| 1  | Supplement of                                                     |
|----|-------------------------------------------------------------------|
| 2  |                                                                   |
| 3  | Extreme warming rates affecting alpine areas in SW Europe deduced |
| 4  | from algal lipids                                                 |
| 5  |                                                                   |
| 6  |                                                                   |
| 7  | Antonio García-Alix, et al.                                       |
| 8  |                                                                   |
| 9  | Correspondence to: Antonio García-Alix (agalix@ugr.es             |
| 10 |                                                                   |
| 11 |                                                                   |
| 12 | This Suplement includes the following data:                       |
| 13 |                                                                   |
| 14 | Supplementary Figures S1-S3                                       |
| 15 | Supplementary Tables S1-S7                                        |
| 16 | Supplementary References                                          |



18 Supplementary Figure S1. Calculation of the Environmental Lapse Rate (ELR, °C/m) by means of 19 Ordinary Least Square regressions from temperature and elevation variations ( $\Delta_{elevation}$  and  $\Delta_{MMT}$  or  $\Delta_{MAT}$ ) 20 between low and high elevation observatories listed in Table S1. Data from (Spanish National Weather 21 Agency - AEMet Open Data, 2017;Gonzalez-Hidalgo et al., 2015;Observatorio del cambio global de Sierra 22 Nevada, 2016). MMT (Monthly Mean Temperature) MAT (Mean Annual Temperature). (a) raw  $\Delta_{MMT}$  vs 23  $\Delta_{\text{elevation}}$  data (all observatories vs Sierra Nevada observatories); (b) mean  $\Delta_{\text{MMT}}$  vs  $\Delta_{\text{elevation}}$  data grouped by 24 elevation (all observatories vs Sierra Nevada observatories); (c) raw  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  data (all observatories 25 vs Sierra Nevada observatories); (d) mean  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  data grouped by elevation (all observatories vs 26 Sierra Nevada observatories); (e) raw  $\Delta_{MMT}$  vs  $\Delta_{elevation}$  (Sevilla observatory vs. Sierra Nevada 27 observatories); (f) mean  $\Delta_{MMT}$  vs  $\Delta_{elevation}$  (mean data grouped by elevation: Sevilla observatory vs. Sierra 28 Nevada observatories); (g) raw  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  (Sevilla observatory vs. Sierra Nevada observatories); (h) 29 mean  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  (mean data grouped by elevation: Sevilla observatory vs. Sierra Nevada 30 observatories); (i) raw  $\Delta_{MMT}$  vs  $\Delta_{elevation}$  from (Madrid observatory vs. Sierra Nevada observatories); (j) 31 mean  $\Delta_{MMT}$  vs  $\Delta_{elevation}$  (mean data grouped by elevation: Madrid observatory vs. Sierra Nevada 32 observatories); (k) raw  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  (Madrid observatory vs. Sierra Nevada observatories); (l) mean 33  $\Delta_{MAT}$  vs  $\Delta_{elevation}$  (mean data grouped by elevation: Madrid observatory vs. Sierra Nevada observatories). 34 The obtained ERLs (ranging from 0.0058°C/m to 0.0069°C/m) are certainly close to the global mean ERL 35  $(\sim 0.0065^{\circ}C/m)$  (Organization, 1993), showing that the different calculations are in agreement with the 36 global temperature-elevation gradients.

- 37 38
- 39





Supplementary Figure S2. (a) Correlation by means of Ordinary Least Square regression between Sevilla
monthly temperatures and those from Cetursa 5 (3020 masl). (b) Correlations by means of Ordinary Least
Square regression between Madrid monthly temperatures and those from Cetursa 5 (3020 masl). Data from
(Spanish National Weather Agency - AEMet Open Data, 2017;Gonzalez-Hidalgo et al., 2015;Observatorio
del cambio global de Sierra Nevada, 2016).





50 Supplementary Figure S3. Comparison between (a) the ratio of Chrysophyceae cysts (including 51 Chromulina spp.) against the cysts + diatoms frustules (C:D), (b) the concentration of Chrysophyceae cysts 52 per gram of dry sediment (cysts gds<sup>-1</sup>), and (c) LDI in LdRS short core (LdRS shc), as well as their Pearson 53 correlation (unpublished data from C. Pérez-Martínez). Interestingly, some Chrysophyceae algae produce 54 resting siliceous cysts, more specifically Chromulina nevadensis and Ochromonas sp., two of the most 55 abundant planktonic algae in Sierra Nevada lakes (Carrillo et al., 1991;Barea-Arco et al., 2001). There is a 56 direct relationship between the amount of cysts produced and the number of live chrysophyte cells 57 (Sandgren, 1988). The ratio between the cysts and the sum of cysts + diatoms frustules, as well as the 58 number of cysts per gram of dry sediment (cysts gds<sup>-1</sup>) in LdRS show a significant long-term Pearson 59 correlation with the LDI (r=0.71-0.72 p<0.0001) and (r=0.64 p<0.0001) respectively. Since a statistically 60 significant increasing trend has been observed in all the variables (p<0.05 in Mann-Kendall test), variables 61 were transformed to the squares of the z-scores (p<0.05 in Mann-Kendall test for the LDI) and detrended, 62 showing a significant Pearson correlation ( $r=0.76 \text{ p} \le 0.0001$ ) and ( $r=0.45 \text{ p} \le 0.01$ ) for the ratio between the 63 cysts and the sum of cysts + diatoms frustules vs LDI and the number of cysts per gram of dry sediment 64 (cysts gds<sup>-1</sup>) vs LDI, respectively.

