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Abstract. This study examines the cause of the blue colour of the Sun as observed after the eruption of Krakatoa in 1883

as well as other volcanic eruptions or massive forest fire events. Aerosol particles, e.g., volcanic ash or products of biomass

burning are believed to be able to modify the spectral distribution of transmitted solar radiation making it appear blue or green

to a human observer.

Previous studies already showed that narrow aerosol particle size distributions with radii on the order of about 500 nm can5

lead to anomalous scattering, i.e., scattering cross sections increasing with increasing wavelength in the visible spectral range.

In this work we treat the effect of Rayleigh scattering on the shape of the transmitted solar spectrum correctly employing

radiative transfer (RT) simulations with the SCIATRAN RT-model. The colour associated with solar transmission spectra is

determined based on the CIE colour matching functions and CIE chromaticity values. It is shown that a blue Sun can be

simulated for aerosol optical depths (at 550 nm) of about τ = 0.5 (or higher) if Rayleigh scattering is taken into account.10

Without considering Rayleigh scattering – as in most of the previous studies – a blue Sun is in principle produced with aerosol

optical depths as low as about τ = 0.1 (at 550 nm), if the aerosol particle size distribution is chosen to maximize anomalous

scattering in the visible spectral range. It is demonstrated that Rayleigh scattering – as expected – has a strong impact on the

transmission spectrum, particularly at low solar elevation angles, and needs to be considered for a correct determination of

the perceived colour of the Sun. We also test the hypothesis that the blue Sun after the eruption of Krakatoa was caused by15

large abundances of water vapour in the atmosphere, as proposed in earlier studies. In addition, we present a case study on a

particularly noteworthy blue-Sun-event in the past, i.e., the one related to the large Canadian forest fires in September 1950.

1 Introduction

This work has been inspired by various reports on sightings of the Sun appearing blue. Next to other reports, e.g., after the

extensive forest fires in Canada in 1950 (e.g., Gelbke, 1951; Wilson, 1951; Penndorf, 1953) widespread observations of a20

blue Sun have been made following the eruption of the Krakatoa volcano in 1883 (e.g., Larrabee, 1884; Kiessling, 1888;

Symons et al., 1888). Witnesses described the Sun rising in a “splendid green”, and turning “bright blue” near the zenith later

during the day in the aftermath of the Krakatoa eruption as noted in Symons et al. (1888). Particularly noteworthy is the book

by Kiessling (1888) that provides a comprehensive compilation of unusual atmospheric optical effects associated with the

Krakatoa eruption and also during the 2000 years before, including several reports on green and blue suns. Historical reports25
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on an unusually coloured sun or moon can provide important independent information on exceptional natural events, e.g.,

volcanic eruptions (e.g., Bauch, 2017).

Unfortunately, particle samples of unusual aerosol layers or reliable experimental evidence such as, e.g., spectral distribution

measurements are typically not available for blue Sun events (exceptions are discussed below). For the Sun to appear blue,

instead of white or yellowish, the normal spectral distribution of solar radiation has to be modified in a way, that less red30

light is transmitted to the observer compared to the blue component of light. The suppression of red light in transmitted

spectra may in principle be caused by wavelength selective absorption or scattering processes, where absorption could be due

to gaseous constituents or aerosols. The latter possibility is unlikely, because absorption coefficients of typical tropospheric

aerosols usually decrease with increasing wavelength in the visible spectral range (e.g., Bergstrom et al., 2007). For this reason

we focus on the possibility that the effect is caused by aerosol scattering. Previous studies have found that particles in the35

radius range from 400 – 700 nm (depending on the real part of the refractive index nr) may lead to anomalous scattering,

i.e., scattering coefficients increase with increasing wavelength in the visible spectral range, and could cause the observed

effect if the aerosol particle size distribution is sufficiently narrow (Penndorf, 1953; Wilson, 1951; Porch, 1973; Ehlers et al.,

2014). These studies, however, typically neglect the effect of Rayleigh scattering by air molecules on the spectral distribution

of transmitted solar radiation. Rayleigh scattering suppresses the blue component, making it more difficult to produce a blue40

Sun.

