Optimizing sampling strategies in high-resolution paleoclimate records

Niels J. de Winter¹,² *, Tobias Agterhuis¹, Martin Ziegler¹

¹Department of Earth Sciences, Utrecht University, Princetonaan 8a, 3584 CB Utrecht, the Netherlands
²AMGC research group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Correspondence to: Niels J. de Winter (n.j.dewinter@uu.nl)
Abstract

The aim of paleoclimate studies to resolve climate variability from noisy proxy records can in essence be reduced to a statistical problem. The challenge is to isolate meaningful information on climate variability from these records by reducing measurement uncertainty through a combination of proxy data while retaining the temporal resolution needed to assess the timing and duration of the climatic variabilities. In this study, we explore the limits of this compromise by testing different methods for combining proxy data (smoothing, binning and sample size optimization) on a particularly challenging paleoclimate problem: resolving seasonal variability in stable isotope records. We test and evaluate the effects of changes in the seasonal temperature and the hydrological cycle as well as changes in accretion rate of the archive and parameters such as sampling resolution and age model uncertainty on the reliability of seasonality reconstructions based on clumped and oxygen isotope analyses in real and virtual datasets. Our results show that strategic combinations of clumped isotope analyses can significantly improve the accuracy of seasonality reconstructions compared to conventional stable oxygen isotope analyses, especially in settings where the isotopic composition of the water is poorly constrained. Smoothing data using a moving average often leads to an apparent dampening of the seasonal cycle, significantly reducing the accuracy of reconstructions. A statistical sample size optimization protocol yields more precise results than smoothing. However, the most accurate results are obtained through monthly binning of proxy data, especially in cases where growth rate or water composition cycles dampen the seasonal temperature cycle. Our analysis of a wide range of natural situations reveals that the effect of temperature seasonality on oxygen isotope records almost invariably exceeds that of changes in water composition. Thus, in most cases, oxygen isotope records allow reliable identification of growth seasonality as a basis for age modelling and seasonality reconstructions in absence of independent chronological markers in the record. These specific findings allow us to formulate general recommendations for sampling and combining data in paleoclimate research and have implications beyond the reconstruction of seasonality. We briefly discuss the implications of our results for solving common problems in paleoclimatology and stratigraphy, including cyclostratigraphy, strontium isotope dating and event stratigraphy.
1. Introduction

Improving the resolution of climate reconstructions is a key objective in paleoclimate studies because it allows climate variability to be studied on different timescales and sheds light on the continuum of climate variability (Huybers and Curry, 2006). However, the temporal resolution of climate records is limited by the accretion rate (growth or sedimentation rate) of the archive and the spatial resolution of sampling for climate reconstructions, which is a function of the size of sample required for a given climate proxy. This tradeoff between sample size and sampling resolution is especially prevalent when using state-of-the-art climate proxies which require large sample sizes, such as the carbonate clumped isotope paleothermometer (Δ47; see applications in Rodríguez-Sanz et al., 2017; Briard et al., 2020; Caldarăescu et al., 2021) or stable isotope ratios in specific compounds or of rare isotopes (e.g. phosphate-oxygen isotopes in tooth apatite, triple oxygen isotopes in speleothems or carbon isotopes of CO2 in ice cores; Jones et al., 1999; Schmitt et al., 2012; Sha et al., 2020). The challenge of sampling resolution persists on a wide range of timescales: from attempts to resolve geologically short-lived (kyr-scale) climate events from deep sea cores with low sedimentation rates (e.g. Stap et al., 2010; Rodríguez-Sanz et al., 2017) to efforts to characterize tidal or daily variability in accretionary carbonate archives (e.g. Warter and Müller, 2017; de Winter et al., 2020a). What constitutes “high-resolution” is therefore largely dependent on the specifics of the climate archive.

Sample size limitations are especially important in paleoseasonality reconstructions. Reliable archives for seasonality (e.g. corals, mollusks and speleothem records) are in high demand in the paleoclimate community, because the seasonal cycle is one of the most important cycles in Earth’s climate and seasonality reconstructions complement more common long-term (kyr to -Myr) records of past climate variability (e.g. Morgan and van Ommen, 1997; Tudhope et al., 2001; Steuber et al., 2005; Steffensen et al., 2008; Denton et al., 2005; Huyge et al., 2015; Vansteenberge et al., 2019). A more detailed understanding of climate dynamics at the human timescale is increasingly relevant for improving climate projections (IPCC, 2013). Unfortunately, the growth and mineralization rates of archives that capture high-resolution variability (rarely exceeding 10 mm/yr) limit the number and size of samples that can be obtained at high temporal resolutions (e.g. Mosley-Thompson et al., 1993; Passey and Cerling, 2002; Treble et al.,
This problem is exacerbated by the fact that accurate methods for climate reconstructions often require comparatively large sample sizes while methods relying on smaller sample sizes rely on uncertain assumptions. A case in point is the popular carbonate stable oxygen isotope temperature proxy ($\delta^{18}O_c$) which relies on assumptions of the water composition ($\delta^{18}O_w$) that become progressively more uncertain further back in geological history (e.g. Veizer and Prokop, 2015). Contrarily, the clumped isotope proxy ($\Delta^{47}S$) does not rely on this assumption but requires larger amounts of sample (e.g. Müller et al., 2017).

A promising technique for circumventing sample size limitations is to analyze larger numbers of small aliquots from the same sample or from similar parts of the climate archive. These smaller aliquots typically have a poorer precision but averaging multiple aliquots into one estimate while propagating the measurement uncertainty leads to a more reliable estimate of the climate variable (Dattalo, 2008; Meckler et al., 2014; Müller et al., 2017; Fernandez et al., 2017). This approach yields improved sampling flexibility since aliquots can be combined in various ways after measurement. It also allows outlier detection at the level of individual aliquots, thereby spreading the risk of instrumental failure and providing improved control on changes in measurement conditions that may bias results.

Previous studies have applied several different methods for combining data from paleoclimate records to reduce analytical noise or higher order variability, and extract variability with a specific frequency (e.g. a specific orbital cycle or seasonality; e.g. Lisiecki and Raymo, 2004; Cramer et al., 2009). These data reduction approaches can in general be categorized into: smoothing techniques, in which a sliding window or range of neighboring datapoints is used to smooth high resolution records (see e.g. Cramer et al., 2009) or binning techniques, in which the record is divided into equal bins along its length axis in sampling direction (e.g. time, depth or length in growth direction; e.g. Lisiecki and Raymo, 2004; Rodríguez-Sanz et al., 2017). In addition, a third approach is proposed here based on optimization of sample size for dynamic binning of data along the climate cycle using a moving window in the domain of the climate variable (as opposed to the depth sampling domain) combined with a T-test routine (see -section 3.42.1). All three approaches have advantages and caveats.
2. Aim

In this study, we explore the (dis)advantages of these three data reduction approaches by testing their reliability in resolving seasonal variability in sea surface temperature (SST) and seawater stable oxygen isotope composition (δ^{18}O$_{\text{w}}$), both highly sought-after variables in paleoclimate research. We compare reconstructions of SST and δ^{18}O$_{\text{w}}$ in real and virtual datasets from accretionary carbonate archives (e.g. shells, corals and speleothems) using the clumped isotope thermometer (Δ_{47}) combined with stable oxygen isotope ratios of the carbonate (δ^{18}O$_{\text{c}}$).

2. Methods

2.1 Reconstruction methods/approaches

Throughout the remainder of this work, the three methods/approaches for combining data for reconstructions are abbreviated defined as follows (see also Fig. 1 and 3.4):

Smoothing refers to the reconstructions of SST and δ^{18}O$_{\text{w}}$ based on moving averages of Δ_{47} and δ^{18}O$_{\text{c}}$ records. (Fig. 1B). For every case study dataset, the full possible range of moving window sizes (from 1 sample to the full length of the record) were tested for SST and δ^{18}O$_{\text{w}}$ reconstructions was explored. The window size that resulted in the most significant difference between maximum and minimum Δ_{47} values (based on a student’s T-test) was applied to reconstruct SST and δ^{18}O$_{\text{w}}$ from Δ_{47} and δ^{18}O$_{\text{c}}$ records. SST and δ^{18}O$_{\text{w}}$ were calculated for all case studies using the combination of empirical temperature relationships by Kim and O’Neil (1997; δ^{18}O$_{\text{c}}$-δ^{18}O$_{\text{w}}$-temperature relationship) and Bernasconi et al. (2018; Δ_{47}-temperature relationship). Here and in all other approaches, a typical analytical uncertainty on measurements of Δ_{47} (one standard deviation of 0.04‰) and δ^{18}O$_{\text{w}}$ (one standard deviation of 0.05‰) was used to include uncertainty due to measurement precision. These analytical uncertainties were chosen based on typical uncertainties reported for these measurements in the literature (e.g. Schöne et al., 2005; Huyge et al., 2015; Vansteenberge et al., 2016) and long-term precision uncertainties obtained by measuring in-house standards using the MAT253+ with Kiel IV setup in the clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). The measurement uncertainty was propagated through all.
calculations using a Monte Carlo simulation (N = 1000) in which \(\Delta_{47} \) and \(\delta^{18}O_c \) records were randomly sampled from a normal distribution with the virtual \(\Delta_{47} \) and \(\delta^{18}O_c \) values as means and analytical uncertainties as standard deviations.

Binning refers to reconstructions of SST and \(\delta^{18}O_w \) based on binning of \(\Delta_{47} \) and \(\delta^{18}O_c \) records into monthly time bins. (Fig. 1C). The \(\Delta_{47} \) and \(\delta^{18}O_c \) data from each case study were grouped into monthly time bins and converted to SST and \(\delta^{18}O_w \) using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. Here too, Monte Carlo simulation was applied to propagate measurement uncertainties onto monthly SST and \(\delta^{18}O_w \) reconstructions. Note that the prerequisite for this method is that the data is aligned using a (floating) age model accurate enough to allow samples to be placed in the right bin. The age of virtual samples in this study is known so this prerequisite poses no problems in this case. However, in the fossil record this alignment might be less certain in absence of accurate chronologies within the archive (e.g. through daily growth increments in mollusk shells; e.g. Schöne et al., 2008; Huyghe et al., 2019; see 4.1.3).

Optimization refers to reconstructions of SST and \(\delta^{18}O_w \) based on sample size optimization in \(\Delta_{47} \) records. (Fig. 1D). In this approach aliquots of each virtual dataset are ordered from warm (low \(\delta^{18}O_c \)) to cold (high \(\delta^{18}O_c \) data) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset, increasingly large samples of multiple aliquots (from 2 aliquots to half the length of the record) are taken from both the warm (“summer”) and the cold (“winter”) side of the distribution. Summer and winter samples were kept equal (symmetrical grouping) to reduce the number of possible sample size combinations and allow for more efficient computation. However, asymmetrical grouping with differing sample sizes on the summer and winter ends of the \(\delta^{18}O_c \)-spectrum are possible (see 4.1.3 and 4.2.2). Sample sizes with significant difference in \(\Delta_{47} \) value between summer and winter groups (p ≤ 0.05 based on a student’s T-test) were selected as optimal sample sizes. The moving window T-test in the proxy domain ensures that an optimal compromise is reached between high precision and resolving differences between seasonal extremes. For each successful sample size, SST and \(\delta^{18}O_w \) values were calculated from \(\Delta_{47} \) and
δ¹⁸O data according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formula. The relationship between SST and δ¹⁸Oc obtained from these reconstructions was used to convert all Δ₄⁷ and δ¹⁸Oc data to SST and δ¹⁸Oc, which are then grouped into monthly SST and δ¹⁸Oc reconstructions. Measurement uncertainties were propagated through the entire approach by Monte Carlo simulation (N = 1000).

For comparison, we also include reconstructions based purely on individual δ¹⁸Oc measurements with an (often inaccurate) assumption of a constant δ¹⁸Ow (equal to the modern ocean value of 0‰ VSMOW) which form the most common method for carbonate-based temperature reconstructions in paleoclimate research (see e.g. Schöne et al., 2005; Westerhold et al., 2020; Fig. 1A; hereafter: δ¹⁸Oc). For these reconstructions, δ¹⁸Oc records were grouped into monthly time bins with analytical uncertainties propagated using the Monte Carlo approach (N = 1000) and were directly converted to SST using the Kim and O’Neil (1997) temperature relationship.

For each case study, sampling interval and reconstruction method, SST and δ¹⁸Oc results were aggregated into monthly averages, medians, standard deviations, and standard errors. Step by step documentation of calculations made for the three Δ₄⁷-based reconstruction approaches and the δ¹⁸Oc reconstructions are given in S7 and in the complementary R package (de Winter, 2021a).