| Observatory       | Observatory<br>elevation<br>(masl) | Sierra Nevada (SN)<br>observatory | SN<br>Observatory<br>elevation<br>(masl) | ∆ <sub>elevation</sub><br>(masl) |
|-------------------|------------------------------------|-----------------------------------|------------------------------------------|----------------------------------|
| Sevilla (Tablada) | 8                                  | Albergue                          | 2500                                     | 2492                             |
| Sevilla (Tablada) | 8                                  | Cetursa 1                         | 2170                                     | 2162                             |
| Sevilla (Tablada) | 8                                  | Cetursa 3                         | 2670                                     | 2662                             |
| Sevilla (Tablada) | 8                                  | Cetursa 5                         | 3020                                     | 3012                             |
| Granada Airport   | 567                                | Albergue                          | 2500                                     | 1933                             |
| Granada Airport   | 567                                | Cetursa 1                         | 2170                                     | 1603                             |
| Granada Airport   | 567                                | Cetursa 3                         | 2670                                     | 2103                             |
| Granada Airport   | 567                                | Cetursa 5                         | 3020                                     | 2453                             |
| Madrid (Retiro)   | 667                                | Albergue                          | 2500                                     | 1733                             |
| Madrid (Retiro)   | 667                                | Cetursa 1                         | 2170                                     | 1503                             |
| Madrid (Retiro)   | 667                                | Cetursa 3                         | 2670                                     | 2003                             |
| Madrid (Retiro)   | 667                                | Cetursa 5                         | 3020                                     | 2353                             |
| Granada Armilla   | 687                                | Albergue                          | 2500                                     | 1813                             |
| Granada Armilla   | 687                                | Cetursa 1                         | 2170                                     | 1483                             |
| Granada Armilla   | 687                                | Cetursa 3                         | 2670                                     | 1983                             |
| Granada Armilla   | 687                                | Cetursa 5                         | 3020                                     | 2333                             |
| Granada Cartuja   | 775                                | Albergue                          | 2500                                     | 1725                             |
| Granada Cartuja   | 775                                | Cetursa 1                         | 2170                                     | 1395                             |
| Granada Cartuja   | 775                                | Cetursa 3                         | 2670                                     | 1895                             |
| Granada Cartuja   | 775                                | Cetursa 5                         | 3020                                     | 2245                             |

Supplementary Table S1. Elevational difference between low and high elevation observatories used in this study

| Low vs high elevation | Cetursa 5<br>(n= | 3020 masl<br>=67) | Cetursa<br>(n= | 3 2670 masl<br>=113) | Cetursa<br>(n= | 1 2170 masl<br>=121) | Albergue 2500 masl<br>(n=72) |          |  |
|-----------------------|------------------|-------------------|----------------|----------------------|----------------|----------------------|------------------------------|----------|--|
| obser vatories        | r                | р                 | r              | р                    | r              | р                    | r                            | р        |  |
| Madrid 667 masl       | 0.95920          | 7.99E-37          | 0.9671         | 8.28E-68             | 0.9641         | 2.44E-70             | 0.9598                       | 2.40E-40 |  |
| Sevilla 8 masl        | 0.95790          | 2.14E-36          | 0.9635         | 2.24E-65             | 0.9620         | 5.85E-69             | 0.9641                       | 4.86E-42 |  |
| Gr-Airport 567 masl   | 0.95430          | 2.80E-35          | 0.9655         | 4.18E-66             | 0.9626         | 8.66E-69             | 0.9591                       | 4.37E-40 |  |
| Gr-Cartuja 775 masl   | 0.96887          | 1.61E-40          | 0.9769         | 3.39E-76             | 0.9751         | 1.04E-79             | 0.9680                       | 9.63E-44 |  |
| Gr-Armilla 687 masl   | 0.96821          | 3.11E-40          | 0.9783         | 9.84E-78             | 0.9767         | 2.01E-81             | 0.9645                       | 3.22E-42 |  |

Supplementary Table S2. Pearson correlations between MMT from low and high elevation (Sierra Nevada) observatories Data from (Spanish National Weather Agency - AEMet Open Data, 2017;Gonzalez-Hidalgo et al., 2015; Observatorio del cambio global de Sierra Nevada, 2016). The Mann-Kendall test performed using PAST software (Hammer et al., 2001) in the raw data of these variables showed a p>0.05 pointing towards no linear trends; so, no transformation has been applied.