It is also noteworthy that a blue Sun during a sunset on Mars has been captured in a picture taken by the Mars expedition

rover Spirit in 2005, increasing the focus on the aerosol layer of the thin Martian atmosphere in order to find an explanation

for the phenomenon (Ehlers et al., 2014).

Aerosol particles vary greatly in size but volcanic sulfate aerosol particles or biomass burning aerosols typically have sizes45

similar to the wavelength of visible radiation. If the aerosol particles are assumed to be spherical for simplicity, their scattering

properties can be calculated according to Gustav Mie’s scattering of light theory (Mie, 1908). In this study we assume spherical

particles and Mie theory was used to model extinction coefficients of aerosol particles with different particle size distributions.

In this work, the full radiative transfer of solar radiation through the atmosphere was simulated with SCIATRAN, a radiative

transfer model developed by the Institute of Environmental Physics of the University of Bremen, Germany (Rozanov et al.,50

2014). In addition, the colours resulting from the calculated transmission spectra are determined and displayed. The calculated

spectral distribution reaching the Earth’s surface has to be transformed into a colour on a digital output device, in a way a

human with normal eyesight would perceive it. Colour modelling presented by the International Commission on Illumination

(CIE) and the sRGB colour space was chosen and applied, the resulting colours are presented (CIE, 2004; Stokes et al., 1996).

The paper is structured as follows. Section 2 provides a short summary of the approach and methods used, describing both the55

radiative transfer model as well as the colour modelling. In section 3 the main results – including an investigation of the effects

of Rayleigh scattering and absorption by H2O as well as a case study based on spectral observations after the intense Canadian

wildfires in September 1950 – are presented. Sections 4 and 5 discuss and summarize the findings on possible characteristics

of particles responsible for the blue colour of the Sun.
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2 Methodology60

We first describe the Mie simulations and the radiative transfer model employed, followed by a summary of the colour mod-

elling approach used in this study.

2.1 Radiative transfer simulation: Mie scattering calculations and SCIATRAN

In order to model the transmitted solar radiation reaching the Earth’s surface, first extinction coefficients of the aerosol particles

were calculated using Mie theory and later implemented as an aerosol layer in the radiative transfer model SCIATRAN. In order65

to perform the Mie scattering calculations several assumptions have been made beforehand. We assume that the aerosol particle

size distribution can be described by a mono-modal log-normal distribution:

n(r) =
N0√

2π · ln(S) · r
· exp

[
− (lnr− lnrm)2

2ln2(S)

]
(1)

Here, N0 is the total particle number density, rm the median radius, r the particle radius and S represents the geometric

standard deviation of the distribution, a measure of the distribution width (Grainger, 2017).70

Mie simulations were carried out for various combinations of distribution width S, refractive index nr and median radius rm,

as described in more detail below. The Mie scattering calculations were carried out using routines from the Earth Observation

Data Group (EODG) of the University of Oxford, available as downloads (for the software IDL) on their website (http://eodg.

atm.ox.ac.uk/MIE/#intro, last checked: September 4, 2020). The choice of input values for the refractive indices and the median

radii were guided by previous studies and literature (e.g., Ehlers et al., 2014; Kravitz et al., 2012; Penndorf, 1953). In this study75

we examined real parts of the refractive index nr between 1.3 and 1.5 and particle radii ranging from 25 to 3000 nm. The

imaginary part of the refractive index was set to zero (ni = 0).

Having calculated the extinction coefficients of the aerosol particles possibly leading to a blue Sun, the impact of these

aerosols and of air molecules on the transmission of solar radiation through the atmosphere was determined using the radiative

transfer model SCIATRAN (Rozanov et al., 2014). SCIATRAN was developed by the Institute of Environmental Physics (IUP)80

of the University of Bremen for the interpretation of remote sensing measurements in the UV-visible-NIR-SWIR spectral range.

In the transmission modelling mode, SCIATRAN can be used to simulate the atmospheric transmission of sunlight reaching

the Earth’s surface. In addition to the light scattering and absorption due to atmospheric gases, an aerosol layer can be included

in the calculations. This layer is represented by the calculated extinction coefficient spectra covering a certain altitude range.

The viewing geometry is set up with SCIATRAN in a way that the imaginary observer on the Earth surface is looking directly85

into the Sun. The solar zenith angle (SZA) as well as the optical depth have to be considered as possible influencing factors.

