

Climate-driven desertification and its implications for the Ancient Silk Road trade

Guanghui Dong^{1,2}, Leibin Wang^{3*}, David D Zhang³, Fengwen Liu⁴, Yifu Cui⁵, Guoqiang Li¹, Zhilin Shi¹, Fahu Chen⁶

1 Key Laboratory of Western China's Environmental Systems (Ministry of Education),
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
China

2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China

3 Centre for Climate and Environmental Changes, School of Geographical Sciences,
4 Guangzhou University, Guangzhou 510006, China

12 4 Institute for Ecological Research and Pollution Control of Plateau Lakes, School of
13 Ecology and Environment Science, Yunnan University, 650504, China

14 5 College of Tourism, Huaqiao University, Quanzhou 362021, China

15 6 Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth
16 Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS),
17 Beijing 100101, China

18 Abstract

19 The Ancient Silk Road played a crucial role in cultural exchange and commercial
20 trade between western and eastern Eurasia during the historical period. However, the
21 exchanges were interrupted in the early 16th century AD, during the Ming dynasty.
22 Various causes for the **decline** of the Ancient Silk Road have been suggested. Among
23 them, natural factors have not been adequately discussed as social aspects. In this study,
24 we use evidence from a sedimentary site (XSW) in Dunhuang oasis, together with
25 analysis of historical archives, to demonstrate the occurrence of extreme droughts and
26 desertification events in the Dunhuang area post ~1450 AD and persisted for decades at
27 least. The desertification may have closely associated with the accessibility of the ancient
28 Silk Road in the area, which was responsible for a steep fall in the volume of trade as well
29 as political chaos and mass migrations. Therefore, besides socio-economic factors,
30 climate change may have played an important role in trade exchange between the Ming
31 government and the West, and may even have influenced the rise and decline of the
32 ancient Silk Road.

33 **Keywords:** Dunhuang; desertification; trade exchange; climate change; Ming dynasty

35 1. Introduction

36 The Ancient Silk Road was the most important link between nations in Eurasia from
37 the 2nd century BC to the 16th century AD, and thus it indirectly shaped the politics,
38 cultures and economies of populations across the Eurasian continent. The route not only
39 linked commercial trade between the East and West but it also facilitated the spread of
40 religion, technology and even diseases such as the plague (Jones et al., 2011; Chen et al.,
41 2015; Schmid et al., 2015; Frankopan, 2015; An et al., 2017; Dong et al., 2017a; **Hao et**
42 **al., 2019; Afzaal, 2020**). The Chinese section of the Ancient Silk Road passes through one
43 of the driest regions on Earth and the logistical operation of the road depended directly on
44 the oases that developed along the foot of the high mountain ranges (the Qilian, Kunlun
45 and Tianshan), mainly as a result of precipitation supplied as streamflow from the
46 highlands. Cities and towns emerged and developed in association with oases, such as
47 Jiayuguan, Dunhuang, Hami and Ruoqiang, which functioned as logistical stations for
48 trade between East and West along the Ancient Silk Road. The Jiayuguan Pass is at the
49 western end of the Great Wall in the Ming dynasty. Located at the narrowest point of the
50 Hexi Corridor, the Jiayuguan Pass was also a critical location on the primary routeway
51 between the western Gobi Desert and the domains of the Ming dynasty. Dunhuang
52 commandery was 300 km from the Jiayuguan Pass and the traffic hub which constituted
53 the historic junction of several routes along the Ancient Silk Road in Central Asia (Huang,
54 2008). It passed to the control of the central government in 1372 AD, in the early Ming
55 dynasty. As a routeway, the Ancient Silk Road reached a peak in the Tang dynasty
56 (618–907 AD), but its importance declined substantially in the 16th century AD with the
57 closure of the Jiayuguan Pass by the central government in China and the abandonment of
58 Dunhuang city in the Ming dynasty (1368–1644 AD). This event was an important
59 marker in terms of the severance of cultural exchange and trade between East and West,
60 and the decline of the Ancient Silk Road as an historically important routeway.

61 Socioeconomic-related hypotheses have been proposed to explain the **decline** of the
62 Ancient Silk Road during the later Ming Dynasty. For example, frequent wars in the
63 Dunhuang area have been suggested (Chen, 2011; Li and Zheng, 2013). **The Ming**
64 **governor** successively established seven garrisons, from the early Ming dynasty onwards,
65 in the Jiayuguan-Dunhuang area and transferred the leadership to Mongolia which
66 governed the seven garrisons in order to consolidate the frontier territory (Chen, 2000). In
67 the Middle and Late Ming dynasty, national power declined due to political corruption
68 and financial stresses, but the bordering nations such as **Oirat** and Turpan continued to
69 expand (Zhang, 1974). Agri-nomadic wars (conflict between agriculturalists and nomads)
70 and conflict between the seven garrisons and invasions by nomadic tribes in the Hexi

71 Corridor were frequent. The border policy of the administration weakened and there was a
72 gradual isolation of the governance (Research Institute of History and Language of the
73 Central Academy of Taiwan, 1962a; Zhang, 1974), and as consequence the
74 seven-garrisons region, including Dunhuang city, was abandoned. The re-opening of the
75 Maritime Silk Road in the southern part of Ming territory was suggested to be another
76 cause of the interruption of the Ancient Silk Road on land (Xie et al., 2007; Qian and Jin,
77 2010; Zhai, 2017).

78 On the other hand, a pollen record from the sediments of Lake Tian'E in the Qilian
79 Mountains reveals the occurrence of a distinctly drier climate during 1350–1600 AD, and
80 therefore an environmental-related hypothesis has also been suggested for the decline of
81 the Ancient Silk Road (Zhang et al., 2018). Previous high-resolution tree-ring records
82 from the Qilian Mountains revealed the occurrence of drought in the Hexi Corridor during
83 1450–1550 AD (Gou et al., 2015a, b; Yang et al., 2014), corresponding to the onset of a
84 cold climate during the Little Ice Age (LIA), during AD 1450–1850 (Mann et al., 2009).
85 However, these tree ring and lake sediment records are from the eastern part of the Hexi
86 Corridor, and there are no reliable paleoclimatic records from the Dunhuang area in the
87 western part. Throughout human history, climate change has been regarded as an
88 important and sometimes critical trigger for the rise and fall of ancient civilizations
89 (Wang et al., 2018; Tan et al., 2021), such as in the cases of Mesopotamia (Weiss, 1993),
90 the Maya (Kennett et al., 2012; Medina-Elizalde and Rohling, 2012; Nooren et al., 2018),
91 Angkor (Buckley et al., 2010), and the decline of the Loulan Kingdom on the Ancient
92 Silk Road (Fontana et al., 2019; Fig. 1).

93 In the present study, we focused on the role that paleoenvironmental variations may
94 have played on the ancient Silk Road in the Duanhuang-Jiayuguan area, which in terms of
95 the physical environment is the most inhospitable section of the Ancient Silk Road, being
96 dominated by sandy and Gobi deserts. First, the results of a detailed sedimentary
97 investigation of Xishawo site (near Dunhuang city) are presented and the
98 paleoenvironmental change are evaluated. Second, the relevant available literature is
99 reviewed and a sociopolitical analysis of the historical archives in Dunhuang and the
100 surrounding areas and in Ming China are used to determine environmental and
101 sociopolitical changes in the area during the study period. Finally, the influence of the
102 natural environment on the trade exchange between the Ming dynasty and western
103 countries, on the abandonment of the Dunhuang area, and on the official closure of the
104 Ancient Silk Road in the early 16th century AD are reviewed.

