

1 **Algal lipids reveal unprecedented warming rates in alpine areas of SW Europe**
2 **during the Industrial Period**

3
4 Antonio García-Alix^{1,2,3*}, Jaime L. Toney², Gonzalo Jiménez-Moreno¹, Carmen Pérez-
5 Martínez⁴, Laura Jiménez⁴, Marta Rodrigo-Gámiz¹, R. Scott Anderson⁵, Jon Camuera⁶,
6 Francisco J. Jiménez-Espejo³, Dhais Peña-Angulo⁷, María J. Ramos-Román⁶

7

8

9 ¹ Department of Stratigraphy and Paleontology, University of Granada, Granada, 18072,
10 Spain.

11 ² School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12
12 8QQ, UK.

13 ³ Instituto Andaluz de Ciencias de la Tierra (IACT), CISC-UGR, Armilla, 18100, Spain.

14 ⁴ Department of Ecology and Institute of Water Research, University of Granada,
15 Granada, 18072, Spain.

16 ⁵ School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011,
17 USA.

18 ⁶ Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014,
19 Finland.

20 ⁷ Department of Geography, University of Zaragoza, Zaragoza, 50009 Spain.

21

22 * *Correspondence to:* Antonio García-Alix (agalix@ugr.es)

23

24 **Abstract.** Alpine ecosystems of the southern Iberian Peninsula are among the most
25 vulnerable and the first to respond to modern climate change in southwestern Europe.
26 While major environmental shifts have occurred over the last ~1500 years in these alpine
27 ecosystems, only changes in the recent centuries have led to abrupt environmental
28 responses, but factors imposing the strongest stress have been unclear until now. To
29 understand these environmental responses, this study, for the first time, has calibrated an
30 algal lipid-derived temperature proxy (based on long-chain alkyl diols) to instrumental
31 historical data extending alpine temperature reconstructions to 1500 years before present.
32 These novel results highlight the enhanced effect of greenhouse gases on alpine

33 temperatures during the last ~200 years and the long-term modulating role of solar
34 forcing. This study also shows that the warming rate during the 20th century
35 (~0.18°C/decade) was double that of the last stages of the Little Ice Age
36 (~0.09°C/decade), even exceeding temperature trends of the high-altitude Alps during the
37 20th century. As a consequence, temperature exceeded the pre-industrial records in the
38 1950s, and was one of the major forcings of the enhanced recent change in the alpine
39 ecosystems from southern Iberia. Nevertheless, other factors reducing the snow and ice
40 albedo (e.g., atmospheric deposition) may have influenced local glacier loss, since almost
41 steady climate conditions predominated from middle 19th century to the first decades of
42 the 20th century.

43

44 **1. Introduction**

45

46 Global mean annual surface temperatures have risen by ~0.85°C from 1880 to
47 2012 and the recent decades have been the warmest in the Northern Hemisphere during
48 the Common Era ([IPCC, 2013](#)). This trend is alarming, since over the last decade
49 temperature records have been broken yearly. For example, in Spain the highest
50 temperatures ever recorded in September and July occurred in 2016 (45.5°C) and 2017
51 (46.9°C-47.3°C), respectively ([Spanish National Weather Agency - AEMet Open Data, 2019](#)). Increasing global temperatures are contributing not only directly to land and ocean
52 surface warming, but are also changing the global hydrological cycle through the
53 disturbance of atmospheric circulation patterns and moisture ([Easterling et al., 2000](#);
54 [IPCC, 2013](#)). As a result, the term “global warming” is migrating towards recent “climate
55 change” in order to express the variety of modern climate extremes witnessed across the
56 world. The effects of modern global warming and associated climate change events may
57 be causing extreme environmental impacts, beyond what is recorded in the recent
58 geologic record ([Waters et al., 2016](#)). Hence, it is crucial to identify warming thresholds,
59 rates, and forcing mechanisms from past high-resolution temperature records to
60 understand modern climate change. It is especially important in fragile regions such as
61 high elevation ecosystems of the Mediterranean alpine realm, an environmentally
62 vulnerable biodiversity “Hot-Spot” ([Giorgi, 2006](#); [Schröter et al., 2005](#)) where recent
63 climate change is affecting species richness and distribution ([Médail and Quézel, 1999](#);
64 [Pauli et al., 2012](#)). Therefore, alpine wetlands in the Mediterranean region, such as the

66 ones from the Sierra Nevada in the southern Iberian Peninsula, are sensitive recorders of
67 changing climate and their sedimentological records archive the ecological and
68 biogeochemical responses to different environmental forcings ([Catalan et al., 2013](#)).
69

70 In order to contribute to a better understanding of recent climate change events in
71 these vulnerable areas, here, for the first time, we calibrate a recently developed algal
72 lipid-derived temperature proxy in an alpine lacustrine record that overlaps with
73 instrumental temperature time-series. This calibration allows the reconstruction of
74 temperatures in alpine areas of the southern Iberian Peninsula during the Common Era
75 when instrumental records are discontinuous or non-existent. Temperature-dependent
76 biomarkers, such as those produced by algae (alkenones) or bacteria/archaea (glycerol
77 dialkyl glycerol tetraethers: GDGTs) have been commonly used in a wide range of marine
78 records as quantitative paleothermometers, and their further application in lake
79 environments has widely increased in the last decade (e.g., [Castañeda and Schouten, 2011](#);
80 [Colcord et al., 2015](#); [Foster et al., 2016](#); [Longo et al., 2018](#); [Theroux et al., 2010](#)).
81 Another promising type of algal lipid biomarkers, the long-chain alkyl diols (hereafter
82 LCDs), have also been assessed as temperature proxy in marine environments ([Rampen
83 et al., 2014b](#); [Rampen et al., 2012](#); [Rodrigo-Gámiz et al., 2014](#); [Rodrigo-Gámiz et al.,
84 2015](#)). Nevertheless, the relationship between LCDs and temperature has only been
85 tentatively tested in freshwater environments ([Rampen et al., 2014a](#)). In this regard,
86 studies using LCDs as (paleo)environmental proxies in marine environments (not just
87 only for temperature reconstructions) have increased in the last years, showing the
88 potential of LCDs as proxies for upwelling ([Rampen et al., 2008](#); [Versteegh et al., 1997](#);
89 [Willmott et al., 2010](#)), riverine inputs to marine settings ([de Bar et al., 2016](#); [Lattaud et
90 al., 2017a](#); [Lattaud et al., 2018a](#)), or nutrient inputs ([Gal et al., 2018](#)). Nevertheless, only
91 a few studies have tested LCDs as lacustrine archives of paleoproductivity ([Shimokawara
92 et al., 2010](#)), past rainfall anomalies ([Romero-Viana et al., 2012](#)), or temperatures
93 ([Rampen et al., 2014a](#)), among others. In any case, despite the great potential of LCDs
94 for paleoenvironmental reconstructions, a number of questions exist about the
95 applicability of diols in high latitude areas ([Rodrigo-Gámiz et al., 2015](#)), in freshwaters
96 records ([Rampen et al., 2014a](#)), and about the distribution and sources of the biological
97 producers ([Balzano et al., 2018](#); [Villanueva et al., 2014](#); [Yu et al., 2018](#)).
98

99 The LCD distribution in marine environments shows significant correlations with
100 mean annual sea surface temperature through the ratio of the fractional abundances of C₂₈
101 1,13-diol, C₃₀ 1,13-diol, and C₃₀ 1,15-diol that are used in the Long chain Diol Index (LDI,
102 Eq. (1)) ([Rampen et al., 2012](#)). The application of LCDs as a temperature proxy is novel
103 in freshwater environments and only two preliminary calibrations based on recent surface
104 sediments have been obtained using both mean annual air temperatures (weather station
105 data) and organic-derived temperature proxies (GDGTs) ([Rampen et al., 2014a](#)). Here,
106 we improve the biomarker paleothermometry by establishing the first temperature
107 calibration for freshwater LCDs using a comparison with historical temperature records
108 for the last ~100 years. Although this calibration can only be applied to the studied lake
109 at present, and perhaps to other alpine wetlands in the Sierra Nevada area, these new data
110 support and reinforce the promising use of LCDs as a paleotemperature proxy in
111 freshwater environments.

