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Abstract. Numerical climate simulations produce vast amounts of high-resolution data. This poses new challenges to the

palaeoclimate community – and indeed to the broader climate community – in how to efficiently process and interpret model

output. The palaeoclimate community also faces the additional challenge of having to characterise and compare a much broader

range of climates than encountered in other subfields of climate science. Here we propose an analysis framework, grounded

in dynamical systems theory, which may contribute to overcome these challenges. The framework enables to characterise the5

dynamics of a given climate through a small number of metrics. These may be applied to individual climate variables or to

diagnose the coupling between different variables. To illustrate its applicability, we analyse three numerical simulations of

mid-Holocene climates over North Africa, under different boundary conditions. We find that the three simulations produce

climate systems with different dynamical properties, which are reflected in the dynamical systems metrics. We conclude that

the dynamical systems framework holds significant potential for analysing palaeoclimate simulations. At the same time, an10

appraisal of the framework’s limitations suggests that it should be viewed as a complement to more conventional analyses,

rather than as a wholesale substitute.

1 Motivation

Numerical climate models have enjoyed widespread use in palaeoclimate studies, from early investigations based on simple15

thermodynamic or general circulation models (e.g. Gates, 1976; Donn and Shaw, 1977; Barron et al., 1980) to the state-of-the-

art models being used in the fourth phase of the Paleoclimate Modelling Intercomparison Project (PMIP4, Kageyama et al.,

2018). Compared to data from palaeo-archives, which is typically geographically sparse and with a low temporal resolution

even for the more recent palaeoclimates (e.g. Bartlein et al., 2011), numerical climate simulations produce a vast amount of
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horizontally gridded, vertically resolved and temporally high-resolution data. This poses new challenges to the palaeoclimate20

community in how to efficiently process and interpret model output – indeed an issue which is faced by the broader climate

community (Schnase et al., 2016).

A related, yet distinct, challenge faced by the palaeoclimate community are the large uncertainties often found in palaeo-

simulations. These reflect the uncertainties in palaeo-archives and in our knowledge of the boundary conditions and forcings

affecting past climates (e.g. Kageyama et al., 2018). Thus, different simulations of the climate in the same period and region25

may yield very different results. This emerges in both reconstructions of climates from millions of years ago, such as the mid-

Pliocene warm period over 3 Myr BP (e.g. Haywood et al., 2013) and in climates much closer to us, such as the mid-Holocene

around 6000 yr BP (e.g. Pausata et al., 2016). Characterising and understanding these discrepancies, requires analysis tools

which may efficiently distil the differences between the simulated palaeoclimates.

Here, we propose an analysis framework which addresses the challenges of efficiently processing and interpreting large30

amounts of model output to compare different simulated palaeoclimates. The framework is grounded in dynamical systems

theory, and enables to characterise the dynamics of a given climate through a small number of metrics. These may be applied to

individual climate variables or to diagnose the coupling between different variables. In other words, the dynamical information

embedded in 3-dimensional (latitude, longitude and time) or 4-dimensional (latitude, longitude, pressure level and time) data,

commonly produced by climate models, can be projected onto one-dimensional metrics. These may then be interpreted and35

compared with relative ease.

The rest of this technical note is structured as follows: in Section 2 we briefly describe the theory underlying the dynamical

systems framework, and provide both a qualitative and a technical description of the metrics. We further provide a link to a

repository from which MatLab code to implement the metrics may be obtained. In Section 3, we illustrate the application of

the metrics to palaeoclimate data and their interpretation by using a set of recent numerical simulations for the mid-Holocene40

climate in North Africa. This is not meant to be a comprehensive analysis, but rather provide a flavour of the information

provided by our framework. We conclude in Section 4 by reflecting on the framework’s strengths and limitations and by

outlining potential applications in future palaeoclimate studies.

2 A qualitative overview and theoretical underpinnings of the dynamical systems framework

2.1 A qualitative overview of the dynamical systems framework45

The dynamical systems framework we propose rests on three indicators. All are instantaneous in time, meaning that given

a long time series of model data, they provide a value for each timestep. For example, if we were to analyse daily latitude-

longitude sea-level pressure (SLP) over 30 years, we would then have 30 × 365 values for each indicator.