2.2 Benchmarks for accuracy and precision

Accuracy and precision of reconstructions of the following four parameters were evaluated against official USGS definitions of climate parameters (O’Donnell et al., 2012):

1. mean annual SST (MAT), defined as the average of all 12 monthly temperature reconstructions,
2. seasonal range in SST, defined as the temperature difference between warmest and coldest month,
3. mean annual δ¹⁸Ow, defined as the average of all 12 monthly δ¹⁸Ow reconstructions,
4. seasonal range in δ¹⁸Ow, defined as the δ¹⁸Ow difference between most enriched (highest δ¹⁸Ow) and most depleted (lowest δ¹⁸Ow) monthly reconstruction.

Accuracy was defined as the absolute offset of the mean value of the reconstructed climate parameter from the actual”true” datavalue. Precision was defined as the (relative) standard deviation of the
reconstruction, as calculated from the variability within monthly time bins resulting from error propagation through the reconstruction methods. Monte Carlo error propagation (see 2.1). An overview of monthly SST and δ18Ow reconstructions using the four approaches in all cases is given in S4. Raw data results and figures of reconstructions of all cases using all sampling resolutions are compiled in S8.

For comparison, we also include reconstructions based purely on individual δ18Oc measurements with an (often inaccurate) assumption of constant δ18Osw, which form the most common method for carbonate-based temperature reconstructions in paleoclimate research. These reconstructions were not subject to any of the data combination methods outlined above and mostly serve as a benchmark to compare with the performance of the Δ47 methods. SST reconstructions assuming constant δ18Osw are hereafter referred to as "δ18Oc" reconstructions.

We evaluate the reliability of all four approaches through measures of accuracy (offset of reconstruction from the true value) and precision (variability between reconstructions due to random errors in the data) of reconstructions and highlight biases inherent to specific approaches and in specific situations. In the end, we provide guidelines for choosing the right sampling approach for studies on seasonality reconstructions from accretionary carbonate archives. In addition, we discuss implications of our findings for other sampling problems in the geosciences.
Figure 1: Schematic overview of the four approaches for seasonality reconstructions: (A) δ^{18}O-based reconstructions, assuming constant δ^{18}O_{sw} and Δ_{47} data using a moving average. (B) Reconstructions based on binning δ^{18}O, and Δ_{47} data in monthly time bins. (D) Reconstructions based on optimization of the sample size for combining δ^{18}O, and Δ_{47} data (see description in 3.4.2). Colored curves represent virtual δ^{18}O (blue) and Δ_{47} (red depth-series in sampling domain). Black curves represent reconstructed monthly SST and δ^{18}O_{sw} averages.

3. Methods

3.12.3 SST and δ^{18}O,δ^{18}O_{sw} datasets

The reliability (accuracy and precision) of the three reconstruction approaches were illustrated and tested and compared on three datasets of data: Firstly, by evaluating data from a real specimen of a Pacific oyster (Crassostrea gigas, syn. Magallana gigas) reported in Ullmann et al. (2010). Secondly, by application on data based on actual measurements of natural variability in SST and sea surface salinity (SSS; case 30-33) converted to virtual Δ_{47} and δ^{18}O records. Thirdly, by applying the approaches on a set of virtual datasets based on completely virtual artificial SST and δ^{18}O,δ^{18}O_{sw} data (case 1-29, see Fig. 2) converted to virtual Δ_{47} and δ^{18}O records. For virtual datasets, records of SST and δ^{18}O were converted to the depth domain (along the length of the record) by defining a virtual growth rate in the sampling direction. Adding this growth rate as a variable allowed us to test the sensitivity of approaches to changes in the extension rate of the archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear extension rate and periods in which no mineralization occurs (hiatuses or growth...
cessations) are common in all climate archives (e.g., Treble et al., 2003; Ivany, 2012). An overview of the
virtual SST and \(\delta^{18} \text{O}_{\text{sw}} \) time series in all test cases is shown in Fig. 2 and a description of all cases is given
in SI.
Figure 2: Overview of time series of all virtual test cases. Colored curves represent time series of SST (red), δ^{18}O$_{\text{w}}$, δ^{18}O$_{\text{sw}}$ (blue) and growth rate (green/orange, abbreviated as “GR”). Horizontal axes in all plots are 12 years long (see legend below case 6). Vertical axis of all plots has the same scale (SST: 10 to 30°C; δ^{18}O$_{w}$, δ^{18}O$_{sw}$: -1 to +1‰ VSMOW; Growth rate: 0 – 50 µm/day; see legend in bottom right corner). Horizontal error bars and labels on the right side of cases 25-29 represent standard errors introduced on the age model (bars not to scale). The δ^{18}O$_{c}$ and Δ_{47} records resulting from these virtual datasets are provided in S8-S6 (see also Fig. 3 for natural examples).
Table 1: Overview of virtual cases 1-29 used to test the reconstruction methods. Case descriptions are abbreviated. Details on the SST, growth rate and $\delta^{18}O_w$ included in each case are described in detail in SI. SST, growth rate and $\delta^{18}O_w$ records of all cases are shown in Fig. 2. “GR” = growth rate.

<table>
<thead>
<tr>
<th>Sensitivity cases</th>
<th>Natural cases</th>
<th>Varying seasonality</th>
<th>Varying age model-uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. $\delta^{18}O_w$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seasonality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in phase with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. $\delta^{18}O_w$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seasonality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in antiphase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with SST,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Growth stops <12°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta^{18}O_w$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in phase with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lags SST by 4/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Growth stops >28°C</td>
<td></td>
<td>Varying record</td>
<td></td>
</tr>
<tr>
<td>$\delta^{18}O_w$</td>
<td></td>
<td>length</td>
<td></td>
</tr>
<tr>
<td>in summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Linear decrease in $\delta^{18}O_w$ in spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. $\delta^{18}O_w$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seasonality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in phase with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spring $\delta^{18}O_w$ decrease and decreasing GR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. GR seasonality in phase with SST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Negative $\delta^{18}O_w$ in summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Positive $\delta^{18}O_w$ in summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Multi-annual (5 yr) SST cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Multi-annual (5 yr) $\delta^{18}O_w$ cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Full marine case with ontogenetic GR trend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Coastal case with strong seasonality and strong multi-annual SST cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Laggonal case with summer $\delta^{18}O_w$ increase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Tropical monsoon with growth limited to summer half of the year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Worst case scenario with growth limited to summer half of the year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Control case with reduced SST amplitude (-5°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Control case with reduced SST amplitude (-3°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Control case with reduced SST amplitude (-1°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Control case shortened to 6 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Control case shortened to 3 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Control case shortened to 1 yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Case 9 with ±1 day age model uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Case 9 with ±45 days age model uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Case 9 with ±16 days age model uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Case 9 with ±90 days age model uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Case 9 with ±150 days age model uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.1 Modern oyster data

Environmental SST and $\delta^{18}O_w$ data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described in Ullmann et al. (2010). Since direct, in situ measurements of $\delta^{18}O_w$ variability at a high temporal resolution were not available, $\delta^{18}O_w$ was estimated from (more widely available) SSS data using a mass balance (equation 1 and 2; following e.g. Ullmann et al., 2010):

$$\delta^{18}O_{sw} = \delta^{18}O_{w,freshwater} + f + \delta^{18}O_{w,ocean} \times (1 - f) \quad (1)$$
\[f = \frac{\text{SSS}_{\text{sample}} - \text{SSS}_{\text{ocean}}}{\text{SSS}_{\text{freshwater}} - \text{SSS}_{\text{ocean}}} \]

(2)

Here, we assume salinity (SSS\text{sample}) results from a mixture of a fraction (\(f \)) isotopically light and low-salinity \(\delta^{18}O_{\text{freshwater}} = -8.5\% \); SSS\text{freshwater} = 0) freshwater and a fraction (1-\(f \)) ocean water (\(\delta^{18}O_{\text{ocean}} = 0\% \); SSS\text{ocean} = 35), with negative amounts of freshwater contribution (\(f < 0 \)) representing net evaporation (SSS\text{sample} < SSS\text{ocean}). The value for \(\delta^{18}O_{\text{freshwater}} \) was based on the discharge weighted average \(\delta^{18}O_{\text{w}} \) of water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All references to \(\delta^{18}O_{\text{w}} \) values throughout the text are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-3), the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling was required.

2.3.2 Cases based on real climate data

Natural environmental \(\text{t} \) Four test cases time series were based on time series of real SST and SSS data from four different locations, selected to capture a variety of environments with different SST and SSS variability (see Fig. 3):

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30)
2. Great Barrier Reef in Australia (case 31)
3. Gulf of Aqaba between Egypt and Saudi Arabia (case 32)
4. Northern Atlantic Ocean east of Iceland (case 33)

Daily measurements of SST and SSS for case 31-33 were obtained from worldwide open-access datasets of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA, 2020) respectively. Hourly SST and SSS measured \(\text{in situ} \) in the Wadden Sea (case 30) were obtained from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, \(\text{in situ} \) measurements of \(\delta^{18}O_{\text{w}} \) variability at a high temporal resolution are scarce, \(\delta^{18}O_{\text{w}} \) was estimated from (more widely available) SSS data using the same mass balance described in 2.3.1. The value for \(\delta^{18}O_{\text{freshwater}} \) was based on the \(\delta^{18}O_{\text{w}} \) of rain in the Netherlands (-8\%; Mook, 1970; Bowen, 2020). Applying this mass balance on the SSS record of the Wadden Sea tidal flats (case 30) results in \(\delta^{18}O_{\text{w}} \) values and a
relationship in agreement with measurements in this region (Harwood et al., 2008). SST and δ18Ow time series for all cases are given in S4 and natural cases are plotted in Fig. 3.

For all virtual datasets (cases 1–33), records of SST and δ18Ow were converted to the sampling domain (along the length of the record) by defining a virtual growth rate in the sampling direction. Adding this growth rate as a variable allowed us to test the sensitivity of approaches to changes in the extension rate of the archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear extension rate and periods in which no mineralization occurs (hiatuses or growth cessations) are common in all climate archives (e.g. Treble et al., 2003; Ivany, 2012).

2.1.1 Modern oyster data

After conversion to the sampling domain, virtual aliquots were subsampled at equal distance from the SST and δ18Ow series of all cases using six sampling intervals: 0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals were chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling interval (e.g. 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling the same parts of the seasonal cycle (e.g. same months) every year, which biases both the mean value and the precision of monthly SST and δ18Ow reconstructions. This bias towards certain parts of the seasonal cycle is much stronger at low sample sizes (large sampling intervals) and is illustrated in the Supplementary Information.

Environmental SST and δ18Osw data from the List Basin in Denmark (54°59.25N, 8°23.51E) where the modern oyster specimen originated were obtained from local in situ measurements of SST and SSS described in Ullmann et al. (2010). Since direct, in situ measurements of δ18Osw variability at a high temporal resolution were not available, δ18Osw was estimated from (more widely available) SSS data using a mass balance (equation 1 and 2; following e.g. Ullmann et al., 2010):

\[
\delta_{\text{18O}}^{\text{sw}} = \delta_{\text{18O}}^{\text{sw, freshwater}} f + \delta_{\text{18O}}^{\text{sw, ocean}} (1 - f) \quad (1)
\]

\[
f = \frac{\text{SSS}_{\text{sample}} - \text{SSS}_{\text{ocean}}}{\text{SSS}_{\text{freshwater}} - \text{SSS}_{\text{ocean}}} \quad (2)
\]

Here, we assume salinity (SSS_{sample}) results from a mixture of a fraction (f) isotopically light and low-salinity (δ18O_{sw,freshwater} = -8.5‰, VSMOW; SSS_{freshwater} = 0) freshwater and a fraction (1-f) ocean water (δ18O_{sw,ocean} = 0‰, VSMOW; SSS_{ocean} = 35‰) with negative amounts of freshwater contribution (f < 0) representing net
evaporation \((SSS_{\text{sample}} \rightarrow SSS_{\text{ocean}})\). The value for \(\delta^{18}O_{sw,\text{freshwater}}\) was based on the discharge weighted average \(\delta^{18}O_{sw}\) of water in the nearby Elbe and Weser rivers (-8.5\‰ VSMOW; see Ullmann et al., 2010).