105 2. Study area

106 The Hexi Corridor (92°21' to 104°45'E, 37°15' to 41°30'N) is located to the north of
107 the Qilian Mountains and south of Beishan Mountain. It is long and narrow and stretches
108 for over 1,000 km from Wushaoling Mountain in the east to the boundary of Gansu and
109 Xinjiang provinces in the west, but it extends for only tens to some hundreds of
110 kilometers in the North-South direction (Fig. 1). The area corresponds to the zone of
111 climatic interaction between arid Central Asia and monsoonal Asia and is climatically
112 characterized by a continental-monsoon climate influenced by both the westerlies and the
113 monsoon. The annual precipitation is no more than ~200 mm but the evaporation ranges
114 from 1,500 mm to 3,000 mm (Huang et al., 2017). The annual temperature is ~0–10 °C.
115 The Hexi Corridor consists of three independent landlocked river systems: the Shule
116 River Basin, the Heihe River Basin, and the Shiyang River Basin, from west to east. The
117 flow of the three rivers is generated by the glaciers of the Qilian Mountains and is
118 consumed in the middle and lower reaches of Owase Lake or in the deserts within the
119 basin. Diverse landscapes of mountains, oases, deserts and Gobi are alternately distributed
120 in the area. The unique topography and location of the Hexi Corridor were largely
121 responsible for its great strategic and military importance to historical dynasties over the
122 past 2,000 years. It was also known as the key routeway (the Ancient Silk Road) for
123 cultural and merchandise exchanges between Chinese and western countries for thousands
124 of years ago until the present.

125

126 [Fig. 1 is near here]

127

128 The oasis ecological system in arid areas is fragile because of the closed environment,
129 sparse vegetation and water scarcity. However, the bead-like distribution of oases played
130 a crucial role in the exchange of merchandise in Eurasia. Jiayuguan city was the
131 northwestern gateway of the Ming domain and a key fortress along the routeway of
132 East-West economic exchange. Dunhuang city and Guazhou city (~120 km northeast of
133 Dunhuang) are located in the eastern Gobi Desert to the west of the Jiayuguan pass (Fig.
134 1). The Ancient Silk Road split into three branches in a westerly direction from the region.
135 The northern branch led to the northwest of Hami oasis and the oasis cities of **Turfan**,
136 Yanqi, Qiuci and Gumo, and then to Central Asia. The central branch passed through
137 Loulan city (300 km west of Dunhuang) which was abandoned in ~330 AD because of
138 eolian activity (Yuan and Zhao, 1999; James, 2007; Fontana et al., 2019). The southern
139 branch connected many cities along the southern edge of the Taklimakan Desert, such as
140 Ruoqiang, Qiemo, and Yutian, on the northern piedmont of the **Altyn-Tagh** and the

141 Kunlun Mountains (Fig. 1). As can be seen in Fig. 1, the location of Dunhuang oasis led
142 to its importance as the only logistical station between Hami oasis/Ruoqiang oasis and
143 Jiayuguan oasis during the Ming dynasty.

144 The XSW section in this study is located near the ancient city of Xishawo in the
145 modern Gobi Desert area of the Shule River Basin. The site is in the middle of the
146 Dunhuang and Guazhou oasis, ~50 km northeast of Dunhuang city (Fig. 1). The **Xishawo**
147 **site was previously an ancient oasis with cultural sites, ancient cities and beacon towers.**
148 **Relict river channels are present at several locations, although most of them are buried by**
149 **sand dunes (Li, 1990; Cheng, 2007).** The modern annual mean precipitation and annual
150 **mean temperature of the area are 45.3 mm and 8.8° C, respectively.** Previous research
151 **has revealed that the Xishawo site was occupied during ~900–1400 AD, and the**
152 **inhabitants consumed barley, broomcorn and foxtail millet during this period (Li et al.,**
153 **2017).** Wind-eroded landforms are common in the region as a consequence of the arid
154 **climate, sparse vegetation cover and frequent sandstorms.** The exposed part of the XSW
155 section is ~3-m thick and consists mainly of a sand dune which is fixed by the dead roots
156 of *Salix* and therefore preserved. The surface of the profile was cleaned to remove
157 contamination by modern sediments and plant roots. The stratigraphic description of
158 XSW section from the top to 270-cm depth is as follows: (1) 0–10 cm, fine sand. (2)
159 10–46 cm, dark-gray paleosol, with a 4 cm-thick black cultural layer at 30–34 cm. (3)
160 46–100 cm, light-yellowish loess. (4) 100–125 cm, loess-like paleosol. (5) 125–185 cm,
161 dark gray clay with Fe-Mn nodules. (6) 185–250 cm, yellow fine sand. (7) 250–270 cm,
162 black silty clay. A total of 135 samples were collected at a 2-cm interval for
163 measurements of weight loss-on-ignition (LOI), grain size, and element contents. One
164 wood sample (at the depth of 10 cm, labeled XSW-10) and one charcoal sample (from the
165 cultural layer at 32 cm, labeled XSW-32) were collected for accelerator mass
166 spectrometry radiocarbon (AMS ^{14}C) dating. Two eolian samples for optically stimulated
167 luminescence (OSL) dating from the fine yellow sand layer (188 cm and 248 cm, labeled
168 XSW-188, XSW-248, respectively) were collected by hammering stainless-steel cylinders
169 into the section vertically, which were immediately sealed with opaque tape after removal.

170 3. Methodology

171 3.1 Laboratory analyses

172 (1) Chronology

173 AMS ^{14}C and OSL dating were used to establish a chronological framework for the
174 XSW section. The charcoal and wood samples for AMS ^{14}C dating was prepared by the

175 acid-base-acid procedure at the MOE Key Laboratory in Lanzhou University and
176 measured at the AMS ^{14}C dating laboratory of Peking University. The IntCal13 curve,
177 Libby half-life of 5,568 years and OxCal 4.2 were used to calibrate all of the dates
178 (Reimer et al., 2013). All ages reported are relative to 1950 AD (referred to as “cal BC”
179 and “cal AD”).

180 OSL dating was conducted at the OSL Laboratory at the MOE Key Laboratory of
181 Western China’s Environmental System, Lanzhou University. Two OSL dating samples
182 were collected from the XSW section. The pretreatment procedure followed that
183 described in Aitken (1998). OSL measurement of coarse-grained (90–125 μm) quartz
184 were performed using an automated Risø TL/OSL DA-20 reader. Laboratory irradiation
185 was carried out using $^{90}\text{Sr}/^{90}\text{Y}$ sources. The quartz OSL signal was detected by a
186 photomultiplier tube through two 3-mm-thick Hoya U-340 filters and the K-feldspar IRSL
187 signal was detected using a package of Corning7-59 and BG-39 filters. The purity of the
188 quartz extracts was checked using the IR depletion ratio test (Duller et al., 2003). A single
189 aliquot regenerative protocol (Murray and Wintle, 2003) was applied to quartz samples to
190 obtain the equivalent dose (D_{e}). The concentrations of the radioactive elements uranium
191 (^{238}U), thorium (^{232}Th) and potassium (^{40}K) were measured by neutron activation analysis
192 (NAA) to calculate the dose rate. The cosmic ray contribution was calculated according to
193 the burial depth and altitude of the samples (Prescott and Hutton, 1994). A water content
194 of $10 \pm 5\%$ was used to the calculate ages of sand-loess sediments.

195 (2) Analysis of climatic proxies

196 Measurements of LOI, grain size and element contents were made at the MOE Key
197 Laboratory of Western China’s Environmental System Lanzhou University. LOI
198 measurements were used to determine the organic matter content of the sediments. The
199 measurements were made at a 2-cm interval and calculated as LOI_{550}
200 (%)= $(m_{105}-m_{550})/m_{105} \times 100\%$, where m_{105} is the sample weight after oven drying at 105°C,
201 and m_{550} is the sample weight after combustion at 550°C for 4 hr in a muffle furnace.

202 Samples for grain-size analysis were pre-treated with 10% H_2O_2 and 10% HCL to
203 remove organic matter and carbonates, respectively. The samples were then dispersed by
204 ultrasonication with the addition of 10% sodium hexametaphosphate. Grain-size
205 distributions were measured with a Malvern MS 2000 laser grain-size analyzer.

206 Samples for the analysis of element contents were pretreated as follows. All samples
207 were oven-dried for 24 hr and then pulverized into a powder. About 4 g of powder was
208 then pressed into a 4–6 mm-thick and 30 mm-diameter pellet under 30 t/m² of pressure.
209 The major, minor and trace element contents were measured with a Magix PW2403

210 Wavelength-Dispersive XRF Spectrometer. Elemental concentrations of 0.1 ppm to 100%
211 could be analyzed. Rb/Sr ratios were calculated for paleoenvironmental reconstruction.

