. data from a real specimen of a Pacific oyster (Crassostrea gigas, syn. 184 

Magallana gigas) reported in Ullmann et al. (2010). Secondly, data based on actual measurements of 185 

natural variability in SST and sea surface salinity (SSS; case 30-33) converted to virtual Δ47 and δ18Oc 186 

records. Thirdly, measured proxy data from a real specimen of a Pacific oyster (Crassostrea gigas, syn. 187 

Magallana gigas) compared to measured environmental (SST and δ18Ow) data reported in Ullmann et al. 188 

(2010). a set of datasets based on fully artificial SST and δ18Ow data (case 1-29; see Fig. 2) converted to 189 

virtual Δ47 and δ18Oc records.190 
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 191 

Figure 2: Overview of time series of all virtual test cases. Colored curves represent time series of SST (red), δ18Ow (blue) and growth rate (orange, 192 
abbreviated as “GR”). Horizontal axes in all plots are 12 years long (see legend below case 6). Vertical axis of all plots has the same scale (SST: 193 
10 to 30°C; δ18Ow: -1 to +1‰; Growth rate: 0 –50 µm/day; see legend in bottom right corner). Horizontal error bars and labels on the right side of 194 
cases 25-29 represent standard errors introduced on the age model (bars not to scale). The δ18Oc and Δ47 records resulting from these virtual 195 
datasets are provided in S6 (see also Fig. 3 for natural examples). 196 
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Sensitivity cases Natural cases Varying seasonality 
Varying age 

model uncertainty 

 

7. δ18Ow 

seasonality 
in phase with 
SST 

 
19. Control case with 
reduced SST 
amplitude (~5°C) 

 

1. Control 

8. δ18Ow 

seasonality 
in antiphase 
with SST 

14. Full marine case 
with ontogenetic GR 
trend 

20. Control case with 
reduced SST 
amplitude (~3°C) 

25. Case 9 with ±1 
day age model 
uncertainty 

2. Growth 
stops <12°C 

9. δ18Ow 

seasonality 
lags SST by 
¼ year 

15. Coastal case with 

spring δ18Ow decrease 

and decreasing GR 
trend 

21. Control case with 
reduced SST 
amplitude (~1°C) 

26. Case 9 with ±5 
days age model 
uncertainty 

3. Growth 
stops >28°C 

10. Negative 

δ18Ow in 

spring 

16. Lagoonal case with 

summer δ18Ow increase 
Varying record 

length 

27. Case 9 with 
±15 days age 
model uncertainty 

4. Linear 
decrease in 
GR 

11. Positive 
δ18Ow in 

summer 

17. Tropical monsoon 
case with confined SST 
seasonality and strong 
multi-annual SST cycle 

22. Control case 
shortened to 6 yr 

28. Case 9 with 
±45 days age 
model uncertainty 

5. GR 
seasonality 
in phase with 
SST 

12. Multi-
annual (5 yr) 
SST cycle 

18. Worst-case scenario 
with growth limited to 
summer half of the year 

23. Control case 
shortened to 3 yr 

29. Case 9 with 
±90 days age 
model uncertainty 

6. GR 
seasonality 
lags SST by 
¼ year 

13. Multi-
annual (5 yr) 

δ18Ow cycle 
 

24. Control case 
shortened to 1 yr 

 

Table 1: Overview of virtual cases 1-29 used to test the reconstruction methods. Case descriptions are 197 
abbreviated. Details on the SST, growth rate and δ18Ow included in each case are described in detail in S1. 198 
SST, growth rate and δ18Ow records of all cases are shown in Fig. 2. “GR” = growth rate. 199 

 200 

2.3.1 Virtual casesCases 1-29: Virtual environmental data, virtual proxy data 201 

Virtual SST and δ18Ow time series were artificially constructed to test the effect of various SST and δ18Ow 202 

scenarios on the effectivity of the reconstruction methods. The default test case (case 1) contained an ideal, 203 

12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal 204 

amplitude of 10°C, a constant δ18Ow value of 0‰ and a constant growth rate of 10 mm/yr. Other cases 205 

contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1): 206 

• Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18) 207 
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• Seasonal and/or multi-annual changes in δ18Ow (cases 7-11, 13-18) 208 

• Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17) 209 

• Variations in the seasonal SST amplitude (cases 19-21) 210 

• Change in the total length of the time series (cases 22-24). 211 

• Variation in uncertainty on the age of each virtual datapoint (cases 25-29) 212 

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3) 213 

shows that the virtual cases are not realistic approximations of natural variability in SST and δ18Ow. Natural 214 

SST and δ18Ow variability are not limited to the seasonal or multi-annual scale but contain a fair amount of 215 

higher order (daily to weekly scale) variability. To simulate this natural variability, we extracted the seasonal 216 

component of SST and δ18Ow variability from our highest resolution record of measured natural SST and 217 

SSS data (case 30: data from Texel, the Netherlands, see 2.3.2 and Fig. 3). The standard deviation of 218 

residual variability of this data after subtraction of the seasonal cycle was used to add random high -219 

frequency noise to the SST and δ18Ow variability in virtual cases. Note that while sub-annual environmental 220 

variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002), this representation is an 221 

oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not normally 222 

distributed (Kolmogorov-Smirnov test: D = 0.010; p = 7.2*10-14 and D = 0.039; p < 2.2*10-16 for SST and 223 

SSS residuals respectively; see S2-4). SST and δ18Ow data from cases 1-29 was converted to the sampling 224 

domain and subsampled at a range of sampling resolutions following the same procedure applied to cases 225 

30-33 (see 2.3.2). 226 

 227 

Modern oyster data 228 

Environmental SST and δ18Ow data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the 229 

modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described 230 

in Ullmann et al. (2010). Since direct, in situ measurements of δ18Ow variability at a high temporal resolution 231 

were not available, δ18Ow was estimated from more widely available SSS data using a mass balance 232 

(equation 1 and 2; following e.g. Ullmann et al., 2010): 233 
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𝛿18𝑂𝑠𝑤 = 𝛿18𝑂𝑤,𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 ∗ 𝑓 + 𝛿18𝑂𝑤,𝑜𝑐𝑒𝑎𝑛 ∗ (1 − 𝑓) (1) 234 

𝑓 =
𝑆𝑆𝑆𝑠𝑎𝑚𝑝𝑙𝑒−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛

𝑆𝑆𝑆𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛
  (2) 235 

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity 236 

(δ18Ow,freshwater = -8.5‰; SSSfreshwater = 0 ) freshwater and a fraction (1-f) ocean water (δ18Ow,ocean = 0‰; 237 

SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation 238 

(SSSsample > SSSocean). The value for δ18Ow,freshwater was based on the discharge weighted average δ18Ow of 239 

water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All δ18Ow values throughout the text 240 

are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-33; see 2.3.2 and 2.3.3), 241 

the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling was 242 

required. 243 

2.3.2 Cases 30-33: based on real climate dataMeasured environmental data, virtual proxy data 244 

Four test cases were based on time series of real measured SST and SSS data from four different locations, 245 

selected to capture a variety of environments with different SST and SSS variability  (see Fig. 3): 246 

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30) 247 

2. Great Barrier Reef in Australia (case 31) 248 

3. Gulf of Aqaba between Egypt and Saudi Arabia (case 32) 249 

4. Northern Atlantic Ocean east of Iceland (case 33). 250 

Daily measurements of SST and SSS for case 31-33 were obtained from worldwide open-access datasets 251 

of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA, 252 

2020) respectively. Hourly SST and SSS measured in situ in the Wadden Sea (case 30) were obtained 253 

from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, in situ 254 

measurements of δ18Ow variability at a high temporal resolution are scarce, δ18Ow was estimated from (more 255 

widely available) SSS data using the same mass balance described in 2.3.1. Since direct, in situ 256 

measurements of δ18Ow variability at a high temporal resolution were not available, δ18Ow was estimated 257 

from more widely available SSS data using a mass balance (equation 1 and 2; following e.g. Ullmann et 258 

al., 2010): 259 
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𝛿18𝑂𝑠𝑤 = 𝛿18𝑂𝑤,𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 ∗ 𝑓 + 𝛿18𝑂𝑤,𝑜𝑐𝑒𝑎𝑛 ∗ (1 − 𝑓) (1) 260 

𝑓 =
𝑆𝑆𝑆𝑠𝑎𝑚𝑝𝑙𝑒−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛

𝑆𝑆𝑆𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛
  (2) 261 

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity 262 

(δ18Ow,freshwater = -8‰; SSSfreshwater = 0) freshwater and a fraction (1-f) ocean water (δ18Ow,ocean = 0‰; 263 

SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation 264 

(SSSsample > SSSocean). The value for δ18Ow,freshwater was based on the δ18Ow of rain in the Netherlands (-8‰; 265 

