

1 **Climate-driven desertification and its implications for the Ancient Silk Road**
2 **trade**

3 Guanghui Dong^{1,2}, Leibin Wang^{3*}, David D Zhang³, Fengwen Liu⁴, Yifu Cui⁵, Guoqiang
4 Li¹, Zhilin Shi¹, Fahu Chen⁶

5 1 Key Laboratory of Western China's Environmental Systems (Ministry of Education),
6 College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
7 China

8 2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of
9 Sciences (CAS), Beijing 100101, China

10 3 Centre for Climate and Environmental Changes, School of Geographical Sciences,
11 Guangzhou University, Guangzhou 510006, China

12 4 Institute for Ecological Research and Pollution Control of Plateau Lakes, School of
13 Ecology and Environment Science, Yunnan University, 650504, China

14 5 College of Tourism, Huaqiao University, Quanzhou 362021, China

15 6 Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth
16 Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS),
17 Beijing 100101, China

18 **Abstract**

19 The Ancient Silk Road played a crucial role in cultural exchange and commercial
20 trade between western and eastern Eurasia during the historical period. However, the
21 exchanges were interrupted in the early 16th century AD, during the Ming dynasty.
22 Various causes for the **decline** of the Ancient Silk Road have been suggested. **Unlike**
23 **social factors, natural factors have not been adequately addressed.** In this study, we use
24 evidence from a sedimentary site (XSW) in Dunhuang oasis, together with analysis of
25 historical archives, to demonstrate the occurrence of extreme droughts and desertification
26 events in the Dunhuang area post ~1450 AD, which persisted for decades at least. The
27 desertification may have closely associated with the accessibility of the ancient Silk Road
28 in the area, which was responsible for a steep fall in the volume of trade as well as
29 political chaos and mass migrations. Therefore, besides socio-economic factors, climate
30 change may have played an important role in trade exchange between the Ming
31 government and the West, and may even have influenced the rise and decline of the
32 ancient Silk Road.

33 **Keywords:** Dunhuang; desertification; trade exchange; climate change; Ming dynasty

35 1. Introduction

36 The Ancient Silk Road was the most important link between nations in Eurasia from
37 the 2nd century BC to the 16th century AD, and thus it indirectly shaped the politics,
38 cultures and economies of populations across the Eurasian continent. The route not only
39 linked commercial trade between the East and West but it also facilitated the spread of
40 religion, technology and even diseases such as the plague (Jones et al., 2011; Chen et al.,
41 2015; Schmid et al., 2015; Frankopan, 2015; An et al., 2017; Dong et al., 2017a; **Hao et**
42 **al., 2019**; Afzaal, 2020). The Chinese section of the Ancient Silk Road passes through one
43 of the driest regions on Earth and the logistical operation of the road depended directly on
44 the oases that developed along the foot of the high mountain ranges (the Qilian, Kunlun
45 and Tianshan), mainly as a result of precipitation supplied as streamflow from the
46 highlands. Cities and towns emerged and developed in association with oases, such as
47 Jiayuguan, Dunhuang, Hami and Ruoqiang, which functioned as logistical stations for
48 trade between East and West along the Ancient Silk Road. The Jiayuguan Pass is at the
49 western end of the Great Wall in the Ming dynasty. Located at the narrowest point of the
50 Hexi Corridor, the Jiayuguan Pass was also a critical location on the primary routeway
51 between the western Gobi Desert and the domains of the Ming dynasty. Dunhuang
52 commandery was 300 km from the Jiayuguan Pass and the traffic hub which constituted
53 the historic junction of several routes along the Ancient Silk Road in Central Asia (Huang,
54 2008). It passed to the control of the central government in 1372 AD, in the early Ming
55 dynasty. As a routeway, the Ancient Silk Road reached a peak in the Tang dynasty
56 (618–907 AD), but its importance declined substantially in the 16th century AD with the
57 closure of the Jiayuguan Pass by the central government in China and the abandonment of
58 Dunhuang city in the Ming dynasty (1368–1644 AD). This event was an important
59 marker in terms of the severance of cultural exchange and trade between East and West,
60 and the decline of the Ancient Silk Road as an historically important routeway.

61 Socioeconomic-related hypotheses have been proposed to explain the **decline** of the
62 Ancient Silk Road during the later Ming Dynasty. For example, frequent wars in the
63 Dunhuang area have been suggested (Chen, 2011; Li and Zheng, 2013). **In order to**
64 **consolidate the frontier territory, from the early Ming dynasty onwards, the Ming**
65 **governor successively established seven garrisons in the Jiayuguan-Dunhuang area and**
66 **transferred the leadership to Mongolia which governed the seven garrisons** (Chen, 2000).
67 In the Middle and Late Ming dynasty, national power declined due to political corruption
68 and financial stresses, but the bordering nations such as **Oirat** and Turpan continued to
69 expand (Zhang, 1974). Agri-nomadic wars (conflict between agriculturalists and nomads)
70 and conflict between the seven garrisons and invasions by nomadic tribes in the Hexi

71 Corridor were frequent. The border policy of the administration weakened and there was a
72 gradual isolation of the governance especially after “the Tumubao Campaign” in ~1450
73 AD, which was widely regarded as a turning point in the trajectory of the Ming
74 government from prosperity to decline (Research Institute of History and Language of the
75 Central Academy of Taiwan, 1962a; Zhang, 1974), and as a consequence the
76 seven-garrisons region, including Dunhuang city, was abandoned. The re-opening of the
77 Maritime Silk Road in the southern part of Ming territory was suggested to be another
78 cause of the interruption of the Ancient Silk Road on land (Xie et al., 2007; Qian and Jin,
79 2010; Zhai, 2017). Additionally, in terms of the international geopolitical situation, after
80 capturing Constantinople in 1453 AD, the Ottoman Empire continued to expand across
81 the Balkans, the Middle East and North Africa, when its power and influence reached a
82 peak in the 16th century. A large and powerful state such as the Ottoman Empire may have
83 blocked trade between the European and the Chinese Ming government along the ancient
84 Silk Road (Faroqhi et al., 1994; Beckwith, 2009; Liu, 2014).

85 On the other hand, a pollen record from the sediments of Lake Tian’E in the Qilian
86 Mountains reveals the occurrence of a distinctly drier climate during 1350–1600 AD, and
87 therefore an environmental-related hypothesis has also been suggested for the timing of
88 the decline of the Ancient Silk Road (Zhang et al., 2018). Previous high-resolution
89 tree-ring records from the Qilian Mountains revealed the occurrence of drought in the
90 Hexi Corridor during 1450–1550 AD (Gou et al., 2015a, b; Yang et al., 2014),
91 corresponding to the onset of a cold climate during the Little Ice Age (LIA), during AD
92 1450–1850 (Mann et al., 2009). However, these tree ring and lake sediment records are
93 from the eastern part of the Hexi Corridor, and there are no reliable paleoclimatic records
94 from the Dunhuang area in the western part. Throughout human history, climate change
95 has been regarded as an important and sometimes critical factor for the rise and fall of
96 ancient civilizations (Wang et al., 2018; Tan et al., 2021), such as in the cases of
97 Mesopotamia (Weiss, 1993), the Maya (Kennett et al., 2012; Medina-Elizalde and
98 Rohling, 2012; Nooren et al., 2018), Angkor (Buckley et al., 2010), and the decline of the
99 Loulan Kingdom on the Ancient Silk Road (Fontana et al., 2019; Fig. 1).

100 In the present study, we focus on the role that paleoenvironmental variations may
101 have played on the ancient Silk Road in the Duanhuang-Jiayuguan area, which in terms of
102 the physical environment is the most inhospitable section of the Ancient Silk Road, being
103 dominated by sandy and Gobi deserts. First, the results of a detailed sedimentary
104 investigation of Xishawo site (near Dunhuang city) are presented and the
105 paleoenvironmental change are evaluated. Second, the relevant available literature is
106 reviewed and a sociopolitical analysis of the historical archives in Dunhuang and the

107 surrounding areas and in Ming China are used to determine environmental and
108 sociopolitical changes in the area during the study period. Finally, the influence of the
109 natural environment on the trade exchange between the Ming dynasty and western
110 countries, on the abandonment of the Dunhuang area, and on the official closure of the
111 Ancient Silk Road in the early 16th century AD are reviewed.