212 3.2 Analysis of published paleoenvironmental records and documentary evidence for the
213 region

214 (1) Previous paleoclimatic records from the region

215 All available high-resolution paleoclimatic records for the study area and the adjacent
216 region were reviewed and compared. They include records of regional temperature,
217 precipitation, and river flow. In addition, documentary evidence of climate change in the
218 region during the Ming dynasty was investigated.

219 (2) Sociohistorical archives

220 Sociohistorical records such as of the politics and economic and military activity of
221 the Ming dynasty were analyzed (Zhang, 1974; Chinese Military History Writing Group,
222 2003; Yu, 2003), together with sociohistorical records of the Jiayuguan-Dunhuang area.

223 4. Results and discussion

224 4.1. Effects of warfare on the Ancient Silk Road

225 The Jiayuguan-Dunhuang area experienced frequent political turmoil and conflicts in
226 Ming dynasty (Zhang, 1974). Warfare in the northwestern part of the Ming domain was
227 suggested to be the main cause for the repeated (twice) closure of the Jiayuguan Pass and
228 the severance of the Ancient Silk Road (Gao and Zhang, 1989; Chen, 2011). The
229 Jiayuguan Pass was established in 1372 AD in the early Ming dynasty to resist the
230 remaining elements of the Yuan dynasty (1271–1368 AD), and the Hexi Corridor was
231 under the total control of the Ming government during the Ming dynasty. In addition, the
232 Ming dynasty government established seven garrisons in the west of Jiayuguan Pass to
233 reduce pressure on the border (Zhang, 1974). The Jiayuguan Pass was not only a military
234 fastness, but also the primary pass on the Ancient Silk road to the Western Regions.

235 In order to investigate the relationship between conflict and the closure of the
236 Jiayuguan Pass, the frequency of agri-nomadic conflict in the Dunhuang area was
237 estimated based on historical archives (Chinese Military History Writing Group, 2003; Yu,
238 2003). The incidence of agri-nomadic conflicts in the Hexi Corridor was also summarized
239 for comparison (Fig. 2a). The classification of agri-nomadic conflict was adopted because
240 it directly reflects the conflict between the central government and nomadic peoples. The
241 frequency of tribute trade and the number of tribute states in the Western Regions are
242 illustrated in Fig. 2b and 2c (Chinese Military History Writing Group, 2003; Yu, 2003). All

243 of the data were grouped into 5-year intervals. It is evident that conflicts between
244 agriculturalists and nomads occurred constantly from 1368 AD, in the early Ming dynasty,
245 until 1520 AD. However, conflicts ceased in the Dunhuang area after 1520 AD, which
246 shows that the final closure of the Jiayuguan Pass in 1539 AD substantially reduced the
247 frequency of nomad incursions in the Dunhuang area. However, evidence is still needed
248 to prove that agri-nomadic conflicts were responsible for the closures of the Jiayuguan
249 Pass in 1524 AD and 1539 AD, and the **decline** of the Ancient Silk Road. For example, it
250 is unclear why—if agri-nomadic conflicts no longer occurred after 1520 AD—the
251 Jiayuguan Pass was closed decades later in 1539 AD. It is also unclear why there was a
252 lull in political unrest and violence in the Dunhuang area from 1450 AD.

253
254

255 *[Fig. 2 is near here]*

256
257

258 Reference to Fig. 2b and 2c shows that tribute exchange between the Ming
259 government and the Western Regions has no obvious relationship with the frequency of
260 conflicts. The tribute trade frequency and the number of tribute states both reached a peak
261 during 1400–1450 AD, but then decreased sharply after 1450 AD and subsequently
262 maintained a low level. As Fig. 2a demonstrates, there were frequent agri-nomadic
263 conflicts during 1400–1450 AD, which were followed by a truce which lasted for about
264 20 years. However, the tribute trade declined substantially during the truce (1450–1470
265 AD) and there was no obvious revival until the collapse of the Ming dynasty (Fig. 2b and
266 Fig. 2c).

267 It has been determined that the Jiayuguan Pass – Dunhuang city route was the crucial
268 routeway connecting the Western Region to the domestic territory during the Ming
269 dynasty (Zhang, 1974). The absence of a relationship between the frequency of wars in
270 the Dunhuang area and variations in the amount of tribute trade demonstrates that warfare
271 was likely not the primary or single cause of the collapse of trade along the Ancient Silk
272 Road. Moreover, war was not solely responsible for the closure of the Jiayuguan Pass.
273 The first closure of the Jiayuguan Pass in 1524 AD may have been a consequence of wars
274 in the Dunhuang area, although wars also occurred frequently during periods when trade
275 flourished (1400–1450 AD) (Fig. 2a). However, subsequently there was a continuous
276 state of peace in the Dunhuang area which lasted for decades and the city was only
277 abandoned by the final closure of the Jiayuguan Pass in 1539 AD. Therefore, we conclude
278 that warfare is not a tenable explanation for the **decline** of the Ancient Silk Road.

279 4.2. Influence of climate change on the Ancient Silk Road

280 **4.2.1 Paleoclimatic record of the XSW section**

281 The paleoclimatic record of the XSW section in the Dunhuang area was used to
282 assess the possible role of climate change in the decline of the Ancient Silk Road. The
283 results of the analysis of various climatically-sensitive parameters, together with the ^{14}C
284 and OSL chronology, are illustrated in Fig. 3. The ^{14}C dates for the fine sand layer
285 (XSW-10) and the cultural layer (XSW-32) are 499 ± 10 cal yr BP (1440–1460 cal AD)
286 and 701 ± 27 cal yr BP (1224–1278 cal AD), respectively. The two OSL samples from the
287 sand layer are dated to 2.6 ± 0.2 ka (800 ± 300 BC) and 2.8 ± 0.2 ka (600 ± 200 BC) (Table 2).
288 Profiles of grain size, LOI and Rb/Sr ratio are shown in Fig. 3a, 3b, 3c and 3d,
289 respectively. The increase in median grain size and of the $>63\text{ }\mu\text{m}$ fraction indicate an arid
290 environment and intense wind activity in the Dunhuang area during 800–600 BC and at
291 ~ 1450 AD. The LOI record reflects variation in organic matter content and the Rb/Sr ratio
292 of eolian sediments is positively correlated with weathering intensity. The Rb/Sr ratio of
293 the two sand layers is very low (Fig. 3), and therefore the effects of weathering are minor
294 (Gallet et al., 1996; Chen et al., 1999), suggesting that precipitation in the Dunhuang area
295 was low during ~ 800 –600 BC and after ~ 1450 AD. A comparison of the LOI and Rb/Sr
296 profiles indicates that during 800–600 BC and after ~ 1450 AD, the organic matter content
297 of the section was low and chemical weathering was weak. These results suggest the
298 occurrence of overall arid conditions, frequent dust storms, and associated desertification
299 events during 800–600 BC, i.e. the Spring and Autumn period (771–476 BCE) of the
300 Eastern Zhou Dynasty, and after ~ 1450 AD (the Ming dynasty). These conditions would
301 have been very unfavorable for human habitation of the area.

302

303 [Fig. 3 is near here]

304

305 The two desertification events recorded in the XSW section were not solely local
306 events. A cold and dry climate at these times is also evident in palaeoclimatic records
307 from the nearby Qilian Mountains and the Tibetan Plateau. A tree ring record from the
308 Qilian Mountains suggests that precipitation was low during 900–550 BC (Yang et al.,
309 2014). A pollen record from Juyanze lake indicates the low representation of tree pollen at
310 the same time (Herzschuh et al., 2004). The $\delta^{18}\text{O}$ record from the Agassiz ice cap in the
311 high Arctic indicates relatively low temperatures during ~ 800 –600 BC (Lecavalier et al.,
312 2017), which is correlative with records from the Guliya ice core in the Tibetan Plateau
313 (Thompson et al., 1997). The timing of the second desertification event in the Dunhuang

area, in ~1450 AD, coincides well with changes in a tree-ring record from mountains in the western Hexi corridor, which suggests an interval of persistent low precipitation during 1430–1540 AD (Fig. 2f, Gou et al., 2015a). An interval of reduced precipitation during this time is also widely recorded in other high-resolution tree ring records from the northern Tibetan Plateau (Gou et al., 2015b; Yang et al., 2014), and in the laminated sediments of Sugan lake in the western Qaidam Basin (Qiang et al., 2005). A decrease in global temperature at ~1450 AD has also been widely detected in high-resolution paleoclimatic records from various locations (Thompson et al., 1997; Wilson et al., 2016; Lecavalier et al., 2017), and is also recorded in historical documentary records from China (Ge et al., 2003). This evidence indicates the occurrence of two desertification events in the Dunhuang area and elsewhere, during ~800–600 BC and after ~1450 AD, which were related to regional-scale climatic and environmental deterioration.