112
113 Equation (1) LDI= (F_{C30} 1,15-diol)/(F_{C28} 1,13-diol + F_{C30} 1,13-diol + F_{C30} 1,15-diol)
114 ([Rampen et al., 2012](#))

116 **1.1 Regional settings**

117
118 This paper focuses on the LCD record of two adjacent cores from Laguna de Río
119 Seco (LdRS), a small alpine lake (~0.42 ha and less than 3m of water depth) at 3020 masl
120 in the protected Sierra Nevada National Park, southern Spain (Fig. 1). Alpine Sierra
121 Nevada wetlands, including LdRS, are low primary production (oligo-mesotrophic)
122 systems and their biogeochemical cycles partially depends on aeolian nutrient supplies
123 (e.g., Saharan aerosol deposition), since catchment basins are small and barren in
124 nutrients ([Morales-Baquero et al., 2006](#); [Pulido-Villena et al., 2005](#); [Reche et al., 2009](#)).

125
126 Sierra Nevada is the southwestern-most mountain range in Europe, where latest
127 Pleistocene cirque glaciers carved the metamorphic (mica schist) bedrock in the highest
128 peaks ([Castillo Martín, 2009](#)). Massive glacier melting at the latest Pleistocene-Holocene
129 transition transformed the former glacial depressions into lacustrine areas ([Castillo](#)
130 [Martín, 2009](#)) that evolved gradually into either shallow lakes or peatlands around the
131 middle-to-late Holocene transition ([Garcia-Alix et al., 2017](#); [Jiménez-Espejo et al., 2014](#)).
132 Small glaciers re-appeared at the highest peaks of the Sierra Nevada in the 15th century,

133 during the Little Ice Age (LIA), and remained until the 20th century (Oliva et al., 2018).
134 The presence of these glaciers is observed in the sedimentary record of some alpine lakes
135 and wetlands in the Sierra Nevada as deposit of coarse sediments, like Laguna de la
136 Mosca on the north face of the Sierra Nevada (Oliva and Gomez-Ortiz, 2012). However,
137 these kinds of deposits have not been registered in LdRS (south face of the Sierra
138 Nevada), where the last 1500 years are characterised by continuous laminated clays and
139 bryophyte layers (Anderson et al., 2011). Glacial effects have not caused any disturbance
140 on wetland sedimentation (e.g., erosion) and local alpine sedimentary records show
141 continuous sedimentation patterns (Anderson et al., 2011; García-Alix et al., 2012;
142 Jiménez-Moreno and Anderson, 2012; Jiménez-Moreno et al., 2013; Mesa-Fernández et
143 al., 2018; Oliva and Gomez-Ortiz, 2012; Ramos-Román et al., 2016). Conversely, an
144 increase in sedimentation rates have been detected in the last ~200 years, probably
145 resulting from the waning stages of the LIA (Oliva and Gomez-Ortiz, 2012) and enhanced
146 human activities in the alpine areas of Sierra Nevada during the 19th (García Montoro et
147 al., 2016; Titos Martínez, 2019; Titos Martínez and Ramos Lafuente, 2016) and 20th
148 (Jiménez et al., 2015) centuries. These high-sedimentation rates did not affect the natural
149 responses of the local algal communities to environmental variables such as temperature,
150 but there has been a dilution effect of algal compounds (e.g., chlorophylls and labile
151 carotenoids) in the sediments (Jiménez et al., 2015).

152

153 During the 20th century this sensitive alpine region of southern Iberia has
154 experienced significant impacts from modern climate change as evidenced, for example,
155 by the first permanent European glacier loss there during the first half of the 20th century
156 (Grunewald and Scheithauer, 2010) and the extreme permafrost reduction during recent
157 decades (Oliva and Gomez-Ortiz, 2012). This melting supplied a large volume of
158 freshwater (Jiménez et al., 2019) that boosted the water availability in the area and the
159 occasional development of local aquatic environments, contrasting with the general
160 environmental aridification trend observed throughout the 20th century (Garcia-Alix et
161 al., 2017; Jiménez et al., 2019; Ramos-Román et al., 2016).

162

163 The sedimentary archive of LdRS has been selected for this study in order to 1)
164 improve the freshwater LCD paleothermometry by proposing a new temperature
165 calibration for freshwater LCDs in the alpine wetlands of the Sierra Nevada area, 2)
166 reconstruct temperatures beyond the instrumental record in a site at the leading edge of

167 changing climate, 3) assess the role of different radiative forcing (e.g., solar radiation or
168 greenhouse gas concentrations) on temperature change in alpine wetlands of the
169 southwestern Europe during the Common Era, and 4) understand the responses to recent
170 climate change in this highly sensitive environment.

171

172 **2. Materials and methods**

173

174 **2.1. Sediment sampling**

175

176 Two sediment cores were taken at the deepest part of LdRS, an alpine lake at 3020
177 masl in the Sierra Nevada (southern Iberian Peninsula) (Fig. 1). A long sediment core
178 (150 cm) was retrieved in 2006 (LdRS lgc). A short sediment core of 16 cm was collected
179 in 2008 (LdRS shc) using a slide-hammer gravity corer (Aquatic Research Instruments,
180 Hope, Idaho, USA). Independent age models were performed in each sediment core to
181 avoid potential correlation problems caused by changes in the sedimentation rates
182 between both coring sites (Fig. 1c) and different sampling dates (2006-LdRS lgc and
183 2008-LdRS shc). The age model of LdRS lgc is based on ^{210}Pb and ^{137}Cs in the uppermost
184 part (first 15 cm), and ^{14}C analyses in older sediments ([Anderson et al., 2011](#)). The age
185 model of the LdRS shc is based on gamma spectroscopy by measuring the ^{210}Pb , ^{137}Cs ,
186 and ^{226}Ra radionuclides in the first \sim 14 cm, and afterwards the age was extrapolated to
187 the core bottom (16 cm) ([Jiménez et al., 2019](#); [Jiménez et al., 2018](#)). Both records show
188 that the sediment accumulation rate for the uppermost 15-16 cm ranges between 0.09 and
189 0.13 cm/yr ([Anderson et al., 2011](#); [Jiménez et al., 2018](#)), with lower sedimentation rates
190 below this depth (\sim 0.008 cm/yr) ([Anderson et al., 2011](#)). Ages models show that the LdRS
191 shc extends back to \sim 200 years with a sample resolution ranging from 5 to 7 years (high-
192 resolution) ([Jiménez et al., 2019](#); [Jiménez et al., 2018](#)). In the case of the LdRS lgc, the
193 section studied in this paper covers the last \sim 1500 years with a lower sample resolution.
194 In this case, the sample resolution is around 6-7 years in the first 10 cm, and from 24 to
195 150 years in older samples ([Anderson et al., 2011](#)).