112 **2. Study area**

113 The Hexi Corridor (92°21' to 104°45'E, 37°15' to 41°30'N) is located to the north of
114 the Qilian Mountains and south of Beishan Mountain. It is long and narrow and stretches
115 for over 1,000 km from Wushaoling Mountain in the east to the boundary of Gansu and
116 Xinjiang provinces in the west, but it extends for only tens to some hundreds of
117 kilometers in the North-South direction (Fig. 1). The area corresponds to the zone of
118 climatic interaction between arid Central Asia and monsoonal Asia and is climatically
119 characterized by a continental-monsoon climate influenced by both the westerlies and the
120 monsoon. The annual precipitation is no more than ~200 mm but the evaporation ranges
121 from 1,500 mm to 3,000 mm (Huang et al., 2017). The annual temperature is ~0–10 °C.
122 The Hexi Corridor consists of three independent landlocked river systems: the Shule
123 River Basin, the Heihe River Basin, and the Shiyang River Basin, from west to east. The
124 flow of the three rivers is generated by the glaciers of the Qilian Mountains and is
125 consumed in the middle and lower reaches of Owase Lake or in the deserts within the
126 basin. Diverse landscapes of mountains, oases, deserts and Gobi are alternately distributed
127 in the area. The unique topography and location of the Hexi Corridor were largely
128 responsible for its great strategic and military importance to historical dynasties over the
129 past 2,000 years. It was also known as the key routeway (the Ancient Silk Road) for
130 cultural and merchandise exchanges between Chinese and western countries for thousands
131 of years ago until the present.

132
133 *[Fig. 1 is near here]*
134

135 The oasis ecological system in arid areas is fragile because of the closed environment,
136 sparse vegetation and water scarcity. However, the bead-like distribution of oases played
137 a crucial role in the exchange of merchandise in Eurasia. Jiayuguan city was the
138 northwestern gateway of the Ming domain and a key fortress along the routeway of
139 East-West economic exchange. Dunhuang city and Guazhou city (~120 km northeast of
140 Dunhuang) are located in the eastern Gobi Desert to the west of the Jiayuguan pass (Fig.
141 1). The Ancient Silk Road split into three branches in a westerly direction from the region.

142 The northern branch led to the northwest of Hami oasis and the oasis cities of **Turfan**,
143 Yanqi, Qiuci and Gumo, and then to Central Asia. The central branch passed through
144 Loulan city (300 km west of Dunhuang) which was abandoned in ~330 AD because of
145 eolian activity (Yuan and Zhao, 1999; James, 2007; Fontana et al., 2019). The southern
146 branch connected many cities along the southern edge of the Taklimakan Desert, such as
147 Ruoqiang, Qiemo, and Yutian, on the northern piedmont of the **Altyn-Tagh** and the
148 Kunlun Mountains (Fig. 1). As can be seen in Fig. 1, the location of Dunhuang oasis led
149 to its importance as the only logistical station between Hami oasis/Ruoqiang oasis and
150 Jiayuguan oasis during the Ming dynasty.

151 The XSW section in this study is located near the ancient city of Xishawo in the
152 modern Gobi Desert area of the Shule River Basin. The site is in the middle of the
153 Dunhuang and Guazhou oasis, ~50 km northeast of Dunhuang city (Fig. 1). The **Xishawo**
154 site was previously an ancient oasis with cultural sites, ancient cities and beacon towers.
155 Relict river channels are present at several locations, although most of them are buried by
156 sand dunes (Li, 1990; Cheng, 2007). The modern annual mean precipitation and annual
157 mean temperature of the area are 45.3 mm and 8.8° C, respectively. Previous research
158 has revealed that the Xishawo site was occupied during ~900–1400 AD, and the
159 inhabitants cultivated barley, broomcorn and foxtail millet during this period (Li et al.,
160 2017). Wind-eroded landforms are common in the region as a consequence of the arid
161 climate, sparse vegetation cover and frequent sandstorms. The exposed part of the XSW
162 section is ~3-m thick and consists mainly of a sand dune which is fixed by the dead roots
163 of *Salix* and therefore preserved. The surface of the profile was cleaned to remove
164 contamination by modern sediments and plant roots. The stratigraphic description of
165 XSW section from the top to 270-cm depth is as follows: (1) 0–10 cm, fine sand. (2)
166 10–46 cm, dark-gray paleosol, with a 4 cm-thick black cultural layer at 30–34 cm. (3)
167 46–100 cm, light-yellowish loess. (4) 100–125 cm, loess-like paleosol. (5) 125–185 cm,
168 dark gray clay with Fe-Mn nodules. (6) 185–250 cm, yellow fine sand. (7) 250–270 cm,
169 black silty clay. A total of 135 samples were collected at a 2-cm interval for
170 measurements of weight loss-on-ignition (LOI), grain size, and element contents. One
171 wood sample (at the depth of 10 cm, labeled XSW-10) and one charcoal sample (from the
172 cultural layer at 32 cm, labeled XSW-32) were collected for accelerator mass
173 spectrometry radiocarbon (AMS ^{14}C) dating. Two eolian samples for optically stimulated
174 luminescence (OSL) dating from the fine yellow sand layer (188 cm and 248 cm, labeled
175 XSW-188, XSW-248, respectively) were collected by hammering stainless-steel cylinders
176 into the section vertically, which were immediately sealed with opaque tape after removal.

177 3. Methodology

178 3.1 Laboratory analyses

179 (1) Chronology

180 AMS ^{14}C and OSL dating were used to establish a chronological framework for the
181 XSW section. The charcoal and wood samples for AMS ^{14}C dating was prepared by the
182 acid-base-acid procedure at the MOE Key Laboratory in Lanzhou University and
183 measured at the AMS ^{14}C dating laboratory of Peking University. The IntCal13 curve,
184 Libby half-life of 5,568 years and OxCal 4.2 were used to calibrate all of the dates
185 (Reimer et al., 2013). All ages reported are relative to 1950 AD (referred to as “cal BC”
186 and “cal AD”).

187 OSL dating was conducted at the OSL Laboratory at the MOE Key Laboratory of
188 Western China’s Environmental System, Lanzhou University. Two OSL dating samples
189 were collected from the XSW section. The pretreatment procedure followed that
190 described in Aitken (1998). OSL measurement of coarse-grained (90–125 μm) quartz
191 were performed using an automated Risø TL/OSL DA-20 reader. Laboratory irradiation
192 was carried out using $^{90}\text{Sr}/^{90}\text{Y}$ sources. The quartz OSL signal was detected by a
193 photomultiplier tube through two 3-mm-thick Hoya U-340 filters and the K-feldspar IRSL
194 signal was detected using a package of Corning7-59 and BG-39 filters. The purity of the
195 quartz extracts was checked using the IR depletion ratio test (Duller et al., 2003). A single
196 aliquot regenerative protocol (Murray and Wintle, 2003) was applied to quartz samples to
197 obtain the equivalent dose (D_{e}). The concentrations of the radioactive elements uranium
198 (^{238}U), thorium (^{232}Th) and potassium (^{40}K) were measured by neutron activation analysis
199 (NAA) to calculate the dose rate. The cosmic ray contribution was calculated according to
200 the burial depth and altitude of the samples (Prescott and Hutton, 1994). A water content
201 of $10 \pm 5\%$ was used to the calculate ages of sand-loess sediments.

202 (2) Analysis of climatic proxies

203 Measurements of LOI, grain size and element contents were made at the MOE Key
204 Laboratory of Western China’s Environmental System Lanzhou University. LOI
205 measurements were used to determine the organic matter content of the sediments. The
206 measurements were made at a 2-cm interval and calculated as LOI_{550}
207 $(\%) = (m_{105} - m_{550})/m_{105} \times 100\%$, where m_{105} is the sample weight after oven drying at 105°C,
208 and m_{550} is the sample weight after combustion at 550°C for 4 hr in a muffle furnace.

209 Samples for grain-size analysis were pre-treated with 10% H₂O₂ and 10% HCL to
210 remove organic matter and carbonates, respectively. The samples were then dispersed by
211 ultrasonication with the addition of 10% sodium hexametaphosphate. Grain-size
212 distributions were measured with a Malvern MS 2000 laser grain-size analyzer.