As mentioned earlier, the oasis ecological system in arid regions is relatively fragile, with the major limiting factor being water availability (Qian and Jin, 2010). At the present time, vegetation survival in the oasis of the Hexi Corridor depends mainly on runoff from the Qilian Mountains, which is derived firstly from precipitation in the highlands and secondly from glacier meltwater (Liu et al., 2010; Yang et al., 2011; Sakai et al., 2012). The prominent long interval of reduced precipitation and temperature in the Qilian Mountains and in the Tibetan Plateau during ~800–600 BC and at ~1450 AD caused a large decrease in runoff to the lowlands of the Hexi Corridor, which in turn caused vegetation degradation and the extension of Gobi and sandy desert. Compared to other oasis cities along the Ancient Silk Road, which were much closer to the high mountain glaciers (above 4,500 m.a.s.l., Fig. 1) which provided a constant supply of meltwater, Dunhuang oasis was located much closer to the center of the Gobi, and therefore it experienced severe desertification which may have resulted in its abandonment.

4.2.2 *Archaeological evidence of climate change in the Dunhuang area*

The relatively dense distribution of prehistoric sites in the Hexi Corridor reflects the past intensity of human settlement in the area as well as the habitability of the surrounding environment (Bureau of National Cultural Relics, 2011; Yang et al., 2019). The Hexi Corridor was extensively settled from the Majiayao period (3300–2000 BC) (Li, 2011), and foxtail millet and broomcorn millet, which were domesticated in north China, were cultivated (Zhou et al., 2016; Dong et al., 2018). Innovations in agricultural technology facilitated the rapid development of Bronze cultures in the Hexi Corridor and the surrounding areas in the succeeding millennium (Dong et al., 2016; Zhou et al., 2016). However, there is a gap in radiocarbon dates during ~850–650 BC in the western Hexi

349 Corridor and eastern Xinjiang Province (Fig. A1), which suggests a hiatus in cultural
350 evolution and exchange during this period. This hiatus corresponds well to the
351 desertification event in the Dunhuang area of the western Hexi Corridor during
352 ~800–600 BC (Fig. 3). However, even though the climate fluctuated substantially in
353 northwest China during the Bronze Age, human settlement was continuous in the eastern
354 Hexi Corridor at the same longitude (Fig. A1), which suggests that human occupation of
355 the Hexi Corridor was primarily determined by the environmental conditions.

356 The second desertification event occurred at ~1450 AD and is recorded both in the
357 sand layer of the XSW profile and in the historical and cultural literature. The drought in
358 the Dunhuang area at this time was described as “The wind shakes the Tamarix in
359 thousands of miles of uninhabited land” and “the moon shines on the quicksand on each
360 departed day” (Huang and Wu, 2008). **The Yugur minority ancestors, who originally
361 settled in the Duanhuang area, after the abandonment of Dunhuang, sang folk songs about
362 the human migrations through the Jiayuguan Pass during the Ming dynasty (Chen, 2011).**
363 An epic of the migration of the Yugur minority history contains the following passage:
364 “Violent winds swept livestock away, sand dunes submerged tents and houses, rivers
365 dried up, grassland was devastated” (Wang, 1992; Editorial Group of a Brief History of
366 the Yugur minority, 2008). From these descriptions it can be deduced that the prolonged
367 drought at ~1450 AD may have led to the disappearance of the oasis. The altered
368 eco-environment would have reduced the productivity of
369 agriculture and animal husbandry, which would have caused a local food shortage. The
370 deteriorated environment was very likely another cause of mass migration in addition to
371 warfare. The changing geopolitical situation in the western Hexi Corridor and eastern
372 Xinjiang Province was an important factor in the abandonment of the Dunhuang area by
373 the Ming government, and the extreme and the persistent drought event after ~1450 AD
374 may have intensified the social upheaval and chaos (Fig. 2d, blue triangles highlight mass
375 migrations), which triggered this significant historical event. Notably, a significant
376 relationship has been observed between decreased precipitation, wars and the
377 abandonment of cultivated land in the region during the last 2,000 years (Li et.al. 2019).

378 **4.2.3 Desertification events in the Ancient Silk Road area**

379 Various indicators of climatic variations, wars and the tribute trade are plotted in
380 Fig. 2 versus the chronological sequence of the Ming dynasty (1368–1644 AD). Under the
381 premise that at ~1450 AD the environment was characterized by a cold and dry climate
382 with intense sandstorms (Fig. 2e), low precipitation (Fig. 2f) and decreased streamflow
383 (Fig. 2g), there is a possibility that climate change played a role on the tribute trade of the

384 Ancient Silk Road. There was an abrupt decrease in the frequency of tribute trade at
385 ~1450 AD, but not during the two closures of the Jiayuguan Pass, in 1524 AD and 1539
386 AD (Fig. 2b and 2d). In addition, at this time there was a lull in conflicts in the Dunhuang
387 area (Fig. 2a). Therefore, it is proposed that environmental deterioration likely contributed
388 to the decline of the tribute trade and the cessation of hostilities. **Climatic perturbations**
389 **and environmental degradation may not necessarily be a direct trigger of a societal crisis,**
390 **but they may instead result in institutional failure caused by the lack of a centralized**
391 **response to an environmental crisis (Feng et al. 2019).** Social disturbance associated with
392 migrations and chaos in the Ming dynasty was likely an indirect consequence of
393 environmental changes. For example, the consequences of a deteriorating environment
394 would include the shrinkage of the habitat and farmland necessary for human survival,
395 multiple waves of human migrations into the eastern part of the Hexi Corridor, and the
396 shift of the frontier from Dunhuang to the Jiayuguan pass. Thus, the population decline in
397 the Dunhuang area during the early Ming Dynasty was most probably a “domino effect”
398 (Feng et al. 2019).

399 The influence of the desertification in ~1450 AD on the streamflow of the Qilian
400 Mountains gradually decreased after the 1520s AD (Fig. g and Fig. h). However, the
401 formation and evolution of an oasis is a long-term process (Stamp, 1961; Zhang and Hu,
402 2002; Li et al., 2016), and the ecological response of an oasis to climatic drying would not
403 to be to disappear immediately (Fan, 1993). Moreover, it takes at least 15-20 years for the
404 recovery of a degraded oasis following destruction by ~1-3 years of human activity
405 (Zhang and Hu, 2002). Therefore, the regeneration of a degraded oasis would take much
406 longer than a change in streamflow. Overall, it is suggested that the abrupt decrease in
407 tribute exchange and prosperity, or even the decline of the ancient Silk Road, may have
408 been affected by the deterioration of the environment along the routeway in the Ming
409 dynasty (Fig. b and Fig. c).