| LDI vs Low      |    | Normal c | orrelation | (z-sc<br>corre | ore)²<br>lation | Mann-<br>Kendall   | Detrended | correlation |
|-----------------|----|----------|------------|----------------|-----------------|--------------------|-----------|-------------|
| observatories   | ш  | r        | р          | r              | р               | no trend<br>p>0.05 | r         | р           |
| Sevilla MATA    | 19 | 0.9092   | 7E-08      | 0.8926         | 2E-07           | 0.6746             | 0.9462    | 9E-10       |
| Sevilla MSTA    | 19 | 0.7198   | 0.0005     | 0.2655         | 0.2719          | 0.0424             | 0.3957    | 0.0935      |
| Madrid MATA     | 19 | 0.9074   | 8E-08      | 0.8383         | 7E-06           | 0.6746             | 0.9291    | 9E-09       |
| Madrid MSTA     | 19 | 0.7662   | 0.0001     | 0.5071         | 0.0267          | 0.0863             | 0.6276    | 0.0040      |
| Gr-Airport MATA | 19 | 0.7056   | 0.0007     | 0.6338         | 0.0036          | 0.9998             | 0.7015    | 0.0008      |
| Gr-Airport MSTA | 19 | 0.5788   | 0.0094     | 0.3381         | 0.1568          | 0.1837             | 0.4247    | 0.0699      |
| Gr-Cartuja MATA | 19 | 0.7327   | 0.0004     | 0.6606         | 0.0021          | 0.5756             | 0.6927    | 0.0010      |
| Gr-Cartuja MSTA | 19 | 0.6477   | 0.0027     | 0.4080         | 0.0829          | 0.2939             | 0.4501    | 0.0532      |
| Gr-Armilla MATA | 19 | 0.6971   | 0.0009     | 0.6853         | 0.0012          | 0.8337             | 0.6934    | 0.0010      |
| Gr-Armilla MSTA | 19 | 0.6113   | 0.0054     | 0.3849         | 0.1037          | 0.3446             | 0.4067    | 0.0840      |

79 Supplementary Table S3. Pearson correlations (normal and detrended) for the last ~100 years among 80 LdRS shc LDI and temperature time-series of different observatories. Normal correlations show the 81 relationship between long-term trends. Data from (Spanish National Weather Agency - AEMet Open Data, 82 2017;Gonzalez-Hidalgo et al., 2015;Observatorio del cambio global de Sierra Nevada, 2016). Data were 83 standardised (z-scores), normalised (squares) and a Mann-Kendall trend test was performed using PAST 84 software (Hammer et al., 2001) in order to assess the existence of any trend over time in the data series. 85 Afterwards, data were detrended by fitting a linear regression versus time, and a Pearson correlation was 86 worked out with the residuals. Observatories: Granada city (~600-700 masl and 30km from LdRS), Madrid 87 (Retiro: 667 masl and ~360km from LdRS) and Sevilla (Tablada: 8 masl and ~230km from LdRS but 88 almost similar latitude as LdRS). Mean annual temperature anomaly (MATA) and mean warm season 89 (May-September) temperature anomaly (MSTA) have been tested. MSTA have also been included in the 90 comparison because warm season temperature (May-September) influences algae growth in the studied 91 area (Sánchez-Castillo, 1988;Carrillo et al., 1991). The three time-series available from Granada city only 92 have reliable data from the 1970s onwards (AEMet) (Spanish National Weather Agency - AEMet Open 93 Data, 2017), what is too short for a proper proxy calibration. Longer temperature time-series have been 94 obtained from these Granada series using different approaches to fill in gaps and correct outlying data; i.e. 95 MOTEDAS approach (Gonzalez-Hidalgo et al., 2015). Even though these reconstructed temperatures from 96 Granada for the last ~100 years show a good correlation with LDI (Gr-Airport r>0.70 Gr-Cartuja r> 0.69; 97 Gr-Armilla r>0.69 p<0.001), they are likely biased by the quality of the reconstructed data. Besides, the 98 quality of the records (presence of gaps), this discrepancy between LdRS LDI and Granada record series 99 could be linked to the strong control of Granada basin geomorphology in local rain and temperature patterns 100 at low elevations, with local clouds and frequent thermal inversion phenomena and specific microclimate. 101 Madrid and Sevilla area are not influenced by this effect (Dogniaux, 1994). 102

| $\begin{array}{c} \Delta_{\text{temperature}} \\ \textbf{VS} \\ \Delta_{\text{elevation}} \end{array}$ | $\Delta_{\text{temp}}$ from<br>eq b (global<br>$\Delta_{\text{MMT}}$ ) | $\Delta_{\text{temp}}$ from<br>eq d (global<br>$\Delta_{\text{MAT}}$ ) | $\Delta_{\text{temp}} \text{ from } eqs f$<br>and j (MMT) | $\Delta_{\text{temp}}$ from eqs<br>h and l (MAT) | Real ∆ <sub>temp</sub><br>from MMT | Real ∆ <sub>temp</sub><br>from MAT |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------|
| Sevilla<br>8 masl                                                                                      | 16.24 °C                                                               | 16.13 °C                                                               | 16.51 ℃                                                   | 16.20 °C                                         | 16.39 °C                           | 16.17 °C                           |
| Madrid<br>667 masl                                                                                     | 12.36 °C                                                               | 12.31 °C                                                               | 12.31 °C                                                  | 12.08 °C                                         | 12.23 °C                           | 12.14 °C                           |

104 Supplementary Table S4. Attemperature between Madrid and Sevilla observatories and Cetursa5 (at the same 105 elevation as LdRS, 3020 masl) worked out using different approaches: 1) using equation from Fig. S1b 106 from the mean values between  $\Delta_{MMT}$  and  $\Delta_{elev}$  among all the studied low elevation observatories vs those 107 from high elevation; 2) the same as the previous one but with the  $\Delta_{MAT}$  (equation from Fig. S1d); 3) using 108 equations from Fig. S1f and j (Sevilla-Madrid respectively) from the mean values between  $\Delta_{MMT}$  and  $\Delta_{elev}$ 109 of Sevilla or Madrid observatories respectively vs those from high elevation; 4) the same as the previous 110 one but with the  $\Delta_{MAT}$  (equations from Fig. S1h and l); 5) real  $\Delta_{MMT}$  between Sevilla or Madrid observatories 111 and Cetursa 5 observatory (3020 masl); 6) the same as the previous one but with the  $\Delta_{MAT}$ .