213 Samples for the analysis of element contents were pretreated as follows. All samples
214 were oven-dried for 24 hr and then pulverized into a powder. About 4 g of powder was
215 then pressed into a 4–6 mm-thick and 30 mm-diameter pellet under 30 t/m² of pressure.
216 The major, minor and trace element contents were measured with a Magix PW2403
217 Wavelength-Dispersive XRF Spectrometer. Elemental concentrations of 0.1 ppm to 100%
218 could be analyzed. Rb/Sr ratios were calculated for paleoenvironmental reconstruction.

219 3.2 Analysis of published paleoenvironmental records and documentary evidence for the
220 region

221 (1) Previous paleoclimatic records from the region

222 All available high-resolution paleoclimatic records for the study area and the adjacent
223 region were reviewed and compared. They include records of regional temperature,
224 precipitation, and river flow. In addition, documentary evidence of climate change in the
225 region during the Ming dynasty was investigated.

226 (2) Sociohistorical archives

227 Sociohistorical records such as of the politics and economic and military activity of
228 the Ming dynasty were analyzed (Zhang, 1974; Chinese Military History Writing Group,
229 2003; Yu, 2003), together with sociohistorical records of the Jiayuguan-Dunhuang area.

230 4. Results and discussion

231 4.1. Effects of warfare on the Ancient Silk Road

232 The Jiayuguan-Dunhuang area experienced frequent political turmoil and conflicts in
233 Ming dynasty (Zhang, 1974). Warfare in the northwestern part of the Ming domain was
234 suggested to be the main cause for the repeated (twice) closure of the Jiayuguan Pass and
235 the severance of the Ancient Silk Road (Gao and Zhang, 1989; Chen, 2011). The
236 Jiayuguan Pass was established in 1372 AD in the early Ming dynasty to resist the
237 remaining elements of the Yuan dynasty (1271–1368 AD), and the Hexi Corridor was
238 under the total control of the Ming government during the Ming dynasty. In addition, the
239 Ming dynasty government established seven garrisons in the west of Jiayuguan Pass to
240 reduce pressure on the border (Zhang, 1974). The Jiayuguan Pass was not only a military

241 fastness, but also the primary pass on the Ancient Silk road to the Western Regions.

242 In order to investigate the relationship between conflict and the closure of the
243 Jiayuguan Pass, the frequency of agri-nomadic conflict in the Dunhuang area was
244 estimated based on historical archives (Chinese Military History Writing Group, 2003; Yu,
245 2003). The incidence of agri-nomadic conflicts in the Hexi Corridor was also summarized
246 for comparison (Fig. 2a). The classification of agri-nomadic conflict was adopted because
247 it directly reflects the conflict between the central government and nomadic peoples. The
248 frequency of tribute trade and the number of tribute states in the Western Regions are
249 illustrated in Fig. 2b and 2c (Chinese Military History Writing Group, 2003; Yu, 2003). All
250 of the data were grouped into 5-year intervals. It is evident that conflicts between
251 agriculturalists and nomads occurred constantly from 1368 AD, in the early Ming dynasty,
252 until 1520 AD. However, conflicts ceased in the Dunhuang area after 1520 AD, which
253 shows that the final closure of the Jiayuguan Pass in 1539 AD substantially reduced the
254 frequency of nomad incursions in the Dunhuang area. **However, evidence is still needed**
255 **to confirm that that agri-nomadic conflicts were responsible for the closures of the**
256 **Jiayuguan Pass in 1524 AD and 1539 AD, and for the decline of the Ancient Silk Road.**
257 For example, it is unclear why—if agri-nomadic conflicts no longer occurred after 1520
258 AD—the Jiayuguan Pass was closed decades later in 1539 AD. It is also unclear why
259 there was a lull in political unrest and violence in the Dunhuang area from 1450 AD.

260
261
262 [Fig. 2 is near here]
263
264

265 Reference to Fig. 2b and 2c shows that tribute exchange between the Ming
266 government and the Western Regions has no obvious relationship with the frequency of
267 conflicts. The tribute trade frequency and the number of tribute states both reached a peak
268 during 1400–1450 AD, but then decreased sharply after 1450 AD and subsequently
269 maintained a low level. As Fig. 2a demonstrates, there were frequent agri-nomadic
270 conflicts during 1400–1450 AD, which were followed by a truce which lasted for about
271 20 years. However, the tribute trade declined substantially during the truce (1450–1470
272 AD) and there was no obvious revival until the collapse of the Ming dynasty (Fig. 2b and
273 Fig. 2c).

274 It has been determined that the Jiayuguan Pass – Dunhuang city route was the crucial
275 routeway connecting the Western Region to the domestic territory during the Ming
276 dynasty (Zhang, 1974). The absence of a relationship between the frequency of wars in
277 the Dunhuang area and variations in the amount of tribute trade demonstrates that **an**

278 increase in the frequency of warfare was probably not the primary or single cause of the
279 collapse of trade along the Ancient Silk Road.

280 Moreover, war was not solely responsible for the closure of the Jiayuguan Pass. The
281 first closure of the Jiayuguan Pass in 1524 AD may have been a consequence of wars in
282 the Dunhuang area, although wars also occurred frequently during periods when trade
283 flourished (1400–1450 AD) (Fig. 2a). However, subsequently there was a continuous
284 state of peace in the Dunhuang area which lasted for decades and the city was only
285 abandoned by the final closure of the Jiayuguan Pass in 1539 AD. Therefore, we conclude
286 that an increase in the frequency of warfare is not a tenable explanation for the decline of
287 the Ancient Silk Road.

288

289 4.2. Influence of climate change on the Ancient Silk Road

290 **4.2.1 Paleoclimatic record of the XSW section**

291 The paleoclimatic record of the XSW section in the Dunhuang area was used to
292 assess the possible role of climate change in the decline of the Ancient Silk Road. The
293 results of the analysis of various climatically-sensitive parameters, together with the ^{14}C
294 and OSL chronology, are illustrated in Fig. 3. The ^{14}C dates for the fine sand layer
295 (XSW-10) and the cultural layer (XSW-32) are 499 ± 10 cal yr BP (1440–1460 cal AD)
296 and 701 ± 27 cal yr BP (1224–1278 cal AD), respectively. The two OSL samples from the
297 sand layer are dated to 2.6 ± 0.2 ka (800 ± 300 BC) and 2.8 ± 0.2 ka (600 ± 200 BC) (Table 2).
298 Profiles of grain size, LOI and Rb/Sr ratio are shown in Fig. 3a, 3b, 3c and 3d,
299 respectively. The increase in median grain size and of the $>63\text{ }\mu\text{m}$ fraction indicate an arid
300 environment and intense wind activity in the Dunhuang area during 800–600 BC and at
301 ~ 1450 AD. The LOI record reflects variation in organic matter content and the Rb/Sr ratio
302 of eolian sediments is positively correlated with weathering intensity. The Rb/Sr ratio of
303 the two sand layers is very low (Fig. 3), and therefore the effects of weathering are minor
304 (Gallet et al., 1996; Chen et al., 1999), suggesting that precipitation in the Dunhuang area
305 was low during ~ 800 –600 BC and after ~ 1450 AD. A comparison of the LOI and Rb/Sr
306 profiles indicates that during 800–600 BC and after ~ 1450 AD, the organic matter content
307 of the section was low and chemical weathering was weak. These results suggest the
308 occurrence of overall arid conditions, frequent dust storms, and associated desertification
309 events during 800–600 BC, i.e. the Spring and Autumn period (771–476 BCE) of the
310 Eastern Zhou Dynasty, and after ~ 1450 AD (the Ming dynasty). These conditions would
311 have been very unfavorable for human habitation of the area.