3.1.4 Cases based on real climate data

Natural environmental time series were based on SST and SSS data from four different locations, selected to capture a variety of environments with different SST and SSS variability:

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30)
2. Great Barrier Reef in Australia (case 31)
3. Gulf of Aqaba between Egypt and Saudi Arabia (case 32)
4. Northern Atlantic Ocean east of Iceland (case 33).

Daily measurements of SST and SSS for cases 31-33 were obtained from worldwide open-access datasets of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA, 2020) respectively. Hourly SST and SSS measured \textit{in situ} in the Wadden Sea (case 30) were obtained from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, \textit{in situ} measurements of \(\delta^{18}O\) variability at a high temporal resolution is scarce, \(\delta^{18}O\) was estimated from (more widely available) SSS data using the same mass balance described in 3.1.1. The value for \(\delta^{18}O_{sw,\text{freshwater}}\) was based on the \(\delta^{18}O_{sw}\) of rain in the Netherlands (-8\‰ VSMOW; Mook, 1970; Bowen, 2020), and applying this mass balance on the SSS record of the Wadden Sea tidal flats (case 30) results in \(\delta^{18}O_{sw}\) values and a SSS-\(\delta^{18}O_{sw}\) relationship in agreement with measurements in this region (Harwood et al., 2008). SST and \(\delta^{18}O_{sw}\) time series for all cases are given in S5 and natural cases are plotted in Fig. 3.
Figure 3: Overview of the four cases of virtual data based on natural SST and SSS measurements explored in this study. (A) Case 30: Tidal flats on the Wadden Sea, Texel, the Netherlands. (B) Case 31 Great Barrier Reef, Australia. (C) Case 32: Gulf of Aqaba between Egypt and Saudi Arabia. (D) Case 33: Atlantic Ocean east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red, $\delta^{18}O_{\text{w}}$ and $\delta^{18}O_{\text{sw}}$ in blue and growth rate (abbreviated as “GR”) in green (as in Fig. 2). The graph below shows virtual $^{54}O_\text{c}$ (blue) and Δ_{47} (red) records created from these data series using a sampling interval of 0.45 mm and including analytical noise (see 3.3). Note that the scale of vertical axes varies between plots.
Virtual SST and $\delta^{18}O_{\text{sw}}$ time series were artificially constructed to test the effect of various SST and $\delta^{18}O_{\text{sw}}$ scenarios on the effectiveness of the reconstruction methods. The default test case (case 1) contained an ideal, 12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal amplitude of 10°C, a constant $\delta^{18}O_{\text{sw}}$ value of 0‰ VSMOW and a constant growth rate of 10 mm/yr. Other cases contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1):

- Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18)
- Seasonal and/or multi-annual changes in $\delta^{18}O_{\text{sw}}$ (cases 7-11, 13-18)
- Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17)
- Variations in the seasonal SST amplitude (cases 19-21)
- Change in the total length of the time series (cases 22-24).
- Variation in uncertainty on the age of each virtual datapoint (cases 25-29)

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3) shows that the virtual cases are not realistic approximations of natural variability in SST and $\delta^{18}O_{\text{sw}}$. Natural SST and $\delta^{18}O_{\text{sw}}$ variability are not limited to the seasonal or multi-annual scale but contain a fair amount of higher order (daily to weekly scale) variability. In order to simulate this natural variability, we extracted the seasonal component of SST and $\delta^{18}O_{\text{sw}}$ variability from our highest resolution record of measured natural SST and SSS data (case 30: data from Texel, the Netherlands, see 3.1.2.2.3.2 and Fig. 3). The standard deviation of residual variability of this data after subtraction of the seasonal cycle was used to add random high-frequency noise to the SST and $\delta^{18}O_{\text{sw}}$ variability in virtual cases. Note that while sub-annual environmental variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002), this representation is an oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not exactly normally distributed (Kolmogorov-Smirnov test: $D = 0.010$; $p = 7.2 \times 10^{-14}$ and $D = 0.039$; $p < 2.2 \times 10^{-16}$ for SST and SSS residuals respectively; see S2-4). SST and $\delta^{18}O_w$ data from cases 1-29 was converted to the sampling domain and subsampled at a range of sampling resolutions following the same procedure applied to cases 30-33 (see 2.3.2).
3.2 Subsampling

Virtual aliquots were subsampled at equal distance from the SST and δ\(^{18}\)O\(_w\) depth series of all cases using six sampling intervals: 0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals were chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling interval (e.g., 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling the same parts of the seasonal cycle (e.g., same months) every year, which biases both the mean value and the precision of monthly SST and δ\(^{18}\)O\(_w\) reconstructions. This bias towards certain parts of the seasonal cycle is much stronger at low sample sizes (large sampling intervals) and is illustrated in S6.

3.3.2.4 Conversion to δ\(^{18}\)O\(_c\) and Δ\(^{47}\) data

After subsampling, SST and δ\(^{18}\)O\(_w\) for series virtual datasets (cases 1-33) were converted to δ\(^{18}\)O\(_c\) and the conversion of δ\(^{18}\)O values from VSMOW to VPDB scale (equation 5; Brand et al., 2014).

\[\delta^{18}O_{VPDB} = 0.97002 \times \delta^{18}O_{VSMOW} - 29.98 \]

(5)

For the real oyster data (Ullmann et al., 2010; see 2.3.1), only the Δ\(^{47}\) data needed to be created because δ\(^{18}\)O\(_c\) was directly measured. As a result, each case study yielded "sampled"ing depth-records of Δ\(^{47}\) and δ\(^{18}\)O\(_c\) in the sampling domain and their associated corresponding "true" SST and δ\(^{18}\)O\(_w\) records in the time domain. These allowing us to test assessment of reliability of the reconstruction approaches in different scenarios. (Figure 4) gives a schematic step by step schematic overview of all steps taken to create of virtual database virtual Δ\(^{47}\) and δ\(^{18}\)O\(_w\) data was created, used in to test reconstruction approaches, and finally compared to the original "true" seasonality.
in SST and δ^{18}O. The result of applying these steps is illustrated on and test the four reconstruction approaches as well as an example of case 310 (Great Barrier reef data, see also Fig. 25) is provided in Fig. 4. All calculations for creating Δ_{δ^18} and δ^{18}Oc depth-series in sampling domain were carried out using the open-source computational software R (R core team, 2013), and scripts for these calculations are given in S7 and compiled in the documented R package “seasonalclumped” (de Winter, 2021a). All Δ_{δ^18} and δ^{18}Oc datasets are provided in S8S6.
In the case of the real oyster data, δ^{18}O_{c} data from Ullmann et al. (2010) was used and Δ^{47} data was created from the seasonal SST record provided in the same study with added natural residual variability (as explained in 3.1.3).

Figure 4: Flow diagram showing the steps taken to create virtual data (Δ_{47} and δ^{18}O_{c}; cases 1-33) and compare results of SST and δ^{18}O_{w} reconstructions with the actual SST and δ^{18}O_{w} data the record was based on (counterclockwise direction). Steps 1-3 outline the procedure for creating virtual Δ_{47} and δ^{18}O_{c} datasets (see sections 2.3 and 2.4). Step 4 shows the application of the different reconstruction methods on this virtual data (see Fig. 2 for details) and step 5 illustrates how the reconstructions are compared with the original ("true") SST and δ^{18}O_{w} data to calculate accuracy and precision of the reconstruction approaches. Note that step 1 is different for cases 1-29 (based on fully artificial SST and δ^{18}O_{w} records; 2.3.3) than for cases 30-33 (SST and δ^{18}O_{w} records based on real SST and SSS data; see 2.3.2).
Figure 5X: An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) meant to illustrate the data processing steps. Virtual data plots include normally distributed measurement uncertainty on Δ_{CT} and $\delta^{18}O_{\text{w}}$. The comparison with “true” SST and $\delta^{18}O_{\text{w}}$ values yields accuracy and precision of reconstructions of:

- MAT
- SST seasonality
- mean annual $\delta^{18}O_{\text{w}}$
- $\delta^{18}O_{\text{w}}$ seasonality
3.4 SST and δ¹⁸O reconstructions

SST and δ¹⁸Osw seasonality were reconstructed from the Δ⁴⁷ and δ¹⁸Oc records to test the reliability of the sample reduction approaches (see Fig. 1). In all approaches, a typical analytical uncertainty on measurements of Δ⁴⁷ (one standard deviation of 0.04‰) and δ¹⁸Oc (one standard deviation of 0.05‰) was used to include measurement precision. These analytical uncertainties were chosen based on typical uncertainties reported for these measurements in the literature (e.g. Schöne et al., 2005; Huyge et al., 2015; Vansteenberge et al., 2016) and long-term precision uncertainties obtained by measuring in-house standards using the MAT253+ with Kiel IV setup in the clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). Virtual measurement uncertainty was propagated through all reconstruction approaches using a Monte Carlo simulation (N = 1000) in which Δ⁴⁷- and δ¹⁸Oc-records were randomly sampled from a normal distribution with the virtual Δ⁴⁷- and δ¹⁸Oc-values as means and analytical uncertainties as standard deviations. For each case study, sampling interval and reconstruction method, SST and δ¹⁸Oc results were aggregated into monthly averages, medians, standard deviations, and standard errors. Step by step documentation of calculations made for the three Δ⁴⁷-based reconstruction approaches and the δ¹⁸Oc reconstructions are given in S9 and are detailed below.

For δ¹⁸Oc reconstructions (Fig. 1A), only the δ¹⁸Oc-records were used. Seawater δ¹⁸Osw-values were assumed to remain 0‰ VSMOW throughout the year. The simulated δ¹⁸Oc-records with analytical uncertainties added were directly converted to SST using the Kim and O’Neil (1997) temperature relationship (see equation 4).

Smoothing reconstructions (Fig. 1B) were carried out by defining a range of moving window sizes (from N=1 to the complete record). For every simulated Δ⁴⁷- and δ¹⁸Oc-record, all moving windows were tested. The window size that resulted in the most significant difference between maximum and minimum Δ⁴⁷-values using a student’s T-test was applied on both Δ⁴⁷- and δ¹⁸Oc-records. This process was repeated for all virtual records to propagate simulated analytical uncertainty through the protocol. SST and δ¹⁸Osw were calculated for each set of Δ⁴⁷- and δ¹⁸Oc-records using the combination of empirical temperature relationships by Kim and O’Neil (1997) and Bernasconi et al. (2018; equation 3).
In binning reconstructions (Fig. 1C), virtual Δ47 and δ18Oc data were grouped into monthly time bins and converted to SST and δ18Osw using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The prerequisite for this method is that the data is aligned using a (floating) age model accurate enough to allow samples to be placed in the right bin. The age of virtual samples in this study is known so this prerequisite poses no problems in this case, but the same may not be true in the fossil record.

Finally, the optimization reconstruction approach (Fig. 1D) was carried out by ordering the aliquots of each virtual dataset from warm (low δ18Oc) to cold (high δ18Oc) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset, increasingly large samples of multiple aliquots (from N=1 to the complete record) are taken from both the warm (“summer”) and the cold (“winter”) side of the distribution. Sample sizes with significant difference in Δ47 value between summer and winter groups (p ≤ 0.05 based on a student’s T-test) were selected as optimal sample sizes. For each successful sample size, SST and δ18Osw values were calculated from Δ47 and δ18Oc data according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The relationship between SST and δ18Osw obtained from these reconstructions was used to convert all data to SST and δ18Osw.

Accuracy and precision of reconstructions of the following four parameters were evaluated:

1. mean annual SST (MAT)
2. seasonal range in SST (temperature difference between warmest and coldest month)
3. mean annual δ18Osw
4. seasonal range in δ18Osw (δ18Osw difference between warmest and coldest month).