196

197 **2.2. Geochemical analyses**

198

199 Thirty-two sediment samples were collected consecutively every 0.5 cm along
200 LdRS shc and twenty-one samples in the first 22 cm of LdRS lgc. The samples were
201 freeze-dried and homogenized. The total lipid content was extracted from the sediment
202 samples using a Thermo Scientific™ Dionex™ ASE™ 350 Accelerated Solvent
203 Extractor system at 100°C and 7×10^6 Pa using a mixture of dichloromethane (DCM) and
204 methanol (9:1, v:v). Afterwards, the neutral fraction was separated by means of
205 aminopropyl-silica gel chromatography using DCM:isopropanol (1:1, v:v). This neutral
206 fraction was subsequently eluted with hexane, DCM, ethyl acetate:hexane (25:75, v:v),
207 and methanol through a 230-400 mesh/35-70 micron silica-gel chromatographic column,
208 in order to obtain four neutral sub-fractions (N1-N4). Long chain diols were obtained in
209 the third neutral fraction (N3, alcohol fraction), which was derivatised by bis-
210 (trimethylsilyl) trifluoroacetamide (BSTFA) before running the analyses. 30 μ L of
211 BSTFA and 40 μ L of pyridine were added to each N3 fraction and heated at 80°C for 2
212 hours. When vials were at room temperature, a volume between 140 μ l and 220 μ l of
213 DCM was added to each sample. Firstly, the derivatised N3 fractions were analysed with
214 a Gas Chromatography with Flame-Ionization Detector (GC-FID Shimadzu 2010). An
215 external standard of cholesterol was measured every five samples in order to estimate the
216 appropriate concentration for mass spectrometry analyses. The sample at 19.5 cm depth
217 in the long core was discarded because its concentration was below detection limits.
218 Subsequently, the N3 fractions were measured in a Shimadzu QP2010-Plus Mass
219 Spectrometer interfaced with a Shimadzu 2010 GC using a scan mode between *m/z* 50 –
220 650, in order to obtain a general picture of the mass spectrum of the samples and the
221 specific retention times where the C₂₈, C₃₀, and C₃₂ diols eluted. Afterwards, samples
222 were re-analysed on the basis of a Selected-Ion Monitoring mode (SIM), selecting the
223 characteristic fragment ions of the most important long chain diols, i.e., *m/z* 299, 313,
224 327, and 341 ([Rampen et al., 2012](#); [Versteegh et al., 1997](#)) and the specific retention time
225 window to identify the C₂₈, C₃₀, and C₃₂ diols with the mid-chain alcohol positioned at
226 carbon 13, 14 or 15. Fractional abundances of the C₂₈ 1,13-diol, C₃₀ 1,13-diol, C₃₀ 1,15-
227 diol were used in Eq. (1) to calculate the Long chain Diol Index (LDI) ([Rampen et al.,
228 2012](#)). Fractional abundances of C₂₈ 1,13-diol, C₃₀ 1,13-diol, C₃₀ 1,15-diol and C₃₂ 1,15-
229 diol were used to characterise the potential diol source (e.g., marine, lacustrine, or specific
230 algae groups) ([Lattaud et al., 2018a](#); [Rampen et al., 2014a](#)). Fractional abundances of the
231 C₂₈ and C₃₀ 1,14-diols were measured only in the short core in order to assess their
232 potential relationship with temperatures ([Rampen et al., 2014b](#)). The presence of the C_{32:1}

233 1,15-diol has also been tested, but it was only identified in some samples from the short
234 core at very low concentrations, thus is not included it in this study.

235

236 **2.3. Reference temperature time-series for LCD temperature calibrations**

237

238 Generating an accurate temperature calibration based on LCDs in alpine wetlands
239 from the Sierra Nevada area is challenging, because there is a lack of long and continuous
240 temperature time-series at such high elevations. The meteorological observatories at the
241 Sierra Nevada ski resort (ranging in elevation from 2500 to 3020 masl) only provided
242 discontinuous temperature records from 1965 to 2011 (Observatorio del cambio global
243 de Sierra Nevada, 2016; Spanish National Weather Agency - AEMet Open Data, 2019)
244 that show a significant correlation ($r>0.95$; $p<0.0001$) with low elevation temperature
245 time-series (Table S1, S2). Therefore, a potential way to obtain a LCD-based temperature
246 calibration is by means of the correlation of LCD data with long and reliable historical
247 temperature time-series at nearby lower elevation areas, followed by a correction for the
248 altitudinal effect on temperatures.

249

250 The three weather observatories in the Granada area, at the foothills of the Sierra
251 Nevada, only provide reliable temperature data from the 1970s onwards (Spanish
252 National Weather Agency - AEMet Open Data, 2019), which is a short-period for an
253 accurate down-core proxy calibration. Temperature time-series preceding the 1970s have
254 been reconstructed using statistical models (e.g., Gonzalez-Hidalgo et al., 2015), and
255 show a good correlation with the LDI and the relative abundance of the C_{28} 1,13-, C_{30}
256 1,13-, and C_{32} 1,15-diols, but a weaker correlation with the C_{30} 1,15-diol (Table S3).
257 However, these correlations are weaker than the ones obtained from Sevilla-Tablada and
258 Madrid-Retiro observatories. These observatories registered longer and more reliable
259 temperature data than those obtained in Granada observatories, which are likely biased
260 by the quality of the reconstructed temperature data. Therefore, after testing the
261 correlations between LCDs and different low elevation observatories (Table S3), we
262 decided to develop the LCD-based temperature calibrations against the temperature time-
263 series from Sevilla-Tablada and Madrid-Retiro observatories. These observatories show
264 the best correlations with the LCD data, in addition to being the most reliable and longest
265 temperature time-series in the region (see Table S3 for further explanations and Fig. 1a
266 for the location of these low-elevation observatories).

Another question to clarify in the study records before selecting the reference temperature time-series for the LCD calibration is the potential seasonal effect on the LCD distributions, since different studies have shown diverse relationships between annual or seasonal temperatures and the LCDs. For example, good correlations have been found in marine environments between the fractional abundances of LCDs (expressed as LDI in all the cases) and annual ([Rampen et al., 2012](#)), winter and annual ([Smith et al., 2013](#)), or autumn and annual sea surface temperatures ([Lattaud et al., 2018b](#)). Despite fewer studies on the LCD distribution in freshwater environments, Rampen et al. (2014a) found a good correlation between the LCD distributions in a suite of lake surface sediments and mean summer lake temperatures (deduced from GDGTs). Nevertheless, the direct correlation between these LCD distributions and annual or seasonal air temperatures was weaker, probably due to the location of the weather observatories with respect to each study area. Villanueva et al. (2014) also investigated this seasonal effect and detected changes in the LCD distribution throughout the year in the water column and surface sediments from an African lake that could be either related to successive and different LCD-producer blooms or seasonal variations in the LCD production by a unique source. Both scenarios might affect LCD-based temperature reconstructions.

Considering all these constraints to select the best temperature time-series to establish an accurate LCD-based temperature calibration, the most rigorous approach for the studied alpine site would consider annual and monthly water and/or air temperatures of the catchment basin at 3020 masl, as well as, the periods of the year when the LCDs are produced, but these data are not available so far. Thus, the effect of seasonality has been estimated by means of the comparison with reliable seasonal long temperature time-series from lower elevation sites. In this regard, seasonal air temperatures for the last \sim 100 years registered in Madrid and Sevilla observatories correlate with the LCD distributions (with a weaker correlation for the C₃₀ 1,15-diols) and the LDI ($0.9 > r > 0.6$; $p < 0.001$). Nevertheless, this correlation is generally lower than the one obtained when considering only mean annual air temperatures (MAAT) (i.e., in the case of the LDI vs MAAT $r = 0.9$; $p < 0.0001$). Since warm temperatures influence the algae growth in the studied area (Carrillo et al., 1991; Sánchez-Castillo, 1988), we would expect a higher correlation between LCDs and mean seasonal air temperatures from the warmer months (MWAT: May-September), which is potentially the LCD production season, but this correlation is

301 lower than the annual ones in the case of the LDI (LDI vs MWAT $0.8 > r > 0.7$; $p < 0.0001$)
302 (Table S3, S4). A similar pattern is observed when annual and warm season temperatures
303 are compared with the fractional abundances of the C₂₈ 1,13-, C₃₀ 1,13-, C₃₀ 1,15-, and
304 C₃₂ 1,15-diols (Table S3). Consequently, in view of 1) the fact that this is the first attempt
305 at a freshwater LCD-based temperature calibration in this area; 2) there exists a high
306 correlation between the different instrumental time-series of regional air temperatures
307 (seasonal vs annual), and 3) the best correlations (normal and detrended) between the
308 LCD distributions and temperatures are obtained when using MAAT (Tables S3, S4), we
309 use MAAT for the LCD-based temperature calibrations in this study. Nevertheless,
310 further work, including a monitoring program for monthly air temperatures in the
311 catchment area and water temperatures in the lake as well as suspended particulate matter
312 and sediment trap studies, is required to better understand the local LCD production,
313 improve the LCD-based temperature calibration, and minimise the uncertainties of the
314 current approach.