312

313
314

[Fig. 3 is near here]

315 The two desertification events recorded in the XSW section were not solely local
316 events. A cold and dry climate at these times is also evident in palaeoclimatic records
317 from the nearby Qilian Mountains and the Tibetan Plateau. A tree ring record from the
318 Qilian Mountains suggests that precipitation was low during 900–550 BC (Yang et al.,
319 2014). A pollen record from Juyanze lake indicates the low representation of tree pollen at
320 the same time (Herzschuh et al., 2004). The $\delta^{18}\text{O}$ record from the Agassiz ice cap in the
321 high Arctic indicates relatively low temperatures during ~800–600 BC (Lecavalier et al.,
322 2017), which is correlative with records from the Guliya ice core in the Tibetan Plateau
323 (Thompson et al., 1997). The timing of the second desertification event in the Dunhuang
324 area, in ~1450 AD, coincides well with changes in a tree-ring record from mountains in
325 the western Hexi corridor, which suggests an interval of persistent low precipitation
326 during 1430–1540 AD (Fig. 2f, Gou et al., 2015a). An interval of reduced precipitation
327 during this time is also widely recorded in other high-resolution tree ring records from the
328 northern Tibetan Plateau (Gou et al., 2015b; Yang et al., 2014), and in the laminated
329 sediments of Sugan lake in the western Qaidam Basin (Qiang et al., 2005). A decrease in
330 global temperature at ~1450 AD has also been widely detected in high-resolution
331 paleoclimatic records from various locations (Thompson et al., 1997; Wilson et al., 2016;
332 Lecavalier et al., 2017), and is also recorded in historical documentary records from China
333 (Ge et al., 2003). This evidence indicates the occurrence of two desertification events in
334 the Dunhuang area and elsewhere, during ~800–600 BC and after ~1450 AD, which were
335 related to regional-scale climatic and environmental deterioration.

336 As mentioned earlier, the oasis ecological system in arid regions is relatively fragile,
337 with the major limiting factor being water availability (Qian and Jin, 2010). At the present
338 time, vegetation survival in the oasis of the Hexi Corridor depends mainly on runoff from
339 the Qilian Mountains, which is derived firstly from precipitation in the highlands and
340 secondly from glacier meltwater (Liu et al., 2010; Yang et al., 2011; Sakai et al., 2012).
341 The prominent long interval of reduced precipitation and temperature in the Qilian
342 Mountains and in the Tibetan Plateau during ~800–600 BC and at ~1450 AD caused a
343 large decrease in runoff to the lowlands of the Hexi Corridor, which in turn caused
344 vegetation degradation and the extension of Gobi and sandy desert. Compared to other
345 oasis cities along the Ancient Silk Road, which were much closer to the high mountain
346 glaciers (above 4,500 m.a.s.l., Fig. 1) which provided a constant supply of meltwater,
347 Dunhuang oasis was located much closer to the center of the Gobi, and therefore it
348 experienced severe desertification which may have resulted in its abandonment.

349 **4.2.2 Archaeological evidence of climate change in the Dunhuang area**

350 The relatively dense distribution of prehistoric sites in the Hexi Corridor reflects the
351 past intensity of human settlement in the area as well as the habitability of the surrounding
352 environment (Bureau of National Cultural Relics, 2011; Yang et al., 2019). The Hexi
353 Corridor was extensively settled from the Majiayao period (3300–2000 BC) (Li, 2011),
354 and foxtail millet and broomcorn millet, which were domesticated in north China, were
355 cultivated (Zhou et al., 2016; Dong et al., 2018). Innovations in agricultural technology
356 facilitated the rapid development of Bronze cultures in the Hexi Corridor and the
357 surrounding areas in the succeeding millennium (Dong et al., 2016; Zhou et al., 2016).
358 However, there is a gap in radiocarbon dates during ~850–650 BC in the western Hexi
359 Corridor and eastern Xinjiang Province (Fig. A1), which suggests a hiatus in cultural
360 evolution and exchange during this period. This hiatus corresponds well to the
361 desertification event in the Dunhuang area of the western Hexi Corridor during
362 ~800–600 BC (Fig. 3). However, even though the climate fluctuated substantially in
363 northwest China during the Bronze Age, human settlement was continuous in the eastern
364 Hexi Corridor at the same longitude (Fig. A1), which suggests that human occupation of
365 the Hexi Corridor was primarily determined by the environmental conditions.

366 The second desertification event occurred at ~1450 AD and is recorded both in the
367 sand layer of the XSW profile and in the historical and cultural literature. The drought in
368 the Dunhuang area at this time was described as “The wind shakes the Tamarix in
369 thousands of miles of uninhabited land” and “the moon shines on the quicksand on each
370 departed day” (Huang and Wu, 2008). **The Yugur minority ancestors, who originally
371 settled in the Duanhuang area after the abandonment of Dunhuang, sang folk songs about
372 the human migrations through the Jiayuguan Pass during the Ming dynasty (Chen, 2011).**
373 An epic of the migration of the Yugur minority history contains the following passage:
374 “Violent winds swept livestock away, sand dunes submerged tents and houses, rivers
375 dried up, grassland was devastated” (Wang, 1992; Editorial Group of a Brief History of
376 the Yugur minority, 2008). From these descriptions it can be deduced that the prolonged
377 drought at ~1450 AD may have led to the disappearance of the oasis. The altered
378 eco-environment would have reduced the productivity of
379 agriculture and animal husbandry, which would have caused a local food shortage. The
380 deteriorated environment was very likely another cause of mass migration in addition to
381 warfare. The changing geopolitical situation in the western Hexi Corridor and eastern
382 Xinjiang Province was an important factor in the abandonment of the Dunhuang area by
383 the Ming government, and the extreme and the persistent drought event after ~1450 AD
384 may have intensified the social upheaval and chaos (Fig. 2d, blue triangles highlight mass

385 migrations), which triggered this significant historical event. Notably, a significant
386 relationship has been observed between decreased precipitation, wars and the
387 abandonment of cultivated land in the region during the last 2,000 years (Li et.al. 2019).

388 **4.2.3 Desertification events in the Ancient Silk Road area**

389 Various indicators of climatic variations, wars and the tribute trade are plotted in
390 Fig. 2 versus the chronological sequence of the Ming dynasty (1368–1644 AD). Under the
391 premise that at ~1450 AD the environment was characterized by a cold and dry climate
392 with intense sandstorms (Fig. 2e), low precipitation (Fig. 2f) and decreased streamflow
393 (Fig. 2g), there is a possibility that climate change played a role on the tribute trade of the
394 Ancient Silk Road. There was an abrupt decrease in the frequency of tribute trade at
395 ~1450 AD, but not during the two closures of the Jiayuguan Pass, in 1524 AD and 1539
396 AD (Fig. 2b and 2d). In addition, at this time there was a lull in conflicts in the Dunhuang
397 area (Fig. 2a). Therefore, it is proposed that environmental deterioration likely contributed
398 to the decline of the tribute trade and the cessation of hostilities. **Climatic perturbations**
399 **and environmental degradation may not necessarily be a direct trigger of a societal crisis,**
400 **but they may instead result in institutional failure caused by the lack of a centralized**
401 **response to an environmental crisis (Feng et al. 2019).** Social disturbance associated with
402 migrations and chaos in the Ming dynasty was likely an indirect consequence of
403 environmental changes. For example, the consequences of a deteriorating environment
404 would include the shrinkage of the habitat and agricultural land necessary for human
405 survival, multiple waves of human migrations into the eastern part of the Hexi Corridor,
406 and the shift of the frontier from Dunhuang to the Jiayuguan pass. Thus, the population
407 decline in the Dunhuang area during the early Ming Dynasty was most probably a
408 “domino effect” (Feng et al. 2019).

409 The influence of the desertification event in ~1450 AD on the streamflow of the
410 Qilian Mountains gradually decreased after the 1520s AD (Fig. 2f and Fig. 2g). However,
411 the formation and evolution of an oasis is a long-term process (Stamp, 1961; Zhang and
412 Hu, 2002; Li et al., 2016), and the ecological response of an oasis to climatic drying
413 would not be to disappear immediately (Fan, 1993). Moreover, it takes at least 15–20
414 years for the recovery of a degraded oasis following destruction by ~1–3 years of human
415 activity (Zhang and Hu, 2002). Therefore, the regeneration of a degraded oasis would take
416 much longer than a change in the streamflow. Overall, we propose that the abrupt
417 decrease in tribute exchange and prosperity, or even the decline of the ancient Silk Road,
418 may have been affected by the deterioration of the environment along the routeway in the
419 Ming dynasty (Fig. 2b and Fig. 2c).