410 We now address the issue of how the desertification **at ~1450 AD** in the Dunhuang
411 oasis and adjacent regions may have affected the functioning of the Ancient Silk Road.
412 First, trading in the arid environment of the Ancient Silk Road led to the increase in the
413 importance of oasis cities. Camel caravans needed supplies of grain and water from an
414 oasis as they traversed the extensive desert along the road. The desertification events
415 recorded in the XSW section and in the adjacent regions indicate that Dunhuang oasis and
416 Guazhou oasis were not functioning **at ~1450 AD**. This lengthened the distance from the
417 Jiayuguan oasis in the Hexi Corridor to the western oasis in Xinjiang (Fig. 1). According
418 to several researchers, camel caravans in deserts areas were able to travel a maximum
419 distance of ~30 km/day (Shui, 1990; Wang et al., 2000). In addition, the metabolism of a

420 domesticated camel will decrease within 20 days from the beginning of water deprivation
421 (Chen, 1982). Under working conditions, camels can go for ~10–15 days without water
422 under a mean ambient temperature of 35°C (Kataria et al., 2001). A camel caravan took
423 59 days to traverse the 1,400 km of the Taklimakan Desert in 1993 AD under modern
424 climatic conditions, which are much more favorable than in ~1450 AD, and the maximum
425 distance was 24 km in one day (Blackmore, 2000). The maximum distance for a caravan
426 in the water-limited environment on the Silk Road was $30 \text{ km/day} \times 15 \text{ days} = 450 \text{ km}$.
427 The distances of Hami, Ruojing and Jiayuguan to Dunhuang, where are Gobi Desert
428 without high mountains, are already close to or above this limit, which is barely sufficient
429 for camel travel (shown by the dots in Fig. 1, near the Dunhuang and Shazhou oasis). On
430 the other hand, the distances between the oases along the routes on the piedmonts of the
431 high mountain ranges (Qilian, Kunlun and Tianshan) are generally less than 200 km as the
432 high mountain ranges provide meltwater. After the desertification event, the distances
433 between Jiayuguan and Hami oases (the northern route of the ancient Silk Road) and
434 between Jiayuguan and Ruojing oases (the southern route) increased to ~600 km and
435 ~1,000 km, respectively. **This is close to the maximum distance that a camel caravan can
436 achieve (~450 km) without a water supply, and would have substantially increased the
437 difficulty of travel across the region and was likely to be the physical cause of the decline
438 of the Ancient Silk road during the periods of desertification.**

439 5. Conclusion

440 We have systematically investigated a possible climatic cause of the interruption of
441 the operation of the Ancient Silk Road during the Ming Dynasty. A compilation of the
442 results of absolute dating and high-resolution paleoclimatic records from the SXW site in
443 the Dunhuang area, and historical archives, reveals that two desertification events
444 occurred, at ~800–600 BC and ~1450 AD. The later desertification event was consistent
445 with the immediate fall in tribute trade that occurred in ~1450 AD, which indicates that
446 environmental deterioration may have disrupted the trading exchanges by draining the
447 oases in Dunhuang and Guazhou city, which were strategic logistical stations in the vast
448 Gobi Desert. This resulted in travelling distances between supply stations exceeding the
449 physical limit for camel caravans and an irreversible decline in trade exchange. On the
450 other hand, the incidence of agri-nomadic conflicts from historical archives suggests that
451 warfare alone is not the best explanation for the severance of exchanges between Western
452 countries and the Ming government. Hence, we propose that climate change also played a
453 potentially important role in explaining the decline of the Ancient Silk Road trade.

454 Acknowledgements

455 We thank Dr. Teng Li and Dr Shengda Zhang for their suggestions and discussions which
456 inspired this study. We also thank Dr Jan Bloemendaal for improving the English. This
457 work was supported by the National Key R&D Program of China (2018YFA0606402),
458 the National Natural Science Foundation of China (41825001, 41971110, 41901098)

459

460 References

461 Afzaal, M.: Silk Road to Belt Road: reinventing the past and shaping the future. *Asia Pac.*
462 *Bus. Rev.*, 26, 104-107, 2020.

463 An, C. B., Wang, W., Duan, F. T., Huang, W., and Chen, F. H.: Environmental changes
464 and cultural exchange between East and West along the Silk Road in arid Central
465 Asia. *Acta Geogr. Sin.*, 72, 875-891, 2017 (In Chinese).

466 Bureau of National Cultural Relics: *Atlas of Chinese Cultural Relics-Fascicule of Gansu*
467 Province, Surveying and Mapping Press, Beijing, 2011 (In Chinese).

468 Blackmore, C.: *Crossing the Desert of Death: Through the Fearsome Taklamakan*. John
469 Murray press, London, 2000.

470 Chen, C.: *Annals of the western vassal states*, China Publishing House, Beijing, 2000 (in
471 Chinese).

472 Chen, F. H., Dong, G. H., Zhang, D. J., Liu, X. Y., Jia, X., An, C. B., Ma, M. M., Xie, Y.
473 W., Barton, L., Ren, X. Y., Zhao, Z. J., Wu, X. H., and Jones, M. K.: Agriculture
474 facilitated permanent human occupation of the Tibetan Plateau after 3600 BP,
475 *Science*, 347, 248-250, 2015.

476 Chen, G. W.: Research on the abandonment of the Dunhuang during Ming Dynasty. *J.*
477 *Dunhuang Stud.*, 60, 111-118, 2011 (In Chinese).

478 Chen, J., An. Z. S., and Head, J.: Variation of Rb/Sr ratios in the loess-paleosol sequences
479 of central China during the last 130,000 years and their implications for monsoon
480 paleoclimatology, *Quat. Res.*, 51, 215-219, 1999.

481 Chen, Z.: Determination of hunger and thirst tolerance of camel. *Animal husbandry and*
482 *veterinary*, 2, 56-58, 1982 (in Chinese).

483 Chen, Z.L.: *Ming Jing Shi Wen Bian*, China Publishing House, 1962 (in Chinese).

484 Cheng, H.Y.: *The Desertification of the Hexi Area in Historical Time*. Lanzhou
485 University, Doctoral Dissertation, 2007 (In Chinese with English abstract).

486 Chinese Military History Writing Group: *Chronology of China's Ancient War*, People's
487 Liberation Army press, Beijing, China, 2003 (in Chinese).

488 Dreyer, E.L. Zheng He: *China and the oceans in the early Ming dynasty, 1405-1433*.
489 Pearson Longman, 2006.

490 Dong, G. H., Ren, L. L., Jia, X., Liu, X. Y., Dong, S. M., Li, H. M., Wang, Z. X., Xiao, Y.
491 M., and Chen, F. H.: Chronology and subsistence strategy of Nuomuhong Culture in
492 the Tibetan Plateau. *Quatern. Int.*, 426, 42-49, 2016.

493 Dong, G. H., Yang, Y. S., Liu, X. Y., Li, H. M., Cui, Y. F., Wang, H., Chen, G. K.,
494 Dodson, J., and Chen, F. H.: Prehistoric trans-continental cultural exchange in the
495 Hexi Corridor, northwest China. *Holocene*, 28(4), 621-628, 2018.

496 Editorial Group of a Brief History of the Yugur minority: Brief history for Yugur
497 minority, The Ethnic Publishing House, Beijing, 2008 (in Chinese).

498 Fan, Z.L.: A study on the formation and evolution of Oases in Tarim Basin, *Acta*
499 *Geographica Sinica*, 48: 421-427, 1993.

500 Feng, Q., Yang, L., Deo, R. C., AghaKouchak, A., Adamowski, J. F., Stone, R., Yin, Z. L.,
501 Liu, W., Si, J. H., Wen, X. H., Zhu, M., Cao, S. X.: Domino effect of climate change
502 over two millennia in ancient China's Hexi Corridor, *Nat. Sustain.*, 2, 957-961, 2019.

503 Fontana, L., Sun, M. J., Huang, X. Z., and Xiang, L. X.: The impact of climate change
504 and human activity on the ecological status of Boston Lake, NW China, revealed by
505 a diatom record for the last 2000 years, *Holocene*, 29, 1871-1884, 2019.

506 Frankopan, P.: The silk roads: A new history of the world. Bloomsbury Publishing, 2015.

507 Gallet, S., Jahn, B.M., and Torii, M.: Geochemical characterization of the Luochuan
508 loess-paleosol sequence, China, and paleoclimatic implications, *Chem. Geol.*, 133,
509 67-88, 1996.

510 Gao, F. S., and Zhang, J. W.: Jiayuguan Pass and the Great Wall of Ming dynasty,
511 Heritage Press, 1989 (in Chinese).