315

316 Two groups of reference temperature time-series at 3020 masl, based on the same
317 batch of data, have been estimated in order to overcome the scarcity of high-elevation
318 temperature time-series in the Sierra Nevada and obtain a reliable mean LCD-based
319 temperature calibration: 1) based on the elevational gradient between low and high
320 elevation observatories and 2) based on the direct correlation between temperature time-
321 series from Madrid and Sevilla observatories and that at 3020 masl (Cetursa 5
322 observatory) in the Sierra Nevada, which is near LdRS and at the same elevation (Table
323 S1).

324

325 Reference temperature time-series 1: The environmental lapse rate
326 ($\Delta\text{temperature}/\Delta\text{elevation}$ in $^{\circ}\text{C}/\text{m}$) between lower elevation observatories (with long
327 temperature time-series: Granada, Sevilla, and Madrid) and those from Sierra Nevada at
328 higher elevation (with shorter temperature time-series: Albergue, and Cetursa 1, 3 and 5)
329 has been estimated in order to correct the elevational gradient between them (more than
330 2200 m: Table S1). Due to few annual data points from high elevation sites, monthly and
331 annual (twelve continuous months) environmental lapse rates were calculated to compare
332 both datasets. The calculated temperature shifts between the reference low elevation
333 observatories and LdRS site at 3020 masl, worked out from Fig. S1 equations (Table S5),
334 was applied to the temperature time-series from Madrid and Sevilla for the last \sim 100 years

335 in order to obtain two reference temperature reconstructions (from 1908 to 2008 CE) at
336 3020 masl: reference temperature time-series 1a (from Madrid data), and reference
337 temperature time-series 1b (from Sevilla data).

338

339 Reference temperature time-series 2: The direct comparison between Madrid and
340 Sevilla temperatures and those from the observatory Cetursa 5 (3020 masl) by means of
341 ordinary least square regressions has given rise to two equations (Fig. S2a and b) that
342 allow the reconstruction of temperature time-series at 3020 masl from 1908 to 2008:
343 reference temperature time-series 2a (from Madrid data), and reference temperature time-
344 series 2b (from Sevilla data).

345

346 As a result, we have obtained four reference temperature time-series at 3020 masl
347 where the effect of the altitudinal difference between low elevation observatories (Madrid
348 and Sevilla) and LdRS have been corrected by two different methods. Consequently,
349 these four reference temperature series are highly similar, showing a certainly high
350 correlation ($r>0.98$; $p<0.0001$), without significant difference between the sample
351 medians (deduced from a Kruskal-Wallis test), and very low standard deviation between
352 samples from the same time interval ($SD<0.2$).

353

354 **3. Results**

355

356 **3.1. Long chain diols in the LdRS records**

357

358 Six main LCD isomers have been identified and relative abundance analysed in
359 the LdRS cores: C₂₈ and C₃₀ 1,13-diols, C₂₈ and C₃₀ 1,14-diols, and C₃₀ and C₃₂ 1,15-
360 diols. The LCD abundance changes through time in both records, but the C₃₂ 1,15-diol is
361 the predominant isomer in most of the samples. Nevertheless, the relative abundance of
362 the C₃₂ 1,15-diol drops abruptly (relative abundances between 25% and 40%) during the
363 LIA, contrasting with a relative increase in the C₂₈ and C₃₀ 1,13-diols (Fig. 2). This switch
364 in the most abundant isomers can be read as either a change in the LCD producers or an
365 adaptation to colder temperatures of the same organism, and thus affecting the LCD
366 production. Conversely, the C₂₈ and C₃₀ 1,14-diols show the lowest relative abundances
367 (1.3 ± 0.4% and 1.8 ± 0.3%, respectively), and were only quantified in the short core to
368 assess their potential application as paleothermometer in LdRS. Although they show a

369 good correlation with temperatures (C₂₈ 1,14-diol: 0.66> r >0.45 p <0.04; C₃₀ 1,14-diol: -
370 0.82< r <-0.53 p <0.02), their low relative abundance, very close to the detection limit,
371 together with a different biological source (Sinninghe Damsté et al., 2003), preclude us
372 from including them in the temperature calibration, and therefore, in the discussion of
373 this study. Consequently, the interpretations in this paper are only focused on the
374 distribution pattern of the relative abundances of the main LCDs in LdRS: C₂₈-C₃₀ 1,13-
375 diols and C₃₀-C₃₂ 1,15-diols.

376

377 The relative abundances of these four isomers in LdRS correlate well in both short
378 and long cores; only the C₃₀ 1,15-diol shows weaker correlations with the other isomers
379 (Table S6). Overall, the C₂₈ and C₃₀ 1,13-diols show opposite trends to those from the C₃₀
380 and C₃₂ 1,15-diols. Their general trends for the last ~100 years seem to be influenced by
381 the temperature oscillations at 3020 masl (Table S7): the C₂₈ and C₃₀ 1,13-diols display a
382 negative correlation with temperatures (r <-0.7 p <0.0001) and the C₃₂ 1,15-diol a positive
383 one (r >0.8 p >0.0001). Although the C₃₀ 1,15-diol also shows a positive relationship with
384 temperatures, this correlation is weak (r >0.3 p >0.0001). Accordingly, the LDI values
385 from LdRS for the last ~100 years show a significant correlation (r >0.9 p >0.0001) with
386 the reference temperature time-series at 3020 masl (Table S7).

387

388 The different diol isomers in LdRS also show good agreement with the general
389 temperature trends for southwestern Europe during the last ~1500 years (Abrantes et al.,
390 2005; Luterbacher et al., 2016; Nieto-Moreno et al., 2013; Sicre et al., 2016, among
391 others). The C₃₀ and C₃₂ 1,15-diols depict a positive relationship with temperatures,
392 whereas the C₂₈ and C₃₀ 1,13-diols display a negative one. Thus, the LDI record obtained
393 from the C₂₈-C₃₀ 1,13-diols, and C₃₀ 1,15-diol also show important fluctuations during
394 the last ~1500 years, in agreement with the general temperature trends of the Common
395 Era (CE). More specifically, LDI values in the LdRS lgc range from ~0.23 to 0.05 from
396 ~400 to 1900 CE, with maximum and minimum values recorded at ~930 and ~1690 CE,
397 respectively (Fig. 3). These changes are coeval with the minimum temperatures of the
398 LIA and the maximum temperatures of the Medieval Climate Anomaly (MCA) in Europe
399 (e.g., Luterbacher et al., 2016; Nieto-Moreno et al., 2013; Sicre et al., 2016). The rates
400 of change were higher during the 20th century, with LDI values ranging from 0.10 to 0.31
401 in the lowest resolution LdRS lgc record and from 0.13 to 0.32 in the highest resolution

402 LdRS shc record. These minimum and maximum values were reached in both cases
403 during the first and last decades of the 20th century, respectively (Fig. 3).