| LdRS shc LDI vs      |                            |    | Nor<br>corre | mal<br>lation | (z-sc<br>corre | ore)²<br>altion | Mann-<br>Kendall   | Detrended<br>correlation |        |
|----------------------|----------------------------|----|--------------|---------------|----------------|-----------------|--------------------|--------------------------|--------|
|                      |                            |    | r            | р             | r              | р               | no trend<br>p>0.05 | r                        | р      |
| Solar                | ΔΤSΙ                       | 32 | 0.5850       | 0.0004        | -0.0992        | 0.5891          | 0.9611             | -0.0256                  | 0.8893 |
| Solar                | TSI                        | 32 | 0.5570       | 0.0009        | 0.1050         | 0.5675          | 0.8711             | 0.0204                   | 0.9120 |
|                      | NH volcanic aerosol        | 27 | -0.0200      | 0.9181        | -0.0561        | 0.7724          | 0.7196             | 0.0892                   | 0.7724 |
| Volcanic             | Global volcanic aerosol    | 27 | 0.0247       | 0.8987        | 0.1156         | 0.5505          | 0.9085             | 0.2062                   | 0.5505 |
|                      | *Global volcanic forcing   | 27 | 0.0843       | 0.7165        | 0.2099         | 0.2745          | 0.4365             | 0.3001                   | 0.2745 |
| Atmograhavia         | NAO                        | 30 | -0.0281      | 0.8830        | 0.3276         | 0.0772          | 3E-05              | 0.0542                   | 0.7760 |
| Atmospheric          | АМО                        | 32 | 0.6097       | 0.0002        | 0.4063         | 0.0210          | 0.3724             | 0.3233                   | 0.0711 |
|                      | CO <sub>2</sub> (ppm)      | 31 | 0.8328       | 6E-09         | 0.7655         | 5E-07           | 0.3587             | 0.7039                   | 0.0000 |
| Green house<br>gases | NO <sub>2</sub> (ppm)      | 31 | 0.8533       | 1E-09         | 0.7776         | 2E-07           | 0.4646             | 0.7134                   | 0.0000 |
| 8                    | CH4 (ppm)                  | 31 | 0.8610       | 5E-10         | 0.7346         | 2E-06           | 0.5633             | 0.6493                   | 0.0001 |
| Temperatures         | CPS Summer temperatures    | 32 | 0.5775       | 0.0007        | 0.4406         | 0.0131          | 0.2998             | 0.3991                   | 0.0261 |
|                      | SST uk37 Gol-Ho1B          | 32 | 0.7601       | 4E-07         | 0.2386         | 0.1884          | 0.8330             | 0.1626                   | 0.3739 |
|                      | Global Temperatures (GLSS) | 19 | 0.8898       | 3E-07         | 0.6920         | 0.0010          | 0.6243             | 0.7435                   | 0.0003 |

**Supplementary Table S5.** Pearson correlations (normal and detrended) between LdRS short core LDI record and different proxies for solar and volcanic forcing, North Atlantic modes, greenhouse gases, and temperatures. Normal correlations show long-term trends. Data were standardised (z-scores), normalised (squares) and a Mann-Kendall trend test was performed using PAST software (Hammer et al., 2001) in order to assess the existence of any trend over time in the data series. Afterwards, data were detrended by fitting a linear regression versus time, and a Pearson correlation was worked out with the residuals. \*: Note that inverse global volcanic forcing values have been used in order to show the same trends as in Fig. 5.

Solar Proxies: ΔTSI, reconstruction of the difference of the total solar irradiance from the value of the
 PMOD composite series during the solar cycle minimum of the year 1986 CE (1365.57 W m<sup>-2</sup>) (Steinhilber
 et al., 2009); TSI, total solar Irradiance (Coddington et al., 2016).

Volcanic proxies: Annual stratospheric volcanic sulfate aerosol injection for the past 1500 years in the
 North Hemisphere and worldwide (Gao et al., 2008); global volcanic aerosol forcing (W m<sup>-2</sup>) (Sigl et al.,
 2015).

North Atlantic modes: NAO, North Atlantic Oscillation reconstruction (Trouet et al., 2009); AMO,
 Atlantic Multidecadal Oscillation reconstruction (Mann et al., 2009).

Greenhouse gases: reconstructed concentrations of atmospheric CO<sub>2</sub>, NO<sub>2</sub>, and CH<sub>4</sub> (ppm) (Schmidt et al.,
 2011).