Mook, 1970; Bowen, 2020). Applying this mass balance on the SSS record of the Wadden Sea tidal flats 266 

(case 30) results in δ18Ow values and a SSS-δ18Ow relationship in agreement with measurements in this 267 

region (Harwood et al., 2008). SST and δ18Ow time series for all cases are given in Supplementary Data 268 

S4 and natural cases are plotted in Fig. 3. 269 

For all virtual proxy datasets (cases 1-33), records of SST and δ18Ow were converted to the sampling 270 

domain (along the length of the record) by defining a virtual growth rate in the sampling direction. Adding 271 

this growth rate as a variable allowed us to test the sensitivity of approaches to changes in the extension 272 

rate of the archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear 273 

extension rate and periods in which no mineralization occurs (hiatuses or growth cessations) are common 274 

in all climate archives (e.g. Treble et al., 2003; Ivany, 2012). After conversion to the sampling domain, virtual 275 

aliquots were subsampled at equal distance from the SST and δ18Ow series of all cases using six sampling 276 

intervals: 0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals 277 

were chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling 278 

interval (e.g. 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling 279 

the same parts of the seasonal cycle (e.g. same months) every year, which biases both the mean value 280 

and the precision of monthly SST and δ18Ow reconstructions. This bias towards certain parts of the seasonal 281 

cycle is much stronger at low sample sizes (large sampling intervals) and is illustrated in the 282 

Supplementary InformationFigure S2. 283 
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 284 

Figure 3: Overview of the four cases of virtual data based on natural SST and SSS measurements explored 285 
in this study. (A) Case 30: Tidal flats on the Wadden Sea, Texel, the Netherlands. (B) Case 31 Great Barrier 286 
Reef, Australia). (C) Case 32: Gulf of Aqaba between Egypt and Saudi Arabia. (D) Case 33: Atlantic Ocean 287 
east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red, δ18Ow in 288 
blue and growth rate (abbreviated as “GR”) in orange (as in Fig. 2). The graph below shows virtual δ18Oc 289 
(blue) and Δ47 (red) records created from these data series using a sampling interval of 0.45 mm and 290 
including analytical noise (see 3.3). Note that the scale of vertical axes varies between plots.  291 

 292 

2.3.3 Modern oyster data: Measured environmental data, measured proxy data 293 
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Environmental SST and δ18Ow data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the 294 

modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described 295 

in Ullmann et al. (2010). Since direct, in situ measurements of δ18Ow variability at a high temporal resolution 296 

were not available, δ18Ow was estimated from more widely available SSS data using athe mass balance 297 

described in 2.3.2. (equation 1 and 2; following e.g. Ullmann et al., 2010): 298 

𝛿18𝑂𝑠𝑤 = 𝛿18𝑂𝑤,𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 ∗ 𝑓 + 𝛿18𝑂𝑤,𝑜𝑐𝑒𝑎𝑛 ∗ (1 − 𝑓) (1) 299 

𝑓 =
𝑆𝑆𝑆𝑠𝑎𝑚𝑝𝑙𝑒−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛

𝑆𝑆𝑆𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟−𝑆𝑆𝑆𝑜𝑐𝑒𝑎𝑛
  (2) 300 

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity 301 

(δ18Ow,freshwater = -8.5‰; SSSfreshwater = 0 ) freshwater and a fraction (1-f) ocean water (δ18Ow,ocean = 0‰; 302 

SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation 303 

(SSSsample > SSSocean). The value for δ18Ow,freshwater was based on the discharge weighted average δ18Ow of 304 

water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All δ18Ow values throughout the text 305 

are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-33; see 2.3.12 and 306 

2.3.32), the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling 307 

was required. 308 

Virtual cases 309 

Virtual SST and δ18Ow time series were artificially constructed to test the effect of various SST and δ18Ow 310 

scenarios on the effectivity of the reconstruction methods. The default test case (case 1) contained an ideal, 311 

12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal 312 

amplitude of 10°C, a constant δ18Ow value of 0‰ and a constant growth rate of 10 mm/yr. Other cases 313 

contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1): 314 

• Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18) 315 

• Seasonal and/or multi-annual changes in δ18Ow (cases 7-11, 13-18) 316 

• Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17) 317 
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• Variations in the seasonal SST amplitude (cases 19-21) 318 

• Change in the total length of the time series (cases 22-24). 319 

• Variation in uncertainty on the age of each virtual datapoint (cases 25-29) 320 

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3) 321 

shows that the virtual cases are not realistic approximations of natural variability in SST and δ18Ow. Natural 322 

SST and δ18Ow variability are not limited to the seasonal or multi-annual scale but contain a fair amount of 323 

higher order (daily to weekly scale) variability. To simulate this natural variability, we extracted the seasonal 324 

component of SST and δ18Ow variability from our highest resolution record of measured natural SST and 325 

SSS data (case 30: data from Texel, the Netherlands, see 2.3.2 and Fig. 3). The standard deviation of 326 

residual variability of this data after subtraction of the seasonal cycle was used to add random high -327 

frequency noise to the SST and δ18Ow variability in virtual cases. Note that while sub-annual environmental 328 

variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002),  this representation is an 329 

oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not normally 330 

distributed (Kolmogorov-Smirnov test: D = 0.010; p = 7.2*10-14 and D = 0.039; p < 2.2*10-16 for SST and 331 

SSS residuals respectively; see S2-4). SST and δ18Ow data from cases 1-29 was converted to the sampling 332 

domain and subsampled at a range of sampling resolutions following the same procedure applied to cases 333 

30-33 (see 2.3.2). 334 

  335 
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2.4 Conversion to δ18Oc and Δ47 data 336 

After subsampling, SST and δ18Ow series (cases 1-33) were converted to δ18Oc and Δ47 using a carbonate 337 

model based on empirical relationships between Δ47 and δ18Oc with and SST and δ18Ow (equation 3 and 4; 338 

Kim and O’Neil, 1997; Kele et al., 2015; Bernasconi et al., 2018) and the conversion of δ18O values from 339 

VSMOW to VPDB scale (equation 5; Brand et al., 2014).  340 

𝛥47 =
0.0449∗106

(𝑆𝑆𝑇+273.15)2
+ 0.167 (3) 341 

1000 ∗ ln

(
𝑂18

𝑂16⁄ )
𝐶𝑎𝐶𝑂3

(
𝑂18

𝑂16⁄ )
𝐻2𝑂

= 18.03 ∗ (
103

(𝑆𝑆𝑇+273.15)
) − 32.42 (4) 342 

𝛿18𝑂𝑉𝑃𝐷𝐵 = 0.97002 ∗ 𝛿18𝑂𝑉𝑆𝑀𝑂𝑊 − 29.98 (5) 343 

For the real modern oyster data (Ullmann et al., 2010; see 2.3.31), only the Δ47 data needed to be created 344 

because δ18Oc was directly measured. As a result, each case study yielded records of Δ47 and δ18Oc in the 345 

sampling domain and corresponding “true” SST and δ18Ow records in the time domain, allowing assessment 346 

of the reliability of the reconstruction approaches in different scenarios. (Figure Fig. 4). The result of 347 

applying these steps is illustrated on case 31 (Great Barrier reef data, Fig. 5). All calculations for creating 348 

Δ47 and δ18Oc series in sampling domain were carried out using the open-source computational software R 349 

(R core team, 2013), and scripts for these calculations are given in Supplementary Data S7 and compiled 350 

in the documented R package “seasonalclumped” (de Winter, 2021a). All Δ47 and δ18Oc datasets are 351 

provided in Supplementary Data SS6. 352 

  353 



18 
 

 354 

Figure 4: Flow diagram showing the steps taken to create virtual data (Δ47 and δ18Oc; cases 1-33) and 355 
compare results of SST and δ18Ow reconstructions with the actual SST and δ18Ow data the record was 356 
based on (counterclockwise direction). Steps 1-3 outline the procedure for creating virtual Δ47 and δ18Oc 357 
datasets (see sections 2.3 and 2.4), step 4 shows the application of the different reconstruction methods 358 
on this virtual data (see Fig. 2 for details) and step 5 illustrates how the reconstructions are compared with 359 
the original (“true”) SST and δ18Ow data to calculate accuracy and precision of the reconstruction 360 
approaches. Note that step 1 is different for cases 1-29 (based on fully artificial SST and δ18Ow records; 361 
2.3.31) than for cases 30-33 (SST and δ18Ow records based on real SST and SSS data; see 2.3.2). 362 
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 363 

Figure 5: An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) to illustrate 364 
the data processing steps. Virtual data plots include normally distributed measurement uncertainty on  Δ47 365 
and δ18Oc 366 

  367 
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3. Results 368 

3.1 Real example 369 

Measured (δ18Oc) and simulated (Δ47) data from the Pacific oyster from the Danish List Basin yielded 370 

estimates of SST and δ18Ow seasonality using all reconstruction approaches (Fig. 6). While a model of shell 371 