404

405 **3.2. LCD temperature calibration**

406

407 A total of twenty-six samples from both short and long LdRS cores ranging in age
408 from 1908 to 2008 were selected to perform the LCD-based temperature calibration,
409 along with the two groups of reference temperature time-series at 3020 masl. Since
410 sedimentary samples used in the calibration have a time averaging between 5 and 7 years,
411 a mean of the historical temperatures covering the same time averaging of each sample
412 was calculated.

413

414 Eight different calibrations have been performed: five using the LDI, one using a
415 multiple linear regression of the relative abundances of the C₂₈ 1,13-diol, C₃₀ 1,13-diol,
416 and C₃₀ 1,15-diol (following [Rampen et al., 2014a](#)) (MLR calibration 1 hereafter), one
417 using multiple linear regressions of the ratios of the relative abundances of LCDs with
418 positive (even weak) correlation with temperature against the ones with negative
419 correlation (C₃₀ 1,15- / C₂₈ 1,13-diols; C₃₀ 1,15- / C₃₀ 1,13-diols; C₃₂ 1,15- / C₂₈ 1,13-
420 diols; and C₃₂ 1,15- / C₃₀ 1,13-diols) (MLR calibration 2 hereafter), and one using
421 multiple linear regressions of the ratios of the relative abundances of the C₃₀ 1,15- / C₂₈
422 1,13-diols and C₃₀ 1,15- / C₃₀ 1,13-diols (MLR calibration 3 hereafter). The statistics and
423 the equations for the MLR calibrations 1, 2, and 3 are described in the Table S8.

424

425 In the case of the LDI, ordinary least square regressions were run between the four
426 reference temperature time-series at 3020 masl and the LDI record from LdRS shc and
427 lgc, resulting in four calibration equations (Fig. S3). The slopes of these four equations
428 range from 8.2 to 10.2. The LDI-derived temperatures from the reference time-series 2
429 show the highest values for the last ~100 years, whereas the minimum values are mainly
430 shown by the ones calculated with the reference time-series 1. The difference between
431 the four LDI-derived temperatures for the last ~100 years is low, with a standard deviation
432 lower than 0.13. The standard error of these four individual calibrations ranges from 0.18
433 to 0.23°C, and the maximum residual is ~0.8°C. However, due to the uncertainty of
434 establishing an accurate temperature time-series at 3020 masl, LDI-derived temperature

values from these LDI individual calibrations have been used to determine the range of the variation (minimum and maximum temperature values) for each point, and an additional calibration, summarising the relationship between LDI and the four reference temperatures at 3020 masl has been performed. The obtained 104 combinations of LDI and temperature data provided an equation representing the average relationship between MAAT and LDI (Eq. (2); Fig. 4a). Since this is a summary of the four temperature time-series, the residual errors include the residual errors of the individual LDI calibrations (Fig. S3). The residual errors of this average temperature calibration, according to both the LDI-reconstructed temperatures and the reference temperature time-series, are lower than 0.8°C (similar to the four individual LDI calibrations), with the standard error of 0.28°C. The histogram showing the frequency of the residuals reveals that the ~85% of the residuals range from 0.4 to -0.4°C. This percentage is slightly lower (~62%) when the residual interval is established between 0.2 and -0.2°C (Fig. 4b). Only one data point from 1973 among the 104 data combination may be an outlier since it shows a residual 2.5 times higher than the residual standard deviation.

450

451 Equation (2) MAAT (°C) = 9.147 x LDI - 0.243 (n = 26 x 4; $r^2 = 0.79$)*

* n = 26 LDI values plotted against four reference temperature time-series providing a total of 104 combinations.

454

455 All the calibrations (LDI and MLR calibration 1, 2, and 3) show good correlation
 456 with temperatures (Fig. 4 for LDI and Table S8 for MRL calibrations 1, 2, and 3). The
 457 obtained temperatures from the average LDI calibration and those using multiple linear
 458 regressions depict very similar trends in both cores (Fig. S4; $r>0.96$; $p<0.0001$).
 459 Nevertheless, the correlation is slightly weaker ($r>0.82$; $p<0.0001$) for the results from
 460 MLR calibration 1 in the long core. In addition, some inconsistencies come up in the
 461 reconstructed temperatures from MLR calibration 1: in general, temperatures tend to be
 462 lower than those from the other calibrations, giving rise to negative annual values during
 463 the LIA. This would be highly unlikely since under this scenario the lake would have
 464 stayed frozen all year round, with little or no sedimentation occurring. Temperature
 465 reconstructions using MLR calibrations 2 and 3 take the advantage of the ratios of isomers
 466 with positive *vs* negative relationship with temperatures. The results are similar to the
 467 ones obtained with the LDI, except for the LIA. Nevertheless, we discarded MRL
 468 calibration 2 as it also uses the C₃₂ 1,15-diol, whose relationship with temperature is not

469 clear, only reporting a positive correlation in some culture studies (Rampen et al., 2014b).
470 MRL calibration 3 provides the most similar results to those from the LDI, especially
471 comparing the temperature anomalies of both records with respect to the last 30 years of
472 the record, showing differences of less than $\sim 0.1^{\circ}\text{C}$. However, this difference increases
473 ($\sim 0.3^{\circ}\text{C}$) in the LIA. As this is the first study of LDI in sedimentary records from alpine
474 lakes of the Sierra Nevada area, we have opted for a conservative solution following the
475 LDI temperature calibration. The temperature reconstructions from MRL calibration 1,
476 2, and 3 will only be mentioned when needed in the discussion.

477

478 The application of the obtained calibration to the LDI values of LdRS (Eq. 2)
479 produced the first temperature reconstruction for the Common Era in this alpine area (Fig.
480 3). Nevertheless, a potential challenge of using this kind of down-core proxy calibrations
481 is that the uncertainty of the reconstructed variables (temperature in this case) would
482 increase when data fall outside the calibration data-set (e.g., during the LIA). Further
483 studies on the local LCD production in this alpine area will contribute to extend the range
484 of temperatures in the calibration, reducing the uncertainties of the LCD-derived
485 temperatures.

486

487 In order to estimate the real magnitude of temperature variations during the
488 Common Era, the mean annual air temperature anomaly (MAATA $^{\circ}\text{C}$) has been
489 calculated with reference to the annual MAAT of the last 30 years of the record (2008-
490 1979). The lowest temperatures were recorded between ~ 1600 and ~ 1780 CE, with a
491 temperature anomaly ranging from ~ -1.9 to $\sim -2.2^{\circ}\text{C}$. These temperature anomalies only
492 reached positive values after 1998 (Fig. 3).

493

494 **4. Discussion**

495

496 **4.1. Long chain diol distribution in alpine lakes from southern Iberia**

497

498 The distribution pattern of the main LCDs in LdRS (C_{28} , C_{30} 1,13- and C_{30} , C_{32}
499 1,15-diols) could help us decipher the potential biological producers. There is a high
500 percentage of the C_{32} 1,15-diol, which is one of the main features observed in freshwater
501 environments (Lattaud et al., 2018a; Rampen et al., 2014a) (Fig. 2, S5). Another relevant

502 feature of the distribution of the LCDs in LdRS is the low and constant relative abundance
503 of the C₃₀ 1,15-diol (6.5 ± 1.5%) throughout the LdRS records (Fig. 2), agreeing with the
504 range of the most probable distribution of the C₃₀ 1,15-diol in marine algae (Fig. S5;
505 Table S9). This feature is not common in marine or lake sediments (de Bar et al., 2016;
506 Lattaud et al., 2017a; Rampen et al., 2014a), resulting in an almost unique area for LdRS
507 isomers (most specifically C₂₈ 1,13-, C₃₀ 1,15-, and C₃₂ 1,15-diols) when comparing with
508 literature data in a ternary diagram (Fig. 2). Conversely, the distribution of both C₂₈ and
509 C₃₀ 1,13-diols usually shows similar patterns as other freshwater samples (Lattaud et al.,
510 2018a; Rampen et al., 2014a) (Fig. 2, S5, Table S9). A Kruskal-Wallis ANOVA test was
511 used to assess whether the distribution of the main LCDs in LdRS and from other sources
512 (e.g., marine, freshwater, algal culture) were statistically different. Results point towards
513 no significant differences between the whole LCD distribution in LdRS and the other
514 sources. Nevertheless, the Kruskal-Wallis test found significant differences among
515 individual isomers of the different sources (including LdRS). Subsequently, a Mann-
516 Whitney U test was performed to compare pair of groups (individual isomers from LdRS
517 vs individual isomers from source 1, 2, and so on), finding significant differences among
518 most of them (Table S9). All these evidences suggest that the LCD distribution in the
519 LdRS might differ from those of previous studies published to date and the potential
520 biological producers at LdRS would be thus uncertain.