420 We now address the issue of how the desertification at ~1450 AD in the Dunhuang
421 oasis and adjacent regions may have affected the functioning of the Ancient Silk Road.
422 First, trading in the arid environment of the Ancient Silk Road led to the increase in the
423 importance of oasis cities. Camel caravans needed supplies of grain and water from an
424 oasis as they traversed the extensive desert along the road. The desertification events
425 recorded in the XSW section and in the adjacent regions indicate that Dunhuang oasis and
426 Guazhou oasis were not functioning at ~1450 AD. This lengthened the distance from the
427 Jiayuguan oasis in the Hexi Corridor to the western oasis in Xinjiang (Fig. 1). According
428 to several researchers, camel caravans in deserts areas were able to travel a maximum
429 distance of ~30 km/day (Shui, 1990; Wang et al., 2000). In addition, the metabolism of a
430 domesticated camel will decrease within 20 days from the beginning of water deprivation
431 (Chen, 1982). Under working conditions, camels can go for ~10–15 days without water
432 under a mean ambient temperature of 35°C (Kataria et al., 2001). A camel caravan took
433 59 days to traverse the 1,400 km of the Taklimakan Desert in 1993 AD under modern
434 climatic conditions, which are much more favorable than in ~1450 AD, and the maximum
435 distance was 24 km in one day (Blackmore, 2000). The maximum distance for a caravan
436 in the water-limited environment on the Silk Road was 30 km/day×15 days = 450 km.
437 The distances of Hami, Ruojiang and Jiayuguan to Dunhuang, where are Gobi Desert
438 without high mountains, are already close to or above this limit, which is barely sufficient
439 for camel travel (shown by the dots in Fig. 1, near the Dunhuang and Shazhou oasis). On
440 the other hand, the distances between the oases along the routes on the piedmonts of the
441 high mountain ranges (Qilian, Kunlun and Tianshan) are generally less than 200 km as the
442 high mountain ranges provide meltwater. After the desertification event, the distances
443 between Jiayuguan and Hami oases (the northern route of the ancient Silk Road) and
444 between Jiayuguan and Ruojiang oases (the southern route) increased to ~600 km and
445 ~1,000 km, respectively. **This is close to the maximum distance that a camel caravan can
446 achieve (~450 km) without a water supply, and would have substantially increased the
447 difficulty of travel across the region and was likely to be the physical cause of the decline
448 of the Ancient Silk road during the periods of desertification.**

449 5. Conclusion

450 We have systematically investigated a possible climatic cause of the interruption of
451 the operation of the Ancient Silk Road during the Ming Dynasty. A compilation of the
452 results of absolute dating and high-resolution paleoclimatic records from the SXW site in
453 the Dunhuang area, and historical archives, reveals that two desertification events
454 occurred, at ~800–600 BC and ~1450 AD. The later desertification event was consistent

455 with the immediate fall in tribute trade that occurred in ~1450 AD, which indicates that
456 environmental deterioration may have disrupted the trading exchanges by draining the
457 oases in Dunhuang and Guazhou city, which were strategic logistical stations in the vast
458 Gobi Desert. This resulted in travelling distances between supply stations exceeding the
459 physical limit for camel caravans and an irreversible decline in trade exchange. On the
460 other hand, the incidence of agri-nomadic conflicts from historical archives suggests that
461 warfare alone is not the best explanation for the severance of exchanges between Western
462 countries and the Ming government. Hence, we propose that climate change also played a
463 potentially important role in explaining the decline of the Ancient Silk Road trade.

464 **Acknowledgements**

465 We thank Dr. Teng Li and Dr Shengda Zhang for their suggestions and discussions which
466 inspired this study. We also thank Dr Jan Bloemendal for improving the English. This
467 work was supported by the National Key R&D Program of China (2018YFA0606402),
468 the National Natural Science Foundation of China (41825001, 41971110, 41901098)

469

470 References

471 Afzaal, M.: Silk Road to Belt Road: reinventing the past and shaping the future. *Asia Pac.*
472 *Bus. Rev.*, 26, 104-107, 2020.

473 An, C. B., Wang, W., Duan, F. T., Huang, W., and Chen, F. H.: Environmental changes
474 and cultural exchange between East and West along the Silk Road in arid Central
475 Asia. *Acta Geogr. Sin.*, 72, 875-891, 2017 (In Chinese).

476 **Beckwith, C.I.: Empires of the silk road: A history of central Eurasia from the Bronze**
477 **Age to the present. Princeton University Press, 2009.**

478 Blackmore, C.: Crossing the Desert of Death: Through the Fearsome Taklamakan. John
479 Murray press, London, 2000.

480 Bureau of National Cultural Relics: *Atlas of Chinese Cultural Relics-Fascicule of Gansu*
481 *Province*, Surveying and Mapping Press, Beijing, 2011 (In Chinese).

482 Chen, C.: Annals of the western vassal states, China Publishing House, Beijing, 2000 (in
483 Chinese).

484 Chen, F. H., Dong, G. H., Zhang, D. J., Liu, X. Y., Jia, X., An, C. B., Ma, M. M., Xie, Y.
485 W., Barton, L., Ren, X. Y., Zhao, Z. J., Wu, X. H., and Jones, M. K.: Agriculture
486 facilitated permanent human occupation of the Tibetan Plateau after 3600 BP,
487 *Science*, 347, 248-250, 2015.

488 Chen, G. W.: Research on the abandonment of the Dunhuang during Ming Dynasty. *J.*
489 *Dunhuang Stud.*, 60, 111-118, 2011 (In Chinese).

490 Chen, J., An, Z. S., and Head, J.: Variation of Rb/Sr ratios in the loess-paleosol sequences
491 of central China during the last 130,000 years and their implications for monsoon
492 paleoclimatology, *Quat. Res.*, 51, 215-219, 1999.

493 Chen, Z.: Determination of hunger and thirst tolerance of camel. *Animal husbandry and*
494 *veterinary*, 2, 56-58, 1982 (in Chinese).

495 Chen, Z.L.: *Ming Jing Shi Wen Bian*, China Publishing House, 1962 (in Chinese).

496 **Cheng, H.Y.: The Desertification of the Hexi Area in Historical Time. Lanzhou**
497 **University, Doctoral Dissertation, 2007 (In Chinese with English abstract).**

498 Chinese Military History Writing Group: *Chronology of China's Ancient War*, People's
499 *Liberation Army press, Beijing, China, 2003 (in Chinese).*

500 Dreyer, E.L. *Zheng He: China and the oceans in the early Ming dynasty, 1405-1433*.
501 Pearson Longman, 2006.

502 Dong, G. H., Ren, L. L., Jia, X., Liu, X. Y., Dong, S. M., Li, H. M., Wang, Z. X., Xiao, Y.
503 M., and Chen, F. H.: Chronology and subsistence strategy of Nuomuhong Culture in
504 the Tibetan Plateau. *Quatern. Int.*, 426, 42-49, 2016.

505 Dong, G. H., Yang, Y. S., Liu, X. Y., Li, H. M., Cui, Y. F., Wang, H., Chen, G. K.,
506 Dodson, J., and Chen, F. H.: Prehistoric trans-continental cultural exchange in the
507 Hexi Corridor, northwest China. *Holocene*, 28(4), 621-628, 2018.

508 Editorial Group of a Brief History of the Yugur minority: *Brief history for Yugur*
509 minority, The Ethnic Publishing House, Beijing, 2008 (in Chinese).

510 Fan, Z.L.: *A study on the formation and evolution of Oases in Tarim Basin*, *Acta*
511 *Geographica Sinica*, 48: 421-427, 1993.

512 Faroqhi, S., McGowan, B., Pamuk, S.: *An economic and social history of the Ottoman*
513 *Empire, 1300-1914*. Cambridge University Press, 1994.

514 Feng, Q., Yang, L., Deo, R. C., AghaKouchak, A., Adamowski, J. F., Stone, R., Yin, Z. L.,
515 Liu, W., Si, J. H., Wen, X. H., Zhu, M., Cao, S. X.: Domino effect of climate change
516 over two millennia in ancient China's Hexi Corridor, *Nat. Sustain.*, 2, 957-961, 2019.

517 Fontana, L., Sun, M. J., Huang, X. Z., and Xiang, L. X.: The impact of climate change
518 and human activity on the ecological status of Bosten Lake, NW China, revealed by
519 a diatom record for the last 2000 years, *Holocene*, 29, 1871-1884, 2019.