δ18Oc based on SST and SSS data closely approximates the measured δ18Oc record (Fig. 6C), basing SST 372 

reconstructions solely on δ18Oc data without any a priori knowledge of δ18Ow variability (assuming constant 373 

δ18Ow equal to the global marine value) leads to high inaccuracy in SST seasonality and mean annual SST 374 

(Fig. 6D). Note that, in absence of significant δ18Ow seasonality (as in this case study), seasonal 375 

temperature range reconstructions from δ18Oc measurements can be very accurate. However, assuming 376 

constant δ18Ow year-round may introduce considerable bias (see Fig. 7 and 8). The in-phase relationship 377 

between SST and SSS (Fig. 6B) slightly dampens the seasonal δ18Oc cycle, causing underestimation of 378 

temperature seasonality, while a negative mean annual δ18Ow value in the List Basin biases SST 379 

reconstructions towards higher temperatures. In terms of SST reconstructions, the smoothing, binning 380 

and optimization approaches based on Δ47 and δ18Oc data yield more accurate reconstructions, albeit with 381 

a reduced seasonality and a bias towards the summer season. The latter is a result of severely reduced 382 

growth rates in the winter season, which was therefore undersampled (see Fig. 6A and 6C). Approaches 383 

including Δ47 data also yield far more accurate δ18Ow estimates than the δ18O approach. However, the 384 

accuracy of δ18Ow seasonality and mean annual δ18Ow estimates is low in these approaches too, largely 385 

because of the limited sampling resolution, especially in winter. The optimization approach suffers from 386 

the strong in-phase relationship between SST and SSS, which obscures the difference between the δ18Ow 387 

effect and the temperature effect on shell carbonate. Yet, disentangling SST from δ18Ow seasonality is 388 

central to the success of the approach (see 3.4). Fig. 6D does not show the reproducibility errorprecision 389 

on SST and δ18Ow estimates, which is much larger lower for the smoothing approach than for the binning 390 

an optimization approaches due to the limited data in the winter seasons (see Supplementary Data S56). 391 

These results show that several properties of carbonate archives, such as growth rate variability, phase 392 

relationships between SST and δ18Ow seasonality and sampling resolution, can impact the reliability of 393 
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paleoseasonality reconstructions. The virtual and real data cases in this study were tailored to test the 394 

effects of these archive properties more thoroughly. 395 

 396 

Figure 6: (A) Plot of δ18Oc and (virtual) Δ47 data from a modern Pacific oyster (Crassostrea gigas; see 397 
Ullmann et al., 2010). (B) shows SST and δ18Ow data from the List Basin (Denmark) in which the oyster 398 
grew. (C) shows the fit between δ18Oc data and modelled δ18Oc calculated from SST and δ18Ow on which 399 
the shell age model was based. (D) Shows a summary of the results of different approaches for 400 
reconstructing SST and δ18Ow from the δ18Oc and Δ47 data. The vertical colored bars show the reconstructed 401 
seasonal variability using all methods with ticks indicating warmest month, coldest month, and annual 402 
mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision errors 403 
standard deviation on monthly reconstructions are not shown but are given in S4. 404 

 405 

3.2 Case-specific results 406 

A case-by-case breakdown of the precision (Fig. 7) and accuracy (Fig. 8) of reconstructions using the four 407 

approaches shows that reliability of reconstructions varies significantly between approaches and is highly 408 

case-specific. In general, precision is highest in δ18O reconstructions, followed by optimization and 409 

binning, with smoothing generally yielding the worst precision. Average precision standard deviations of 410 

the underperforming methods (binning and smoothing) are up to 2-3 times larger than those of δ18O (e.g. 411 
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respectively 3.9°C and 3.5°C vs. 1.3°C for δ18O MAT reconstructions; see also Supplementary 412 

Information). It is worth noting that precision on δ18O-based estimates is mainly driven by measurement 413 

precision (which is better for δ18Oc than for ∆47 measurements, see section 4.1.1). ∆47-based reconstructions 414 

lose precision due to the higher measurement error on ∆47 measurements and the method used for 415 

combining measurements for seasonality reconstructions. On a case-by-case basis, the hierarchy of 416 

approaches can vary, especially if strong variability in growth rate is introduced, such as in case 14, where 417 

the size of hiatuses in the record increases progressively, or in case 18, in which half of the year is missing 418 

due to growth hiatuses (see Table 1, Supplementary Data S1 and S4). Of the Δ47-based methods 419 

(smoothing, binning and optimization), optimization is rarely outcompeted in terms of precision in both 420 

SST and δ18Ow reconstructions. 421 

The comparison based on precision alone is misleading, as the most precise approach (δ18O) runs the risk 422 

of being highly inaccurate (offsets exceeding 4°C on some MAT reconstructions; see Fig. 7C8A), especially 423 

in cases based on natural SST and SSS measurements (case 30-33). The smoothing approach also often 424 

yields highly inaccurate results, especially in cases with substantial variability in δ18Ow (e.g. case 9-11; Fig. 425 

8). Accuracy of optimization and binning outcompete the other methods in most circumstances. Binning 426 

outperforms optimization in reconstructions of δ18Ow seasonality, making it overall the most accurate 427 

approach. Interestingly, optimization is less accurate specifically in cases with sharp changes in growth 428 

rate in summer (e.g. cases 11, 14, 16 and 17), while binning performs better in these cases. 429 

Reconstructions of mean annual SST and δ18Ow in case 18 are especially inaccurate regardless of which 430 

method is applied. This extreme case with growth only during one half of the year combined with seasonal 431 

fluctuations in both SST and δ18Ow presents a worst-case scenario for seasonality reconstructions leading 432 

to strong biases in mean annual temperature reconstructions. In situations like case 18, the optimization 433 

approach is most accurate in MAT and SST seasonality reconstructions, but δ18Ow is more accurately 434 

reconstructed using the binning approach. Finally, it is worth noting that in natural situations (Fig. 3), 435 

variability in SST almost invariably has a larger influence on δ18Oc and ∆47 records than δ18Ow, such that 436 

fluctuations in δ18Oc records closely follow the SST seasonality even in cases with relatively large δ18Ow 437 

variability (e.g. case 30). Chronologies based on these δ18Oc fluctuations are therefore generally accurate. 438 
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 439 

Figure 7: Overview of precision (propagated standard deviation of variability within reconstructions, see 440 
2.2) of reconstructions of mean annual temperature (A), seasonal temperature range (B), mean annual 441 
δ18Ow (C) and seasonal range in δ18Ow (D), with higher values (darker colors) indicating lower precision 442 
(more variability between reconstructions) based on average sampling resolution (sampling interval of 0.45 443 
mm). The different cases on the horizontal axis are color coded by their difference from the control case 444 
(case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were not 445 
successful. All data on precision (standard deviation values) is provided in Supplementary Data S4. 446 Formatted: Font: Italic
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 447 

Figure 8: Overview of accuracy (absolute offset from “true” values) of reconstructions of mean annual 448 
temperature (A), seasonal temperature range (B), mean annual δ18Ow (C) and seasonal range in δ18Ow (D), 449 
with higher values (darker colors) indicating lower accuracy (higher offsets) based on average sampling 450 
resolution (sampling interval of 0.45 mm). The different cases on the horizontal axis are color coded by 451 
their difference from the control case (case 1; see legend on the right-hand side). Grey boxes indicate 452 
cases for which reconstructions were not successful. All data on accuracy (difference between 453 
reconstructed and “true” values) is provided in Supplementary Data S4.454 Formatted: Font: Italic
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 455 

 456 

Figure 9: Effect of sampling resolution (in samples per year, see S5) on the precision (one standard deviation) of results of reconstructions of mean 457 
annual δ18Ow (A), seasonal range in δ18Ow (B), mean annual SST (C) and seasonal range in SST (D). Effect on the accuracy (absolute offset from 458 
actual value) of results of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), mean annual SST (G) and seasonal range in 459 
SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.460 
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3.3 Effect of sampling resolution 461 

As expected, increasing the temporal sampling resolution (i.e. number of samples per year) almost 462 

invariably increases the precision and accuracy (Fig. 9) of reconstructions using all methods. An exception 463 

to this rule is the precision of δ18O reconstructions, which decreases with increasing sampling resolution 464 

(see Fig. 9C-D). Precision errors standard deviations of all Δ47-based approaches eventually converge with 465 

the initially much lower higher precision error of δ18O reconstructions when sampling resolution increases. 466 

However, the sampling resolution required for Δ47-based reconstructions to rival or outcompete the δ18O 467 

reconstructions differs, with optimization requiring lower sampling resolutions than the other methods (e.g. 468 