Accuracy was defined as the absolute offset of the reconstruction from the actual data. Precision was defined as the (relative) standard deviation of the reconstruction, as calculated from the variability within monthly time bins resulting from error propagation through the reconstruction methods. An overview of monthly SST and δ18Osw reconstructions using the four approaches in all cases is given in S5. Raw data results and figures of reconstructions of all cases using all sampling resolutions are compiled in S10.
43. Results

43.1 Real example

Measured ($\delta^{18}O_w$) and simulated (ΔT) data from the Pacific oyster from the Danish List Basin yielded various estimates for SST and $\delta^{18}O_w$ seasonality depending on which using all reconstruction approaches is taken (Fig. 5B). While a model of shell $\delta^{18}O_w$ based on SST and SSS data closely approximates the measured $\delta^{18}O_w$ record (Fig. 5C6C), basing SST reconstructions solely on $\delta^{18}O_w$ data without any a priori knowledge of $\delta^{18}O_w$ variability (assuming constant $\delta^{18}O_w$ equal to the global marine value) leads to high inaccuracy in SST seasonality and mean annual SST (Fig. 5D6D). The in-phase relationship between SST and SSS (Fig. 5B6B) dampens the seasonal $\delta^{18}O_w$ cycle, causing underestimation of temperature seasonality, while a negative mean annual $\delta^{18}O_w$ value in the List Basin biases SST reconstructions towards higher temperatures. In terms of SST reconstructions, the smoothing, binning and optimization approaches based on ΔT and $\delta^{18}O_w$ data yield more accurate reconstructions, albeit with a reduced seasonality and a bias towards the summer season. The latter is a result of severely reduced growth rates in the winter season, which was therefore undersampled (see Fig. 5A-6A and 5C6C). However, the accuracy of both $\delta^{18}O_w$ seasonality and mean annual $\delta^{18}O_w$ estimates is high-low in these approaches too, largely because of the limited sampling resolution, especially in winter. The optimization approach suffers especially from the strong in-phase relationship between SST and SSS, which obscures the difference between the $\delta^{18}O_w$-$\delta^{14}C$ effect and the temperature effect on shell carbonate. Yet, disentangling SST from $\delta^{18}O_w$-$\delta^{14}C$ seasonality is central to the success of the approach (see 3.4). Fig. 5D-6D does not show the reproducibility error on SST and $\delta^{18}O_w$-$\delta^{14}C$ estimates, which is much larger for the smoothing approach than for the binning an optimization approaches due to the limited data in the winter seasons (see 55).

These results highlight show that several properties of carbonate archives, such as growth rate variability, phase relationships between SST and $\delta^{18}O_w$-$\delta^{14}C$, seasonality and sampling resolution, can negatively impact the reliability of paleoseasonality reconstructions. The virtual and real data cases in this study were tailored to test the effects of these archive properties more thoroughly.
Figure 56: (A) Plot of δ¹⁸Oc and (virtual) Δ₄⁷ data from a modern Pacific oyster (Crassostrea gigas; see Ullmann et al., 2010). (B) shows SST and δ¹⁸Ow, δ¹⁸Osw data from the List Basin (Denmark) in which the oyster grew. (C) shows the fit between δ¹⁸Oc data and modelled δ¹⁸Oc calculated from SST and δ¹⁸Ow, δ¹⁸Osw on which the shell age model was based. (D) Shows a summary of the results of different approaches for reconstructing SST and δ¹⁸Ow, δ¹⁸Osw from the δ¹⁸Oc and Δ₄⁷ data. The vertical colored bars show the reconstructed seasonal variability using all methods with ticks indicating warmest month, coldest month, and annual mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision errors on monthly reconstructions are not shown but are given in S5.

3.2.2 Case-specific results

A case-by-case breakdown of the precision (Fig. 67) and accuracy (Fig. 28) of reconstructions using the four approaches shows that reliability of reconstructions varies significantly between approaches and is highly case-specific. In general, precision is highest in δ¹⁸O reconstructions, followed by optimization and binning with smoothing generally yielding the worst precision. Average precision standard deviations of the underperforming methods (binning and smoothing) are up to 2-3 times larger than those of δ¹⁸O (e.g. respectively 3.9°C and 3.5°C vs. 1.3°C for δ¹⁸O MAT reconstructions; see also Supplementary Information). It is worth noting that precision on δ¹⁸O-based estimates is mainly driven by measurement
precision (which is better for $\delta^{18}O_c$ than for Δ_{47} measurements, see section 4.5.1), while Δ_{47}-based reconstructions lose precision due to the higher measurement error on Δ_{47} measurements and the method used for combining measurements for seasonality reconstructions. On a case-by-case basis, the hierarchy of approaches can differ, especially if strong variability in growth rate is introduced, such as in case 14, where the size of hiatuses in the record increases progressively, or in case 18, in which half of the year is missing due to growth hiatuses (see Table 1, S1 and SSS4). Between the Δ_{47}-based methods (smoothing, binning and optimization), optimization is rarely outcompeted in terms of precision in both SST and $\delta^{18}O_{sw}$ seasonality reconstructions.

The comparison based on precision alone is misleading, as the most precise approach which is most precise ($\delta^{18}O_c$) runs the risk of being highly inaccurate (offsets exceeding 4°C on some MAT reconstructions; see Fig. 7C), especially in cases based on natural SST and SSS (case 30-33). The smoothing approach also often yields highly inaccurate results, especially in cases with substantial variability in $\delta^{18}O_{sw}$ (e.g. case 9-11). Accuracy of optimization and binning outcompete the other methods in most circumstances. Binning outperforms optimization in reconstructions of $\delta^{18}O_{sw}$ seasonality, making it overall the most accurate approach. Interestingly, optimization is less accurate specifically in cases with sharp changes in growth rate in summer (e.g. cases 11, 14, 16 and 17), while binning performs better in these cases. Reconstructions of mean annual SST and $\delta^{18}O_{sw}$ in case 18 are especially inaccurate regardless of which method is applied. This extreme case with hiatuses lasting growth only during one half of the year combined with seasonal fluctuations in both SST and $\delta^{18}O_{sw}$ presents a worst-case scenario for seasonality reconstructions leading to strong biases in mean annual temperature reconstructions. In situations like case 18, the optimization approach is most accurate in MAT and SST seasonality reconstructions, but $\delta^{18}O_{sw}$ is more accurately reconstructed using the binning approach.

Finally, it is worth noting that in natural situations (Fig. 3), variability in SST almost invariably has a larger influence on $\delta^{18}O_c$ and Δ_{47} records than $\delta^{18}O_{sw}$, such that fluctuations in $\delta^{18}O_c$ records closely follow the SST seasonality even in cases with relatively large $\delta^{18}O_{sw}$ variability (e.g. case 30). Chronologies based on these $\delta^{18}O_c$ fluctuations are therefore generally accurate.
Figure 67: Overview of precision (propagated standard deviation of variability within reconstructions, see 2.2) of reconstructions of mean annual temperature (A), seasonal temperature range (B), mean annual
\(^{18}O\)w (C) and seasonal range in \(^{18}O\)w (D), with higher values (darker colors) indicating lower precision
(more variability between reconstructions) based on average sampling resolution (sampling interval of 0.45
mm). The different cases on the horizontal axis are color coded by their difference from the control case
(case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were not
successful. All data on precision Overview of precision (one standard deviation) of reconstructions of mean
annual \(^{18}O\)w (A), seasonal range in \(^{18}O\)w (B), mean annual SST (C) and seasonal range in SST (D),
with higher values indicating lower precision (higher precision errors) based on average sampling resolution
(sampling interval of 0.45 mm). The horizontal axis displays the different cases, color coded by their
difference from the control case (case 1; see legend on the left-hand side). Colored lines indicate the
different data treatment approaches. Box-whisker plots to the right show medians and distributions of
precision on cases using different reconstruction approaches (outliers are identified as black dots based on
2x interquartile distance). Color coding follows the scheme in Fig. 1 (standard deviation values) is provided
in Supplementary data 4.

Figure 78: Overview of accuracy (absolute offset from actual “true” values) of reconstructions of mean
annual \(^{18}O\)w, seasonal temperature range in \(^{18}O\)w (B), mean annual
\(^{18}O\)w-SST (C) and seasonal range in \(^{18}O\)w-SST (D), with higher values (darker colors) indicating lower
accuracy (higher offsets) based on average sampling resolution (sampling interval of 0.45 mm). The
horizontal axis displays the different cases on the horizontal axis, are color coded by their difference from
the control case (case 1; see legend on the right-hand side). Box-whisker plots to the right show medians and distributions of accuracy on cases using different reconstruction approaches (outliers are identified as black dots based on 2x interquartile distance). Color coding follows the scheme in Fig. 1 and
Fig. 6. Grey boxes indicate cases for which reconstructions were not successful. All data on accuracy
(difference between reconstructed and “true” values) is provided in Supplementary data 4.
Figure 89: Effect of sampling resolution (in samples per year, see S5) on the precision (one standard deviation) of results of reconstructions of mean annual δ¹⁸Ow,δ¹⁸Osw (A), seasonal range in δ¹⁸Ow,δ¹⁸Osw (B), mean annual SST (C) and seasonal range in SST (D). Effect on the accuracy (absolute offset from actual value) of results of reconstructions of mean annual δ¹⁸Ow,δ¹⁸Osw (E) and seasonal range in δ¹⁸Ow,δ¹⁸Osw (F), mean annual SST (G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.
43.3 Effect of sampling resolution

As expected, increasing the temporal sampling resolution (i.e., number of samples per year) almost invariably increases the precision and accuracy (Fig. 8) of reconstructions using all methods. An exception to this rule is the precision of $\delta^{18}O$ reconstructions, which decreases with increasing sampling resolution. Precision errors of all $\Delta\psi$-based approaches eventually converge with the initially much lower precision error of $\delta^{18}O$ reconstructions when sampling resolution increases. However, the sampling resolution required for $\Delta\psi$-based reconstructions to rival or outcompete the $\delta^{18}O$ reconstructions differs, with optimization requiring lower sampling resolutions than the other methods (e.g., 20–40 samples/year compared to 40–80 samples/year for smoothing and binning; Fig. 8A–D). Accuracy also decreases with increasing sampling resolution (Fig. 8E–H). When grouping all cases together, it becomes clear that $\delta^{18}O$ reconstructions can only approach the accuracy of $\Delta\psi$-based approaches for reconstructions of MAT. Seasonality in both SST and $\delta^{18}O_{sw}$ is most accurately reconstructed using binning, and the smoothing approach once again performs worst.

Figure 910: Effect of SST seasonality range (difference between warmest and coldest month in the record) on the relative precision of SST seasonality reconstructions ("RSD", defined as one standard deviation divided by the mean value). Panel A shows precision results if random variability ("weather patterns") in both SST and $\delta^{18}O_{sw}$ as well as measurement uncertainty is added to the records (see 32.1.13.3 and S1). Panel B shows precision of records with random variability in SST and measurement uncertainty only. Panel C shows precision if only measurement uncertainty is considered. Color coding follows the scheme in Fig. 1 and Fig. 4. Shaded dots represent results at various sampling resolutions, while bold lines are averages for all reconstruction approaches. Black circles highlight the places where curves cross the threshold of two standard deviations, which indicates the minimum SST seasonality that can be resolved within 2 standard deviations (~95% confidence level) using the reconstruction approach.
43.4 Resolving SST seasonality

Comparison of cases 19, 20 and 21 (SST seasonality of 9.7°C, 5.7°C and 2.1°C respectively) with control case 1 (SST seasonality of 19.3°C) allowed us to study how changes in the seasonal SST range affect the precision of measurements (Fig. 910; see also Table 1 and S1). The data reconfirms that δ¹⁸O reconstructions are most precise; a deceptive statistic given the risk of highly inaccurate results this approach yields (see Fig. 2B). Taking into consideration only analytical uncertainty, all approaches except for smoothing can confidently resolve at least the highest SST seasonality within a significance level of two standard deviations (~95%) using a moderate sampling resolution (mean of all resolutions shown in Fig. 10). Increasing sampling resolution improves the precision of Δσ-based reconstructions (see Fig. 9D9D), so high sampling resolutions (0.1 or 0.2 mm) allow smaller seasonal differences to be resolved. When random sub-annual variability is added to the SST and δ¹⁸O, δ²³⁰Th records (see 3.1.1.3.3.3.3 and S1), the minimum seasonal SST extent that can be resolved decreases for all approaches (Fig. 9B-10B and 9C10C). Nevertheless, δ¹⁸O and optimization reconstructions remain able to resolve a relatively small SST seasonality of 2-4°C, even with all noise added to the records.
Effect of record length (in years) on the relative precision (one standard deviation as fraction of the mean value) of results of reconstructions of mean annual SST (A) and SST seasonality (B). Shaded dots represent results for the six different sampling resolutions. Solid lines connect averages for cases 1, 2, 3, and 4 for each reconstruction approach. Color coding follows the scheme in Fig. 1 and Fig. 4.