For more information on how to use SCIATRAN see the detailed User’s Guide provided as a download on the website of IUP

Bremen (IUP, 2018). The model output contains transmission values at different wavelengths and solar zenith angles. Using the

SORCE solar irradiation spectrum (LASP, 2003) the resulting spectral distribution of solar radiation through an aerosol-loaded

atmosphere can then be calculated.90
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2.2 Calculation and display of colour values

Whether the simulated spectral distribution of solar radiation transmitted to the Earth’s surface is perceived as blue by a human

observer has to be simulated using a colour model. Most important to consider are the sensitivities of the cone cells located

on the retina of the eye, which are responsible for colour perception. The sensitivities of the three types of cone cells are

represented by colour matching functions developed by the International Commission on Illumination (CIE) in 1931, based95

on experiments of W. David Wright and John Guild from 1928 and 1931 (Simon, 2008). The colour matching functions x(λ),

y(λ) and z(λ) are displayed in Fig. 1.

Figure 1. CIE colour matching functions of the human eye for the CIE 1931 2◦- standard observer, after Judd (1951) and Vos (1978)

(http://cvrl.ioo.ucl.ac.uk/cmfs.htm, last checked: September 4, 2020).

Combining these sensitivity curves with the incoming light’s spectral distribution I(λ), the so-called XYZ tristimulus values

can be calculated (see eqns. 2 – 4), as described by the CIE (2004).

X =

800nm∫

380nm

I(λ) ·x(λ) · dλ (2)100

Y =

800nm∫

380nm

I(λ) · y(λ) · dλ (3)
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Z =

800nm∫

380nm

I(λ) · z(λ) · dλ (4)

In the current study we employ the CIE chromaticity values (x and y) determined from the XYZ tristimulus values to

characterize the colour associated with a given transmission spectrum. The chromaticity values are determined in the following

way:105

x=
X

X +Y +Z
(5)

y =
Y

X +Y +Z
(6)

and are displayed in a 2-D x-y plot.

In addition we convert the tristimulus values to sRGB (standard RGB), which can be directly used to display colours in IDL110

(Interactive Data Language), the software used to prepare all Figures shown in this study. The conversion was done according

to the International Color Consortium (ICC) (see Stokes et al., 1996) with a linear matrix transformation and a non-linear

gamma correction. The colours of the monochromatic colour arc – shown in the panels of the right column of Fig. 3, which

will be discussed in detail below – as well as the transmitted solar spectra were determined this way. The procedure was

verified using several external routines. Different websites offer colour value calculators and the display of colours according115

to their sRGB-values (e.g., http://www.brucelindbloom.com, last checked: September 4, 2020); https://www.w3schools.com/

colors/colors_rgb.asp, last checked: September 4, 2020).

3 Results

As mentioned above, in many previous studies on the origin of a blue moon or Sun, enhanced scattering of red light is provided

as an explanation of the phenomenon. Usually, only scattering by the aerosol particles is considered, and Rayleigh scattering120

by air molecules is neglected. We start our considerations based on this assumption (Section 3.1) and then include a correct

treatment of Rayleigh scattering based on SCIATRAN radiative transfer simulations in section 3.2.

3.1 Results without Rayleigh scattering and gaseous absorption

Previous studies, e.g., Penndorf (1953) suggest that the particle population leading to the blueing effect has a relatively narrow

particle size distribution and a refractive index (real part nr) of 1.3 to 1.5. Figure 2 shows the Mie extinction coefficient as a125

function of wavelength and median radius – normalized to the value at a reference wavelength of 350 nm – for two different

distribution widths and for three different values of the real part of the refractive index. Results for a distribution width of S
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= 1.05 (and S = 1.2) are shown in the top (bottom) row. The left, middle and right columns of the Fig. display results for

refractive indices of (1.3, 0·i), (1.4, 0·i) and (1.5, 0·i), respectively.