**Temperatures:** Composite-plus-scaling (CPS) mean summer temperature anomaly reconstruction from tree rings records in Europe with respect to 1974-2003 CE (MSTA °C) (Luterbacher et al., 2016); Alkenone-

133 Sea Surface Temperatures (SST °C) of the core Gol-Ho1B KSGC-31 (Gulf of Lion: NW Mediterranean

134 Sea) (Sicre et al., 2016), and global land and sea surface (GLSS) mean annual temperature anomalies with

- 135 respect to 1979-2008 CE (Hansen et al., 2010).
- 136
- 137

|                      |                          |    | Normal correlation |        | (z-sc<br>corre | ore) <sup>2</sup><br>altion | Mann-<br>Kendall   | Detre<br>corre | ended<br>lation |
|----------------------|--------------------------|----|--------------------|--------|----------------|-----------------------------|--------------------|----------------|-----------------|
|                      |                          |    | r                  | р      | r              | р                           | no trend<br>p>0.05 | r              | р               |
|                      | $^{*}\Delta^{14}C$       | 16 | -0.7260            | 0.0015 | 0.3949         | 0.1301                      | 0.1917             | 0.3810         | 0.1454          |
| Solar                | ΔΤSΙ                     | 20 | 0.6916             | 0.0007 | 0.3759         | 0.1024                      | 0.0231             | 0.3668         | 0.1117          |
|                      | TSI                      | 13 | 0.8779             | 0.0001 | 0.1301         | 0.0863                      | 0.8548             | 0.5630         | 0.0451          |
|                      | NH volcanic aerosol      | 19 | -0.0700            | 0.7758 | 0.1305         | 0.5945                      | 0.1595             | 0.0963         | 0.6951          |
| Volcanic             | Global volcanic aerosol  | 19 | 0.0647             | 0.7924 | 0.277          | 0.2507                      | 0.0478             | 0.2528         | 0.2965          |
|                      | *Global volcanic forcing | 16 | 0.3170             | 0.2316 | 0.2549         | 0.2923                      | 0.1945             | 0.1358         | 0.5795          |
| North Atlantia madag | NAO                      | 16 | 0.0999             | 0.7127 | 0.3315         | 0.2098                      | 0.3004             | 0.2312         | 0.3890          |
| North Atlantic modes | АМО                      | 19 | 0.6022             | 0.0064 | 0.3732         | 0.1156                      | 0.4841             | 0.2547         | 0.2928          |
|                      | CO <sub>2</sub> (ppm)    | 20 | 0.7364             | 0.0002 | 0.7293         | 0.0003                      | 0.9741             | 0.6529         | 0.0018          |
| Greenhouse gases     | NO <sub>2</sub> (ppm)    | 20 | 0.6538             | 0.0018 | 0.6846         | 0.0009                      | 0.9225             | 0.6102         | 0.0043          |
|                      | CH <sub>4</sub> (ppm)    | 20 | 0.7285             | 0.0003 | 0.7737         | 0.0001                      | 0.3468             | 0.7071         | 0.0005          |
|                      | CPS Summer temperatures  | 20 | 0.7071             | 0.0005 | 0.4586         | 0.0420                      | 0.1835             | 0.3403         | 0.1421          |
|                      | SST uk37 Gol-Ho1B        | 20 | 0.6097             | 0.0043 | 0.7254         | 0.0003                      | 0.1192             | 0.6519         | 0.0018          |
| Tomporatures         | SST uk37 TTR-17-1-384B   | 17 | 0.2378             | 0.3581 | 0.0206         | 0.9374                      | 0.7731             | 0.0152         | 0.9537          |
| remperatures         | SST TEX86 TTR-17-384B    | 17 | 0.4489             | 0.0707 | 0.5265         | 0.0299                      | 0.9671             | 0.4754         | 0.0538          |
|                      | SST uk37 TTR-17-1-436B   | 18 | 0.3383             | 0.1697 | 0.6774         | 0.0020                      | 0.3247             | 0.6989         | 0.0013          |
|                      | SST TEX86 TTR-17-436B    | 18 | 0.4338             | 0.0721 | 0.1767         | 0.4830                      | 0.4047             | 0.3449         | 0.1610          |

139 Supplementary Table S6. Pearson correlations (normal and detrended) between LdRS long core LDI 140 record and different proxies for solar and volcanic forcing, North Atlantic modes, greenhouse gases, and 141 temperatures. Normal correlations show long-term trends. Data were standardised (z-scores), normalised 142 (squares), and a Mann-Kendall trend test was performed using PAST software (Hammer et al., 2001) in 143 order to assess the existence of any trend over time in the data series. Afterwards, data were detrended by 144 fitting a linear regression versus time, and a Pearson correlation was worked out with the residuals. \*: Note 145 that inverse  $\Delta^{14}C$  and global volcanic forcing values have been used in order to show the same trends as in 146 Fig. 4.

- 147 **Solar Proxies:**  $\Delta^{14}$ C (Reimer et al., 2013);  $\Delta$ TSI, reconstruction of the difference of the total solar 148 irradiance from the value of the PMOD composite series during the solar cycle minimum of the year 1986 149 CE (1365.57 W m<sup>-2</sup>) (Steinhilber et al., 2009); TSI, total solar irradiance (Coddington et al., 2016).
- 150 Volcanic proxies: Annual stratospheric volcanic sulfate aerosol injection for the past 1500 years in the
- North Hemisphere, and worldwide (Gao et al., 2008); global volcanic aerosol forcing (W m<sup>-2</sup>) (Sigl et al.,
  2015).
- North Atlantic modes: NAO, North Atlantic Oscillation reconstruction (Trouet et al., 2009); AMO,
   Atlantic Multidecadal Oscillation reconstruction (Mann et al., 2009).
- Greenhouse gases: reconstructed concentrations of atmospheric CO<sub>2</sub>, NO<sub>2</sub>, and CH<sub>4</sub> (ppm) (Schmidt et al.,
   2011).
- 157 Temperatures: Composite-plus-scaling (CPS) mean summer temperature anomaly reconstruction from
- 158 tree rings records in Europe with respect to 1974-2003 CE (MSTA °C) (Luterbacher et al., 2016); Alkenone-
- 159 Sea Surface Temperatures (SST °C) of the core Gol-Ho1B\_KSGC-31 (Gulf of Lion: NW Mediterranean
- 160 Sea) (Sicre et al., 2016), alkenone and TEX<sub>86</sub> (from GDGTs) SST records of the cores 384B and 436B in
- 161 the Alboran Sea (Nieto-Moreno et al., 2013).
- 162