The first indicator, termed local dimension (d), provides a proxy for the number of active degrees of freedom of the system

about a state of interest (Lucarini et al., 2016; Faranda et al., 2017a). In other words, the value of d for a given day in our SLP50

dataset tells us how the SLP in the chosen geographical region can evolve to or from the pattern it displays on that day. The

number of different possible evolutions is proportional to the number of degrees of freedom, and therefore days with a low
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(high) local dimension correspond to SLP patterns that derive from and may evolve into a small (large) number of other SLP

patterns in the preceding and following days.

The second indicator, termed persistence (θ−1), measures the mean residence time of the system around a given state, and is55

bounded to the range 1≤ θ−1 <+∞. In other words, if a given day in our SLP dataset has a high (low) persistence, the SLP

pattern on that day has evolved slowly (rapidly) from and will evolve slowly (rapidly) to a different SLP pattern. The higher

the persistence, the more likely it is that the SLP patterns on the days immediately preceding and following the chosen day will

resemble the SLP pattern of that day. This metric is related to, yet distinct from, the notion of persistence issuing from weather

regimes and similar partitionings of the atmospheric variability (Hochman et al., 2019, 2020).60

Both indicators may be used to characterise the dynamics underlying complex systems, including the Earth’s climate (e.g.

Faranda et al., 2017a; Buschow and Friederichs, 2018; Brunetti et al., 2019). On a more practical level, they can also be

linked to the notion of intrinsic predictability of the system’s different states. A state with a low d and high θ−1 will afford

a better predictability than one with a high d and low θ−1. For more detailed discussions on this topic, and a comparison to

the conventional idea of predictability as evaluated through numerical weather forecasts, see Messori et al. (2017); Scher and65

Messori (2018) and Faranda et al. (2019a).

Both d and θ−1 may in principle be computed for more than one climate variable jointly (Faranda et al., 2020; De Luca

et al., 2020) but here we will focus on their univariate implementation. Unlike the first two, the third metric we propose here,

termed co-recurrence ratio (α), is exclusively defined for two or more variables, and is bounded to the range 0≤ α≤ 1.

Given two climate variables, α diagnoses the extent to which their recurrences co-occur, and hence provides a measure of70

the coupling between the two variables (Faranda et al., 2020). As example, imagine that we now have both our SLP dataset

and a corresponding precipitation dataset, which also provides daily values on a latitude-longitude grid. If α on a given day

is large, then every time we have an SLP pattern on another day which closely resembles the SLP pattern of the chosen day

(i.e. a recurrence), the precipitation pattern on that other day will also resemble the precipitation pattern of the chosen day.

In other words, recurrences of similar SLP patterns lead to recurrences of similar precipitation patterns, which would suggest75

that the two variables are highly coupled. If α on a given day is small, then every time we have an SLP pattern on another day

which closely resembles the SLP pattern of the chosen day, the precipitation pattern on that other day will not resemble the

precipitation pattern of the chosen day. In other words, recurrences of similar SLP patterns do not lead to recurrences of similar

precipitation patterns, which would suggest that the two variables are weakly coupled. We note that αmay not be interpreted in

terms of causation. However, since the joint recurrence of two fields implies the existence of a common underlying dynamics,80

the information it provides is nonetheless grounded in the physics of the system being analysed. Finally, α provides a very

different information from many other conventional statistical dependence measures, since it gives a value for every timestep

in the dataset.
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2.2 Theoretical underpinnings of the dynamical systems framework

The three dynamical systems metrics described above, issue from the combination of extreme value theory with Poincaré85

recurrences (Freitas et al., 2010; Lucarini et al., 2012, 2016). Given a dynamical system with a trajectory x(t), and a state of

interest ζx, we define logarithmic returns as:

g(x(t), ζx) =− log[dist(x(t), ζx)] (1)

In this note, dist is the Euclidean distance between two vectors. More generally, dist can be a distance function which

tends to zero as the two vectors increasingly resemble each other. For the implications of using dist other than the Euclidean90

distance, the reader is referred to Lucarini et al. (2016) and Faranda et al. (2019b). The − log implies that g(x(t), ζx) attains

large values when x(t) and ζx are close to one another. We thus have a timeseries g of logarithmic returns, which is large if x

at a specific time resembles the state of interest ζx.