Figure 2. Spectral and radius dependence of aerosol extinction coefficients (normalized to 350 nm) determined by Mie-calculations assuming

a mono-modal log-normal particle size distribution with a geometric width of S = 1.05 (top row) and S = 1.2 (bottom row) and real parts of

the refractive index of 1.3 (left column), 1.4 (middle column) and 1.5 (right column). Contour levels are 0.3, 0.7, 1.0, 1.3, 1.7, 2.0, 2.3.

As can be seen in Fig. 2, maximum anomalous extinction is obtained under the assumptions made for median radii in the 400130

– 700 nm range, with the specific values depending on the assumed refractive index. Two features of the plots are particularly

noteworthy. First, the broader the size distribution, the less pronounced the anomalous extinction is (compare top and bottom

row of Fig. 2). Secondly, the median radius producing the maximum anomalous extinction depends on the refractive index,

decreasing from about 700 nm to about 450 nm as the real part of the refractive index increases from 1.3 to 1.5. In other words,

depending on the refractive index, particles of a slightly different size will more easily produce a blue Sun. It is also noticeable135

that a lower refractive index leads to a larger particle radius range with stronger anomalous scattering, making the blue Sun

phenomenon more probable. Unfortunately, no aerosol samples have been taken and examined from past events, therefore

the true value of the refractive index of the particles producing a blue Sun is unknown. Penndorf (1953) lists in his study

on sightings of the blue Sun in 1950 products of biomass burning with a refractive index of around 1.46. In his calculations

however he uses the value of 1.33, based on the refractive indices of water and ice. Ball et al. (2015) have found real parts of140

refractive indices of volcanic ash of around 1.5. The results described in the following are based on a distribution width of S =

1.05 and a real part of the refractive index of 1.4, unless stated otherwise. These choices are arbitrary to a certain extent, but it
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is impossible to present results for all possible parameter combinations. In addition, the main conclusions of the study are not

affected by the specific values of the distribution width and refractive index chosen.

3.2 Rayleigh scattering and gaseous absorption145

For the radiative transfer simulations carried out in this study, SCIATRAN version 3.8 (Rozanov et al., 2014) is used. Stan-

dard profiles of pressure, temperature and atmospheric trace gases for northern mid-latitudes taken from simulations with the

Bremen 3-D CTM (Sinnhuber et al., 2003) are used, no clouds are included. Note that the choice of atmospheric background

parameter profiles has a negligible effect on the results. SCIATRAN is run in int - transmission - CDI mode with refraction

switched on, simulating directly transmitted radiation to an observer on the Earth’s surface (IUP, 2018; Rozanov et al., 2014).150

For the purpose of comparison with later findings, the results of the radiative transfer calculations and colour modelling of a

Rayleigh-only atmosphere – i.e., without aerosols – are shown in Figure 3. This Figure is discussed now in more detail, be-

cause the following Figures are structured in the same way. The different rows of Fig. 3 show results for different SZAs (30◦,

60◦, 80◦ and 90◦). The left column displays solar transmission spectra determined by multiplying the SORCE solar irradiance

spectrum (LASP, 2003) by the transmission spectrum simulated with SCIATRAN. The plots in the right column of Fig. 3 show155

the chromaticity values x and y determined as described above. This is a standard way to depict colour information. The arc

with the filled colour circles represents the positions of the corresponding monochromatic spectra in the x-y-plane. The colours

of the circles are based on the conversion of the chromaticity values to sRGB as described in section 2.2. The smaller open

circle annotated by “S0” corresponds to the chromaticity values of the unattenuated solar spectrum. The larger circle displays

the position and the colour of the corresponding transmission spectrum in the x-y-plane. The colour of the Sun changes from160

whitish-yellowish for small SZAs to orange for SZA = 90◦, as expected. This is easily explained by the λ−4 dependence of

Rayleigh scattering (Strutt, 1871), i.e., radiation with shorter wavelength (blue light) is scattered more strongly than radiation

with longer wavelengths. The pathlength of light through the atmosphere increases with increasing SZA, and the impact of

Rayleigh scattering also increases, leading to an orange sunset which can be seen in the lowest panel of Fig. 3 where the Sun

is at the horizon.165

3.3 Simulation of a blue Sun

For the Sun to appear blue, the spectral irradiance values and therefore the transmission must be higher at shorter wavelengths

relative to longer wavelengths in the visible spectral range. To reach this, in the following an aerosol layer was inserted into the

model atmosphere and the radiative transfer calculations were repeated. Previous studies as well as the contour plot in Fig. 2

suggest that particles with a median radius of 400 – 700 nm (depending on the refractive index) are able to cause a blue Sun. In170

this study different particle sizes in the range from 25 to 3000 nm have been tested and Rayleigh scattering taken into account.