20-40 samples/year compared to 40-80 samples/year for smoothing and binning; Fig. 9A-D). Accuracy 469 

also improves with sampling resolution (Fig. 9E-H). When grouping all cases together, it becomes clear 470 

that δ18O reconstructions can only approach the accuracy of Δ47-based approaches for reconstructions of 471 

MAT. Seasonality in both SST and δ18Ow is most accurately reconstructed using binning, and the 472 

smoothing approach once again performs worst. 473 

 474 

Figure 10: Effect of SST seasonality range (difference between warmest and coldest month) in the record 475 
on the relative precision of SST seasonality reconstructions (“RSD”, defined as one standard deviation 476 
divided by the mean value). Panel A shows precision results if random variability (“weather patterns”) in 477 
both SST and δ18Ow as well as measurement uncertainty is added to the records (see 2.3.3 and S1). Panel 478 
B shows precision of records with random variability in SST and measurement uncertainty only. Panel C 479 
shows precision if only measurement uncertainty is considered. Color coding follows the scheme in Fig. 1 480 
and Fig. 4. Shaded dots represent results at various sampling resolutions, while bold lines are averages 481 
for all reconstruction approaches. Black circles highlight the places where curves cross the threshold of two 482 
standard deviations, which indicates the minimum SST seasonality that can be resolved within 2 standard 483 
deviations (~95% confidence level) using the reconstruction approach. 484 

 485 
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3.4 Resolving SST seasonality 486 

Comparison of cases 19, 20 and 21 (SST seasonality of 9.7°C, 5.7°C and 2.1°C respectively) with control 487 

case 1 (SST seasonality of 19.3°C) shows how changes in the seasonal SST range affect the precision of 488 

measurements (Fig. 10; see also Table 1 and Supplementary Data S1). The data reconfirms that δ18O 489 

reconstructions are most precise; a deceptive statistic given the risk of highly inaccurate results this 490 

approach yields (see Fig. 8). Taking into consideration only analytical uncertainty, all approaches except 491 

for smoothing can confidently resolve at least the highest SST seasonality within a significance level of 492 

two standard deviations (~95%) using a moderate sampling resolution (mean of all resolutions shown in 493 

Fig. 10). Increasing sampling resolution improves the precision of Δ47-based reconstructions (see Fig. 9D), 494 

so high sampling resolutions (0.1 or 0.2 mm) allow smaller seasonal differences to be resolved. When 495 

random sub-annual variability is added to the SST and δ18Ow records (see 2.3.3), the minimum seasonal 496 

SST extent that can be resolved decreases for all approaches (Fig. 10B and 10C). Nevertheless, δ18O and 497 

optimization reconstructions remain able to resolve a relatively small SST seasonality of 2-4°C. 498 

  499 
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 500 

Figure 11: Effect of record length (in years) on the relative precision (one standard deviation as fraction of 501 
the mean value) of results of reconstructions of mean annual SST (A) and SST seasonality (B). Shaded 502 
Colored dots represent results for the six different sampling resolutions. Solid lines connect averages for 503 
cases 1, 22, 23 and 24 for each reconstruction approach. 504 

 505 

3.5 Effect of record length 506 

The effect of variation in the length of the record was investigated by comparing cases 22, 23 and 24 (record 507 

lengths of 6 years, 3 years and 1 year, respectively) with the control case (record length of 12 years; see 508 

Fig. 11 and Table 1). Precision of MAT and SST seasonality reconstructions slightly increase in larger 509 

datasets (longer records) for optimization and binning, but not for smoothing and δ18O reconstructions. 510 

Differences between reconstruction approaches remain relatively constant regardless of the length of the 511 

record, with general precision hierarchy generally remaining intact (δ18O > optimization > binning > 512 

smoothing). However, in very short records (1-2 years) smoothing generally gains an advantage over 513 

other Δ47-based methods due to its lack of sensitivity to changes in the record length, and binning 514 

reconstructions are not precise enough to resolve MAT and SST seasonality within two standard deviations 515 

(~95% confidence level). Variation in precision is largely driven by very high low precision errors of 516 

reconstructions in records with low sampling resolutions (sampling intervals of 1.55 mm or 3.25 mm; see 517 
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also Fig. 9A-D). As a result, most of the reduction in precision in shorter records can be mitigated by denser 518 

sampling. 519 

 520 

Figure 12: Effect of uncertainty in age model on the reproducibility precision (standard deviation on 521 
estimate) of results of reconstructions of mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean 522 
annual SST (C) and seasonal range in SST (D). Effect of uncertainty in age model on the accuracy (offset 523 
from true value) of results of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), 524 
mean annual SST (G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 525 
4. 526 

 527 

3.6 Effect of age model uncertainty 528 

Uncertainty on in the age model has a significant effect on both the precision and the accuracy (Fig. 12) of 529 

reconstructions using all approaches. The δ18O reconstructions are most strongly affected by uncertainties 530 

in the age model and suffer from a large decrease in precision with increasing age model uncertainty (Fig. 531 

12C-D). The high reproducibility precision of the δ18O approach in comparison with the Δ47 approaches 532 

quickly disappears when age model uncertainty increases beyond 20-30 days. Accuracy of δ18Oc-based 533 

SST seasonality reconstructions initially improves with age model uncertainty (Fig. 12H). However, this 534 

observation is likely caused by the fact that age model uncertainty was compared based on conditions in 535 

case 9, which features a phase offset between SST and δ18Ow seasonality causing the δ18O method to be 536 
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highly inaccurate even without age model uncertainty. The precision of smoothing and optimization 537 

approaches also decreases with increasing age model uncertainty (Fig 12A-D), and the optimization 538 

approach loses its precision advantage over the binning and smoothing approaches when age model 539 

uncertainty increases beyond 30 days. The monthly binning approach is most resilient against increasing 540 

age model uncertainty. Seasonality reconstructions through both the binning and optimization approach 541 

quickly lose accuracy when age model uncertainty increases but the accuracy of the smoothing approach 542 

remains the worst of all Δ47-based approaches in regardless of age model uncertainty except in the case 543 

of δ18Ow seasonality at exceptionally high (>60 days) age uncertainty (Fig. 12E-H).  544 
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 545 

Figure 13: Overview of averages and ranges of accuracy (absolute offset from real value) and precision 546 
(one standard deviation from the mean) on mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean 547 
annual SST (C) and seasonal range in SST (D) within all cases using the four different reconstruction 548 
approaches. Color coding follows the scheme in Fig. 1 and Fig. 4. Box-whisker plots for precision and 549 
accuracy cross at their median values and outliers (colored symbols) are identified based on 2x the 550 
interquartile difference (thick lines). 551 

  552 
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4. Discussion 553 

4.1 Performance of reconstruction approaches 554 

4.1.1 δ18Oc vs Δ47-based reconstructions 555 

Figure 13 summarizes the general reliability of the four approaches. δ18O reconstructions are generally 556 

less accurate than Δ47-based reconstructions (especially binning and optimization; see also 557 

Supplementary Data S9). This is a consequence of the assumption that δ18Ow remains constant year-558 

round, and that one knows its true value. Both these assumptions are problematic in the absence of 559 

independent evidence of the value of δ18Ow, especially in deep time settings (see e.g. Veizer and Prokoph, 560 

2015; Henkes et al., 2018). The risk of this assumption is made clear when comparing cases in which δ18Ow 561 

is indeed constant year-round at the assumed value (0‰; e.g. cases 1-6 and 19-24) with cases in which 562 

shifts in δ18Ow occur, especially when these shifts are out of phase with respect to the SST seasonality (e.g. 563 

cases 9-11, 18 and 25-33; Fig. 8C-D). Cases mimicking or based on natural SST and SSS variability (cases 564 

14-18 and 30-33) as well as the modern oyster data (Fig. 6) yield stronger inaccuracies in MAT and 565 

seasonality reconstructions, showing that even in many modern natural circumstances the assumption of 566 

constant δ18Ow is problematic. 567 

It is important to consider that the value of mean annual δ18Ow remained very close to the assumed value 568 

of 0‰ (within 0.15‰) in all cases except for natural data cases 30 (-1.55‰), 32 (1.01‰; see 569 

Supplementary Data S5) and the real oyster data (-1.42‰; Fig. 5). The SST values of these cases 570 

reconstructed using δ18Oc data show large offsets from their actual values (+6.7°C, -4.7°C and +10.3°C for 571 

case 30, case 32 and the real oyster data respectively; see Fig. 6 and 8 and Supplementary Data S5). 572 

These offsets are equivalent to the temperature offset one might expect from inaccurately estimating δ18Ow 573 

(~-4.6 °C/‰; Kim and O’Neil, 1997) and are only rivaled by the offset in MAT reconstructions of case 18 574 

(+5.0°C), which has growth hiatuses obscuring the coldest half of the seasonal cycle. The fact that such 575 

differences in δ18Ow exist even in modern environments should not come as a surprise, given the available 576 

data on worldwide variability of δ18Ow (at least -3‰ to +2‰; e.g. LeGrande and Schmidt, 2006) and SSS 577 