We next define a high threshold s(q,ζx) as the qth quantile of g(x(t), ζx), and define exceedances u(ζx) = g(x(t), ζx)−
s(q,ζx) ∀ g(x(t), ζx)> s(q,ζx). We then leverage the Freitas-Freitas-Todd theorem (Freitas et al., 2010; Lucarini et al., 2012),95

which states that the cumulative probability distribution F (u,ζ) converges to the exponential member of the Generalised Pareto

Distribution:

F (u,ζx)' exp
[
−ϑ(ζx)

u(ζx)
σ(ζx)

]
(2)

Here, u and σ are parameters of the distribution which depend on the chosen ζx, while ϑ is the extremal index (Moloney

et al., 2019). We estimate the latter using the Süveges Maximum Likelihood Estimator (Süveges, 2007). We then obtain100

the persistence as: θ−1(ζx) = ∆t/ϑ(ζx), where ∆t is the timestep of the data being analysed, and the local dimension as

d(ζx) = 1/σ(ζx).

Finally, we define the co-recurrence ratio by considering two trajectories x(t) and y(t), and a corresponding joint state of

interest ζ = (ζx, ζy). We then have that:

α(ζ) =
ν[g(x(t))> sx(q)∪ g(y(t))> sy(q)]

ν[g(x(t))> sx(q)]
(3)105

Here, ν[−] is the number of events satisfying condition [−], and all other variables are defined as before.

The analytical derivation of the above framework assumes an underlying stationary Axiom A system, in the limit of infinitely

long time-series. Amongst other things, this implies that it assumes a dynamical system with homogeneous properties along its

trajectory. When computing the indicators for climate data, one has to take into account both the finite length of the datasets,

and non-stationarities such as those issuing from internal low-frequency variability or varying external forcing. A formal110

justification of the applicability of the dynamical systems metrics to finite data issues from the results of Caby et al. (2020).
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There, the authors show that finite-time deviations of d and θ from the asymptotic, unknown values contain information

about the underlying system, since they are linked to the presence of unstable or periodic points of the dynamics. Similarly,

both analytical and empirical evidence from Pons et al. (2020) shows that, although affected by the curse of dimensionality,

estimates of d from finite timeseries may be used in a relative sense to characterise the dynamics of a system – i.e. by comparing115

values of d to one another. The conclusions drawn from these more theoretical results match those issuing from empirical tests

on climate timeseries of finite length conducted by Buschow and Friederichs (2018). In practice, the two metrics may thus

be applied to a variety of datasets issuing from chaotic dynamical systems, including (non-stationary) climate datasets (e.g.

Faranda et al., 2019c, 2020; Brunetti et al., 2019).

MatLab code to compute d, θ−1 and α is provided at the end of this paper under "code availability".120

3 Dynamical systems in action: an example from the mid-Holocene Green Sahara

3.1 The mid-Holocene Green Sahara: background and data

Today, the Sahara is the largest hot desert on Earth. Most of the precipitation in North-Western Africa is associated with the

West African Monsoon (WAM), which reaches to around 16-17 ◦N (e.g. Sultan and Janicot, 2003) and effectively sets the

boundary between the semiarid Sahel and the Sahara. However, the region has repeatedly experienced momentous hydrocli-125

matic shifts in the past. In particular, there have been several periods when the Sahara was wetter and greener than today, often

termed African Humid Periods (AHPs, see Claussen et al. (2017) and Pausata et al. (2020) for recent reviews on the topic).

The most recent AHP peaked during the mid-Holocene (MH), approximately 9000 yr – 6000 yr BP. It is thought to have

coincided with an intensification and northward shift of the WAM, allowing the presence of vegetation, lakes and wetlands

in areas that today are desert (e.g. Holmes, 2008, and references therein). Palaeo-archives suggest that during the MH AHP,130

summer precipitation reached the northern parts of the present-day desert (e.g. Sha et al., 2019) and that tropical vegetation

may have extended as far as 24 ◦N (Hély et al., 2014).