43.5 Effect of record length

The effect of variation in the length of the record was investigated by comparing cases 2, 3, and 4 (record lengths of 6 years, 3 years, and 1 year, respectively) with the control case (record length of 12 years; see Table 1). As expected, the precision of MAT and SST seasonality results slightly increases in larger datasets (longer records) for optimization and binning, however, this pattern is not clear for smoothing and δ18O reconstructions. The differences between reconstruction approaches remain relatively constant regardless of the length of the record, with general precision hierarchy remaining intact (δ18O > optimization > binning > smoothing). An exception occurs in the case of very short (<3 yr) records, where the smoothing gains an advantage over other Δω-based methods due to its lack of sensitivity to changes in the record length. For very short (<3 yr) records, and binning reconstructions are not precise enough to resolve MAT and SST seasonality within two standard deviations (~95% confidence level). Most of the variation in precision with record length is largely driven by very high precision errors of reconstructions based on records with...
low sampling resolutions (sampling intervals of 1.55 mm or 3.25 mm; see also Fig. 8A-D). As a result, most of the reduction in precision in shorter records can be mitigated by denser sampling.

Figure 112: Effect of uncertainty in age model on the reproducibility (standard deviation on estimate) of results of reconstructions of mean annual δ¹⁸O (A) and seasonal range in δ¹⁸O (B), mean annual SST (C) and seasonal range in SST (D). Effect of uncertainty in age model on the accuracy (offset from true value) of results of reconstructions of mean annual δ¹⁸O (E) and seasonal range in δ¹⁸O (F), mean annual SST (G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.

43.6 Effect of age model uncertainty

Uncertainty on the age model has a significant effect on both the precision and the accuracy (Fig. 112) of reconstructions using all approaches. The δ¹⁸O reconstructions are most strongly affected by uncertainties in the age model and suffer from a large decrease in precision with increasing age model uncertainty (Fig. 11C-D). The high reproducibility of the δ¹⁸O approach in comparison with the Δν approaches quickly disappears when age model uncertainty increases beyond 20-30 days. Interestingly, the accuracy of δ¹⁸O-based SST seasonality reconstructions based on δ¹⁸O initially improves with age model uncertainty (Fig. 11H-D). However, this observation is likely caused by the fact that age model uncertainty was compared based on conditions in case 9, which features a phase offset between SST and δ¹⁸Oδ¹⁸Ow seasonality causing the δ¹⁸O method to be highly inaccurate even without age model uncertainty. The
precision of smoothing and optimization approaches also decreases with increasing age model uncertainty (Fig 1A-D), and the optimization approach loses its precision advantage over the binning and smoothing approaches when age model uncertainty increases beyond 30 days. The monthly binning approach is very robust, and its precision does not significantly decrease with resilient against increasing age model uncertainty. Seasonality reconstructions through both the binning and optimization approach quickly lose accuracy when age model uncertainty increases. The accuracy of the smoothing approach remains the worst of all approaches in regardless of age model uncertainty (Fig. 1E-H).
Figure 12: Overview of averages and ranges of accuracy (absolute offset from real value) and precision (one standard deviation from the mean) on mean annual $\delta^{18}O_w$ (A) and seasonal range in $\delta^{18}O_w$ (B), mean annual SST (C) and seasonal range in SST (D) within all cases using the four different reconstruction approaches. Color coding follows the scheme in Fig. 1 and Fig. 4. Box-whisker plots for precision and accuracy cross at their median values and outliers (colored symbols) are identified based on 2x the interquartile difference. (see Fig. 6 and 7).
4. Discussion

54.1 Performance of reconstruction approaches

54.1.1 $\delta^{18}O$ vs ΔT-based reconstructions

A summary of the general reliability of the four approaches is shown in Figure 12-13. The $\delta^{18}O$ reconstructions are generally less accurate than ΔT-based reconstructions (especially binning and optimization; see Fig. 12 and see also S10S9). This is a consequence of the assumption that $\delta^{18}O_{SW}$ remains constant year-round, and that we know its true value. Both these assumptions are problematic in absence of independent evidence of the value of $\delta^{18}O_{SW}$, especially in deep time settings (see e.g. Veizer and Prokoph, 2015; Henkes et al., 2018).

The risk of this assumption is made clear when comparing cases in which $\delta^{18}O_{SW}$ is indeed constant year-round at the assumed value (0‰ VSMOW; e.g. cases 1-6 and 19-24) with cases in which shifts in $\delta^{18}O_{SW}$ occur, especially when these shifts are out of phase with respect to the SST seasonality (e.g. cases 9-11, 18 and 25-33; Fig. 2C-D). Cases mimicking or based on natural SST and SSS variability (cases 14-18 and 30-33) as well as the modern oyster data (Fig. 5B) yield stronger inaccuracies in MAT and seasonality reconstructions, showing that even in many modern natural circumstances the assumption of constant $\delta^{18}O_{SW}$ is problematic.

It is important to consider that the mean annual $\delta^{18}O_{SW}$ remained very close to the assumed value of 0‰ VSMOW (within 0.15‰) in all cases except for natural data cases 30 (-1.55‰ VSMOW), 32 (1.01‰ VSMOW; see S5) and the real oyster data (-1.42‰ VSMOW; Fig. 5). The SST values of these cases reconstructed using $\delta^{18}O_s$ data show large offsets from their actual values (+6.7°C, -4.7°C and +10.3°C for case 30, case 32 and the real oyster data respectively; see Fig. 5B and 2C-D). These offsets are equivalent to the temperature offset one might expect from inaccurately estimating $\delta^{18}O_{SW}$ (~4.6 °C VSMOW; Kim and O’Neil, 1997) and are only rivaled by the offset in MAT reconstructions of case 18 (+5.0°C), which has growth hiatuses obscuring the coldest half of the seasonal cycle. The fact that such differences in $\delta^{18}O_{SW}$ exist even in modern environments should not come as a surprise, given the available data on variability of $\delta^{18}O_{SW}$ (at least -3‰ to +2‰ VSMOW; e.g. LeGrande and Schmidt, 2006) and SSS (30 to 40; ESA, 2020) in modern ocean basins. However, it should warrant caution in using
δ¹⁸O data for SST reconstructions even in modern settings. Implications for deep time reconstructions are even greater, given the uncertainty on and variability in global average (let alone local) δ¹⁸Oₑ values (Jaffrés et al., 2007; Veizer and Prokoph, 2015). The complications of using δ¹⁸O as a proxy for marine temperatures in deep time are discussed in detail in O’Brien et al. (2017), and Tagliavento et al. (2019).

The analytical uncertainty of individual δ¹⁸O aliquots (typically 1 S.D. of 0.05‰; e.g. de Winter et al., 2018) represents only ~1.1% of the variability in δ¹⁸O over the seasonal cycle (~4.3‰ for the default 20°C seasonality in case 1, following Kim and O’Neil, 1997). This is much smaller than the analytical uncertainty of Δ⁴⁷ (typically 1 S.D. of 0.02-0.04‰; e.g. Fernandez et al., 2018; de Winter et al., 2020b), which equates to 25-50% of the seasonal variability in Δ⁴⁷ (~0.08‰ for 20°C seasonality, following Bernasconi et al., 2018; see S8). This roughly 20-fold difference in relative precision causes δ¹⁸O based SST reconstructions to be much more precise (see Figs 6-9-11) than those based on Δ⁴⁷, and forces the necessity for grouping Δ⁴⁷ data in reconstructions. However, as discussed above, the low-high precision of δ¹⁸O reconstructions is misleading and not a misleading useful statistic if they are highly inaccurate.

Our results show that paleoseasonality reconstructions based on δ¹⁸O can only be relied upon if there is strong independent evidence of the value of δ¹⁸Oₑδ¹⁸Oₑ and if significant sub-annual variability in δ¹⁸Oₑδ¹⁸Oₑ (>0.3‰, equivalent to a 2-3°C SST variability; see Fig. 8-9-10; Kim and O’Neil, 1997) can be neglected excluded with confidence. Examples of such cases include fully marine environments unaffected by influxes of (isotopically light) freshwater or evaporation (increasing δ¹⁸Oₑδ¹⁸Oₑ; Rohling, 2013). Carbonate records from suitable environments include with more stable δ¹⁸Oₑ conditions include, for example, the A. islandica bivalves from considerable depth (30-50m) in the open marine Northern Atlantic (e.g. Schöne et al., 2005, on which case 33 is based). However, even here variability in δ¹⁸Oₑ due to, for example, shifting influence of different bottom water masses cannot be fully excluded. Previous reconstruction studies show that δ¹⁸Oₑδ¹⁸Oₑ in smaller basins such as the Western Interior Seaway are heavily influenced by the processes affecting δ¹⁸Oₑδ¹⁸Oₑ on smaller scales, such as local evaporation and freshwater influx from nearby rivers (e.g. Surge et al., 2001; Petersen et al., 2016). Consequently, accurate quantitative reconstructions of seasonal range in shallow marine environments with extreme seasonality
may not be feasible using the $\delta^{18}O$ approach, because these environments are invariably characterized by significant fluctuations in $\delta^{18}O_{w}$ and growth rate.

While variability in $\delta^{18}O_{w}$ compromises accurate $\delta^{18}O$-based seasonality reconstructions, the compilation in Fig. 3 shows that its influence on the $\delta^{18}O$ records is too small to affect the shape of the record to such a degree that seasonality is fully obscured. While natural situations with $\delta^{18}O_{w}$ fluctuations large enough to totally counterbalance the effect of temperature seasonality on $\delta^{18}O$ records are imaginable, these cases are likely rare. This means that chronologies based on $\delta^{18}O$ seasonality, which are a useful tool to anchor seasonal variability in absence of independent growth markers (e.g. Judd et al., 2018; de Winter, 2021b), are reliable in most natural cases.

54.1.2 Seasonality reconstructions using moving averages (smoothing)

Of the three methods for combining ΔCO$_2$ data, the smoothing approach clearly performs worst in all four reconstructed parameters (MAT, SST seasonality, mean annual $\delta^{18}O_{w}$ and $\delta^{18}O_{sw}$ seasonality), both in terms of accuracy and precision (Fig. 1213). While applying a moving average may be a good strategy for lowering the uncertainty of ΔCO$_2$-based temperature reconstructions in a long time series (e.g. Rodriguez-Sanz et al., 2017), the method underperforms in cases where baseline and amplitude of a periodic component/spike or event (e.g. MAT and SST seasonality) are extracted from a record. This is likely due to the smoothing effect of the moving average, which reduces the seasonal cycle and causes highly inaccurate seasonality reconstructions (offsets mounting to >6°C; Fig. 1213). This bias is especially detrimental in cases where the seasonal cycle is obscured by seasonal growth halts (e.g. case 18), multi-annual trends in growth (e.g. case 4, 14 and 17) and multi-annual trends in SST (e.g. case 15 and 17; see Fig. 6-7 and Fig. 1 and 7B). The lack of performance of the smoothing approach can be slightly mitigated by increasing sampling resolution (Fig 89), but even at high sampling resolutions (every 0.1 or 0.2 mm) the method still fails to reliably resolve seasonal SST ranges below 5°C even in idealized cases (case 19-21; Fig. 910). Increasing the number of samples by analyzing longer records does not improve the result, because smoothing of the seasonal cycle by a moving average window introduces the same dampening bias as long as the temporal sampling resolution (number of samples per year) remains equal (Fig. 1011).
More critically, employing the smoothing method may give the illusion that seasonality is more reduced, and severely bias reconstructions. This bias highlights the importance of using the official meteorological definition of seasonality as the difference between the averages of warmest and coldest month in paleoseasonality work (O’Donnell et al., 2012). This definition is much more robust than the “annual range” often cited based on maxima and minima in δ¹⁸O records. This “annual range” strongly depends on sampling resolution, which is typically <12 samples yr⁻¹ (Goodwin et al., 2003), equivalent to the third lowest sampling interval (0.75 mm) simulated in this study. Therefore, we strongly recommend future studies to adhere to the monthly definition of seasonality to foster comparison between studies. While inter-annual variability is lost by combining data from multiple years into monthly estimates of WMMT and CMMT, this approach increases precision, accuracy and comparability of paleoseasonality results. Inter-annual variability can still be discussed from plots of raw data against plotted in age or depth/time or sampling domain.