(30 to 40; ESA, 2020) in modern ocean basins. However, it should warrant caution in using δ18Oc data for 578 

SST reconstructions even in modern settings. Implications for deep time reconstructions are even greater, 579 
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given the uncertainty on and variability in global average (let alone local) δ18Ow values (Jaffrés et al., 2007; 580 

Veizer and Prokoph, 2015). The complications of using δ18Oc as a proxy for marine temperatures in deep 581 

time are discussed in detail in O’Brien et al. (2017), and Tagliavento et al. (2019). Complications arising 582 

from variability in δ18Ow are more serious in climate records from euryhaline carbonate producers (e.g. 583 

oysters) than from stenohaline organisms (e.g. corals), as they are mainly driven by salinity fluctuations. 584 

For example, seasonal salinity variability in the North Sea in offshore sites away from freshwater sources 585 

can be as low as 0.25 (Harwood et al., 2008), compared to 3-4 in the coastal Texel site simulated in case 586 

30. Given this variability, studies using the δ18Oc proxy for SST reconstructions are recommended to either 587 

reconstruct δ18Ow through additional measurements (e.g. including clumped isotope analysis) or constrain 588 

δ18Ow variability through isotope-enabled modelling (e.g. Williams et al., 2009) 589 

The analytical uncertainty of individual δ18Oc aliquots (typically 1 S.D. of 0.05‰; e.g. de Winter et al., 2018) 590 

represents only ~1.1% of the variability in δ18Oc over the seasonal cycle (~4.3‰ for the default 20°C 591 

seasonality in case 1, following Kim and O’Neil, 1997). This is much smaller than the analytical uncertainty 592 

of Δ47 (typically 1 S.D. of 0.02-0.04‰; e.g. Fernandez et al., 20187; de Winter et al., 2020b), which equates 593 

to 25-50% of the seasonal variability in Δ47 (~0.08‰ for 20°C seasonality, following Bernasconi et al., 2018; 594 

see Supplementary Data S7). This roughly 20-fold difference in relative precision causes δ18Oc based SST 595 

reconstructions to be much more precise (see Figs 7, 9-12) than those based on Δ47, and forces the 596 

necessity for grouping Δ47 data in reconstructions. However, as discussed above, the high precision of δ18O 597 

reconstructions is a misleading statistic if they are highly inaccurate. 598 

Our results show that paleoseasonality reconstructions based on δ18Oc can only be relied upon if there is 599 

strong independent evidence of the value of δ18Ow and if significant sub-annual variability in δ18Ow (>0.3‰, 600 

equivalent to a 2-3°C SST variability; see Fig. 9-10; Kim and O’Neil, 1997) can be excluded with confidence. 601 

Examples of such cases include fully marine environments unaffected by influxes of (isotopically light) 602 

freshwater or evaporation (increasing δ18Ow; Rohling, 2013). Carbonate records from environments with 603 

more stable δ18Ow conditions include, for example, the A. islandica bivalves from considerable depth (30-604 

50m) in the open marine Northern Atlantic (e.g. Schöne et al., 2005, on which case 33 is based). However, 605 

even here variability in δ18Osw due to, for example, shifting influence of different bottom water masses 606 
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cannot be fully excluded. Previous reconstruction studies show that δ18Ow in smaller basins are heavily 607 

influenced by the processes affecting δ18Ow on smaller scales, such as local evaporation and freshwater 608 

influx from nearby rivers (e.g. Surge et al., 2001; Petersen et al., 2016). Consequently, accurate quantitative 609 

reconstructions of seasonal range in shallow marine environments with extreme seasonality may not be 610 

feasible using the δ18O approach, because these environments are invariably characterized by significant 611 

fluctuations in δ18Ow and growth rate. 612 

While variability in δ18Ow compromises accurate δ18O-based seasonality reconstructions, the compilation 613 

in Fig. 3 shows that its influence on the δ18O records is too small to affect the shape of the record to such 614 

a degree that seasonality is fully obscured. While natural situations with δ18Ow fluctuations large enough to 615 

totally counterbalance the effect of temperature seasonality on δ18O records are imaginable, these cases 616 

are likely rare. This means that chronologies based on δ18O seasonality, which are a useful tool to anchor 617 

seasonal variability in absence of independent growth markers (e.g. Judd et al., 2018; de Winter, 2021b), 618 

are reliable in most natural cases. 619 

4.1.2 Seasonality reconstructions using moving averages (smoothing) 620 

Of the three methods for combining Δ47 data, the smoothing approach clearly performs worst in all four 621 

reconstructed parameters (MAT, SST seasonality, mean annual δ18Ow and δ18Ow seasonality), both in 622 

terms of accuracy and precision (Fig. 13). While applying a moving average may be a good strategy for 623 

lowering the uncertainty of Δ47-based temperature reconstructions in a long time series (e.g. Rodríguez-624 

Sanz et al., 2017), the method underperforms in cases where baseline and amplitude of a periodic 625 

component (e.g. MAT and SST seasonality) are extracted from a record. This is likely due to the smoothing 626 

effect of the moving average, which reduces the seasonal cycle and causes highly inaccurate seasonality 627 

reconstructions (offsets mounting to >6°C; Fig. 13). This bias is especially detrimental in cases where the 628 

seasonal cycle is obscured by seasonal growth halts (e.g. case 18), multi-annual trends in growth (e.g. 629 

case 4, 14 and 17) and multi-annual trends in SST (e.g. case 15 and 17; see Fig. 7 and 8). The poor 630 

performance of the smoothing approach can be slightly mitigated by increasing sampling resolution (Fig 631 

9), but even at high sampling resolutions (every 0.1 or 0.2 mm) the method still fails to reliably resolve 632 

seasonal SST ranges below 5°C even in idealized cases (case 19-21; Fig. 10). Increasing the number of 633 
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samples by analyzing longer records does not improve the result, because smoothing of the seasonal cycle 634 

by a moving average window introduces the same dampening bias if the temporal sampling resolution 635 

(number of samples per year) remains equal (Fig. 11). 636 

More critically, employing the smoothing method may give the illusion that seasonality is more reduced, 637 

and severely bias reconstructions. This bias highlights the importance of using the official meteorological 638 

definition of seasonality as the difference between the averages of warmest and coldest month in 639 

paleoseasonality work (O’Donnell et al.and Ignizio, 2012). This definition is much more robust than the 640 

“annual range” often cited based on maxima and minima in δ18Oc records. This “annual range” strongly 641 

depends on sampling resolution, which is typically <12 samples/yr (Goodwin et al., 2003), equivalent to the 642 

third lowest sampling interval (0.75 mm) simulated in this study. Therefore, we strongly recommend future 643 

studies to adhere to the monthly definition of seasonality to foster comparison between studies. While inter-644 

annual variability is lost by combining data from multiple years into monthly averages, this approach 645 

increases precision, accuracy and comparability of paleoseasonality results. Inter-annual variability can still 646 

be discussed from plots of raw data plotted in time or sampling domain. 647 

4.1.3 Monthly binning, sample size optimization and age model uncertainty 648 

Overall, the most reliable paleoseasonality reconstructions can be obtained from either binning or 649 

optimization (Fig. 13). In general, optimization is slightly more precise, while binning yields more 650 

accurate estimates of seasonal range in SST and δ18Ow (Fig. 13B and D). The more flexible combination 651 

of aliquots in the optimization routine yields improved precision (especially on mean annual averages) in 652 

cases where parts of the record are undersampled or affected by hiatuses and simultaneous fluctuations 653 

in both SST and δ18Ow (e.g. case 3-6, 14-18, 30-33). The downside of this flexibility is that in the case of 654 

larger sample sizes, the seasonal variability may be dampened, like in the smoothing approach (see 4.1.2). 655 

This apparent dampening effect may be reduced by allowing the sample size of summer and winter samples 656 

to vary independently in the optimization routine, at the cost of higher computational intensity due to the 657 

larger number of sample size combinations (see 2.1 and 4.2.2). The rigid grouping of data in monthly bins 658 

in binning prevents this dampening and therefore yields slightly more accurate estimates of seasonal 659 

ranges in SST and δ18Ow. A caveat of binning is that it requires a very reliable age model of the record, at 660 
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least on a monthly scale. If the age model has a large uncertainty, there is a risk that samples are grouped 661 

in the wrong month, which compromises the accuracy of binning reconstructions, especially for 662 

reconstructions of seasonal range (Fig 12H). This problem is exacerbated by potential phase shifts between 663 

seasonality in paleoclimate variables (SST and δ18Ow) and calendar dates, which may occur in the presence 664 

of a reliable age model. 665 

Previous authors attempted to circumvent the dating problem by analyzing high-resolution δ18Oc transects 666 

and subsequently sampling the seasonal extremes for clumped isotope analyses (Keating-Bitonti et al., 667 