Numerical climate simulations of the MH have struggled to reproduce the full extent of the monsoonal intensification sug-

gested by the palaeo-archives, and commonly suffer from a dry bias (Harrison et al., 2014). Early investigations on the topic

highlighted the large sensitivity of the simulations to land-surface characteristics (e.g. Kutzbach et al., 1996; Kutzbach and135

Liu, 1997; Claussen and Gayler, 1997). More recent modelling efforts have confirmed this, and have further highlighted the

potential role of an incorrect representation of atmospheric aerosols in favouring the dry bias (Pausata et al., 2016; Gaetani

et al., 2017; Messori et al., 2019). Such hypothesis has triggered a lively discussion in the literature (cf. Thompson et al., 2019;

Hopcroft and Valdes, 2019).

Here, we analyse the simulations used in Messori et al. (2019), performed with the EC-Earth Earth System Model v3.1140

(Hazeleger et al., 2010). The atmospheric model has a T159 horizontal spectral resolution and 62 vertical levels. The ocean

model has a nominal horizontal resolution of 1◦ and 46 vertical levels. In all simulations, the vegetation and aerosol concen-

trations are prescribed.
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To illustrate the dynamical systems approach described in Sect. 2, we consider three different simulations. The first is a MH

control simulation (MHCNTL), which follows the PMIP3 protocol in imposing pre-industrial vegetation and atmospheric dust145

concentrations (Braconnot et al., 2011). The second is a Green Sahara simulation (MHGS+PD), which imposes shrubland over

the region 11—33 ◦N and 15 ◦W – 35 ◦E. The third is a Green Sahara simulation that, in addition to the vegetation, also imposes

a strongly reduced atmospheric dust loading (MHGS+RD). Indeed, a greening of the Sahara would intuitively correspond to

decreased dust emissions and hence to a lower atmospheric loading, as also supported by palaeo-archives (Demenocal et al.,

2000; McGee et al., 2013) and modelling studies (Egerer et al., 2016).150

We analyse 30 years of daily data of sea-level pressure (SLP), 500 hPa geopotential height (Z500) and precipitation frequency

(prp) for each simulation. Precipitation frequency is constructed by assigning a value of 1 to grid points and time steps with

non-zero precipitation and a value of 0 otherwise. This is preferable to using raw precipitation data for estimating the dynamical

systems metrics (and d in particular), as discussed further in Langousis et al. (2009) and Faranda et al. (2017a). We define the

pre-monsoon season as March, April and May (MAM) and the monsoon season as June, July, August and September (JJAS).155

3.2 A dynamical systems view of the Mid-Holocene Green Sahara

The main interest in analysing the above simulations lies in understanding whether and why they reproduce different hydro-

climates over the Sahelian-Saharan region. Our aim in this Section is not to provide a comprehensive answer to these two

aspects, but rather to illustrate how the dynamical systems framework proposed here can be used to characterise the individual

simulations and provide a concise overview of the differences between them. We argue that such an approach can provide a160

valuable complement to conventional analyses, and we relate our results to those obtained in earlier studies (e.g. Pausata et al.,

2016; Gaetani et al., 2017; Messori et al., 2019).

A simple composite of JJAS average precipitation immediately highlights large differences in the precipitation regimes,

with the MHGS+PD simulation showing a large northward shift and intensification of the monsoonal precipitation compared

to MHCNTL and the MHGS+RD simulation showing an additional, albeit smaller, precipitation increase (Fig. 1). However,165

this time-mean picture hides a number of complex dynamical changes in the WAM, which we investigate using our dynamical

systems framework. We focus on the Northern WAM region (12.5 – 30 ◦N, 10 ◦W – 20 ◦E, black box in Fig. 1a). This domain

is chosen to reflect the region of seasonal monsoon rainfall which we expect to be most affected by the changes in land surface

and atmospheric dust loading. Results for a more geographically extended domain are shown in Appendix A.