512 Ge, Q. S., Zheng, J. Y., Fang, X. Q., Man, Z. M., Zhang, X. Q., Zhang, P. Y., and Wang,
513 W. C.: Winter half-year temperature reconstruction for the middle and lower reaches
514 of the Yellow River and Yangtze River, China, during the past 2000 years. *Holocene*,
515 13, 933-940, 2003.

516 Gou, X. H., Gao, L. L., Deng, Y., Chen, F. H., Yang, M. X., and Still, C.: An 850-year
517 tree-ring-based reconstruction of drought history in the western Qilian Mountains of
518 northwestern China. *Int. J. Climatol.*, 35, 3308-3319, 2015a.

519 Gou, X. H., Deng, Y., Gao, L. L., Chen, F. H., Cook, E., Yang, M. X., and Zhang, F.:
520 Millennium tree-ring reconstruction of drought variability in the eastern Qilian
521 Mountains, northwest China. *Clim. Dyn.*, 45, 1761-1770, 2015b.

522 Gu, Y.T.: The major events of Ming history, China publishing House, 1977.

523 Hao, Z.X., Zheng, J.Y., Yu, Y.Z., Xiong, D.Y., Liu, Y., Ge, Q.S.: Climatic changes
524 during the past two millennia along the Ancient Silk Road. *Progress in Physical
525 Geography: Earth and Environment*. 44(5), 605-623, 2020,

526 Herzschuh, U., Tarasov, P., Wünnemann, B., and Hartmann, K.: Holocene vegetation and
527 climate of the Alashan Plateau, NW China, reconstructed from pollen
528 data. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 211, 1-17, 2004.

529 Huang, S., Feng, Q., Lu, Z.X., Wen, X.H., and Deo, R.C.: Trend Analysis of Water
530 Poverty Index for Assessment of Water Stress and Water Management Polices: A
531 Case Study in the Hexi Corridor, China. *Sustainability*, 9, 756, 2017.

532 Huang, W. W., and Wu, S. G.: New Local Records of Suzhou. China Publishing House,
533 Beijing, 2008.

534 James, A. M.: Eurasian Crossroads: A history of Xinjiang. Columbia University Press,
535 New York, 2007.

536 Jones, M.K., Hunt, H., Lightfoot, E., Lister, D., Liu, X.Y., and Matuzeviciute, G.M.: Food
537 globalization in prehistory, *World Archaeol.*, 43, 665-675, 2011.

538 Kataria, N., Kataria, A. K., Agarwal, V.K., Garg, S.L., and Sahani, M.S.: Filtered and
539 excreted loads of urea in different climatic conditions and hydration states in
540 dromedary camel. *J. Camel. Pract. Res.*, 8, 203-207, 2001.

541 Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L., Huybrechts, P.,
542 Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.: High Arctic
543 Holocene temperature record from the Agassiz ice cap and Greenland ice sheet
544 evolution, *Proc. Natl. Acad. Sci.*, 114, 5952-5957, 2017.

545 Li, B.C.: Study on Desertification of Hexi Corridor in historical period, China. Beijing:
546 Science Press, 2003. (in Chinese),

547 Li, B.C.: Investigation on the Ancient Ruins in the Western Sandy land of Minqin County.
548 *J. Desert Res.*, 1990 (in Chinese with the English abstract).

549 Li, H.M., Liu, F.W., Cui, Y.F., Ren, L.L., Storozum, M.J., Qin, Z., Wang, J., Dong, G.H.:
550 Human settlement and its influencing factors during the historical period in an
551 oasis-desert transition zone of Dunhuang, Hexi Corridor, northwest China. *Quatern.
552 Int.*, 113-122, 2017.

553 Li, J., and Zheng, B. L.: Historical geography of Dunhuang. Gansu Education Press,
554 Lanzhou, 2013 (In Chinese).

555 Li, Y.P., Ge, Q. S., Wang, H. J., Liu, H. L., and Tao, Z. X.: The relationships between
556 climate change, agricultural development and social stabilities in Hexi Corridor over
557 the last 2000 years. *Sci. China Earth Sci.*, 62, 1453-1460, 2019.

558 Li, S.C., The Report of Prehistoric Archaeology Survey in The Hexi Corridor, Cultural
559 Relics Press, Beijing, 2011 (in Chinese).

560 Li, X., Yang, K., Zhou, Y.: Progress in the study of oasis-desert interactions. *Agr. Forest
561 Meteorol.*, 230-231, 1-7, 2016.

562 Liang, F.Z.: International trade and silver import and export of Ming Dynasty, China
563 Publishing House, Beijing, 1989.

564 Liu, Y., Sun, J., Song, H., Cai, Q., Bao, G., and Li, X.: Tree-ring hydrologic
565 reconstructions for the Heihe River watershed, western China since AD 1430. *Water
566 Res.*, 44, 2781-2792, 2010.

567 Liu, Y.S.: The Silk Road, Jiangsu People's Publishing House, 2014.

568 Mann, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D.,
569 Ammann, C., Faluvegi, G., and Ni, F.B.: Global signatures and dynamical origins of
570 the Little Ice Age and Medieval Climate Anomaly, *Science*, 326, 1256-1260, 2009.

571 Qiang, M.R., Chen, F.H., Zhang, J.W., Gao, S.Y., and Zhou, A.F.: Climatic changes
572 documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern
573 Tibetan Plateau of China, since 2 ka BP. *Chinese Sci. Bull.*, 50, 1930-1939, 2005.

574 Qian, Y., and Jin, H. L.: Study on Oasis along the Silk Road, Xinjiang people's publishing
575 house, 2010 (in Chinese).

576 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C.
577 E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P.,
578 Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G.,
579 Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W.,
580 Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S., and Plicht, J.
581 V. D.: IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal
582 BP. *Radiocarbon*, 55, 1869-1887, 2013.

583 Research Institute of History and Language of the Central Academy in Taiwan: Ming
584 Taizu Shilu. Taiwan, 1962b.

585 **Research Institute of History and Language of the Central Academy in Taiwan: Ming**
586 **Yingzong Shilu. Taiwan, 1962a.**

587 Sakai, A., Inoue, M., Fujita, K., Narama, C., Kubota, J., Nakawo, M., and Yao, T.:
588 Variations in discharge from the Qilian mountains, northwest China, and its effect on
589 the agricultural communities of the Heihe basin, over the last two millennia. *Water*
590 *Ecol.*, 4, 177-196, 2012.

591 Schmid, B.V., Büntgen, U., Easterday, W.R., Ginzler, C., Walløe, L., Bramanti, B., and
592 Stenseth, N.C.: Climate-driven introduction of the Black Death and successive
593 plague reintroductions into Europe. *Proc. Natl. Acad. Sci.*, 112, 3020-3025, 2015.

594 Shui, S.: A discussion on the thirst-resisting ability of camel. *J. Inner Mongolian College*
595 *of Agriculture and Animal Husbandry*, 11, 55-59, 1990 (In Chinese).

596 **Stamp, L.D.: A history of land use in arid regions. Literary Licensing, LLC. 1961.**

597 Tan, L.C., Dong, G.H., An, Z.S., Edwards, R.L., Li, H.M., Li, D., Spengler, R., Cai, Y.J.,
598 Cheng, H., Lan, J.H., Orozbaev, R., Liu, R.L., Chen, J.H., Xu, H., Chen, F.H.,
599 Megadrought and cultural exchange along the proto-Silk Road. *Science Bulletin*,
600 2021. 66(6): 603-611. Doi:10.1016/j.scib.2020.10.011.

601 Thompson, L.O., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.
602 N., Beer, J., Synal, H.A., Cole-Dai, J., and Bolzan, J.F.: Tropical climate instability:
603 The last glacial cycle from a Qinghai-Tibetan ice core. *Science*, 276, 1821-1825,
604 1997.

605 Wang, S.C.: The chronology of humanistic and environmental change during historical
606 period in Hexi Corridor and neighbouring areas, China. In “Environment change and
607 the rise and fall of human civilization in arid areas of northwest China”, Yin, Z. S.,
608 eds. Geological Publishing House, Beijing, 1992 (In Chinese).

609 Wang, Y., Li, L. J., and Zhang, W.G.: Exchange history of Eurasia. Lanzhou University
610 Press, Lanzhou, 1-17, 2000 (In Chinese).