520 Frankopan, P.: *The silk roads: A new history of the world*. Bloomsbury Publishing, 2015.

521 Gallet, S., Jahn, B.M., and Torii, M.: Geochemical characterization of the Luochuan
522 loess-paleosol sequence, China, and paleoclimatic implications, *Chem. Geol.*, 133,
523 67-88, 1996.

524 Gao, F. S., and Zhang, J. W.: *Jiayuguan Pass and the Great Wall of Ming dynasty*,
525 Heritage Press, 1989 (in Chinese).

526 Ge, Q. S., Zheng, J. Y., Fang, X. Q., Man, Z. M., Zhang, X. Q., Zhang, P. Y., and Wang,
527 W. C.: Winter half-year temperature reconstruction for the middle and lower reaches
528 of the Yellow River and Yangtze River, China, during the past 2000 years. *Holocene*,
529 13, 933-940, 2003.

530 Gou, X. H., Gao, L. L., Deng, Y., Chen, F. H., Yang, M. X., and Still, C.: An 850-year
531 tree-ring-based reconstruction of drought history in the western Qilian Mountains of
532 northwestern China. *Int. J. Climatol.*, 35, 3308-3319, 2015a.

533 Gou, X. H., Deng, Y., Gao, L. L., Chen, F. H., Cook, E., Yang, M. X., and Zhang, F.:
534 Millennium tree-ring reconstruction of drought variability in the eastern Qilian
535 Mountains, northwest China. *Clim. Dyn.*, 45, 1761-1770, 2015b.

536 Gu, Y.T.: The major events of Ming history, China publishing House, 1977.

537 Hao, Z.X., Zheng, J.Y., Yu, Y.Z., Xiong, D.Y., Liu, Y., Ge, Q.S.: Climatic changes
538 during the past two millennia along the Ancient Silk Road. *Progress in Physical*
539 *Geography: Earth and Environment*. 44(5), 605-623, 2020,

540 Herzschuh, U., Tarasov, P., Wünnemann, B., and Hartmann, K.: Holocene vegetation and
541 climate of the Alashan Plateau, NW China, reconstructed from pollen
542 data. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 211, 1-17, 2004.

543 Huang, S., Feng, Q., Lu, Z.X., Wen, X.H., and Deo, R.C.: Trend Analysis of Water
544 Poverty Index for Assessment of Water Stress and Water Management Polices: A
545 Case Study in the Hexi Corridor, China. *Sustainability*, 9, 756, 2017.

546 Huang, W. W., and Wu, S. G.: New Local Records of Suzhou. China Publishing House,
547 Beijing, 2008.

548 James, A. M.: Eurasian Crossroads: A history of Xinjiang. Columbia University Press,
549 New York, 2007.

550 Jones, M.K., Hunt, H., Lightfoot, E., Lister, D., Liu, X.Y., and Matuzeviciute, G.M.: Food
551 globalization in prehistory, *World Archaeol.*, 43, 665-675, 2011.

552 Kataria, N., Kataria, A. K., Agarwal, V.K., Garg, S.L., and Sahani, M.S.: Filtered and
553 excreted loads of urea in different climatic conditions and hydration states in
554 dromedary camel. *J. Camel. Pract. Res.*, 8, 203-207, 2001.

555 Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L., Huybrechts, P.,
556 Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.: High Arctic
557 Holocene temperature record from the Agassiz ice cap and Greenland ice sheet
558 evolution, *Proc. Natl. Acad. Sci.*, 114, 5952-5957, 2017.

559 Li, B.C.: Study on Desertification of Hexi Corridor in historical period, China. Beijing:
560 Science Press, 2003. (in Chinese),

561 Li, B.C.: Investigation on the Ancient Ruins in the Western Sandy land of Minqin County.
562 J. Desert Res., 1990 (in Chinese with the English abstract).

563 Li, H.M., Liu, F.W., Cui, Y.F., Ren, L.L., Storozum, M.J., Qin, Z., Wang, J., Dong, G.H.:
564 Human settlement and its influencing factors during the historical period in an
565 oasis-desert transition zone of Dunhuang, Hexi Corridor, northwest China. Quatern.
566 Int., 113-122, 2017.

567 Li, J., and Zheng, B. L.: Historical geography of Dunhuang. Gansu Education Press,
568 Lanzhou, 2013 (In Chinese).

569 Li, Y.P., Ge, Q. S., Wang, H. J., Liu, H. L., and Tao, Z. X.: The relationships between
570 climate change, agricultural development and social stabilities in Hexi Corridor over
571 the last 2000 years. Sci. China Earth Sci., 62, 1453-1460, 2019.

572 Li, S.C., The Report of Prehistoric Archaeology Survey in The Hexi Corridor, Cultural
573 Relics Press, Beijing, 2011 (in Chinese).

574 Li, X., Yang, K., Zhou, Y.: Progress in the study of oasis-desert interactions. Agr. Forest
575 Meteorol., 230-231, 1-7, 2016.

576 Liang, F.Z.: International trade and silver import and export of Ming Dynasty, China
577 Publishing House, Beijing, 1989.

578 Liu, Y., Sun, J., Song, H., Cai, Q., Bao, G., and Li, X.: Tree-ring hydrologic
579 reconstructions for the Heihe River watershed, western China since AD 1430. Water
580 Res., 44, 2781-2792, 2010.

581 Liu, Y.S.: The Silk Road, Jiangsu People's Publishing House, 2014.

582 Mann, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D.,
583 Ammann, C., Faluvegi, G., and Ni, F.B.: Global signatures and dynamical origins of
584 the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256-1260, 2009.

585 Qiang, M.R., Chen, F.H., Zhang, J.W., Gao, S.Y., and Zhou, A.F.: Climatic changes
586 documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern
587 Tibetan Plateau of China, since 2 ka BP. Chinese Sci. Bull., 50, 1930-1939, 2005.

588 Qian, Y., and Jin, H. L.: Study on Oasis along the Silk Road, Xinjiang people's publishing
589 house, 2010 (in Chinese).

590 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C.
591 E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P.,
592 Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G.,

593 Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W.,
594 Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S., and Plicht, J.
595 V. D.: IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal
596 BP. *Radiocarbon*, 55, 1869-1887, 2013.

597 Research Institute of History and Language of the Central Academy in Taiwan: Ming
598 Taizu Shilu. Taiwan, 1962b.

599 **Research Institute of History and Language of the Central Academy in Taiwan: Ming**
600 **Yingzong Shilu. Taiwan, 1962a.**

601 Sakai, A., Inoue, M., Fujita, K., Narama, C., Kubota, J., Nakawo, M., and Yao, T.:
602 Variations in discharge from the Qilian mountains, northwest China, and its effect on
603 the agricultural communities of the Heihe basin, over the last two millennia. *Water*
604 Ecol., 4, 177-196, 2012.

605 Schmid, B.V., Büntgen, U., Easterday, W.R., Ginzler, C., Walløe, L., Bramanti, B., and
606 Stenseth, N.C.: Climate-driven introduction of the Black Death and successive
607 plague reintroductions into Europe. *Proc. Natl. Acad. Sci.*, 112, 3020-3025, 2015.

608 Shui, S.: A discussion on the thirst-resisting ability of camel. *J. Inner Mongolian College*
609 of Agriculture and Animal Husbandry, 11, 55-59, 1990 (In Chinese).

610 **Stamp, L.D.: A history of land use in arid regions. Literary Licensing, LLC. 1961.**

611 Tan, L.C., Dong, G.H., An, Z.S., Edwards, R.L., Li, H.M., Li, D., Spengler, R., Cai, Y.J.,
612 Cheng, H., Lan, J.H., Orozbaev, R., Liu, R.L., Chen, J.H., Xu, H., Chen, F.H.,
613 Megadrought and cultural exchange along the proto-Silk Road. *Science Bulletin*,
614 2021. 66(6): 603-611. Doi:10.1016/j.scib.2020.10.011.

615 Thompson, L.O., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.
616 N., Beer, J., Synal, H.A., Cole-Dai, J., and Bolzan, J.F.: Tropical climate instability:
617 The last glacial cycle from a Qinghai-Tibetan ice core. *Science*, 276, 1821-1825,
618 1997.