521

522 Eustigmatophyceae algae (e.i. *Vischeria* sp., *Eustigmatos* sp.) have been
523 commonly proposed as the main diol producers in freshwater environments dominated
524 by a mix of the C₂₈ 1,13-, C₃₀ 1,15-, and C₃₂ 1,15-diols (Rampen et al., 2014a; Villanueva
525 et al., 2014; Volkman et al., 1999). Moreover, a dominance of the C₃₂ 1,15-diol has been
526 identified in families of Goniochloridaceae and Monodopsidaceae (Lattaud et al., 2018a;
527 Rampen et al., 2014a). Nevertheless, planktonic algae communities are very simple in the
528 alpine Sierra Nevada wetlands (Sánchez-Castillo, 1988) and Eustigmatophyceae algae
529 have not been identified so far (Barea-Arco et al., 2001; Sánchez-Castillo, 1988). Thus,
530 this study suggests that LCD producers in LdRS might be different from those identified
531 previously in other freshwater environments and algal culture studies, making the
532 potential source of LCDs even more complex than originally thought. Consequently, the
533 outcomes of this paper (i.e., the LCD-based temperature calibration) should not be
534 generally applied to other freshwater records unless they show a similar LCD distribution
535 as LdRS. Additional research combining lipids and 18S rRNA gene sequencing analyses

536 from suspended particulate matter, surface sediments, and sediment traps would be
537 needed to unravel the real biological sources of LCDs in these alpine wetlands.

538

539 **4.2. LdRS record in the environmental context of the Iberian Peninsula during the**
540 **Common Era**

541

542 Abrupt changes in temperature and precipitation have been depicted during the
543 last 2000 years in the Iberian Peninsula and surrounding marine areas (Moreno et al.,
544 2012; Sánchez-López et al., 2016). Precipitation was highly variable, showing arid
545 conditions during the MCA, especially in southern Iberia, overall humid conditions
546 throughout the LIA (with a complex internal structure showing large variability in
547 humidity and extreme events), and arid conditions for the Industrial Period (Moreno et
548 al., 2012; Oliva et al., 2018; Rodrigo et al., 1999; Sánchez-López et al., 2016), especially
549 in high elevation wetlands from southern Iberia (Anderson et al., 2011; Garcia-Alix et al.,
550 2017; Jiménez-Espejo et al., 2014).

551

552 Although the Early Middle Ages displayed a great temperature variability in the
553 Iberian Peninsula and surrounding marine sites (Moreno et al., 2012; Sánchez-López et
554 al., 2016), three main stages have been identified for the last millennium deduced from
555 different proxies: a warm period throughout the MCA followed by cold temperatures
556 during the LIA, ending in an abrupt warming in the second half of the 20th century
557 (Moreno et al., 2012; Oliva et al., 2018; Sánchez-López et al., 2016). One of the proxies
558 used to reconstruct such temperature variations in continental areas of the Iberian
559 Peninsula has been tree ring data. Long tree ring temperature archives of the Iberian
560 Peninsula showed the same overall variations as the ones registered in LdRS, such as high
561 temperatures before 1250 CE (Büntgen et al., 2017), some temperature declines coeval
562 with solar minima during the LIA (e.g., the end of Spörer or Maunder Minima), as well
563 as a period of moderate-low temperatures from ~1850 to ~1940, followed by an
564 increasing temperature trend in the second half of the 20th century with several
565 temperature drops between ~1960 and ~1990 (Büntgen et al., 2017; Tejedor et al., 2017).
566 Nevertheless, the warming documented from the LCD-derived temperatures in the last
567 stages of the LIA is more pronounced in the LdRS record. The same overall trends have
568 been observed in European summer temperatures deduced from tree ring records
569 (Luterbacher et al., 2016) (Fig. 5b, d, and 6b, c). Surprisingly, tree ring data from the

570 Pyrenees and other Iberian areas show minor temperature variations, and even a slight
571 temperature decrease from ~2000 to 2008 similar to the one observed in the LCD-derived
572 temperatures from the LdRS record (Fig. 4c). This temperature stabilization at the
573 beginning of the 21st century is coeval with globally reduced warming rates over the
574 2001–2014 period (Fyfe et al., 2016).

575

576 Contrasting with these continental temperature reconstructions, high-resolution
577 sea surface temperature (SST) estimations from marine sites surrounding the Iberian
578 Peninsula, such as those derived from alkenones ($U^{K'37}$) in the Tagus Delta (Iberian
579 Atlantic Margin) or in the Balearic Islands (western Mediterranean Sea), showed a
580 general decreasing trend for the last ~2000 years, with a warm MCA, a cold LIA, and
581 cold/moderate temperatures for the Industrial Period that do not appear to mirror the
582 modern global warming observed throughout the 20th century (Abrantes et al., 2005;
583 Moreno et al., 2012). Only high-resolution $U^{K'37}$ -and TEX_{86} -derived (from GDGTs) SST
584 records of the cores 384B and 436B from the Alboran Sea (Nieto-Moreno et al., 2013)
585 and the $U^{K'37}$ -SST record of core Gol-Ho1B from the Gulf of Lion (Sicre et al., 2016)
586 have shown a clear temperature increase during the 20th century, similar to the LDI
587 temperature record in LdRS (Fig. 5a,d, 6a,c). The observed heterogeneity in the SST
588 reconstructions based on different biomarkers such as alkenones (Abrantes et al., 2005;
589 Moreno et al., 2012; Rodrigo-Gámiz et al., 2014), GDGTs (Nieto-Moreno et al., 2013) or
590 LCDs (Rodrigo-Gámiz et al., 2014) could be explained since each record belongs to a
591 different biogeographical area influenced by specific temporal and dynamic
592 oceanographic regimes, as well as by different primary productivity patterns of each
593 biological source (e.g., seasonality or bloom length) (Sicre et al., 2016).

594

595 The previously described climate variability in precipitation and temperature
596 during the last ~1500 years in the Iberian Peninsula have been explained by different
597 forcing mechanisms such as the effect of the westerlies-North Atlantic climate dynamics,
598 internal climate variability, solar irradiance, volcanism, or anthropogenic forcing
599 (Gómez-Navarro et al., 2011; Gómez-Navarro et al., 2012; Moreno et al., 2012; Sánchez-
600 López et al., 2016). Their potential effect on the LCD distribution in the LdRS records is
601 discussed in the following section.

602

603 **4.3. Control mechanisms on alpine temperatures in SW Europe during the**
604 **Common Era**

605
606 This discussion is based on the LDI-temperature reconstruction. However, similar
607 results are obtained when comparing the temperature reconstructions from MLR
608 calibrations 1, 2, and 3 in LdRS and the different forcing mechanisms assessed in this
609 section (Tables S10-S13).