611 **White, S., Pei, Q.: Attribution of historical societal impacts and adaptations to climate and**
612 **extreme events: integrating quantitative and qualitative perspectives. Climate**
613 **reconstruction and impacts from the archives of societies**, 2, 44-45, 2020.

614 Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N.,
615 Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J.,
616 Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer,
617 A., Wiles, G., Zhang, P., and Zorita, E.: Last millennium northern hemisphere

618 summer temperatures from tree rings: Part I: The long term context. *Quat. Sci.*
619 *Rev.*, 134, 1-18, 2016.

620 Xie, Y., Ward, R., Fang, C., and Qiao, B.: The urban system in West China: A case study
621 along the midsection of the ancient Silk Road - He-Xi Corridor. *Cities*, 24, 60-73,
622 2007.

623 Yang, B., Qin, C., Bräuning, A., Burchardt, I., and Liu, J. J.: Rainfall history for the Hexi
624 Corridor in the arid northwest China during the past 620 years derived from tree
625 rings. *Int. J. Climatol.*, 31, 1166-1176, 2011.

626 Yang, B., Qin, C., Shi, F., and Sonechkin, D.M.: Tree ring-based annual streamflow
627 reconstruction for the Heihe River in arid northwestern China from AD 575 and its
628 implications for water resource management. *Holocene*, 22, 773-784, 2012.

629 Yang, B., Qin, C., Wang, J., He, M., Melvin, T.M., Osborn, T.J., and Briffa, K.R.: A
630 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan
631 Plateau. *Proceedings of the National Academy of Sciences*, 111, 2903-2908, 2014.

632 Yang, Y.S., Zhang, S.J., Oldknow, C., Qiu, M.H., Chen, T.T., Li, H.M., Cui, Y.F., Ren,
633 L.L., Chen, G.K., Wang, H., and Dong, G.H.: Refined chronology of prehistoric
634 cultures and its implication for re-evaluating human-environment relations in the
635 Hexi Corridor, northwest China. *Science China Earth Sciences*, 62, 2019. <https://doi.org/10.1007/s11430-018-9375-4>.

637 Yu, T.: *A Complete History of the Western Regions*. Zhongzhou Ancient Books
638 Publishing House Co., Ltd., Zhengzhou, 2003 (in Chinese).

639 Yuan, G.Y., and Zhao, Z.Y.: Relationship between the rise and decline of ancient Loulan
640 town and environmental changes, *Chinese Geogr. Sci.*, 9, 78-82, 1999.

641 Zhang, J., Huang, X., Wang, Z., Yan, T., and Zhang, E.: A late-Holocene pollen record
642 from the western Qilian Mountains and its implications for climate change and
643 human activity along the Silk Road, Northwestern China. *Holocene*, 28, 1141-1150,
644 2018.

645 **Zhang, Q., Hu, Y.Q.: The geographical features and climatic effects of oasis. *Adv. Earth***
646 ***Sci.*, 17(4), 2002.**

647 Zhang, T.Y.: *History of Ming dynasty*. China Publishing House, Beijing, 1974 (in
648 Chinese).

649 Zhai, S.D.: The changes of the beacon flint and the land Silk Road in Dunhuang. Gansu
650 Social Sci., 05, 135-140, 2017 (In Chinese).

651 Zheng, Y.J.: On Zheng He's voyage. Ocean Press, China, 1985 (In Chinese).

652 Zhou, X.Y., Li, X.Q., Dodson, J., and Zhao, K.L.: Rapid agricultural transformation in the
653 prehistoric Hexi corridor, China. Quatern. Int., 426, 33-41, 2016.

654 Zhou, W.Z., and Ding, J.T.: Dictionary for the ancient Silk Road. People's publishing
655 house in Shaanxi Province, Xi'an, 2016 (In Chinese).

656

657 **Figure captions**

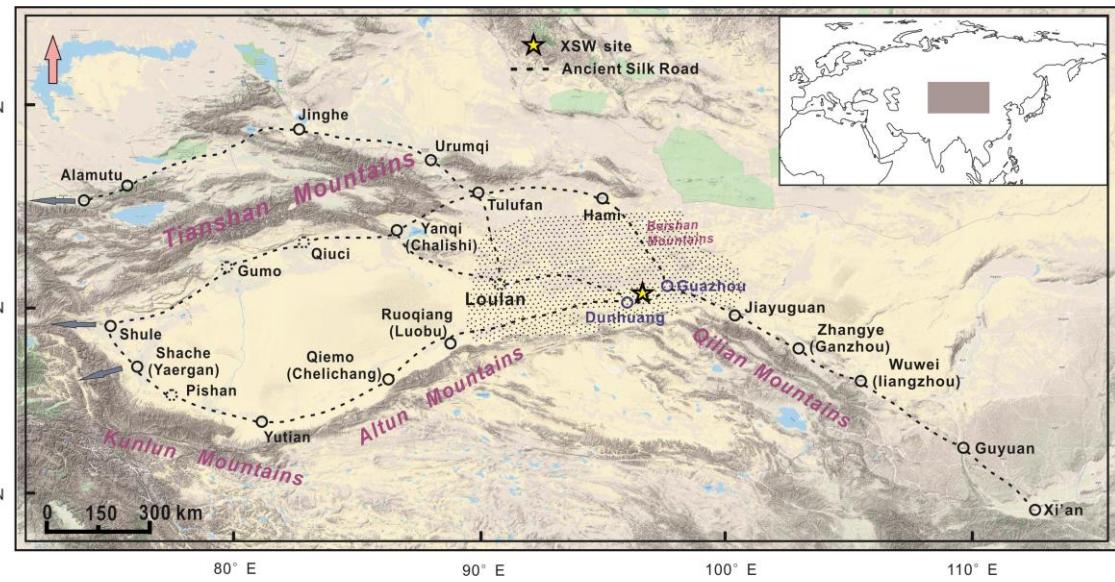
658 Figure 1. Location of the study area and cities along the Ancient Silk Road (dotted circles
659 are oasis cities which were already abandoned before the Ming dynasty; solid circles
660 are oasis cities which still existed during the Ming dynasty; the cities in parentheses
661 were under Ming governorship; the dotted area is Gobi Desert near Dunhuang and
662 Guazhou) (The base map was captured from ©Google Maps)

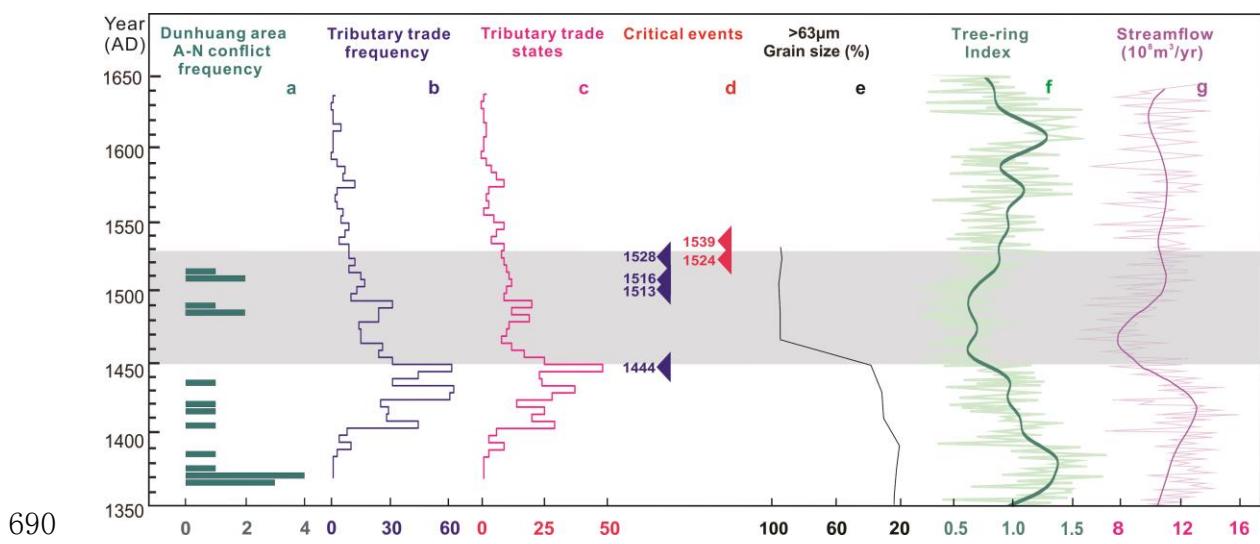
663 Figure 2. Comparison of records of wars, climate change and cultural events in the
664 Dunhuang area during the Ming-Qing dynasties. (a) Frequency of agri-nomadic wars
665 in the Dunhuang area. (b) Tribute trade through the Jiayuguan Pass between the
666 Ming government and Western countries. (c) Number of tribute states of Western
667 countries. (d) Major events in the Ming dynasty (blue triangles are mass migrations;
668 red triangles indicate the closure of the Jiayuguan Pass; the green triangle indicates
669 the abandonment of Dunhuang city). (e) Grain size ($>63\text{-}\mu\text{m}$ fraction) of the XSW
670 section (this study). (f) Tree-ring based precipitation record from the western Qilian
671 Mountains (after smoothing) (Gou et al., 2015a). (g) Tree-ring based streamflow
672 record from the upper reaches of the Heihe River (after smoothing) (Yang et al.,
673 2012).