Fig. 4 shows results in a similar way as Fig. 3, but with an aerosol layer in 6 – 8 km altitude, an optical depth of τ = 1, a real

part of the refractive index of 1.4, median radius rm = 550 nm and a distribution width of S = 1.05. Note that the layer altitude

was found to have only a minor effect on the results, except for large solar zenith angles (see also section 4). According to Fig.

2 this set of parameters is associated with close to the maximum possible anomalous extinction in the visible spectral range.175
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Figure 3. Results for an atmosphere without aerosols. The plots in the left column show the solar transmission spectra simulated for solar

zenith angles of 30◦, 60◦, 80◦ and 90◦, respectively (top to bottom), while the diagrams in the right column show the corresponding CIE

chromaticity plots. The transmission spectra are calculated for an observer at the Earth’s surface (0 m a.s.l.) looking directly into the Sun.

Fig. 4 shows that these assumptions lead to a blue colour of the Sun. Even for the smallest SZA of 30◦ a light blue colouring

of the Sun occurs. For the largest SZAs shown, the Sun assumes a deep blue colour. For increasing optical depth, the blueing

effect is more pronounced for all SZAs, the transmission is further reduced and for an optical depth of, e.g., τ = 2 the Sun

assumes an indigo colour for SZAs of 80◦ and 90◦ (not shown). Another aspect that must be considered is that colours may

not be perceived if the transmitted solar radiation is too weak. According to Horvath et al. (1994), colour perception will not180

work if transmission values are smaller than about 10−7, which puts additional constraints on the combination of parameters

producing a blue sun.
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Figure 4. Simulated transmission spectra (left column) and CIE chromaticity plots (right column) for a ground-based observer looking

directly into the Sun and for SZAs of 30◦, 60◦, 80◦ and 90◦ (from top to bottom). The simulations include Rayleigh scattering, molecular

absorption by all relevant species and an additional aerosol layer with anomalous extinction and a vertical optical depth of τ = 1 (at 550 nm),

a distribution width of S = 1.05, a real part of the refractive index of 1.4 and a median radius of rm = 550 nm. A blue Sun can be reproduced

with the assumptions made for all SZAs considered.

3.4 Impact of particle size

Based on the results shown in Fig. 2, significant anomalous extinction in the optical spectral range can only be produced

for a relatively narrow particle size distribution and for specific particle sizes, represented here by the median radius of a185

mono-modal log-normal distribution. Figure 5 shows chromaticity diagrams for different SZA and median radius values, for

an aerosol layer with an optical density of τ = 1, a height of 6 – 8 km and a refractive index of n = 1.4 + i · 0. For a median

radius of rm of 350 nm (first column of Fig. 5) the aerosol extinction coefficient decreases with increasing wavelength for the
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refractive index assumed here (see also Fig. 2) and the aerosol layer amplifies the effect of Rayleigh scattering and leads to

a red Sun. Note that our results nicely confirm the general notion that Rayleigh scattering only will only produce an orange190

sun during sunset (see Fig. 3), while aerosols with of a sufficiently small size are required for red sunsets (left column of Fig.

5). The results for rm = 150 nm (not shown) are quite similar to the results for rm = 350 nm. The second column shows the

results for rm = 550 nm, i.e., the median radius roughly associated with the most extreme anomalous extinction for a refractive

index (real part) of 1.4, according to Fig. 2. A blue Sun can clearly be modelled with this set of parameters. Interesting are the

results for a median radius of 750 nm (third column), which show a more and more green Sun with increasing SZA. For rm =195

950 nm (last column) the modelled Sun becomes again orange-red for the largest SZA, consistent with the spectral dependence

displayed in Fig. 2.