| Record   | Lab Code  | Sampling<br>Depth<br>(cm) | Cal<br>yr<br>BP | Yr<br>CE | C <sub>28</sub><br>1,13-<br>diol | C <sub>30</sub><br>1,15-<br>diol | C <sub>30</sub><br>1,13-<br>diol | C <sub>32</sub><br>1,15-<br>diol | LDI    | Observations |
|----------|-----------|---------------------------|-----------------|----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------|--------------|
| LdRS shc | BECS 1271 | 0                         | -58             | 2008     | 0.0449                           | 0.0506                           | 0.0807                           | 0.8238                           | 0.2871 |              |
| LdRS shc | BECS 1272 | 0.5                       | -53             | 2003     | 0.0598                           | 0.0590                           | 0.0772                           | 0.8040                           | 0.3012 |              |
| LdRS shc | BECS 1273 | 1                         | -48             | 1998     | 0.0525                           | 0.0620                           | 0.0792                           | 0.8063                           | 0.3202 |              |
| LdRS shc | BECS 1274 | 1.5                       | -43             | 1993     | 0.0539                           | 0.0568                           | 0.0893                           | 0.8000                           | 0.2840 |              |
| LdRS shc | BECS 1275 | 2                         | -38             | 1988     | 0.0721                           | 0.0584                           | 0.1060                           | 0.7635                           | 0.2470 |              |
| LdRS shc | BECS 1276 | 2.5                       | -33             | 1983     | 0.0579                           | 0.0600                           | 0.1032                           | 0.7789                           | 0.2713 |              |
| LdRS shc | BECS 1277 | 3                         | -28             | 1978     | 0.0805                           | 0.0639                           | 0.1043                           | 0.7513                           | 0.2569 |              |
| LdRS shc | BECS 1278 | 3.5                       | -23             | 1973     | 0.0676                           | 0.0601                           | 0.1174                           | 0.7549                           | 0.2452 |              |
| LdRS shc | BECS 1279 | 4                         | -18             | 1968     | 0.0789                           | 0.0611                           | 0.1232                           | 0.7368                           | 0.2320 |              |
| LdRS shc | BECS 1280 | 4.5                       | -13             | 1963     | 0.0863                           | 0.0635                           | 0.1313                           | 0.7189                           | 0.2260 |              |
| LdRS shc | BECS 1281 | 5                         | -8              | 1958     | 0.0801                           | 0.0664                           | 0.1308                           | 0.7227                           | 0.2395 |              |
| LdRS shc | BECS 1282 | 5.5                       | -3              | 1953     | 0.0819                           | 0.0667                           | 0.1341                           | 0.7173                           | 0.2359 |              |
| LdRS shc | BECS 1283 | 6                         | 2               | 1948     | 0.0934                           | 0.0564                           | 0.1323                           | 0.7180                           | 0.1999 |              |
| LdRS shc | BECS 1284 | 6.5                       | 9               | 1941     | 0.1281                           | 0.0549                           | 0.1492                           | 0.6678                           | 0.1654 |              |
| LdRS shc | BECS 1285 | 7                         | 15              | 1935     | 0.1233                           | 0.0563                           | 0.1531                           | 0.6674                           | 0.1693 |              |
| LdRS shc | BECS 1286 | 7.5                       | 22              | 1928     | 0.1067                           | 0.0525                           | 0.1389                           | 0.7019                           | 0.1762 |              |
| LdRS shc | BECS 1322 | 8                         | 29              | 1921     | 0.1193                           | 0.0485                           | 0.1576                           | 0.6746                           | 0.1492 |              |
| LdRS shc | BECS 1323 | 8.5                       | 35              | 1915     | 0.1326                           | 0.0492                           | 0.1742                           | 0.6441                           | 0.1382 |              |
| LdRS shc | BECS 1324 | 9                         | 42              | 1908     | 0.1508                           | 0.0489                           | 0.1800                           | 0.6203                           | 0.1288 |              |
| LdRS shc | BECS 1325 | 9.5                       | 49              | 1901     | 0.1345                           | 0.0468                           | 0.1782                           | 0.6405                           | 0.1302 |              |
| LdRS shc | BECS 1326 | 10                        | 55              | 1895     | 0.1446                           | 0.0475                           | 0.1724                           | 0.6354                           | 0.1304 |              |
| LdRS shc | BECS 1327 | 10.5                      | 62              | 1888     | 0.1315                           | 0.0501                           | 0.1645                           | 0.6538                           | 0.1448 |              |
| LdRS shc | BECS 1328 | 11                        | 69              | 1881     | 0.1429                           | 0.0508                           | 0.1705                           | 0.6357                           | 0.1396 |              |
| LdRS shc | BECS 1329 | 11.5                      | 75              | 1875     | 0.1306                           | 0.0509                           | 0.1713                           | 0.6472                           | 0.1443 |              |
| LdRS shc | BECS 1330 | 12                        | 82              | 1868     | 0.1184                           | 0.0524                           | 0.1738                           | 0.6555                           | 0.1520 |              |
| LdRS shc | BECS 1331 | 12.5                      | 89              | 1861     | 0.1171                           | 0.0491                           | 0.1879                           | 0.6460                           | 0.1386 |              |
| LdRS shc | BECS 1332 | 13                        | 95              | 1855     | 0.1132                           | 0.0515                           | 0.1961                           | 0.6393                           | 0.1426 |              |
| LdRS shc | BECS 1333 | 13.5                      | 102             | 1848     | 0.0918                           | 0.0573                           | 0.1705                           | 0.6804                           | 0.1792 |              |
| LdRS shc | BECS 1334 | 14                        | 109             | 1841     | 0.0852                           | 0.0607                           | 0.1660                           | 0.6881                           | 0.1945 |              |
| LdRS shc | BECS 1335 | 14.5                      | 115             | 1835     | 0.0741                           | 0.0621                           | 0.1597                           | 0.7041                           | 0.2098 |              |
| LdRS shc | BECS 1336 | 15                        | 122             | 1828     | 0.0755                           | 0.0625                           | 0.1649                           | 0.6972                           | 0.2064 |              |
| LdRS shc | BECS 1337 | 15.5                      | 129             | 1821     | 0.0746                           | 0.0596                           | 0.1746                           | 0.6912                           | 0.1930 |              |
| LdRS lgc | GMOL 1886 | 0                         | -56             | 2006     | 0.0708                           | 0.0703                           | 0.1041                           | 0.7548                           | 0.2866 |              |
| LdRS lgc | GMOL 1887 | 1                         | -41             | 1991     | 0.0630                           | 0.0742                           | 0.1032                           | 0.7596                           | 0.3087 |              |
| LdRS lgc | GMOL 1888 | 2                         | -26             | 1976     | 0.1016                           | 0.0765                           | 0.1399                           | 0.6820                           | 0.2405 |              |
| LdRS lgc | GMOL 1889 | 3                         | -11             | 1961     | 0.1264                           | 0.0796                           | 0.1585                           | 0.6356                           | 0.2183 |              |
| LdRS lgc | GMOL 1890 | 4                         | 4               | 1946     | 0.2003                           | 0.0647                           | 0.1724                           | 0.5625                           | 0.1479 |              |
| LdRS lgc | GMOL 1891 | 5                         | 20              | 1931     | 0.1477                           | 0.0620                           | 0.1338                           | 0.6566                           | 0.1805 |              |
| LdRS lgc | GMOL 1892 | 6                         | 35              | 1915     | 0.2733                           | 0.0516                           | 0.1666                           | 0.5085                           | 0.1049 |              |
| LdRS lgc | GMOL 1893 | 7                         | 50              | 1900     | 0.2283                           | 0.0623                           | 0.1911                           | 0.5183                           | 0.1294 |              |