We begin by studying the seasonality of d and θ−1 for precipitation data. In the MHCNTL (Fig. 2a, blue curve), the local170

dimension displays two peaks, roughly matching the onset and withdrawal phases of the monsoon, somewhat lower values

during the height of the summertime monsoon and the lowest values during the dry season. Previous studies have noted

how transition seasons can display an increase in the local dimension of atmospheric fields, because the atmosphere explores

configurations belonging to more than one season (Faranda et al., 2017b). In more technical terms, this would reflect a saddle-

like point of the atmospheric dynamics. We therefore interpret the two local maxima as reflecting the northward shift and175

retreat of the monsoonal rainfall. The local dimension in the MHGS+PD and MHGS+RD simulations (red and orange curves,

respectively) presents a similar seasonal cycle, yet with the first local maximum shifted to earlier in the year and the second

6

https://doi.org/10.5194/cp-2020-103
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



local maximum shifted to later in the year (Fig. 2b). This points to a lengthening of the monsoon season, with an earlier rainfall

onset and a later withdrawal. The timing of the first local maximum in d indeed coincides with a rapid increase in the zonally

averaged precipitation at the southern edge of the domain in the MHGS+PD and MHGS+RD simulations (Fig. 2c). Such a180

lenghtening of the monsoonal period under a greening of the Sahara was previously noted in Pausata et al. (2016) by adopting

a monsoon duration algorithm. The seasonal cycle of θ in MHCNTL (Fig. 2b, blue curve) displays a very different pattern. Low

values (high persistence) occur during the monsoon season while higher values (lower persistence) occur during the dry season,

albeit with a very large spread. This may reflect sporadic rainfall events at the edges of the domain outside of the monsoon

season, with more persistent precipitation patterns during the monsoon season. The MHGS+PD and MHGS+RD simulations185

(red and orange curves, respectively) display a similar seasonality, albeit with a longer high-persistence monsoonal period,

and a more marked difference in values between the monsoonal and dry phases. This chiefly results from lower values during

the monsoonal period, likely reflecting a more geographically extensive and persistent precipitation regime. One may further

hypothesise that this underlies a decrease in importance of transient, mesoscale convective systems for driving the monsoonal

precipitation, in favour of a regional re-organisation of precipitation into larger-scale persistent features. This would also190

explain the decrease in d during the Monsoon season in the MHGS+PD and MHGS+RD simulations relative to the MHCNTL

case. In agreement with this hypothesis, Gaetani et al. (2017) indeed found that the greening of the Sahara and dust reduction

suppress African Easterly Waves and their role in triggering precipitation. The above qualitative considerations are mostly

insensitive to the exact choice of geographical domain (cf. Figs. 2 and A1).

The seasonal variations in d and θ can also be related to variations in the dynamical indicators on shorter timescales. The195

fact that a rapid increase in d and a corresponding decrease in θ coincide with the northward progression of monsoonal rainfall

indeed suggests that concurring high d values and low θ values on daily timescales may correspond to specific spatial precip-

itation patterns. To verify this, we compute composite rainfall anomalies during JJAS on days with concurrent d anomalies

above the 70th percentile and θ anomalies below the 30th percentile of the respective JJAS distributions (Fig. 3). These rela-

tively broad ranges are needed to ensure a good sample of dates, since here we are imposing a condition on each of the two200

metrics simultaneously. The anomalies are defined as deviations from a daily seasonal cycle. For example, the climatological

value of a given variable in a given simulation for the 22nd July, is the mean of that variable across all 22nd July days in the

simulation. Applying a smoothing to the climatology leads to very minor quantitative changes in our results (not shown). In

MHCNTL (Fig. 3a), the anomalies are limited to the southern part of the domain, as the bulk of the Sahara receives little or no

precipitation even at the peak of the monsoon (see Fig. 1a). The spatial pattern of the anomalies is wave-like, pointing to the205

fact that the dynamical systems metrics may reflect modulations in African Easterly Wave activity (see e.g. Fig. 8 in Gaetani

et al. (2017) and the discussion above). The MHGS+PD and MHGS+RD simulations instead display clear anomaly dipoles,

oriented in a predominantly meridional direction but with some zonal asymmetry. These correspond to a nortwhard shift of

the monsoonal precipitation relative to the climatology (Fig. 3b and c, respectively). The dipoles span the whole domain, and

display the largest anomaly values in the MHGS+RD simulation. This is indeed the simulation showing the largest total rainfall,210

as well as the strongest northward shift of the monsoonal precipitation range (cf. Figs. 1b, c). Very similar results are obtained
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if the same calculation is repeated over a larger domain (Fig. A2) or over the whole year (Fig. A3), albeit in the latter case with

weaker precipitation anomalies, as may be expected from the inclusion of the dry season.