610
611 Solar, volcanic, and anthropogenic (e.g., CO₂ and CH₄) radiative changes, along
612 with the internal variability are usually attributed as the leading factors controlling
613 temperatures during the Common Era ([Ammann et al., 2007](#); [IPCC, 2013](#)). In addition,
614 North Atlantic climate dynamics such as the North Atlantic Oscillation (NAO) or the
615 Atlantic Multidecadal Oscillation (AMO) are other potential drivers of natural climate
616 variability in the Iberian Peninsula ([López-Moreno et al., 2011](#); [Moreno et al., 2012](#);
617 [O'Reilly et al., 2017](#); [Sánchez-López et al., 2016](#)). The control of the North Atlantic
618 climate dynamics in the studied alpine wetlands is evident, at least for precipitation and
619 humidity fluctuations, since the NAO and solar forcing have been described as the main
620 controls on the paleoenvironmental evolution recorded in this area ([Garcia-Alix et al.,](#)
621 [2017](#); [Ramos-Román et al., 2016](#)). Conversely, other studies have shown that the NAO
622 climate mode had little effect on temperatures in this alpine area from 1950 to 2006 CE
623 ([López-Moreno et al., 2011](#)). LdRS data agree with this observation, since no correlation
624 (Tables S10-S13) has been detected between the NAO reconstruction ([Trouet et al., 2009](#))
625 and the obtained LCD record for the last millennium. The AMO has an impact on the
626 North Atlantic atmospheric blocking mechanisms ([Häkkinen et al., 2011](#)) and on the
627 European and Mediterranean temperatures, especially during the AMO warm phases
628 ([O'Reilly et al., 2017](#)). In the study area, the AMO shows a moderate long-term
629 correlation (Figs. 5d,e and 6c,d $r>0.60$; $p<0.01$) with both long and short core derived-
630 LDI records, but the correlation decreases when long-term trends are removed ($r<0.32$;
631 $p>0.1$) (Tables S10, S11). Since the nature of the AMO and its specific drivers are still
632 a matter of debate, i.e., internal ocean variability control (multidecadal fluctuations in
633 the Atlantic Meridional Overturning Circulation) versus solar or volcanic forcing for
634 the last centuries ([Knudsen et al., 2014](#)), we cannot conclude whether the observed
635 correlations represent the sole effect of the AMO or the influence of its underlying
636 forcing mechanisms.

637

638 The significant correlation at long and short terms ($r>0.61$; $p<0.005$) between
639 LDI-derived temperatures from LdRS records and greenhouse gases (Schmidt et al.,
640 2011) (Fig. 6c, g; Table S10), especially since the beginning of the 20th century (Industrial
641 Period) (Fig. 5d,g; Table S11), suggests that greenhouse gases might have an important
642 effect on temperatures at this high elevation site.

643

644 The potential impact of solar radiation and volcanic eruptions on climate over both
645 short- and long-time scales is a topic of controversy in the literature ([Ammann et al.,
646 2007](#)). In this regard, volcanic forcing, which should give rise to negative radiative
647 forcing in the climate system ([Ammann et al., 2007](#); [Sigl et al., 2015](#)), do not show a
648 significant correlation with LDI-derived temperatures from LdRS records over the last
649 1500 years (Figs. 5d,h and 6c,h; Table S10, S11). We suggest that this lack of influence
650 at LdRS records is a function of its high-altitude location, at 3020 masl, in the free
651 troposphere, which reduces the environmental impact of small volcanic tropospheric
652 eruptions that likely have greater effects on lower elevation sites ([Mather et al., 2013](#)). In
653 addition, the relatively short residence time of volcanic aerosols in the atmosphere mainly
654 causes, at most, decadal-timescale effects ([Sigl et al., 2015](#)) that can be difficult to identify
655 in most sedimentary records due to the age resolution, as in the case of older sediments
656 than 200 years in LdRS. Nevertheless, large explosive volcanic eruptions delivering large
657 amounts of stratospheric aerosols ([Marotzke and Forster, 2015](#); [Sigl et al., 2015](#)), such as
658 that for Agung Volcano in Bali, Indonesia (1963-1964 CE), may be associated with a
659 small depression in LDI-derived temperatures observed in LdRS records (Fig. 5d,h).
660 Although cold LDI-reconstructed temperatures occasionally seem to occur coevally with
661 volcanic eruptions, for example, 560-510 and 320 years ago (~1450-1500 and 1690 CE)
662 ([Sigl et al., 2015](#)), there is no consistent relationship between the intensity - number of
663 large eruptions and the reconstructed coolings in LdRS records, especially over the last
664 ~200 years when the sample resolution would be enough to detect them (LdRS shc).

665

666 Most of the above-mentioned cooling events recorded in LdRS, such as those
667 during the LIA, are coeval with low solar activity periods like the Spörer Minimum (from
668 ~1450 to 1550 CE) or the Maunder Minimum (from ~1645 to 1715 CE) ([Stuiver and
669 Quay, 1980](#)) (Fig. 6). Thus, long-term correlations between LDI-derived temperatures
670 and solar activity, based on reconstructions of the solar irradiance and cosmogenic

671 isotopes (such as ^{14}C), are evident during the last \sim 1500 years in LdRS record ($r>0.69$; p
672 <0.002) (Fig. 6c,e,f; Table S11). This correlation drops ($0.37 < r < 0.56$ and $0.04 < p < 0.14$)
673 when long-term trends are removed (Table S11). The long-term solar influence agrees
674 with previous observations in other alpine records of this area ([Garcia-Alix et al., 2017](#);
675 [Ramos-Román et al., 2016](#)). Solar activity slightly decreases its long-term influence in
676 LdRS record during the last \sim 200 years ($r>0.56$; $p<0.001$) and disappears when long-term
677 trends are removed (Table S10). Only some occasional temperature decreases or slower
678 rates of warming such as during the 19th to 20th century transition, from \sim 1930 to 1940,
679 from \sim 1960 to 1975, and around 1988 CE, are coeval with slight declines in the total solar
680 activity (Fig. 5d,f: blue arrows).

681

682 In the same way, LdRS registered a small decrease in LDI-derived temperatures
683 (or stabilization) at the beginning of the 21st century (Fig. 5d), also recorded in the Madrid
684 and Sevilla temperature time-series ([Spanish National Weather Agency - AEMet Open](#)
685 [Data, 2019](#)), and thus in the reconstructed reference temperatures time-series at 3020 masl
686 (Fig. 5c), in tree ring records of the the Pyrenees and Iberian Range ([Büntgen et al., 2017](#);
687 [Tejedor et al., 2017](#)), in marine platforms of the western Mediterranean (Fig. 5a) ([Sicre](#)
688 [et al., 2016](#)), and globally ([Fyfe et al., 2016](#)). Although this slowdown agrees with a
689 decreasing trend in solar activity and a slight stabilization of atmospheric methane
690 concentrations (Fig. 5f,g), the causes are more complex, and probably related to a
691 combination of internal variability and radiative forcing (e.g., volcanic and solar
692 activity, or decadal timescale changes in anthropogenic aerosols) ([Fyfe et al., 2016](#)).