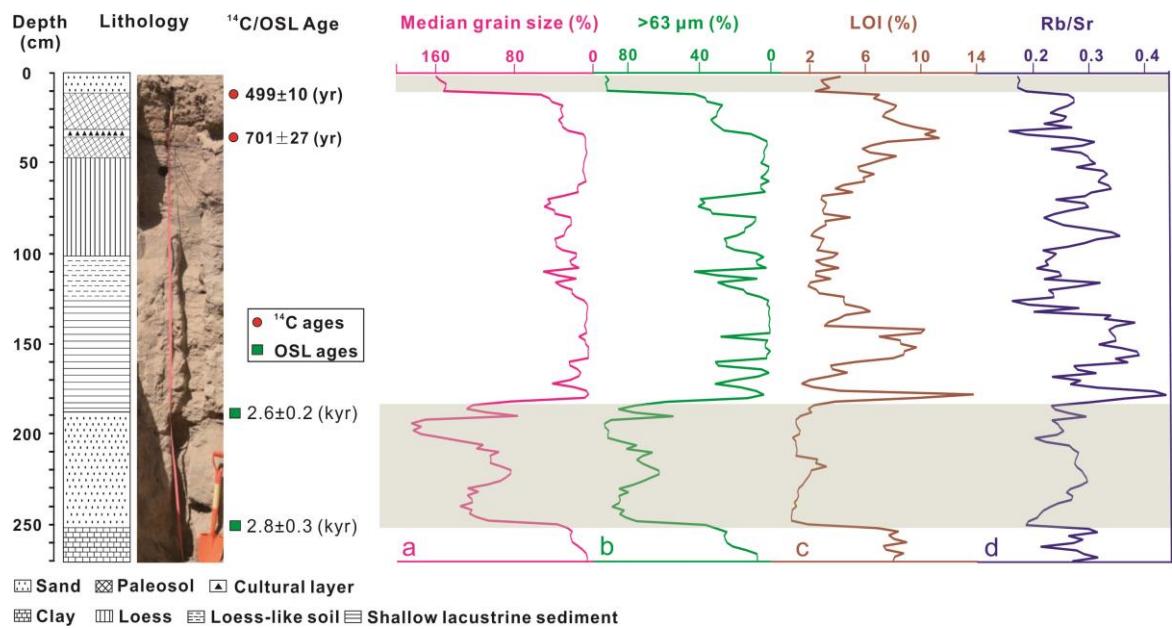
674 Figure 3. Lithology, ^{14}C and OSL ages, and climatic proxies for the XSW section. (a)
675 Median grain size (Md). (b) $>63\text{-}\mu\text{m}$ fraction. (c) Loss on ignition (LOI). (d) Rb/Sr
676 ratio.

677

678 **Table captions**


679 Table 1. Radiocarbon dating results for the Xishawo (XSW) section


680 Table 2. OSL dating results for the Xishawo (XSW) section


681

682

683

686 **Figure 1.**

691 **Figure 2.**

693

694 **Figure 3.**

695

696

697

698

699

700

701 **Table 1.**

Lab No.	materials	Conventional ^{14}C age (yrs BP)	Calibrated ages (yrs BP)/AD	
			2σ (95.4%)	
LZU127	Tree bark	425±15	499±10 (478-514)	1440-1460 AD
LZU1417	charcoal	765±40	701±27 (659-760)	1190-1291 AD

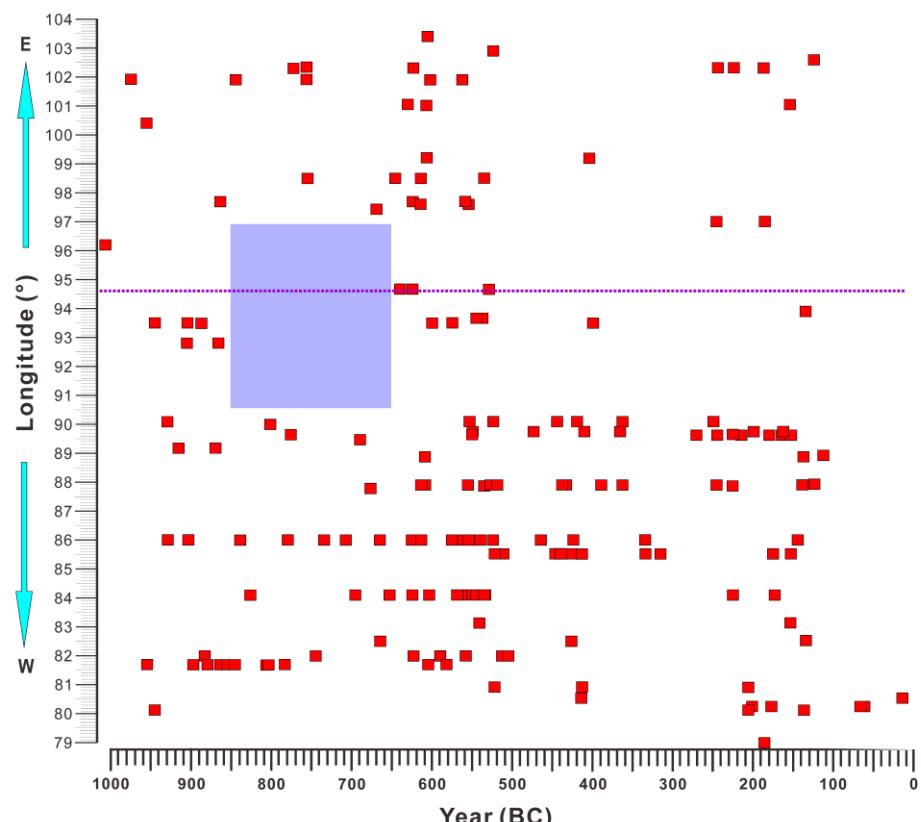
702

703

704

705 **Table 2.**

Lab No.	Depth (cm)	Grain size (μ m)	De (Gy)	OD (%)	U (ppm)	Th (ppm)	K (%)	Cosmic dose rate (Gy/ka)	Dose rate (Gy/ka)	Age (ka)
XSW-170	170	90-125	4.4±0.2	3.9	1.43±0.06	4.72±0.17	0.98±0.04	0.20	1.7±0.1	2.6±0.2
XSW-235	235	90-125	5.1±0.4	16.9	1.46±0.06	5.03±0.18	1.10±0.04	0.18	1.8±0.1	2.8±0.3


706

707

708 **Appendix A**

709 Fig. A1. Comparison of the longitude and median dates of Bronze Age cultural sites in the
710 western Hexi corridor and eastern Xinjiang Province. The purple rectangle corresponds to
711 an absence of dates in the western Hexi Corridor and Xinjiang province. The purple line
712 shows the longitude of the XSW section.

713

714

715 Fig. A1.

716