We next try to understand the physical processes underlying the differences in precipitation in the three simulations, by

computing the co-recurrence ratio α between prp and SLP (Fig. 4a). In MHCNTL (blue line), as the monsoonal precipitation215

progresses northwards the coupling between the two variables increases, peaking in the middle of the monsoon season and

waning thereafter. The dry season is characterised by overall low coupling values. In the MHGS+PD and MHGS+RD simu-

lations (red and orange curves, respectively), α displays two local minima in the pre-monsoon season and in fall. During the

northward progression of precipitation and the peak monsoonal phase, the values are mostly higher than for the MHCNTL

simulation. Both simulations also show higher α values than MHCNTL during the dry season, although these values are gen-220

erally lower than in the monsoonal period. Similar results are found when extending the geographical domain (cf. Figs. 4 and

A5), albeit with slightly higher coupling values for the extended domain during the dry season. These are likely associated

to the presence of more abundant wintertime precipitation at the latter domain’s southern boundary (Fig. A4). The stronger

coupling in the MHGS+PD and MHGS+RD simulations compared to the MHCNTL during the pre-monsoon and monsoon

seasons, points to the role of circulation anomalies – reflected in the SLP field – in favouring the northwards extension of225

the monsoonal precipitation. This was indeed noted in Pausata et al. (2016) by analysing changes in lower-level atmospheric

thickness related to the Saharan Heat Low (see also Lavaysse et al., 2009). The higher α values during wintertime in the

MHGS+PD and MHGS+RD simulations, may once again be related to the presence of limited amounts of winter precipitation

in the domain while precipitation is almost entirely absent in the MHCNTL simulation (Fig. A4). A similar picture is found

for the co-recurrence ratio between prp and Z500 (Fig. 4b), highlighting the robust nature of the increased coupling between230

precipitation and large-scale atmospheric circulation features in the MHGS+PD and MHGS+RD simulations.

As for d and θ above, one may relate the seasonal variations in α to the daily anomalies associated with large or small values

of the metric. We specifically consider precipitation, SLP and Z500 anomalies (computed as in Fig. 3) on JJAS days when α

exceeds the 95th percentile of its anomaly distribution. These "strong coupling" days may be conceptualised as days on which

recurrent spatial large-scale circulation anomalies favour recurrent spatial precipitation anomalies. In MHCNTL, this takes235

the form of stronger precipitation across the southern portion of the domain, favoured by negative SLP and Z500 anomalies

to the North of the strongest precipitation anomalies (Figs. 5a, 6a). These are likely the footprint of a strengthened heat low

(see e.g. Figs. 2 and 8 in Lavaysse et al. (2009)), which favours a northward progression of the monsoonal precipitation. As

noted above, the signal being limited to the southern part of the domain is due to the MHCNTL simulation displaying little or

no precipitation in the more northerly parts of the domain. The MHGS+PD simulation shows a predominantly zonal dipole,240

with positive precipitation anomalies in the eastern part of the domain and negative anomalies further west (Figs. 5b, 6b). On

strong coupling days, the large-scale circulation therefore favours an eastward extension of precipitation into a region that,

even under a vegetated Sahara, receives little precipitation (see Fig. 1b). Similar spatial patterns are seen for both the SLP and

Z500 composites, and in both cases the footprint of an enhanced heat low is visible. The MHGS+RD simulation resembles the

MHGS+PD simulation for the Z500 case, albeit with weaker geopotential height anomalies (Fig. 6c). An inverted precipitation245

dipole, with a drier eastern part of the domain and a wetter North-Western part, is instead seen for the SLP composite (Fig.
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5c). Comparable results are found when extending the geographical domain, with some differences that we partly ascribe to

the effect of α capturing some tropical precipitation patterns at the southern edge of the domain (cf. Figs. 5 and 6 with Figs.