619 Wang, S.C.: The chronology of humanistic and environmental change during historical
620 period in Hexi Corridor and neighbouring areas, China. In “Environment change and
621 the rise and fall of human civilization in arid areas of northwest China”, Yin, Z. S.,
622 eds. Geological Publishing House, Beijing, 1992 (In Chinese).

623 Wang, Y., Li, L. J., and Zhang, W.G.: Exchange history of Eurasia. Lanzhou University
624 Press, Lanzhou, 1-17, 2000 (In Chinese).

625 White, S., Pei, Q.: Attribution of historical societal impacts and adaptations to climate and
626 extreme events: integrating quantitative and qualitative perspectives. *Climate*
627 *reconstruction and impacts from the archives of societies*, 2, 44-45, 2020.

628 Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N.,
629 Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J.,
630 Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer,
631 A., Wiles, G., Zhang, P., and Zorita, E.: Last millennium northern hemisphere
632 summer temperatures from tree rings: Part I: The long term context. *Quat. Sci.*
633 *Rev.*, 134, 1-18, 2016.

634 Xie, Y., Ward, R., Fang, C., and Qiao, B.: The urban system in West China: A case study
635 along the midsection of the ancient Silk Road - He-Xi Corridor. *Cities*, 24, 60-73,
636 2007.

637 Yang, B., Qin, C., Bräuning, A., Burchardt, I., and Liu, J. J.: Rainfall history for the Hexi
638 Corridor in the arid northwest China during the past 620 years derived from tree
639 rings. *Int. J. Climatol.*, 31, 1166-1176, 2011.

640 Yang, B., Qin, C., Shi, F., and Sonechkin, D.M.: Tree ring-based annual streamflow
641 reconstruction for the Heihe River in arid northwestern China from AD 575 and its
642 implications for water resource management. *Holocene*, 22, 773-784, 2012.

643 Yang, B., Qin, C., Wang, J., He, M., Melvin, T.M., Osborn, T.J., and Briffa, K.R.: A
644 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan
645 Plateau. *Proceedings of the National Academy of Sciences*, 111, 2903-2908, 2014.

646 Yang, Y.S., Zhang, S.J., Oldknow, C., Qiu, M.H., Chen, T.T., Li, H.M., Cui, Y.F., Ren,
647 L.L., Chen, G.K., Wang, H., and Dong, G.H.: Refined chronology of prehistoric
648 cultures and its implication for re-evaluating human-environment relations in the
649 Hexi Corridor, northwest China. *Science China Earth Sciences*, 62, 2019. <https://doi.org/10.1007/s11430-018-9375-4>.

651 Yu, T.: *A Complete History of the Western Regions*. Zhongzhou Ancient Books
652 Publishing House Co., Ltd., Zhengzhou, 2003 (in Chinese).

653 Yuan, G.Y., and Zhao, Z.Y.: Relationship between the rise and decline of ancient Loulan
654 town and environmental changes, *Chinese Geogr. Sci.*, 9, 78-82, 1999.

655 Zhang, J., Huang, X., Wang, Z., Yan, T., and Zhang, E.: A late-Holocene pollen record
656 from the western Qilian Mountains and its implications for climate change and

657 human activity along the Silk Road, Northwestern China. *Holocene*, 28, 1141-1150,
658 2018.

659 **Zhang, Q., Hu, Y.Q.: The geographical features and climatic effects of oasis. *Adv. Earth***
660 ***Sci.*, 17(4), 2002.**

661 Zhang, T.Y.: History of Ming dynasty. China Publishing House, Beijing, 1974 (in
662 Chinese).

663 Zhai, S.D.: The changes of the beacon flint and the land Silk Road in Dunhuang. *Gansu*
664 *Social Sci.*, 05, 135-140, 2017 (In Chinese).

665 Zheng, Y.J.: On Zheng He's voyage. Ocean Press, China, 1985 (In Chinese).

666 Zhou, X.Y., Li, X.Q., Dodson, J., and Zhao, K.L.: Rapid agricultural transformation in the
667 prehistoric Hexi corridor, China. *Quatern. Int.*, 426, 33-41, 2016.

668 Zhou, W.Z., and Ding, J.T.: Dictionary for the ancient Silk Road. People's publishing
669 house in Shaanxi Province, Xi'an, 2016 (In Chinese).

670

671 **Figure captions**

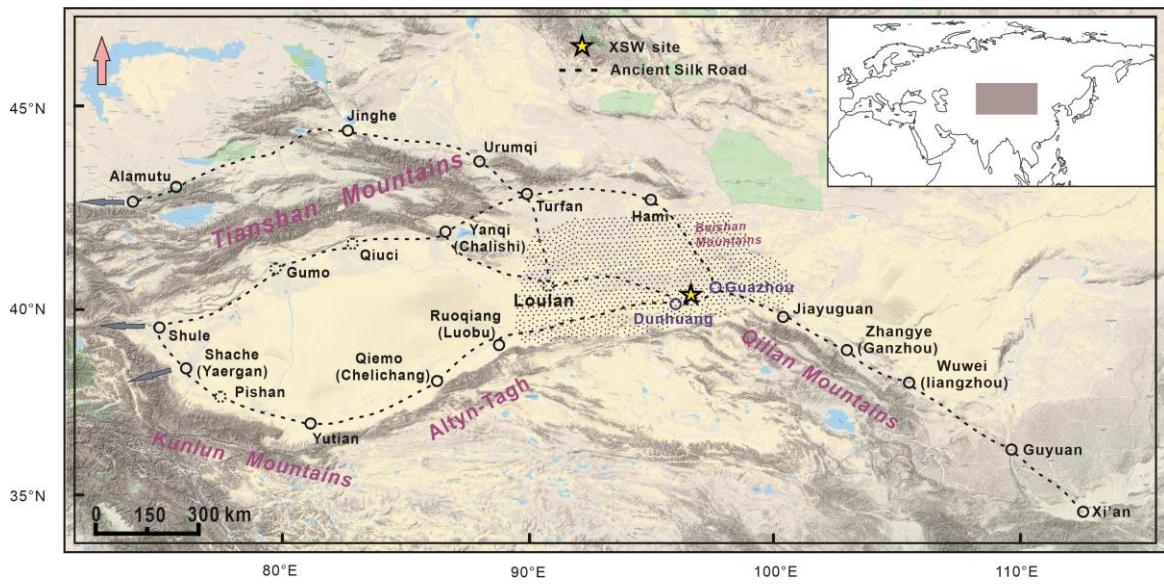
672 Figure 1. Location of the study area and cities along the Ancient Silk Road (dotted circles
673 are oasis cities which were already abandoned before the Ming dynasty; solid circles
674 are oasis cities which still existed during the Ming dynasty; the cities in parentheses
675 were under Ming governorship; the dotted area is Gobi Desert near Dunhuang and
676 Guazhou) (The base map was captured from ©Google Maps)

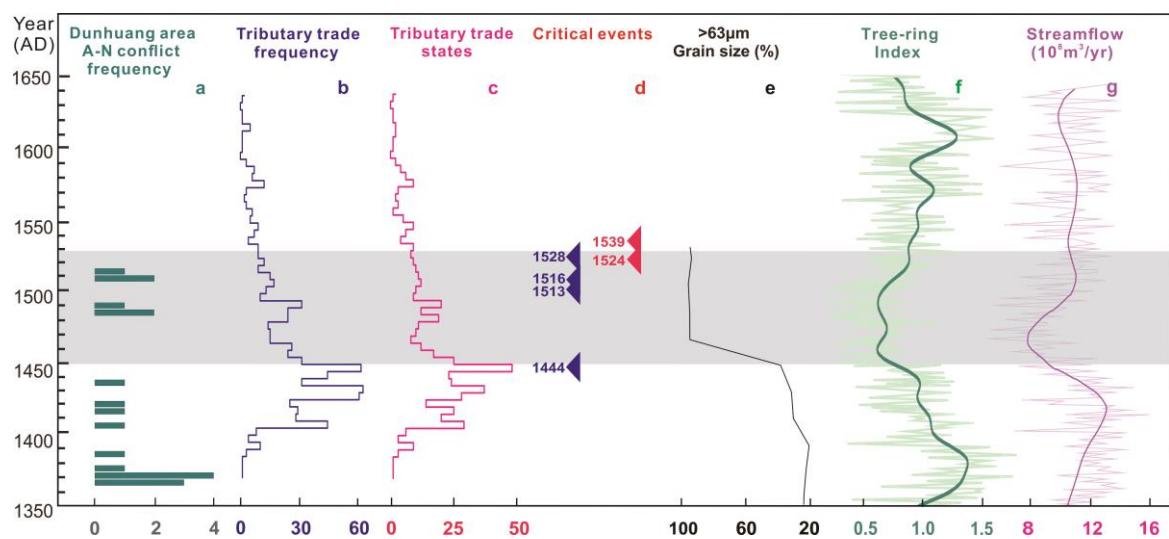
677 Figure 2. Comparison of records of wars, climate change and cultural events in the
678 Dunhuang area during the Ming-Qing dynasties. (a) Frequency of agri-nomadic wars
679 in the Dunhuang area. (b) Tribute trade through the Jiayuguan Pass between the
680 Ming government and Western countries. (c) Number of tribute states of Western
681 countries. (d) Major events in the Ming dynasty (blue triangles are mass migrations;
682 red triangles indicate the closure of the Jiayuguan Pass; the green triangle indicates
683 the abandonment of Dunhuang city). (e) Grain size ($>63\text{-}\mu\text{m}$ fraction) of the XSW
684 section (this study). (f) Tree-ring based precipitation record from the western Qilian
685 Mountains (after smoothing) (Gou et al., 2015a). (g) Tree-ring based streamflow
686 record from the upper reaches of the Heihe River (after smoothing) (Yang et al.,
687 2012).