3.5 Aerosol scattering vs. Rayleigh scattering

As in most earlier studies on the phenomenon of the blue Sun Rayleigh scattering was not properly taken into account, it

is worthwhile to investigate, how the results change, if Rayleigh scattering is switched off in the RT model. The results for200

an aerosol layer in 6 – 8 km altitude with an optical depth of τ = 1, median radius rm = 550 nm, distribution width S =

1.05 and without Rayleigh scattering are shown in Fig. 6. Apparently and as expected, a blue Sun is more easily produced

without Rayleigh scattering for all SZAs. Ignoring Rayleigh scattering, a blue Sun can be simulated for optical depths as low

as approximately τ = 0.1 for rm = 550 nm, S = 1.05 and nr = 1.4 (results not shown). If Rayleigh scattering is considered,

an aerosol optical depth of at least τ = 0.5 is required to cause a blueing of the Sun. Note that depending on the specific set205

of aerosol parameters chosen, there are very large differences in CIE chromaticity values and colour, depending on whether

Rayleigh scattering is considered or not. Unfortunately, only a fraction of the simulations carried out can be shown here.

One possibility to reduce the impact of Rayleigh scattering in the real atmosphere is to observe from higher altitudes, e.g.,

from an aircraft (e.g., Horvath et al., 1994). Under these conditions – and an aerosol layer occurring above the observer –

Rayleigh scattering is significantly reduced, providing more favorable conditions for a blue Sun to occur.210

3.6 Case study: Results by Wilson (1951)

Among the available studies on the 1950 Canadian forest fires (e.g., Schüepp, 1950; Ångström, 1951; Ditze, 1951; Gelbke,

1951; Jenne, 1951; Wilson, 1951; Penndorf, 1953), the work by Wilson (1951) is particularly noteworthy and relevant, because

it contains a measured spectrum of transmitted visible radiation for a blue Sun scenario, obtained on September 27, 1950 from

Edinburgh. The author also took measurements of a “normal” Sun spectrum at the same solar zenith angle, which allows the215

determination of the slant aerosol optical depth. Interestingly, the blue Sun and the normal Sun spectrum shown in Wilson

(1951) (see Plate 8 on page 478) exhibit unexpected spectral features – maxima near 450 nm and 550 nm and a pronounced

minimum around 490 nm – that differ significantly from the transmission spectra simulated in the present study (see also Fig.

8). We currently do not have a convincing explanation for these spectral features. The slant aerosol optical depth spectrum for a

SZA of 71◦ based on the analysis of Wilson (1951) is shown in Fig. 7. It should be mentioned that Fig. 7 shows the optical depth220

in the sense of Beer-Lambert’s law, i.e., τ =− ln I
I0

and not the quantity shown in Fig. 1 of Wilson (1951). Note that spectral
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SZA = 30◦ SZA = 30◦ SZA = 30◦ SZA = 30◦

SZA = 60◦ SZA = 60◦ SZA = 60◦ SZA = 60◦

SZA = 80◦ SZA = 80◦ SZA = 80◦ SZA = 80◦

SZA = 90◦ SZA = 90◦ SZA = 90◦ SZA = 90◦

rm = 350 nm rm = 550 nm rm = 750 nm rm = 950 nm

Figure 5. Chromaticity diagrams for different combinations of SZA and median radius rm of the mono-modal log-normal particle size

distribution. Results for SZAs of 30◦, 60◦, 80◦ and 90◦ are shown in the different rows of the Figure, whereas the columns show results

for rm of 350 nm, 550 nm, 750 nm and 950 nm. All results are for a distribution width of S = 1.05, a real part of the refractive index of 1.4,

aerosol optical depth of τ = 1 and an aerosol layer in the 6 – 8 km altitude range.

measurements are only available in the spectral range from 381 nm to 633 nm. Apparently, the optical depth increases from 450

to 650 nm, but the relative variation is with about 10% not very large. Using the optical depth spectrum we performed radiative

transfer simulations for the solar zenith angle (SZA = 71◦) of the blue Sun measurement by Wilson (1951) with SCIATRAN

in order to test, whether this optical depth spectrum does indeed produce a blue Sun. The aerosol layer was assumed to occur225

in 10 – 12 km altitude, following Penndorf (1953). The vertical aerosol optical depth in this case was τ ≈ 3.2 at 550 nm based

on the slant optical depth reported by Wilson (1951) and converted to vertical optical depth using SCIATRAN. The results are

shown in Fig. 8 including Rayleigh scattering (top row) and without Rayleigh scattering (bottom row). A light blue colour of

the Sun is already visible in the top row, i.e., including Rayleigh scattering, but the effect is more pronounced without Rayleigh
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Figure 6. Similar to Fig. 4, but with Rayleigh scattering switched off. All other parameters are identical as in Fig. 4, i.e., τ = 1, rm = 550 nm,