A6 and A7). A hypothesis to explain the contrasting patterns found in the MHGS+RD simulation is that thermal lows play a

comparatively less important role there than in the MHGS+PD case, in favour of enhanced deep convection triggered by large250

upward heat fluxes over the Sahara (Gaetani et al., 2017). This is in agreement with the increased amount of locally recycled

moisture over the Sahara driven by dust reduction under a vegetated Sahara, noted by (Messori et al., 2019).

The above results illustrate some of the strengths and limitations of the analysis framework we propose in this note, which we

discuss further in Section 4 below. If applied in the context of a full-length research paper, some of the hypotheses expounded

here could be verified through additional analyses. These could include, for example, the use of lower-level atmospheric255

thickness or other tailored indicators of heat low activity, of atmospheric radiative and heat fluxes, and of moist static energy

as an indicator of convection.

4 An appraisal of the dynamical systems framework in a palaeoclimate context

Palaeoclimate simulations of the same period and region may yield very different results, the understanding of which requires

analysis tools that may efficiently distil the discrepancies and point to possible underlying drivers. In this technical note,260

we have outlined an analysis framework which can efficiently compare the salient dynamical features of different simulated

palaeoclimates. The framework is grounded in dynamical systems theory, and rests on computing three metrics: the local

dimension d, the persistence θ−1 and the co-recurrence ratio α. The first two metrics inform on the evolution of a system about

a given state of interest – for example how the atmosphere evolves to or from a given large-scale configuration. The third metric

describes the coupling between different variables.265

From a theoretical standpoint, the dynamical systems framework presents a number of advantages over other statistical

approaches for the analysis of large amounts of data. First, the three metrics we use are rooted in the underlying dynamics of

the system being analysed. In other words, their values are projections of mathematical properties of the underlying equations

of the system, even when these are unknown. Second, the choice of the free parameters needed to estimate the metrics is

basically limited to selecting a threshold to define recurrences. Finally, the metrics provide one value for every timestep in the270

analysed data, and may be conveniently used to investigate seasonality, oscillatory behaviours, high-frequency variability and

more. This is especially valuable for the co-recurrence ratio, as a number of other measures of coupling or correlation between

two variables only provide a single value for the whole time period being considered.

Because of these characteristics, the dynamical systems metrics can be particularly helpful when processing large datasets

(see e.g. Rodrigues et al. (2018); Faranda et al. (2019a)). To illustrate their practical applicability in palaeoclimate studies,275

we have analysed three numerical simulations of the mid-Holocene climate over North Africa: a control simulation with pre-

industrial vegetation and atmospheric dust loading, a Green Sahara simulation with shrubland imposed over a broad swath of

what is today the Sahara desert, and a second Green Sahara simulation which additionally features heavily reduced atmospheric

dust loading. Our aim is to show that the different hydroclimates in these simulations correspond to different dynamical
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properties of the modelled climate systems, which are reflected in the three dynamical systems metrics. Both d and θ−1280

underscore changes in the duration and geographical extent of the monsoon, and further hint to the physical drivers of these

changes, such as modulations in atmospheric wave activity. The co-recurrence ratio α enriches the picture by enabling to

contextualise precipitation changes relative to large-scale atmospheric circulation anomalies.

As a caveat, obtaining good estimates of d, θ−1 and α requires relatively long time series, limiting their applicability to

palaeo-archives. There are no fixed rules in this sense, but current best practice is to have several good recurrences of the285

patterns of interest in the data (e.g. Faranda et al., 2011). Non-stationary data, such as may be found in transient palaeoclimate

simulations, also requires some care in verifying that recurrences can be identified (see also Sect. 2). A further difficulty that

may be encountered in applying the dynamical systems framework pertains its interpretation. While the three metrics lend

themselves to making relatively intuitive heuristic inferences, they may sometimes provide counterintuitive results, such as

Figs. 5c and 6c here, and there is no universally valid approach to overcome these interpretative difficulties. Furthermore,290

expounding formal arguments to support the results obtained requires a detailed knowledge of the underlying theoretical bases,

which may initially be daunting.