2011; Briard et al., 2020). While this approach does not require sub-annual age models, it has several 668 

disadvantages compared with the binning and optimization approaches: Firstly, it requires separate 669 

sampling for δ18Oc and Δ47, which may not be possible in high-resolution carbonate archives due to sample 670 

size limitations. Analyzing small aliquots for combined δ18Oc and Δ47 analyses consumes less material. 671 

Secondly, individual summer and winter temperature reconstructions require large (> 1.5 mg; e.g. 672 

Fernandez et al., 2017) Δ47 samples from seasonal extremes, which causes more time-averaging than the 673 

approaches combining small aliquots. Finally, the position of seasonal extremes estimated from the δ18Oc 674 

record may not reflect the true seasonal extent if seasonal SST and δ18Ow cycles are not in phase (as in 675 

case 9), causing the seasonal Δ47-based SST reconstructions to underestimate the temperature 676 

seasonality. In such cases, δ18Oc and Δ47 analyses on small aliquots allow the seasonality in SST and δ18Ow 677 

to be disentangled, yielding more accurate seasonality reconstructions.  678 

Techniques for establishing independent age models for climate archives range from counting of growth 679 

layers or increments (Schöne et al., 2008; Huyghe et al., 2019), modelling and extracting of rhythmic 680 

variability in climate proxies through statistical approaches (e.g. De Ridder et al., 2007; Goodwin et al., 681 

2009; Judd et al., 2018; de Winter, 2021b) and interpolation of uncertainty on absolute dates (e.g. Scholz 682 

and Hoffman, 2011; Meyers, 2019; Sinnesael et al., 2019). While propagating uncertainty in the data on 683 

which age models are based onto the age model is relatively straightforward, errors on underlying a priori 684 

assumptions such as linear growth rate between dated intervals, (quasi-)sinusoidal forcing of climate cycles 685 

and the uncertainty on human-generated data such as layer counting are very difficult to quantify (e.g. 686 

Comboul et al., 2014) and may not be normally distributed. Results of cases 25-29 show that uncertainties 687 



37 
 

in the age domain can significantly compromise reconstructions (Fig. 12). Within the scope of this study, 688 

only the effect of symmetrical, normally distributed uncertainties on an artificial case with phase decoupled 689 

SST and δ18Ow seasonality (case 9) was tested. The effects of other types of uncertainties on the 690 

reconstructions remain unknown, highlighting an unknown uncertainty in paleoseasonality and other high-691 

resolution paleoclimate studies that may introduce bias or lead to over-optimistic uncertainties on 692 

reconstructions. Future research could quantify this unknown uncertainty by propagating estimates  of 693 

various types of uncertainty on depth values of samples and on the conversion from sampling to time 694 

domain in age models. 695 

4.2 Conditions influencing success of reconstructions 696 

The reliability (accuracy and precision) of SST and δ18Ow reconstructions depend on case-specific 697 

conditions. The range of case studies tested in this study allowed us to evaluate the effect of variability in 698 

SST, growth rate, δ18Ow, sampling resolution and record length relative to the control case (case 1; see 699 

Supplementary Data S1). A summary of the effects of these changes is given in Table 2. 700 

  701 
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Variable cases Metric 
Effect on reconstructions 

δ18O smoothing binning optimization 

SST 

12 
15 
17 
19-21 
30-33 

Precision 0 +++ + 0 

Accuracy + + 0 + 

Growth rate 
2-6 
14-18 
30-33 

Precision + ++ ++ + 

Accuracy + ++ 0 + 

δ18Ow 
7-11 
13-18 
30-33 

Precision + ++ 0 0 

Accuracy +++ +++ + ++ 

Sampling resolution 1-33 
Precision 0 +++ ++ ++ 

Accuracy + + +++ + 

Record length 22-24 
Precision 0 0 +++ ++ 

Accuracy + 0 ++ ++ 

Age model 
uncertainty? 

25-29 
Precision +++ ++ 0 ++ 

Accuracy + + ++ ++ 

Table 2: Qualitative summary of the effects of changes in variables relative from the ideal case on 702 
reconstructions using the four approaches. The “cases” column lists cases in which the changes in the 703 
respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” = 704 
negligible effect, “+“ = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong 705 
increase in uncertainty. Precision and accuracy of all tests is given in S9. 706 

 707 

4.2.1 SST variability 708 

Variability in water temperature most directly affects the proxies under study. By default (case 1), SST 709 

varies sinusoidally around a MAT of 20°C with an amplitude of 10°C (see 2.3.3, Fig. 2 and Supplementary 710 

Data S1). In cases in which multi-annual variability in SST is simulated (e.g. case 15 and 17), the accuracy 711 

of SST reconstructions using δ18O and optimization are reduced, while the binning approach is less 712 

strongly affected. Examples of such multi-annual cyclicity are El-Niño Southern Oscillation (ENSO; 713 

Philander, 1983) or North Atlantic Oscillation (NOA; Hurrell, 1995). The effect is especially large in case 17, 714 

which simulates a tropical environment with reduced SST seasonality and a strong multi -annual cyclicity. 715 

This type of environment is analogous to the environment of tropical shallow water corals, which are often 716 

used as archives for ENSO variability (e.g. Charles et al., 1997; Fairbanks et al., 1997) and is similar to 717 

tropical cases from the Australian Great Barrier Reef (case 31) and Red Sea (case 32; see Fig. 3). We 718 

therefore recommend using the binning approach on carbonate records where multi-annual cyclicity is 719 
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prevalent and if a reliable age model can be established for these records (as in e.g. Sato, 1999; Scourse 720 

et al., 2006; Miyaji et al., 2010). 721 

4.2.2 Growth rate variability and hiatuses 722 

Figures 7 and 8 show that variations in the growth rate of records, including the occurrence of hiatuses, 723 

have a strong effect on reconstructions, especially using the smoothing approach. In general, hiatuses 724 

and slower growth reduce precision of monthly SST and δ18Ow reconstructions by reducing mean temporal 725 

sampling resolution (samples/yr; see Fig. 9), and because parts of the record are undersampled. The effect 726 

on accuracy depends strongly on the timing of changes in growth rate or the occurrence of hiatuses. Cases 727 

2-6 simulate specific growth rate effects and can be used to test these differences. The smoothing method 728 

is especially sensitive to changes in growth rate that take place in specific seasons, such as hiatuses in 729 

winter (case 2) or summer (case 3) and growth peaks in summer (case 5) or spring (case 6). The other 730 

reconstruction approaches are less affected by this bias, because they generally do not mix samples from 731 

different seasons. The δ18O method is especially well suited to deal with changes in growth rate because 732 

it does not require combining different aliquots for accurate SST reconstructions. The binning and 733 

optimization approaches are slightly less reliable in cases where growth rate decreases linearly or 734 

seasonally along the entire record (cases 4-6; Fig. 2). Because these two methods consider all samples in 735 

the records at once, they are more sensitive to changes in temporal sampling resolution along the record.  736 

It is worth noting that optimization is especially sensitive to sharp changes in growth rate in summer (e.g. 737 

cases 11, 14, 16 and 17) because those conditions force the optimization routine to use larger sample 738 

sizes or include samples outside the warmest month for summer temperature estimates. A potential solution 739 

to this problem could be to allow sample sizes of summer and winter groups to vary independently in the 740 

optimization routine (see 2.1). This would allow sample size in the undersampled season (in this case: 741 

summer) to become larger than that at the other end of the δ18Oc spectrum, reducing uncertainty on the 742 

more densely sampled season and therefore improving the entire seasonality reconstruction. 743 

A worst-case scenario is represented by case 18, where the cold half of the year is not recorded. Such 744 

cases result in strong biases in reconstructions of mean annual and seasonal ranges in SST and δ18Ow, 745 

regardless of which method is used. In such extreme cases the record simply contains insufficient 746 
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information to reconstruct variability in growth rate, SST and δ18Ow, and it seems that no statistical method 747 

would enable this missing information to be recovered. The solution for these reconstructions would be to 748 

establish reliable age models, independent of δ18O or ∆47 data, which show that a large part of the seasonal 749 

cycle is missing. All methods used in this study rely on a conversion of SST and δ18Ow reconstructions to 750 

the time domain to define monthly time bins. This conversion breaks down in fossil examples when the 751 

seasonal cycle cannot be extracted from the archive, which happens when half of the seasonal cycle  or 752 

more is obscured by growth hiatuses, as exemplified in case 18. 753 

While hiatuses encompassing half of the seasonal cycle are uncommon, changes in growth rate are 754 

common in accretionary carbonate archives because conditions for (biotic or abiotic) carbonate 755 

mineralization often vary over time. This variability is either driven by biological constraints, such as 756 

senescence (e.g. Schöne, 2008; Hendriks et al., 2012), the reproductive cycle (Gaspar et al., 1999) or 757 

stress (Surge et al., 2001; Compton et al., 2007) or by variations in the environment that promote or inhibit 758 

carbonate production, such as seasonal variations in temperature (Crossland, 1984; Bahr et al., 2017) or 759 

precipitation (Dayem et al., 2010; Van Rampelbergh et al., 2014). In general, such conditions occur more 760 

frequently in mid- to high-latitude environments than in low-latitudes, and in more coastal environments 761 

rather than in open marine settings, because these environments contain stronger variations in the factors 762 

that influence growth rates (e.g. temperature, precipitation or freshwater influx; e.g. Surge et al., 2001; 763 