S = 1.05, layer altitude 6 – 8 km.

scattering – as expected – again demonstrating that correct treatment of Rayleigh scattering is important. Neglecting Rayleigh230

scattering shifts the spectral maximum to slightly shorter wavelengths. With a slant optical depth of 9 – 10 (as in Fig. 7), solar

radiation is attenuated by 4 – 5 orders of magnitude.

It is also noteworthy that Gelbke (1951) presented a photograph of the blue sun – taken from Greifswald, Germany by W.

Gelbke on September 27, 1950, i.e., one day after the spectral measurement by Wilson (1951) – which, to our knowledge, is

the only available photograph of the event.235

The simulations show that the aerosol optical depth spectrum determined by Wilson (1951) does indeed allow simulating

a blue Sun, despite the questionable spectral signatures in the solar transmission spectra. A plausible explanation for these

spectral signatures may be that both the “blue Sun” and the “normal Sun” spectra presented by Wilson (1951) were affected by
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Figure 7. Spectrum of slant aerosol optical depth based on the analysis by Wilson (1951).

the same or very similar systematic effects that largely cancelled out when taking the ratio of the two spectra. The results also

demonstrate that a blue Sun can be reproduced even with a small relative spectral variation of the aerosol optical depth in the240

visible spectral range.

b) Without Rayleigh scattering

a) Including Rayleigh scattering

Figure 8. Similar to Figure 4, but for the aerosol optical depth and aerosol extinction spectrum taken from Wilson (1951) including Rayleigh

scattering (top row) and without Rayleigh scattering (bottom row).
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3.7 The role of absorption by H2O

Several observers took measurements of the spectral distribution of transmitted solar radiation during the green or blue Sun

events in the aftermath of the 1883 eruption of Krakatoa (Symons et al., 1888). The red part of the spectrum was found to

be markedly suppressed. The Fraunhofer A line (at 760 nm, caused by O2) could not be observed during the events and the245

Fraunhofer B line (at 687 nm, also caused by O2) was difficult to observe and was not discernible for SZAs approaching 90◦

(Symons et al., 1888, p. 212). The observers reported unusually strong absorption by “water” (or water vapour), and absorption

by water vapour was also discussed as a potential explanation of the blue Suns after the Krakatoa eruption (Symons et al.,

1888).

The effect of H2O vapor absorption on the transmission spectra and the resulting colour of the Sun was also tested using250

SCIATRAN. For tropospheric H2O mixing ratios of 4% – which is often considered the upper limit in the troposphere – and

an aerosol-free atmosphere, a blue colour of the Sun can not be reproduced (results not shown, but they are close to the results

for the aerosol-free case shown in Fig. 3). Even for a tropospheric H2O mixing ratio of 40% – which is utterly unrealistic –

the Sun appears yellowish and turns orange for large SZAs. We therefore exclude absorption by H2O as a sole explanation for

blue Suns. However, absorption of solar radiation by H2O may contribute to the blue colour, if scattering aerosols are present255

in the atmosphere. One may expect that high H2O mixing ratios lead to smaller aerosol optical depths required to produce a

blue colour of the Sun, because H2O absorbs strongly in the red part of the visible spectrum.

4 Discussion

In this study we investigated the influence of aerosol particles with different size distributions and refractive indices on the

colour of the Sun, as perceived by a ground-based human observer. Different factors were examined that may be able to evoke260

a shift in the transmitted solar spectral distribution towards a higher intensity at shorter wavelengths in the blue region of the

visible spectrum.