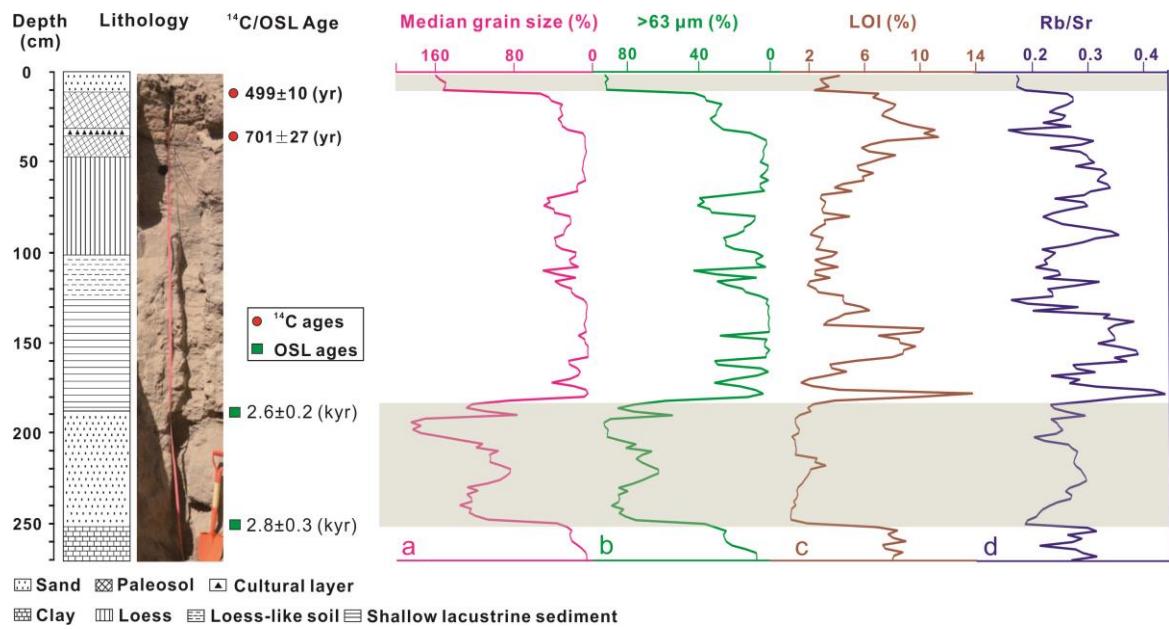
688 Figure 3. Lithology, ^{14}C and OSL ages, and climatic proxies for the XSW section. (a)
689 Median grain size (Md). (b) $>63\text{-}\mu\text{m}$ fraction. (c) Loss on ignition (LOI). (d) Rb/Sr
690 ratio.

691

692 **Table captions**


693 Table 1. Radiocarbon dating results for the Xishawo (XSW) section


694 Table 2. OSL dating results for the Xishawo (XSW) section


695

696

697

700 **Figure 1.**

705 **Figure 2.**

707

708 **Figure 3.**

709

710

711

712

713

714

715 **Table 1.**

Lab No.	materials	Conventional ^{14}C age (yrs BP)	Calibrated ages (yrs BP)/AD	
			2σ (95.4%)	
LZU127	Tree bark	425±15	499±10 (478-514)	1440-1460 AD
LZU1417	charcoal	765±40	701±27 (659-760)	1190-1291AD

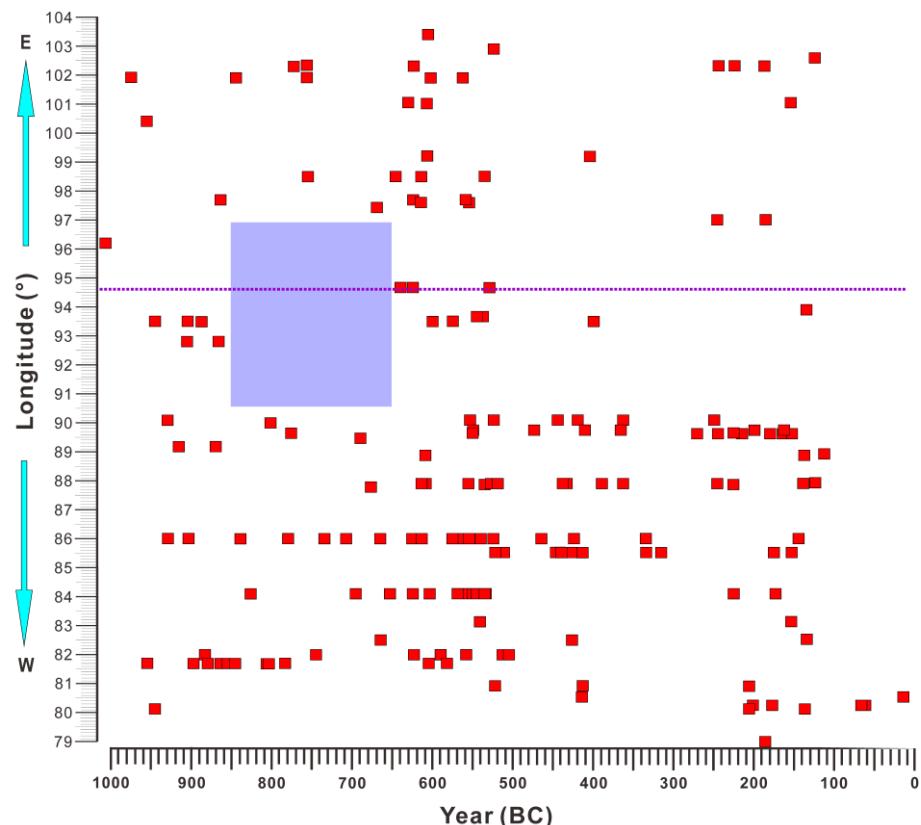
716

717

718

719 **Table 2.**

Lab No.	Depth (cm)	Grain size (μ m)	De (Gy)	OD (%)	U (ppm)	Th (ppm)	K (%)	Cosmic dose rate (Gy/ka)	Dose rate (Gy/ka)	Age (ka)
XSW-170	170	90-125	4.4±0.2	3.9	1.43±0.06	4.72±0.17	0.98±0.04	0.20	1.7±0.1	2.6±0.2
XSW-235	235	90-125	5.1±0.4	16.9	1.46±0.06	5.03±0.18	1.10±0.04	0.18	1.8±0.1	2.8±0.3


720

721

722 **Appendix A**

723 Fig. A1. Comparison of the longitude and median dates of Bronze Age cultural sites in the
724 western Hexi corridor and eastern Xinjiang Province. The purple rectangle corresponds to
725 an absence of dates in the western Hexi Corridor and Xinjiang province. The purple line shows the longitude of the XSW section.
726

727

728

729 Fig. A1.

730