Ullmann et al., 2010). This difference was simulated in the cases representing natural variability (case 14-764 

18 and 30-33). Accuracy in the coastal high-latitude settings (cases 16, 18 and 29) are indeed more strongly 765 

affected by changes in growth rate. Because in such highly variable environments growth rate variability 766 

often co-occurs with variability in δ18Ow, using δ18Oc-based reconstructions is not advised, unless δ18Ow 767 

variability can be constrained or neglected (which is rare in these environments). 768 

Additional complications include that the lack of constraint on growth rate variability because of 769 

uncertainties in the record’s age model (see 4.1.3) and the effect of growth rate variability on the sampling 770 

resolution. The effect of growth rate on time-averaging within samples was not specifically tested in this 771 

study but introduces uncertainty in practice when archives with variable growth rate are sampled at a 772 

constant sampling resolution in the depth domain. In this case, parts of the archive with a lower growth rate 773 
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yield more time-averaged samples, potentially dampening one extreme of the seasonal cycle (e.g. Goodwin 774 

et al., 2003). In highly dynamic environments it is challenging to isolate all variables that introduce bias, and 775 

irregular variability in growth rate and δ18Ow will invariably introduce uncertainty in SST reconstructions, 776 

even when applying the best Δ47-based approaches (e.g. binning and optimization). In such examples, 777 

the results of natural variability cases (14-18 and 30-33) and of the real oyster data (Fig. 6) serve as 778 

benchmarks for the degree of uncertainty that may remain unexplained in these records.  779 

4.2.3 Variability in δ18Ow 780 

As discussed in 4.1.1, these variations in δ18Ow have a large effect on the accuracy of δ18Oc-based 781 

reconstructions, and their occurrence constitutes the main advantage of applying the Δ47 thermometer 782 

(Eiler, 2011). However, results of cases 7-11 in Fig. 8 and Table 2 show that δ18Ow variations can also bias 783 

Δ47-based reconstructions, especially those of seasonal ranges and those using the smoothing approach. 784 

Smoothing reconstructions are biased by these δ18Ow shifts in much the same way as they are affected 785 

by shifts in growth rate (see 4.2.2). The optimization approach is sensitive to seasonal changes in δ18Ow 786 

in antiphase with SST seasonality and by increases in δ18Ow in summer (e.g. due to excess evaporation; 787 

e.g. case 11), especially when used for reconstructions of δ18Ow seasonality. This effect arises because 788 

the optimization approach orders data based on δ18Oc and Δ47 seasonality to isolate the δ18Ow-SST 789 

relationship. Both antiphase δ18Ow seasonality and summer evaporation dampen the seasonal δ18Oc cycle 790 

and therefore influences the reconstruction of the δ18Ow-SST relationship. A good example of this is seen 791 

in the real oyster data (Fig. 6), where δ18Ow and SST vary in phase and δ18Ow dampens the SST 792 

seasonality. The binning approach is more robust against δ18Ow variability that dampens the seasonal 793 

cycle and is therefore a better choice for absolute SST reconstructions in environments where summer 794 

evaporation or other δ18Ow variability in phase with SST seasonality is expected to occur, if the age model 795 

is reliable enough to allow monthly binning of raw data (see 4.1.3). Indeed, reconstructions from the 796 

lagoonal environment (case 16) and Red Sea case (case 32 which is characterized by strong summer 797 

evaporation; e.g. Titschack et al., 2010) show that binning is the most reliable choice in these 798 

environments. 799 

4.2.4 Variability in sampling resolution and record length 800 
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Other factors influencing the effectivity effectiveness of reconstructions are the sampling resolution and the 801 

length of the record. Many of the cases discussed in this study represent idealized cases with comparatively 802 

high sampling resolutions over comparatively long (12 yr) paleoseasonality records, which yield large 803 

sample sizes. By comparison, the typical age of mollusks, which are often used as paleoseasonality 804 

archives, is 2-5 years (Ivany, 2012). Records with the highest sampling resolutions (0.1 and 0.2 mm) contain 805 

up to 1200 samples. Generating such records is not impossible, but it is highly unlikely to be applied in 806 

paleoclimate studies given the limitation of resources (e.g. instrument time) and the desire to analyze 807 

multiple records from different specimens, species, localities or ages to gain a better understanding of the 808 

variability in paleoseasonality (e.g. Goodwin et al., 2003; Schöne et al., 2006; Petersen et al., 2016). In 809 

some cases large datasets are meticulously collected from single carbonate records (e.g. Schöne et al., 810 

2005; Vansteenberge et al., 2016; de Winter et al., 2020a; Shao et al., 2020). However, in such studies, 811 

the aim is often to investigate variability at a higher (e.g. daily; de Winter et al., 2020a) resolution or longer 812 

timescales (e.g. decadal to millennial; Schöne et al., 2005; Vansteenberge et al., 2016; Shao et al., 2020) 813 

in addition to the seasonal cycle, rather than to improve the reliability of reconstructing one type of variability 814 

(e.g. seasonality) alone. 815 

Fig. 9 shows that increasing temporal sampling resolution (samples/yr) improves both the accuracy and 816 

precision of all Δ47-based reconstructions. This occurs because Δ47 samples have a large analytical 817 

uncertainty (see 4.1.2) and grouping of data therefore improves reconstructions. The decrease in precision 818 

of δ18Oc-based reconstructions (Fig. 9C-D) is explained by the fact that the analytical uncertainty of δ18Oc 819 

measurements is much smaller than the variability introduced by natural sub-annual variability in SST and 820 

δ18Ow unrelated to the seasonal cycle (see Supplementary Data S4). Therefore, higher sampling 821 

resolutions allow δ18Oc records to better capture this sub-seasonal variability, which introduces more noise 822 

on to the seasonal cycle (reducing precision) but causes monthly mean SST and δ18Ow to be more 823 

accurately reconstructed. Towards higher sampling resolutions, the gap in precision between δ18Oc- and 824 

Δ47-based reconstructions closes, eventually (in an ideal case) diminishing the advantage of high analytical 825 

precision in δ18Oc measurements (Fig. 9C-D). 826 
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An optimum sample resolution can be defined for each method after which improving sampling resolution 827 

does not significantly improve the reliability of the reconstruction (as in de Winter et al., 2017). Figure 9 828 

shows that this optimum varies depending on which variable (MAT, SST seasonality, mean annual δ18Ow 829 

or δ18Ow seasonality) is reconstructed. Therefore, Fig. 9 will allow future researchers to determine the 830 

sampling resolution that is tailored to their purpose. In general, the improvement after a sample size of 20-831 

30 samples per year is negligible for the binning and optimization methods if the total number of samples 832 

(depending on both sampling resolution and record length) is sufficient for monthly temperature 833 

reconstructions. Our data show that 200-250 paired δ18Oc and Δ47 measurements are in general sufficient 834 

for a standard deviation of 2-3°C on monthly SST reconstructions using the binning or optimization 835 

approach, preferably when spread over multiple growth years to eliminate the effect of short-term weather 836 

events or years with exceptional seasonality (Fig. 10; Supplementary Data S5). 837 

Record length only has a minimal influence on the optimization method but for very short records (≤2 838 

years) binning becomes very imprecise, especially at low sampling resolutions (Fig. 11). The reason is 839 

that the sample size within monthly time bins becomes too small in these cases, while the more flexible 840 

sample size window of the optimization routine circumvents this problem. The choice between these two 841 

approaches should therefore be based on a tradeoff between the length of the record (in time) and the 842 

number of samples that can be retrieved from it. As a result, shorter-lived, fast-growing climate archives, 843 

such as large or fast-growing (e.g. juvenile) mollusk shells, are best sampled using a high temporal 844 

resolution (>30 samples/yr) sampling strategy with the optimization approach. Longer lived archives with 845 

a lower mineralization rate, such as annually laminated speleothems, corals and gerontic mollusks, are 846 

best sampled using long time series at monthly resolution using the binning approach. 847 

A simplified decision tree that could guide sampling strategies for future paleoseasonality studies is shown 848 

in Figure 14. Note that choices and tradeoffs for these reconstructions may differ depending on the archive 849 

and environment in which it formed (see discussion above). 850 
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 851 