5.1.3 Monthly binning, sample size optimization and age model uncertainty

Overall, the most reliable paleoseasonality reconstructions can be obtained from either binning or optimization (Fig. 12(A)). In general, optimization is slightly more precise, while binning yields more accurate estimates of seasonal range in SST and δ¹⁸Ow,δ¹⁸Osw (Fig. 12B, 13B and D). The more flexible combination of aliquots in the optimization routine yields improved precision (especially on mean annual averages) in cases where parts of the record are undersampled or affected by hiatuses and simultaneous fluctuations in both SST and δ¹⁸Ow,δ¹⁸Osw (e.g. case 3-6, 14-18, 30-33). The downside of this flexibility is that in case of larger sample sizes, the seasonal variability may be dampened, like in the smoothing approach (see 5.1.4, 1.2). This apparent dampening effect may be reduced by allowing the sample size of summer and winter samples to vary independently in the optimization routine, at the cost of higher computational intensity due to the larger number of sample size combinations (see 2.1 and 4.2.2). The rigid grouping of data in monthly bins in binning prevents this dampening and therefore yields slightly more accurate estimates of seasonal ranges in SST and δ¹⁸Ow,δ¹⁸Osw. A caveat of binning is that it requires a very reliable age model of the record, at least on a monthly scale. If the age model has a large uncertainty, there is a risk that samples are grouped in the wrong month, which compromises the accuracy of binning.
reconstructions, especially for reconstructions of seasonal range (Fig. 11). This problem is exacerbated by potential phase shifts between seasonality in paleoclimate variables (SST and δ18Ow) and calendar dates, which may occur in the presence of a reliable age model.

Previous authors attempted to circumvent the dating problem by analyzing high-resolution δ18O transects and subsequently sampling the seasonal extremes for clumped isotope analyses (Keating-Bitonti et al., 2011; Briard et al., 2020). While this approach does not require sub-annual age models, it has several disadvantages compared with the binning and optimization approaches: Firstly, it requires separate sampling for δ18Ow and Δ47, which may not be possible in high-resolution carbonate archives due to sample size limitations. Analyzing small aliquots for combined δ18Oc and Δ47 analyses consumes less material. Secondly, individual summer and winter temperature reconstructions require large (> 1.5 mg; e.g. Fernandez et al., 2017) Δ47 samples from seasonal extremes, which causes more time-averaging than the approaches combining small aliquots. Finally, the position of seasonal extremes estimated from the δ18Oc record may not reflect the true seasonal extent if seasonal SST and δ18Ow cycles are not in phase (as in case 9), causing the seasonal Δ47-based SST reconstructions to underestimate the temperature seasonality. In such cases, δ18Oc and Δ47 analyses on small aliquots allow the seasonality in SST and δ18Ow to be disentangled, yielding more accurate seasonality reconstructions.

Techniques for establishing independent age models for climate archives range from counting of growth layers or increments (Schöne et al., 2008; Huyghe et al., 2019), modelling and extracting of rhythmic variability in climate proxies through statistical approaches (e.g. De Ridder et al., 2007; Goodwin et al., 2009; Judd et al., 2018; de Winter, 2021b) and interpolation of uncertainty on absolute dates (e.g. Scholz and Hoffman, 2011; Meyers, 2019; Sinnesael et al., 2019). While propagating uncertainty in the data on which age models are based onto the age model is relatively straightforward, errors on underlying a priori assumptions such as linear growth rate between dated intervals, (quasi-)sinusoidal forcing of climate cycles and the uncertainty on human-generated data such as layer counting are very difficult to quantify (e.g. Comboul et al., 2014). The uncertainty of such age models of climate records is thus difficult to assess and may not be normally distributed. A simplified approach of assessing the effect of a normally distributed error on the age value of each proxy data point (cases 25-29) shows that uncertainties in the age domain can...
significantly compromise reconstructions (Fig. 412). Within the scope of this study, only the effect of
symmetrical, normally distributed uncertainties on an artificial case with phase decoupled SST and
\(\delta^{18}O_{w} \) seasonality (case 9) was tested. The effects of other types of uncertainties on other cases
reconstructions remains unknown, highlighting an unknown uncertainty in paleoseasonality and other high-
resolution paleoclimate studies that may introduce bias or lead to over-optimistic uncertainties on
reconstructions. Future research could aim to quantify this unknown uncertainty by propagating estimates
of various types of uncertainty on depth values of samples and on the conversion from depth-sampling
to time domain in age models.

54.2 Conditions influencing success of reconstructions

Our results show that the reliability (accuracy and precision) of SST and \(\delta^{18}O_{w} \) reconstructions
depends on case-specific conditions. The range of case studies tested in this study allowed us to evaluate
the effect of variability in SST, growth rate, \(\delta^{18}O_{w} \) sampling resolution and record length relative to
the control case (case 1; see S1). A summary of the effects of these changes is given in Table 42.
Table 1: Qualitative summary of the effects of changes in variables relative from the ideal case on reconstructions using the four approaches. The “cases” column lists cases in which the changes in the respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” = negligible effect, “+” = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong increase in uncertainty. Details on the precision and accuracy of all tests is given in S12.

Table 42: Qualitative summary of the effects of changes in variables relative from the ideal case on reconstructions using the four approaches. The “cases” column lists cases in which the changes in the respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” = negligible effect, “+” = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong increase in uncertainty. Details on the precision and accuracy of all tests is given in S12.

5.4.2.1 SST variability

Variability in water temperature most directly affects the proxies under study. By default (case 1), SST is taken to vary sinusoidally around a MAT of 20°C with an amplitude of 10°C (see S1.12.3.3, Fig. 2 and S1). In the cases of exceptions, in which multi-annual variability in SST is simulated (e.g. case 15 and 17), the accuracy of SST reconstructions using δ¹⁸O and optimization are reduced, while the binning approach is less strongly affected. Examples of such multi-annual cyclicity are El-Niño Southern Oscillation (ENSO; Philander, 1983) or North Atlantic Oscillation (NOA; Hurrell, 1995). The effect is especially large in case 17, which simulates a tropical environment with reduced SST seasonality and a strong multi-annual cyclicity. This type of environment is analogous to the environment of tropical shallow water corals, which are often used as archives for ENSO variability (e.g. Charles et al., 1997; Fairbanks et al., 1997). As such, these virtual records and should be similar to analogous tropical cases from the Australian Great Barrier Reef (case 31) and Red Sea (case 32; see Fig. 6.73). We therefore recommend future researchers to use the binning approach on carbonate records where multi-annual cyclicity is prevalent and if a reliable
age model can be established for these records (as in e.g. Sato, 1999; Scourse et al., 2006; Miyaji et al., 2010).

2.2 Growth rate variability and hiatuses

Figures 7 and 78 show that variations in the growth rate of records, including the occurrence of hiatuses, have a strong effect on reconstructions, especially using the smoothing approach. In general, hiatuses and slower growth reduce precision of monthly SST and δ18Osw reconstructions by reducing mean temporal sampling resolution (samples/yr; see Fig. 89), and because specific parts of the record are undersampled. The effect on accuracy depends strongly on the timing of changes in growth rate or the occurrence of hiatuses. Cases 2-6 simulate specific growth rate effects and can be used to test these differences. The smoothing method is especially sensitive to changes in growth rate that take place in specific seasons, such as hiatuses in winter (case 2) or summer (case 3) and growth peaks in summer (case 5) or spring (case 6). The other reconstruction approaches are less affected by this bias, because they generally do not mix samples from different seasons and therefore produce less smoothing. The δ18O method is especially well suited to deal with changes in growth rate because it does not require combining different aliquots for accurate SST reconstructions. The binning and optimization approaches are slightly less accurate-reliable in cases where growth rate decreases linearly or seasonally along the entire record (cases 4-6; Fig. 52). This likely occurs because these two methods consider all samples in the records at once, instead of only a subset at any one time (as in the smoothing method), and they are therefore more sensitive to changes in temporal sampling resolution along the record. It is worth noting that optimization is especially sensitive to sharp changes in growth rate in summer (e.g. cases 11, 14, 16 and 17) because those conditions force the optimization routine to use larger sample sizes or include samples outside the warmest month for summer temperature estimates. A potential solution to this problem could be to allow sample sizes of summer and winter groups to vary independently in the optimization routine (see 2.1).

This would allow sample size in the undersampled season (in this case, summer) to become larger than that at the other end of the δ18O spectrum, reducing uncertainty on the more densely sampled season and therefore improving the entire seasonality reconstruction.
A worst-case scenario of reconstructions hampered by growth rate variability and hiatuses is represented by case 18, where the entire cold half of the year is not recorded. Such cases result in strong biases in reconstructions of mean annual and seasonal ranges in SST and δ¹⁸Owater, regardless of which method is used. In such extreme cases the record simply contains insufficient information to reconstruct variability in growth rate, SST and δ¹⁸Owater, and it seems that no statistical method would enable this missing information to be recovered. In such cases, the only way to eliminate bias is to establish reliable age models, independent of δ¹⁸O or ∆⁴⁷ data, which show that a large part of the seasonal cycle is missing.

All methods used in this study rely on a conversion of SST and δ¹⁸Owater reconstructions to the time domain to define monthly time bins. This conversion breaks down in fossil examples when the seasonal cycle cannot be extracted from the archive, which happens when half of the seasonal cycle or more is obscured by growth hiatuses, as exemplified in case 18.

While hiatuses encompassing half of the seasonal cycle are uncommon, changes in growth rate are common in accretionary carbonate archives because conditions for (biotic or abiotic) carbonate mineralization often vary over time. This variability is either driven by biological constraints, such as senescence (e.g. Schöne, 2008; Hendriks et al., 2012), the reproductive cycle (Gaspar et al., 1999) or stress (Surge et al., 2001; Compton et al., 2007) or by variations in the environment that promote or inhibit carbonate production, such as seasonal variations in temperature (Crossland, 1984; Bahr et al., 2017) or precipitation (Dayem et al., 2010; Van Rampelbergh et al., 2014). In general, such conditions occur more frequently in mid- to high-latitude environments than in low-latitudes, and in more coastal environments rather than in open marine settings, because these environments contain stronger variations in the factors that influence growth rates (e.g. temperature, precipitation or freshwater influx; e.g. Surge et al., 2001; Ullmann et al., 2010). This difference was simulated in the cases representing natural variability (case 14-18 and 30-33), with accuracy in the coastal high-latitude settings (cases 16, 18 and 29) are indeed more strongly affected by changes in growth rate. Because in such highly variable environments growth rate variability often co-occurs with variability in δ¹⁸Owater using δ¹⁸Owater-based reconstructions is not advised, unless δ¹⁸Owater variability can be constrained or neglected (which is rare in these environments).
Additional complications include that the lack of constraint on growth rate variability cannot always be resolved because of uncertainties in the record’s age model (see 4.1.3) and the effect of growth rate variability on the sampling resolution. The effect of growth rate on sample size/time-averaging within samples was not specifically tested in this study, but introduces uncertainty in practice when archives with variable growth rate are sampled at a constant sampling resolution in the depth domain. In this case, parts of the archive with a lower growth rate yield more time-averaged samples, potentially dampening one extreme of the seasonal cycle (e.g. Goodwin et al., 2003). Therefore, reconstructions in these highly dynamic environments may not allow all variables that introduce bias to be isolated, and irregular variability in growth rate and Δ¹⁸O,δ¹⁸O will invariably introduce uncertainty in SST reconstructions, even when applying the best Δq-based approaches (e.g. binning and optimization). In such examples, the results of natural variability cases (14-18 and 30-33) and of the real oyster data (Fig. 56) may serve as benchmarks for the degree of uncertainty that may remain unexplained in these records.
5.4.2.3 Variability in $\delta^{18}O_{\text{sw}}$

Large increases in uncertainty on reconstructions are caused by variations in $\delta^{18}O_{\text{sw}}$ (see Fig. 6 and 7). As discussed in 4.1.1, these variations in $\delta^{18}O_{\text{sw}}$ variations have a large effect on the accuracy of $\delta^{18}O_{\text{w}}$ based reconstructions, and their occurrence constitutes the main advantage of applying the Δ_{f} thermometer (Eiler, 2011). However, results of cases 7-11 in Fig. 7B and Table 1.2 show that $\delta^{18}O_{\text{w}}$ variations can also bias Δ_{f}-based reconstructions, especially those of seasonal ranges and using the smoothing approach. Smoothing reconstructions are biased by these $\delta^{18}O_{\text{w}}$ shifts in much the same way as they are affected by shifts in growth rate (see 4.2.1). The optimization approach, especially when used for reconstructions of $\delta^{18}O_{\text{w}}$ seasonality or other seasonal changes in $\delta^{18}O_{\text{w}}$ in antiphase with SST seasonality and by increases in $\delta^{18}O_{\text{w}}$ in summer (e.g. due to excess evaporation; e.g. case 11), especially when used for reconstructions of $\delta^{18}O_{\text{s}}$ seasonality. This effect arises because the optimization approach orders data based on $\delta^{18}O_{\text{w}}$ and Δ_{f} seasonality to isolate the $\delta^{18}O_{\text{w}}$-SST relationship. Both antiphase $\delta^{18}O_{\text{w}}$ seasonality and summer evaporation dampens the seasonal $\delta^{18}O_{\text{w}}$ cycle and therefore influences the reconstruction of the $\delta^{18}O_{\text{w}}$-SST relationship. A good example of this is seen in the real oyster data (Fig. 5B), where $\delta^{18}O_{\text{w}}$ and SST vary in phase and $\delta^{18}O_{\text{w}}$ dampens the SST seasonality. The binning approach is more robust against $\delta^{18}O_{\text{w}}$ variability that dampens the seasonal cycle and is therefore a better choice for absolute SST reconstructions in environments where summer evaporation or other $\delta^{18}O_{\text{w}}$ variability in phase with SST seasonality is expected to occur, if the age model is reliable enough to allow monthly binning of raw data (see 4.1.3). Indeed, reconstructions from the lagoonal environment (case 16) and Red Sea case (case 32 which is characterized by strong summer evaporation; e.g. Titschack et al., 2010) show that binning is the most reliable choice in these environments.