In this technical note, we aimed to give a flavour of the dynamical systems framework’s possible application to palaeoclimate

simulations, as opposed to presenting a systematic analysis. We specifically wished to highlight its potential for comparing

different palaeoclimates, while also providing an appraisal of its limitations. To do so, we focussed on three existing simulations295

and on a small number of atmospheric variables. However, the approach may be applied to a very broad range of climate

variables, not limited to the atmosphere. We envisage that the most effective application of the framework would be for the

analysis of very large datasets, such as those issuing from the PMIP initiative or from downscaling efforts on very long transient

simulations (e.g. Lorenz et al., 2016). At the same time, we stress that we do not view the framework as a wholesale substitute

for conventional analyses of palaeoclimate dynamics. Rather, it is intended as a complement that may help to strengthen300

mechanistic interpretations and rapidly identify features deserving further investigation.

Code availability. The code to compute the three dynamical systems indicators used in this study is made freely available through the cloud
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Appendix A: Additional Figures

In this appendix, we provide figures illustrating the sensitivity of our results to the choice of geographical domain and season.

The figures are discussed in the main text.
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Figure 1. JJAS precipitation (mm day−1) for the: (a) MHCNTL, (b) MHGS+PD and (c) MHGS+RD simulations. The black box in (a) marks

the domain used to perform the dynamical systems analysis (12.5 – 30 ◦N, 10 ◦W – 20 ◦E).
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Figure 2. Seasonal cycle of median (a) d, (b) θ and (c) zonally averaged daily precipitation at 12.5 ◦N for the MHCNTL (blue), MHGS+PD

(red) and MHGS+RD (orange) simulations. The blue shading marks ± 1 std from the MHCNTL. The vertical dashed lines mark the pre-

monsoon (MAM) and monsoon (JJAS) seasons. The data is smoothed with a 10-day moving average.
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Figure 3. JJAS precipitation anomalies (mm day−1) on days with high d and low θ (see text) for the: (a) MHCNTL, (b) MHGS+PD and (c)

MHGS+RD simulations. The anomalies are only shown over the domain used to perform the dynamical systems analysis (see black box in

Fig. 1a).
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Figure 4. Seasonal cycle of median (a) αSLP,PRP and (b) αZ500,PRP for the MHCNTL (blue), MHGS+PD (red) and MHGS+RD (orange)

simulations. The blue shading marks ± 1 std from the MHCNTL. The vertical dashed lines mark the pre-monsoon (MAM) and monsoon

(JJAS) seasons. The data is smoothed with a 10-day moving average.
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Figure 5. JJAS precipitation (colours, mm day−1) and SLP (contours, hPa) anomalies on days with highα (see text) for the: (a) MHCNTL, (b)

MHGS+PD and (c) MHGS+RD simulations. The contour lines have an interval of 0.25 hPa. Continuous contours show positive anomalies,

dashed contours show zero and negative anomalies. The anomalies are only shown over the domain used to perform the dynamical systems

analysis (see black box in Fig. 1a).
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Figure 6. JJAS precipitation (colours, mm day−1) and Z500 (contours, m) anomalies on days with high α (see text) for the: (a) MHCNTL,

(b) MHGS+PD and (c) MHGS+RD simulations. The contour lines have an interval of 25 m. Continuous contours show positive anomalies,

dashed contours show zero and negative anomalies. The anomalies are only shown over the domain used to perform the dynamical systems

analysis (see black box in Fig. 1a).
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Figure A1. Same as Fig. 2a, b, but using the domain (10 – 30 ◦N, 15 ◦W – 20 ◦E).
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Figure A2. Same as Fig. 3, but using the domain (10 – 30 ◦N, 15 ◦W – 20 ◦E).
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Figure A3. Same as Fig. 3, but for the whole year.
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Figure A4. Same as Fig. 1, but for the October-February period.
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Figure A5. Same as Fig. 4, but using the domain (10 – 30 ◦N, 15 ◦W – 20 ◦E).
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Figure A6. Same as Fig. 5, but using the domain (10 – 30 ◦N, 15 ◦W – 20 ◦E).

26

https://doi.org/10.5194/cp-2020-103
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure A7. Same as Fig. 6, but using the domain (10 – 30 ◦N, 15 ◦W – 20 ◦E).
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