| LdRS lgc  | GMOL 1895 | 9    | 80   | 1870 | 0.1334 | 0.0586 | 0.2003 | 0.6076 | 0.1495 |                             |
|-----------|-----------|------|------|------|--------|--------|--------|--------|--------|-----------------------------|
| LdRS lgc  | GMOL 1896 | 10.5 | 106  | 1844 | 0.1093 | 0.0644 | 0.1937 | 0.6326 | 0.1752 |                             |
| LdRS lgc  | GMOL 1897 | 11.5 | 169  | 1781 | 0.4216 | 0.0551 | 0.1927 | 0.3307 | 0.0823 |                             |
| LdRS lgc  | GMOL 1898 | 12.5 | 263  | 1687 | 0.4132 | 0.0325 | 0.1851 | 0.3692 | 0.0515 |                             |
| LdRS loc  | GMOL 1899 | 13.5 | 343  | 1607 | 0 3809 | 0.0578 | 0 3068 | 0 2545 | 0.0775 |                             |
| L dRS lgc | GMOL 1900 | 14.5 | 437  | 1513 | 0.3456 | 0.0603 | 0.2828 | 0.3113 | 0.0876 |                             |
| L dPS lgo | GMOL 1901 | 15.5 | 547  | 1402 | 0.2543 | 0.0003 | 0.2620 | 0.2066 | 0.1520 |                             |
|           | GMOL 1901 | 13.5 | 729  | 1405 | 0.2343 | 0.0923 | 0.2308 | 0.5900 | 0.1329 |                             |
| Laks ige  | GMOL 1902 | 16.5 | /38  | 1212 | 0.1883 | 0.0859 | 0.16// | 0.5581 | 0.1944 |                             |
| LdRS Igc  | GMOL 1903 | 17.5 | 876  | 1074 | 0.2448 | 0.0732 | 0.2179 | 0.4641 | 0.1366 |                             |
| LdRS lgc  | GMOL 1904 | 18.5 | 1022 | 928  | 0.1784 | 0.1070 | 0.1753 | 0.5394 | 0.2322 |                             |
| LdRS lgc  | GMOL 1905 | 19.5 |      |      |        |        |        |        |        | below quantification limits |
| LdRS lgc  | GMOL 1906 | 20.5 | 1404 | 546  | 0.2144 | 0.0938 | 0.2602 | 0.4316 | 0.1650 |                             |
| LdRS lgc  | GMOL 1907 | 21.5 | 1556 | 394  | 0.2210 | 0.0878 | 0.2165 | 0.4746 | 0.1672 |                             |