5.4.2.4 Variability in sampling resolution and record length

Other factors influencing the effectivity of reconstructions are the sampling resolution and the length of the record. Many of the cases discussed in this study represent idealized cases with comparatively high sampling resolutions over comparatively long (12 yr) paleoseasonality records, which yield large sample sizes. By comparison, the typical age of mollusks, which are often used as paleoseasonality archives, is 2-
5 years (Ivany, 2012). Records with the highest sampling resolutions (0.1 and 0.2 mm) contain up to 1200 samples. This is not an unfeasible number of samples, generating such records is not impossible, but it is highly unlikely to be applied in paleoclimate studies given the limitation of resources (e.g., instrument time) and the desire to analyze multiple records from different specimens, species, localities or ages to gain a better understanding of the variability in paleoseasonality (e.g., Goodwin et al., 2003; Schöne et al., 2006; Petersen et al., 2016). In some cases, large datasets are meticulously collected from single carbonate records (e.g., Schöne et al., 2005; Vansteenberge et al., 2016; de Winter et al., 2020a; Shao et al., 2020).

However, in such studies, the aim is often to investigate variability at a higher (e.g., daily; de Winter et al., 2020a) resolution or longer timescales (e.g., decadal to millennial; Schöne et al., 2005; Vansteenberge et al., 2016; Shao et al., 2020) in addition to the seasonal cycle, rather than to improve the reliability of reconstructing one type of variability (e.g., seasonality) alone. In this study, extreme (sometimes unnatural, e.g., case 18) cases were chosen deliberately to explore the effect of different conditions and guide researchers in deciding their sampling strategy to optimize their samples and resources in function to their various research goals.

Fig. 8-9 shows that increasing temporal sampling resolution (samples/yr) improves both the accuracy and precision of all $\Delta\delta^{18}O$-based reconstructions. This occurs because $\Delta\delta^{18}O$ samples have a large analytical uncertainty (see S4.1.2) and grouping of data therefore improves reconstructions. Interestingly, the decrease in precision in $\delta^{18}O_c$-based reconstructions (precision decreases with increasing sample size) while accuracy increases (Fig. 8C-D). This is explained by the fact that the analytical uncertainty of $\delta^{18}O_c$ measurements is much smaller than the variability introduced by natural sub-annual variability in SST and $\delta^{18}O_{sw}$ unrelated to the seasonal cycle (see S4). Therefore, higher sampling resolutions allow $\delta^{18}O_c$ records to better capture this sub-seasonal variability, which introduces more noise on the seasonal cycle (reducing precision) but causes monthly mean SST and $\delta^{18}O_{sw}$ to be more accurately reconstructed.

Towards higher sampling resolutions, the gap in precision between $\delta^{18}O_c$ and $\Delta\delta^{18}O$-based reconstructions closes, eventually (in an ideal case) diminishing the advantage of high analytical precision in $\delta^{18}O_c$ measurements (Fig. 8C-D).
The rate of increase in precision and accuracy with sampling resolution is not the same for each method. An optimum sample resolution can be defined for each method after which improving sampling resolution does not significantly improve the reliability of the reconstruction (as in de Winter et al., 2017). Figure 8-9 shows that this optimum varies depending on which variable (MAT, SST seasonality, mean annual δ¹⁸O or δ¹⁸O seasonality) is reconstructed. Therefore, Fig. 8-9 will allow future researchers to determine the sampling resolution that is tailored to their purpose. In general, the improvement after a sample size of 20-30 samples per year is negligible for the binning and optimization methods if the total number of samples (depending on both sampling resolution and record length) is sufficient for monthly temperature reconstructions. Our data show that 200-250 paired δ¹⁸O and Δ⁴⁷ measurements are in general sufficient for a standard deviation of 2-3°C on monthly SST reconstructions using the binning or optimization approach (Fig. 8-10: S5).

Record length only has a minimal influence on the optimization method but for very short records (<2 years) binning becomes very imprecise, especially at low sampling resolutions (Fig. 1011). The reason for this is that the sample size within monthly time bins becomes too small in these cases, while the more flexible sample size window of the optimization routine circumvents this problem. The choice between these two approaches should therefore be based on a tradeoff between the length of the record (in time) and the number of samples that can be retrieved from it. As a result, shorter-lived, fast-growing climate archives, such as large or fast-growing (e.g. juvenile) mollusk shells, are best sampled using a high temporal resolution (>30 samples/yr) sampling strategy with the optimization approach. Longer lived archives with a lower mineralization rate, such as annually laminated speleothems, corals and gerontic mollusks, are best sampled using long time series at monthly resolution using the binning approach.

A simplified decision tree that could guide sampling strategies for future paleoseasonality studies is shown in Figure 1314. Note that choices and tradeoffs for these reconstructions may differ depending on the archive and environment in which it formed (see discussion above).
Schematic guide to reconstructing SST and δ¹⁸Ow from accretionary carbonate archives

Q1: What is the main target variable for reconstruction?

Q2: Can seasonal changes in δ¹⁸Ow be neglected?

Q3: Can mean δ¹⁸Ow be independently estimated?

Q4: Can large shifts in δ¹⁸Ow or summer growth stops be expected?

Q5: Does the record have a high-resolution (±15d) age model?

Q6: Is the record short (≤2 years)?

δ¹⁸O
binning
optimization

Figure 15: Schematic guide to choosing the right approach for reconstructing annual mean or seasonality in SST and δ¹⁸Ow, δ²⁰Osw from accretionary carbonate archives. Recommendations are based on the results of testing all four approaches on the entire range of cases. Researchers can follow the six steps (questions Q1-6) to decide on the right approach for reconstructing the target variable. Guidelines are based on minimizing both accuracy and precision (see details in S1159). Note that the smoothing approach is never the best choice. The choice between the two remaining Δ⁴⁷-based approaches (binning and optimization) relies heavily on the situation and may be driven by a preference for more accurate or more precise results.

54.3 Implications for clumped isotope sample size

The optimization technique for grouping Δ⁴⁷ aliquots for accurate SST and δ¹⁸Ow, δ²⁰Osw reconstructions allows us to assess the limitations of the clumped isotope thermometer for temperature reconstructions from high-resolution carbonate archives. The actual optimal sample size given by the approach is different for different cases and depends on the temporal sampling resolution and the characteristics of the record (see SSS4). As expected, in cases more similar to the ideal case (case 1), optimal sample sizes are low (~14-24), while sample sizes quickly increase in more complicated cases based on simulated natural environments (case 14-18) or cases based on actual SST and SSS data (cases 30-33). More confined SST seasonality (cases 19-21) also requires larger samples to reconstruct (up to 100 samples in some
cases). This is not surprising, because variability within samples will increase in more complicated records in which the seasonality is smaller or more obscured by other environmental variability. The optimal sample size between cases and sampling resolutions is not normally distributed but tails towards high sample sizes with some extreme outliers (Shapiro Wilk test \(p << 0.05; S12510 \)). The median sample size of all our simulations is 17 aliquots. This number lies between the minimum number of 14 ~100 μg replicates of standards calculated by Fernandez et al. (2017) and the minimum of 20-40 ~100 μg aliquots required for optimal paleoseasonality reconstruction from fossil bivalves by de Winter et al. (2020a, 2020b). This is to be expected since many of the cases explored in this study represent ideal cases compared with the natural situation. However, in many of these virtual cases a measure of random sub-annual variability in SST and δ18Osw was added (see Fig. 4 and S2), simulating a more realistic environment and resulting in poorer precision than replicates of a carbonate standard (as in Fernandez et al., 2017). Our simulations show that the optimum number of samples to be combined in seasonality studies depends on both the analytical uncertainty of Δ47 measurements (as represented by the estimate in Fernandez et al., 2017) and the variability between aliquots pooled within a sample that is attributed to actual variability within the record (as represented by our simulations and the estimate in de Winter et al. 2020a, 2020b). The optimal sample size is therefore a good measure for the limitations of temperature variability that can be resolved in a record. As such, this number, together with the overview in S1, and can help researchers decide which strategy to apply for combining measurements to obtain the most reliable paleoseasonality estimates, or to decide whether extra sampling is required, even if the chosen approach is not to use the optimization routine itself. Note that the optimum sample size is kept equal for summer and winter samples in this study, and that the optimization approach can likely achieve better performance by considering unequal sample sizes in opposite seasons (see 4.1.3 and 4.2.2). While this added flexibility comes at a higher computational cost due to the increased number of possible sample size combinations to be considered, future studies should investigate whether this updated optimization approach could yield more reliable seasonality reconstructions.

54.4 Implications for other sample size problems
While the discussion above focuses on optimizing approaches for combining samples for clumped isotope analyses in paleoseasonality reconstructions, the problem of combining samples to reduce uncertainty and isolate variation in datasets is very common (e.g., Zhang et al., 2004; Merz and Thieken, 2005; Tsukakoshi, 2011). Therefore, the approaches outlined and tested in this study have applications beyond paleoseasonality reconstructions. Examples of other problems that could benefit from applying similar approaches for reducing the uncertainty of estimates of target variables while minimizing the number of analyses required to meet analytical requirements include: (1) reconstructing paleoenvironmental variability in the terrestrial realm from tooth bioapatite (e.g., Passey and Cerling, 2002; Kohn, 2004; Van Dam and Reichart, 2009; de Winter et al., 2016), (2) quantitative time series analysis of orbital cycles in stratigraphic records (e.g., Lourens et al., 2010; de Vleeschouwer et al., 2017; Noorbergen et al., 2017; Westerhold et al., 2020), (3) strontium isotope dating (e.g., McArthur et al., 2012; de Winter et al., 2020bc), (4) reconstructing sub-seasonal variability from ultra-high-resolution records (e.g., from fast-growing mollusks and gastropods) (e.g., Sano et al., 2012; Warter and Müller, 2017, de Winter et al., 2020ad; Yan et al., 2020), and (5) reconstructing sea surface and deep-sea temperatures across short-lived (10–100 kyr) episodes of climate change or climate shifts from deep marine archives characterized by low sedimentation rates (e.g., Lear et al., 2008; Jenkyns, 2010; Stap et al., 2010; Lauretano et al., 2018). A more detailed discussion of the implications for other sample size problems is provided in the Supplementary Information.
Enamel from vertebrate teeth constitute a useful archive for paleoenvironmental and paleoecological change in the terrestrial realm, complementing the carbonate records discussed in this work (e.g. Luz and Kolodny, 1985; Fricke et al., 1996; Balasse, 2002; Van Dam and Reichart, 2009; de Winter et al., 2016). However, the tooth bioapatite archive suffers from similar limitations of sample size and resolution as carbonate archives when it comes to reconstructing high-resolution variability (see discussion in Passey and Cerling, 2002 and Kohn, 2004). Oxygen and carbon isotopes of carbonate and phosphate in tooth enamel contain valuable information about the animal’s life cycle and environment (e.g. Fricke et al., 1996; Balasse, 2002; Van Dam and Reichart, 2009). However, structurally-bound carbonate constitutes a mere 2-5% of tooth enamel (LeGeros et al., 1986), and enamel samples need to be pretreated to remove labile components, so analyses of \(\delta^{18}O \) in these archives require comparatively large sample sizes (0.5-1 mg; Fricke et al., 1998; Balasse, 2002; Pellegrini and Snoeck, 2016). Phosphate-bound \(\delta^{18}O \) is less susceptible to diagenesis, but requires a more complicated procedure to analyze, resulting in similar sample size limitations (Joachimski et al., 2002; Lecuyer et al., 2007). Most applications of isotope profiles from teeth rely on precise determination of both the phase and amplitude of the seasonal cycle, and therefore suffer from the same complications as isotope records in carbonate archives (e.g. Balasse et al., 2002; Straight et al., 2004). The binning and optimization approaches discussed here could help reduce uncertainty and provide a basis for better comparison of seasonal profiles in tooth enamel.