It is obvious that a suppression of red light – relative to the shorter wavelengths – is the key prerequisite for producing a

blue Sun or a blue moon. In principle this may be caused by molecular extinction or extinction by aerosol particles. Molecular

extinction can be excluded as a cause (see also section 3.7). Extinction by aerosol particles may in principle be caused by265

scattering or absorption of radiation by the aerosol particles. In all previous attempts to explain the phenomenon of the blue

Sun, absorption by aerosols has been dismissed and we believe this was done for good reasons. Absorption coefficients of

essentially all different types of aerosols, including mineral dust and volcanic ash decrease with increasing wavelength in the

visible spectral range. Bergstrom et al. (2007) report on measurements of spectral absorption properties of the most important

absorbing aerosol types, including biomass burning aerosols, desert dust, pollution and mixtures, which consistently yield270

positive Ångström exponents, i.e., extinction coefficients (or optical depth) decreasing with increasing wavelength. Patterson

(1981) reported on measurements of the imaginary part of the refractive index of volcanic ash emitted during the Mount St.

Helens eruption in 1980. The imaginary part decreases with increasing wavelength in the 300 nm – 700 nm spectral range, and

so does the absorption cross section (or coefficient). Patterson et al. (1983) reported similar measurements of the ash emitted
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by the El Chichon eruption in 1982 and found similar results. Pollack et al. (1973) reported measurements of the imaginary275

part of the refractive index of five different rock types. In some cases the imaginary part ni of the refractive index was found to

be increasing with increasing wavelength in the visible spectral range. However, it has to be kept in mind that the absorption

coefficient is proportional to the ratio of ni and the wavelength kext ∝ ni

λ . This again leads to kext decreasing with increasing

wavelength. To summarize, absorption by aerosol particles appears to be an unlikely cause of the blue Sun phenomenon.

The results presented so far were mostly for an aerosol layer in 6 – 8 km altitude, which is certainly arbitrary. Simulations280

were also carried out for aerosol layers in 2 – 4 km and 10 – 12 km altitude. We generally found little dependence of the results

on layer altitude, except for SZAs approaching 90◦. At these large SZAs the blueing effect on the Sun gets more pronounced

the lower the aerosol layer is (results not shown). It is beyond the scope of this study to present all cases in detail.

It should be pointed out that our results confirm the basic notion of previous studies, that anomalous scattering in the visible

spectral range caused by a suitably sized aerosol population is able to explain the occurrence of a blue or green Sun. A narrow285

aerosol particle size distribution with an appropriate mean or median radius will more easily lead to blue Suns compared to a

broader size distribution. One general question is, how a narrow size distribution can be achieved in the real atmosphere. One

possibility could be a size separation by sedimentation, perhaps accompanied by different wind directions at different altitudes,

as already suggested by Gelbke (1951). The right combination of conditions for the occurrence of a blue Sun can be expected

to arise only rarely, which provides an explanation for the infrequent observations of a blue Sun.290

5 Conclusions

We investigated possible reasons for the occurrence of a blue Sun, including anomalous scattering by suitably sized aerosols,

aerosol absorption and absorption by water vapour. This study included – for the first time to our best knowledge – a com-

prehensive treatment of Rayleigh scattering in simulations of a blue Sun. Depending on the specific aerosol and observational

parameters (SZA), Rayleigh scattering was found to have a significant impact on the simulated colour of the Sun. Anomalous295

extinction is more pronounced for narrow aerosol particle size distributions (given the right aerosol size), but the investigations

based on the aerosol optical depth retrieved by Wilson (1951) demonstrated that a relatively weak increase in aerosol extinc-

tion with wavelength in the visible spectral range also allows simulating a blue Sun. This implies that blue Suns can also be

produced for somewhat broader size distributions. Our results indicate that an aerosol optical depth of about 0.5 is sufficient

to explain a blue Sun, if the aerosol size parameters are chosen in an optimal way. If Rayleigh scattering is neglected – which300

is unrealistic, but has been done in many earlier studies – an aerosol optical depth of only 0.1 is sufficient to yield a blue Sun.

Absorption by water vapour – also proposed as a potential explanation for the blue Sun phenomenon – was shown to be a very

unlikely explanation. This study confirms the result of several other studies, that anomalous extinction by aerosol particles of a

specific size and size distribution allows explaining the occurrence of blue or green Suns. However, Rayleigh scattering should

not be neglected.305
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