Figure 15: Schematic guide to choosing the right approach for reconstructing annual mean or seasonality 852 
in SST and δ18Ow from accretionary carbonate archives. Recommendations are based on the results of 853 
testing all four approaches on the entire range of cases. Researchers can follow the six steps (questions 854 
Q1-6) to decide on the right approach for reconstructing the target variable. Guidelines are based on 855 
minimizing maximizing both accuracy and precision (see details in Supplementary Data S9). Note that the 856 
smoothing approach is never the best choice. The choice between the two remaining Δ47-based 857 
approaches (binning and optimization) relies heavily on the situation and may be driven by a preference 858 
for more accurate or more precise results. 859 

 860 

4.3 Implications for clumped isotope sample size 861 

The optimization technique for grouping Δ47 aliquots for accurate SST and δ18Ow reconstructions allows 862 

us to assess the limitations of the clumped isotope thermometer for temperature reconstructions from high-863 

resolution carbonate archives. The optimal sample size given by the approach is different for different cases 864 

and depends on the temporal sampling resolution and the characteristics of the record (see S4). As 865 

expected, in cases more like the ideal case (case 1), optimal sample sizes are low (~14-24), while sample 866 

sizes increase in more complicated cases based on simulated natural environments (case 14-18) or cases 867 

based on actual SST and SSS data (cases 30-33). More confined SST seasonality (cases 19-21) also 868 
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requires larger samples to reconstruct (up to 100 samples in some cases). This is not surprising, because 869 

variability within samples will increase in records in which the seasonality is smaller or more obscured by 870 

other environmental variability. The optimal sample size between cases and sampling resolutions is not 871 

normally distributed but tails towards high sample sizes with some extreme outliers (Shapiro Wilk test p << 872 

0.05; Supplementary Data S10). The median sample size of all our simulations is 17 aliquots. This number 873 

lies between the minimum number of 14 ~100 μg replicates of standards calculated by Fernandez et al. 874 

(2017) and the minimum of 20-40 ~100 μg aliquots required for optimal paleoseasonality reconstruction 875 

from fossil bivalves by de Winter et al. (2020b). This is to be expected since many of the cases explored in 876 

this study represent ideal cases compared with the natural situation. However, in these virtual cases a 877 

measure of random sub-annual variability in SST and δ18Ow was added (see Fig. 4 and Supplementary 878 

Data S2), simulating a more realistic environment and resulting in poorer precision than replicates of a 879 

carbonate standard (as in Fernandez et al., 2017). Our simulations show that the optimum number of 880 

samples to be combined in seasonality studies depends on both the analytical uncertainty of Δ 47 881 

measurements (as represented by the estimate in Fernandez et al., 2017) and the variability between 882 

aliquots pooled within a sample that is attributed to actual variability within the record (as represented by 883 

our simulations and the estimate in de Winter et al., 2020b). The optimal sample size is therefore a good 884 

measure for the limitations of temperature variability that can be resolved in a record and can help 885 

researchers decide which strategy to apply for combining measurements to obtain the most reliable 886 

paleoseasonality estimates, or to decide whether extra sampling is required, even if the chosen approach 887 

is not to use the optimization routine itself. Note that the optimum sample size is kept equal for summer 888 

and winter samples in this study, and that the optimization approach can likely achieve better performance 889 

by considering unequal sample sizes in opposite seasons (see 4.1.3 and 4.2.2). While this added flexibility 890 

comes at a higher computational cost due to the increased number of possible sample size combinations 891 

to be considered, future studies should investigate whether this updated optimization approach could yield 892 

more reliable seasonality reconstructions. 893 

4.4 Implications for other sample size problems 894 
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While the discussion above focuses on optimizing approaches for combining samples for clumped 895 

isotope analyses in paleoseasonality reconstructions, the problem of combining samples to reduce 896 

uncertainty and isolate variation in datasets is very common (e.g. Zhang et al., 2004; Merz and Thieken, 897 

2005; Tsukakoshi, 2011). Therefore, the approaches outlined and tested in this study have applications 898 

beyond paleoseasonality reconstructions. Examples of other problems that could benefit from applying 899 

similar approaches for reducing the uncertainty of estimates of target variables while minimizing the 900 

number of analyses required to meet analytical requirements include: (1) reconstructing 901 

paleoenvironmental variability in the terrestrial realm from tooth bioapatite (e.g. Passey and Cerling, 902 

2002; Kohn, 2004; Van Dam and Reichart, 2009; de Winter et al., 2016), (2) quantitative time series 903 

analysis of orbital cycles in stratigraphic records (e.g. Lourens et al., 2010; de Vleeschouwer et al., 2017; 904 

Noorbergen et al., 20172018; Westerhold et al., 2020), (3) strontium isotope dating (e.g McArthur et al., 905 

2012; de Winter et al., 2020c), (4) reconstructing sub-seasonal variability from ultra-high-resolution 906 

records (e.g. from fast-growing mollusks and gastropods; e.g. Sano et al., 2012; Warter and Müller, 2017, 907 

de Winter et al., 2020d; Yan et al., 2020), and (5) reconstructing sea surface and deep-sea temperatures 908 

across short-lived (10–100 kyr) episodes of climate change or climate shifts from deep marine archives 909 

characterized by low sedimentation rates (e.g. Lear et al., 2008; Jenkyns, 2010; Stap et al., 2010; 910 

Lauretano et al., 2018). A more detailed discussion of the implications for other sample size problems is 911 

provided in the Supplementary Information. 912 

  913 
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5. Conclusions and recommendations 914 

The performance of three Δ47-based approaches to reconstruct seasonality from accretionary carbonate 915 

archives was evaluated in comparison with conventional δ18Oc-based reconstructions in a wide range of 916 

case studies. From the results, we conclude that while δ18Oc-based reconstructions (δ18O) yield superior 917 

precision for SST reconstructions, this method runs a high risk of yielding inaccurate results due to innate 918 

assumptions about the value of δ18Ow, which must be estimated and assumed constant year-round. Unless 919 

δ18Ow can be independently constrained or variability in δ18Ow can be neglected, Δ47-based reconstructions 920 

should be the method of choice for absolute mean annual temperature and SST seasonality 921 

reconstructions. Various techniques for combining Δ47 data were evaluated. Our findings suggest that 922 

smoothing Δ47 data using a moving average almost allways cases results in a dampening of the seasonal 923 

cycle which severely hampers recovery of seasonality. Applying the smoothing approach results in 924 

inaccuracies in reconstructions of MAT as well, especially in cases where part of the seasonal cycle is 925 

obscured by variability in growth rate or multi-annual trends. More reliable seasonality reconstructions are 926 

achieved with two approaches for combining Δ47 data using time binning (binning) or applying a flexible 927 

sample size optimization (optimization) approach. Of these two approaches, optimization achieves better 928 

precision and can resolve smaller seasonal temperature differences with confidence. However, binning is 929 

often more accurate, and outperforms optimization as the most reliable approach. This is especially true 930 

in cases with growth stops or δ18Ow changes in phase with temperature seasonality (e.g. strong seasonal 931 

evaporation or freshwater influx) and in longer multi-annual time series with a reliable age model. 932 

Optimization is the better choice for shorter (<3 years) records, especially if the sampling resolution can 933 

be increased, such as in short, fast growing climate archives. 934 

Despite the focus on the problem of resolving seasonality in carbonate archives, the findings in this study 935 

have applications for other problems in earth science where sample size and sampling resolution put limits 936 

on the ability to resolve specific trends, events, and cycles from time series. While the above-mentioned 937 

recommendations of the optimization and binning methods are likely valid for most studies aiming to 938 

quantify the mean and amplitude of a specific cycle or event (equivalent to MAT and SST seasonality), 939 
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(dynamic) moving averages (smoothing) are expected to yield the best results in studies quantifying 940 

aperiodic trends from longer data series. 941 

 942 

Code availability 943 

All scripts used to make the calculations described in this study are compiled in the documented R package 944 

“seasonalclumped”, which is freely available on the open-source online R-database CRAN (de Winter, 945 

2021a; https://cran.r-project.org/web/packages/seasonalclumped). Annotated R scripts used to make 946 

calculations for this study are available in the digital supplement uploaded to the open-source online 947 

repository Zenodo (www.doi.org/10.5281/zenodo.3899926). 948 

 949 

Data availability 950 

Supplementary data, figures and tables as well as all scripts used to do the calculations and create the 951 

virtual datasets used in this study are deposited in the open-source online repository Zenodo 952 

(www.doi.org/10.5281/zenodo.3899926). Virtual datasets generated within the context of this study are also 953 

made available as datafiles within the R package that contains the scripts used for this study 954 

(“seasonalclumped”; de Winter, 2021a; see https://cran.r-project.org/web/packages/seasonalclumped). 955 
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