Supplementary Table S7. Fractional abundances of C<sub>28</sub> 1,13-diol, C<sub>30</sub> 1,13-diol, C<sub>30</sub> 1,15-diol, and C<sub>32</sub>
 1,15-diol in the different samples of both LdRS cores (LdRS shc and LdRS lgc) along with the obtained
 Long Chain Diol Index (LDI), according to Rampen et al. (2012).

- 167
- 168

## 169 Supplementary References

- 170
- Barea-Arco, J., Pérez-Martínez, C., and Morales-Baquero, R.: Evidence of a mutualistic
  relationship between an algal epibiont and its host, Daphnia pulicaria, Limnology and
  Oceanography, 46, 871-881, 2001.
- 174 Carrillo, P., Cruz-Pizarro, L., and Sánchez Castillo, P. M.: Aportación al conocimiento
  175 del ciclo biológico de Chromulina nevadensis, Acta Botánica Malacitana, 16, 19-26,
  176 1991.
- Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A Solar
  Irradiance Climate Data Record, Bulletin of the American Meteorological Society, 97,
  1265-1282, 10.1175/bams-d-14-00265.1, 2016.
- Dogniaux, R.: Prediction of Solar Radiation in Areas with a Specific Microclimate,
   Prediction of Solar Radiation in Areas with a Specific Microclimate, 108 pp., 1994.
- Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500
  years: An improved ice core-based index for climate models, Journal of Geophysical
- 184 Research: Atmospheres, 113, doi:10.1029/2008JD010239, 2008.
- Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M., and Cortesi, N.: MOTEDAS: a
  new monthly temperature database for mainland Spain and the trend in temperature
  (1951–2010), International Journal of Climatology, 35, 4444-4463, 10.1002/joc.4298,
  2015.
- Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software
   package for education and data analysis, Palaeontologia Electronica 4, 9, 2001.
- Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature Change,
  Reviews of Geophysics, 48, 10.1029/2010RG000345, 2010.
- Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco,
  F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J.,
  McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C.,
- McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C.,
  Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante,

- 197 E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K.,
  198 Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer,
  199 A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E.,
- Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures
  since Roman times, Environmental Research Letters, 11, 024001, citeulike-articleid:14089240
- 203 doi: 10.1088/1748-9326/11/2/024001, 2016.
- Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D.,
  Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and Dynamical Origins of
  the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256-1260,
  10.1126/science.1177303, 2009.
- Nieto-Moreno, V., Martínez-Ruiz, F., Willmott, V., García-Orellana, J., Masqué, P., and
  Sinninghe Damsté, J. S.: Climate conditions in the westernmost Mediterranean over
  the last two millennia: An integrated biomarker approach, Organic Geochemistry, 55,
  1-10, https://doi.org/10.1016/j.orggeochem.2012.11.001, 2013.
- Organization, I. C. A.: Manual of the ICAO standard atmosphere : extended to 80
  kilometres (262 500 feet) (Third ed.), International Civil Aviation Organization,
  Montreal, Quebec, 1993.
- 215 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, 216 C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., 217 218 Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van 219 220 der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 221 Years BP, Radiocarbon, 55. 1869-1887, cal 222 https://doi.org/10.2458/azu js rc.55.16947, 2013.
- Sánchez-Castillo, P. M.: Algas de las lagunas de alta montaña de Sierra Nevada (Granada,
   España), Acta Botánica Malacitana, 13, 21 -52, 1988.
- Sandgren, C. D.: The ecology of chrysophyte flagellates: their growth and perennation
  strategies as freshwater phytoplankton, in: Growth and reproductive strategies of
  freshwater phytoplankton, edited by: C.D., S., Cambridge University Press,
  Cambridge, 9-104, 1988.
- Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T.
  J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L.,
  Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.:
  Climate forcing reconstructions for use in PMIP simulations of the last millennium
  (v1.0), Geosci. Model Dev., 4, 33-45, 10.5194/gmd-4-33-2011, 2011.
- Sicre, M.-A., Jalali, B., Martrat, B., Schmidt, S., Bassetti, M.-A., and Kallel, N.: Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era, Earth and Planetary Science Letters, 456, 124-133, https://doi.org/10.1016/j.epsl.2016.09.032, 2016.
- Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F.,
  Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S.,
  Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R.,
  Pilcher, J. R., Salzer, M., Schupbach, S., Steffensen, J. P., Vinther, B. M., and
  Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for the past 2,500
  years, Nature, 523, 543-549, 10.1038/nature14565
- http://www.nature.com/nature/journal/v523/n7562/abs/nature14565.html#supplementar
   v-information, 2015.

- Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene,
  Geophysical Research Letters, 36, 10.1029/2009GL040142, 2009.
- Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent
- 249 Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly,
- 250 Science, 324, 78-80, 10.1126/science.1166349, 2009.