5.4.2 Cyclostratigraphy

Within the field of cyclostratigraphy, a multitude of stratigraphical approaches have been developed for signal processing, with the aim to use regular orbital cycles expressed in stratigraphic time series as tools for dating rock sequences (e.g. Paillard et al., 1996; Meyers, 2014; Sinnesael et al., 2016). However, the focus on timing has caused many methods for extracting the climatic impact of these orbital cycles from stratigraphic records (e.g. bandpass filtering; Hilgen, 1991) to remain qualitative. This is unfortunate, because the magnitude of the effect of this cyclicity on climate and environmental change is of major interest in paleoclimatology studies (e.g. Berger, 1992; Shackleton, 2000; Zachos et al., 2001; Lourens et al., 2005; De Vleeschouwer et al., 2017a). The problem of quantitatively extracting the impact of orbital cycles is very similar to the problem of paleoseasonality reconstructions central to this study, and the same approaches...
can therefore be used in the orbital time domain. The time binning approach is probably most robust for this purpose, since cyclostratigraphic records are often longer (record length >> period of the cycle) and sampling resolutions (samples/cycle) are often lower than in seasonal records (see 5.2.4; e.g. De Vleeschouwer et al., 2017b). Quantitative analyses of the contribution of orbital cyclicity to rhythmic changes in paleoclimate can help separate variability in records caused by external forcing from autocyclic behavior or (positive or negative) feedback of the climate system itself (Lourens et al., 2010; Noorbergen et al., 2017; Noth et al., 2018).

5.4.3 Strontium isotope dating

Another type of analysis that could benefit from smart combination of measurement results is strontium isotope dating. The strontium isotope composition (87Sr/86Sr) of the ocean has evolved over time, and the isotopic composition of marine carbonates can therefore be used to estimate the age of the sample by comparing it with a composite strontium isotope curve (Elderfield, 1986; McArthur et al., 2012). In time intervals where the global marine strontium isotope curve is steep, strontium isotope dating ranks among the most precise methods for absolute dating in stratigraphy (Wagner et al., 2012). However, accurate dating based on the strontium isotope curve requires propagation of errors on the composite curve and the sample. Doing so results in asymmetric errors due to the non-linear character of the strontium isotope curve, which require complex error propagation (see Barlow, 2003; 2004; Wan et al., 2019). The state-of-the-art uncertainty of individual strontium isotope analyses ranges between 210 ppm (1 standard deviation; Yobregat et al., 2017), which translates to an age uncertainty of 100-200 kyr (1 standard deviation) depending strongly on the slope of the global strontium isotope curve at the time interval under study.

Combining multiple strontium isotope analyses from the same stratigraphic unit can reduce the uncertainty on these composite ages (Korte and Ullmann, 2016; de Winter et al., 2020b), allowing the dating method to be combined with cyclostratigraphy to produce orbital scale age models (see 5.4.2). In stratigraphy studies that use this dating method, the need arises to compromise between the resolution of the age model and the precision and accuracy of dating, analogous to the tradeoff that occurs when combining ΔT analyses for paleoseasonality reconstructions outlined in this study. In this case, the smoothing approach with a dynamic moving window discussed in this study is likely the best candidate for combining data to
improve these age models. Such an approach can be seen as a more flexible adaptation of the Δ47-based approach for SST reconstruction outlined in Rodríguez-Sanz et al. (2017) that provides the flexibility to adapt the sample window depending on the available data and the slope of the global strontium curve. At the same time, the shape of the global composite strontium isotope curve itself can be refined by using a similar protocol on well-dated samples. The approaches discussed in this study are more adaptable to changes in sampling density over time and can in theory achieve higher precision than the LOWESS fit approach currently employed for constructing the global composite (McArthur et al., 2012). Similarly, techniques for compromising between sampling resolution and accuracy and precision can be applied to improve other dating methods based on matching curves such as radiocarbon dating (Ramsay and Lee, 2013), carbon isotope stratigraphy (Salzman and Thomas, 2012) and dendrochronology (Cook and Kairiukstis, 2013).

5.4.4 Sub-seasonal variability

Ultra-high-resolution records from fast-growing archives (e.g. mollusks) are an emerging phenomenon in the field of high-resolution paleoclimatology (e.g. Sano et al., 2012; Warter and Müller, 2017, de Winter et al., 2020a). The emergence of such records allows new information to be obtained about the daily cycle (Warter et al., 2018; de Winter et al., 2020a) and extreme weather events (Yan et al., 2020) in the past, potentially bridging the gap between weather and climate reconstructions. The sampling resolution required to resolve variability at such a fine temporal scale warrants an even more careful consideration of the tradeoff between sample size, sampling resolution and analytical uncertainty than the paleoseasonality examples considered here. If quantitative estimates of insolation, temperature and the frequency of extreme weather events are to be reconstructed from these novel records, a compromise will need to be found between analytical uncertainty and the temporal resolution of measurements (Sano et al., 2012; de Winter et al., 2020a; Yan et al., 2020). Applying the temporal (e.g. hourly) binning method discussed here on long- (sub-)daily resolved records could yield more accurate and precise records of ultra-high-resolution variability, given its reliability in extracting accurate cycle amplitude (e.g. seasonality) from long, less densely sampled records (see 5.1.3). Fast-growing bivalve and gastropod shells have already been marked as promising archives for such variability, while other fast-growing archives such as Acropora corals
remain to be explored (Bak et al., 2009; Strauss et al., 2014; de Winter et al., 2020c). It must be noted that models for the timing of carbonate deposition in accretionary carbonate archives at the sub-daily scale are highly uncertain and that this may complicate the use of the binning approach (see 5.1.3), in which case optimization may be more appropriate.

5.4.5 Event stratigraphy

Accurate and precise temperature reconstructions of short-lived (10-100 kyr) episodes of climate change present a problem comparable to resolving seasonality in paleoclimate archives. Examples of such events include the Mesozoic ocean anoxic events (Hesselbo et al., 2000; Jenkyns, 2010), early Paleogene hyperthermals (Stap et al., 2010; Lauretano et al., 2015, 2018) and stepwise climate perturbations such as the Eocene-Oligocene transition (Dupont-Nivet et al., 2007; Lear et al., 2008) studied in deep-sea records. Currently, reconstructions of temperature variability in the deep sea during such events are based on benthic foraminiferal δ¹⁸Oe (e.g. Erbacher et al., 2001; Lui et al., 2009; Stap et al., 2010; Lauretano et al., 2015, 2018), but may not be reliable due to assumptions made on δ¹⁸Osw. Deep-sea sedimentary environments are generally characterized by low sedimentation rates (~1 cm/kyr) as well as low abundance and small size of microfossils (e.g. foraminifera) which serve as archives of past marine conditions (e.g. Stap et al., 2010; Jennions et al., 2015). This limits the number of aliquots that can be obtained for Δδ¹⁸O and other analyses through these climate events. In these studies, a smoothing approach would probably underestimate the 'true' amplitude of temperature or geochemical change. With sufficient record length and perhaps by combining multiple events, binning or optimization based on proxy data would be the most accurate and precise approach to resolve transient temperature change in the deep sea during the geological past.
Conclusions and recommendations

The reliability-performance of three Δ^{47}-based approaches to reconstruct seasonality from accretionary carbonate archives was evaluated in comparison with the conventional $\delta^{18}O_c$-based reconstructions in a wide range of case studies. From the results, we conclude that while $\delta^{18}O_c$-based reconstructions ($\delta^{18}O_c$) yield superior precision for SST reconstructions, this method runs a high risk of yielding inaccurate results due to innate assumptions about the value of $\delta^{18}O_w \delta^{18}O_{sw}$, which must be estimated and assumed constant year-round. Unless $\delta^{18}O_w \delta^{18}O_{sw}$ can be independently constrained or variability in $\delta^{18}O_w \delta^{18}O_{sw}$ can be neglected, Δ^{47}-based reconstructions should be the method of choice for absolute mean annual temperature and SST seasonality reconstructions. Various techniques for combining Δ^{47} data were evaluated. Our findings suggest that smoothing Δ^{47} data using a moving average (smoothing) results in almost always cases in a dampening of the seasonal cycle which severely hampers recovery of seasonality. Applying the smoothing approach results in inaccuracies in reconstructions of MAT as well, especially in cases where part of the seasonal cycle is obscured by variability in growth rate or multi-annual trends. More reliable seasonality reconstructions are achieved with two approaches for combining Δ^{47} data using time binning (binning) or applying a flexible sample size optimization (optimization) approach. Of these two approaches, optimization achieves better precision and can resolve smaller seasonal temperature differences with confidence. However, binning is often more accurate, and outperforms optimization as the most reliable approach. This is especially true in cases with growth stops or $\delta^{18}O_w \delta^{18}O_{sw}$ changes in phase with temperature seasonality (e.g. strong seasonal evaporation or freshwater influx) and in longer multi-annual time series with a reliable age model. Optimization is the better choice for shorter (<3 years) records, especially if the sampling resolution can be increased, such as in short, fast growing climate archives.

Despite the distinct focus on the problem of resolving seasonality in carbonate archives, the findings in this study have applications for other problems in earth science where sample size and sampling resolution put limits on the ability to resolve specific trends, events, and cycles from time series. Examples include, but are not limited to, resolving sub-annual variability in geochemical records from tooth bioapatite, quantifying the impact of orbital cycles on paleoclimate, refining strontium isotope dating by strategic sample
combination, resolving daily scale variability and weather patterns in ultra-high-resolution climate records and quantifying the impact of climate events in the geological record. While the above mentioned recommendations of the optimization and binning methods are likely valid for most studies aiming to quantify the mean and amplitude of a specific cycle or event (equivalent to MAT and SST seasonality), (dynamic) moving averages (smoothing) are expected to yield the best results in studies quantifying aperiodic trends from longer data series.

Code availability

All scripts used to make the calculations described in this study are compiled in the documented R package “seasonalclumped”, which is freely available on the open-source online R-database CRAN (de Winter, 2021a: https://cran.r-project.org/web/packages/seasonalclumped). Annotated R scripts used to make calculations for this study are available in the digital supplement uploaded to the open-source online repository Zenodo (www.doi.org/10.5281/zenodo.3899926).

Data availability

Supplementary data, figures and tables as well as all scripts used to do the calculations and create the virtual datasets used in this study are deposited in the open-source online repository Zenodo (www.doi.org/10.5281/zenodo.3899926). Virtual datasets generated within the context of this study are also made available as data files within the R package that contains the scripts used for this study (“seasonalclumped”: de Winter, 2021a: see https://cran.r-project.org/web/packages/seasonalclumped).

Author contributions

N JW designed the study, wrote the scripts for all calculations, and created a first draft of the manuscript text and figures. MZ, TA and NJW worked together from the first draft towards the final manuscript.
authors contributed to the representation of the data and methods in figures and to the discussion of the
implications of the data in the discussion.

Competing Interests

The authors have no potential conflicts of interest to declare with regards to this study.

Acknowledgements

The authors would like to thank all members of the Clumped Isotope research group of Utrecht University,
most notably Ilja Kocken and dr. Inigo Müller, for their comments and recommendations on a presentation
of the initial results of this study.

Financial support

NJW is funded by the European Commission through a Marie Sklodowska Curie Individual Fellowship
(UNBIAS, grant # 843011) and by the Flemish Research Council (FWO) through a Junior Postdoctoral
Fellowship (12ZB220N).

References

Bahr, K. D., Jokiel, P. L. and Rodgers, K. S.: Seasonal and annual calcification rates of the Hawaiian reef-
coral, Montipora capitata, under present and future climate change scenarios. ICES J Mar Sci, 74(4),

Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., Jaggi,
analysis through consistent carbonate-based standardization. Geochemistry, Geophysics, Geosystems,

Shao, D., Mei, Y., Yang, Z., Wang, Y., Gao, Y., Yang, L. and Sun, L.: Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp., Scientific Reports, 10(1), 3921, https://doi.org/10.1038/s41598-020-61013-2, 2020.

Scourse, J. Richardson, C. Forsythe, G. Harris, I. Heinemeier, J. Fraser, N. Briffa K. and Jones, P.: First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-

Shao, D., Mei, Y., Yang, Z., Wang, Y., Yang, W., Gao, Y., Yang, L. and Sun, L. (2020) Holocene ENSO variability in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna spp. Scientific Reports 10(1), 3921, doi:10.1038/s41598-020-61013-2.