693

694 **4.4. Exceeding natural thresholds in alpine areas**

695

696 The LDI-derived temperatures from LdRS exceeded the highest pre-industrial
697 temperatures in the early 1950s (Fig. 6c), under full anthropogenic influence. The
698 comparison between pre-industrial and post-industrial scenarios in the study site
699 highlights the human impact on natural trends. In this regard, the temperature increase
700 during the last stages of the LIA (from \sim 1690 to \sim 1850 CE), an analogue for a non-
701 anthropogenic temperature-increase scenario, was between \sim 1.2 and \sim 1.4°C
702 (\sim 0.09°C/decade; Fig. 6), whereas the mean temperature rise throughout the 20th century
703 was \sim 1.8°C (\sim 0.18°C/decade; Fig. 7). Both warming rates are roughly similar to those

704 reconstructed from MLR calibrations 1, 2, and 3: $\sim 0.06\text{--}0.09^\circ\text{C}/\text{decade}$ for the last stages
705 of the LIA, and $\sim 0.17\text{--}0.18^\circ\text{C}/\text{decade}$ for the 20th century. Although this means that on
706 average, the warming rate was two times faster throughout the 20th century than at the
707 end of the LIA (Fig. 7), these observations are based on a low sample density for the LIA
708 (8 samples), which might slightly increase the uncertainty for this period. By comparison,
709 average global temperatures rose by $\sim 0.85^\circ\text{C}$ from 1880 to 2012 CE, corresponding to
710 $0.06^\circ\text{C}/\text{decade}$ ([IPCC, 2013](#)), which highlight the high-elevation amplification effect of
711 temperatures on this vulnerable area.

712

713 Other European alpine areas in the Mediterranean region, such as those from the
714 Alps, experienced a slower warming rate during the 20th century ($\sim 0.11^\circ\text{C}/\text{decade}$) (Fig.
715 [7](#)) ([Auer et al., 2007](#); [Böhm et al., 2010](#)). This is ~ 1.6 times slower than the warming rate
716 recorded in the Sierra Nevada. This evidence, along with the generally smaller amount of
717 precipitation in the alpine areas of the western Mediterranean region ([Auer et al., 2007](#);
718 [Rodrigo et al., 1999](#)), allows us to conclude that the 20th century environmental stress in
719 this area was greater than in the Alps.

720

721 Future scenarios are not optimistic for Sierra Nevada since temperatures at ~ 1000
722 masl may rise between 2.2°C and 5.3°C by the end of the 21st century ([Pérez-Luque et al.,
723 2016](#)), exceeding the global projections of the IPCC-2013 report ([IPCC, 2013](#)). However,
724 temperature projection and its subsequent impact on alpine areas of the Sierra Nevada
725 have not been satisfactorily assessed so far due to the lack of long-term quantitative
726 climatic records at these elevations (e.g., temperature). The LCD-based temperatures at
727 ~ 3000 masl will solve this lack of quantitative data and will be valuable to project future
728 scenarios in these alpine ecosystems where endemic and endangered species inhabit
729 ([Blanca, 2001](#); [Munguira and Martin, 1993](#)).

730

731 **4.5. Impact on the southwesternmost European alpine glaciers**

732

733 The studied alpine area supported the southernmost glaciers in Europe during the
734 LIA. Glaciers and permanent snow fields below ~ 3000 masl, such as those of Corral del
735 Mulhacen (~ 2950 masl) whose last mention in the literature was between 1809 and 1849
736 CE ([Oliva and Gomez-Ortiz, 2012](#)), would have totally disappeared by the decrease in

737 regional precipitation during the first half of the 19th century (Rodrigo et al., 1999). The
738 climatic features at the end of the 19th century and the beginning of the 20th century did
739 not allow this glacier to re-establish itself (Fig. 8). Post-LIA climatic conditions have also
740 been proposed as the trigger for the melting of the Corral del Veleta Glacier in Sierra
741 Nevada (~3100 masl) at the beginning of the 20th century (Garcia-Alix et al., 2017; Oliva
742 and Gomez-Ortiz, 2012; Oliva et al., 2018). However, the LCDs in LdRS records show
743 that reconstructed temperatures did not exceed the levels of the 1850s until the late 1940s
744 CE. Precipitation was low in the southern Iberian Peninsula during the first half of the
745 20th century, but similar, and even lower, precipitation values were registered before
746 ~1850 CE (Rodrigo et al., 1999; Spanish National Weather Agency - AEMet Open Data,
747 2019) (Fig. 8). Therefore, how could the glacier have retreated under this almost steady-
748 state scenario? A similar paradox has been described in the Alps (Painter et al., 2013),
749 where glaciers began to sharply retreat after the mid-19th century, even though
750 temperature and precipitation records would suggest that glacier expansion should have
751 occurred at least until the first decades of the 20th century. In this case, one of the proposed
752 triggers for the glacier retreat was the industrial black carbon deposition that amplified
753 the solar radiation absorbed at the snow surface and caused its subsequent melting - not
754 a temperature or precipitation change (Painter et al., 2013). Precipitation data from the
755 southern Iberia (Rodrigo et al., 1999) along with the LCD-reconstructed temperatures in
756 LdRS records suggest that temperature and precipitation were not the only drivers of
757 glacial retreat that led to the melting of permanent glaciers in the Sierra Nevada in the
758 1920s. Instead, mirroring the case of the Alps, it is plausible that other factors reducing
759 the albedo, such as enhanced atmospheric deposition may have played a strong role. In
760 this regard, important atmospheric depositional events have been recorded in the study
761 alpine sites of southern Iberia from the mid-19th century to the first decades of the 20th
762 century caused by both enhanced North African dust fluxes (Mulitza et al., 2010)
763 (Jiménez et al., 2018) as well as a spike in atmospheric pollution (as observed in
764 anthropogenic Pb and Hg records in Sierra Nevada; Fig. 8) (Garcia-Alix et al., 2017;
765 Garcia-Alix et al., 2013). Similarly, both phenomena have been demonstrated as triggers
766 for glacier retreat (Painter et al., 2013) and snow melt in the Alps (Di Mauro et al., 2018).
767

768 Melting of the last glaciated area in the Sierra Nevada during the first decades of
769 the 20st century (Grunewald and Scheithauer, 2010) represents an important turning point
770 regarding recent environmental change in this alpine region (Garcia-Alix et al., 2017;

771 Jiménez et al., 2019). The rapid pace of environmental change in the area after this date
772 is attributed to an amplified effect of warming and aridification (Fig. 8b,c) that increased
773 stress on vulnerable ecosystems (Garcia-Alix et al., 2017; Jiménez et al., 2019; Jiménez
774 et al., 2018) with little hope for return of local glaciers.

775

776 **5. Concluding remarks**

777

778 This study shows the vulnerability of alpine regions and the importance of their
779 monitoring for a better understanding of climate variability and future rapid responses. In
780 this regard, algal-derived biomarkers from LdRS records have given rise to the first long-
781 chain alky diol temperature calibration in freshwater environments by means of the
782 comparison with instrumental temperature time-series. The combination of both short and
783 long sediment cores has provided both a highly accurate LCD-temperature calibration for
784 the instrumental period and a long-term historical perspective on the modern warming.
785 This approach delivers a better time-integrated temperature model than discrete
786 temperature measurements for the 20th century. Nevertheless, the lack of information
787 about the biological sources of LCDs in the Sierra Nevada means that this calibration can
788 only be potentially applied to other lakes with a similar LCD distribution or in the same
789 alpine area.

790

791 The low sample resolution in the longer core before ~1500 CE precludes us from
792 constraining the main natural controls on temperatures in this high-elevation site for the
793 Common Era. However, the general trends support that the presumed primary effect of
794 greenhouse gases on temperatures reconstructed from algal-lipids in this alpine region of
795 southern Iberia is likely modulated by long-term solar forcing. In recent times,
796 greenhouse gases seem to be the major temperature driver in this high elevation site.
797 Volcanic forcing appears to have little effect on reconstructed temperatures in this alpine
798 area. The Atlantic Multidecadal Oscillation (AMO) have also shown to have a long-term
799 effect in the study area; however, due its complex nature, the real effect of the AMO on
800 LCD-reconstructed temperatures in LdRS records cannot be fully constrained. In any
801 case, the effect of the internal climate variability on local temperatures cannot be ruled
802 out. LdRS records also highlight the potential impact that non-climatic environmental
803 drivers such as atmospheric dust and pollution deposition can have exerted on these
804 remote alpine environments (e.g., glacier/snow melting).

805 Alpine temperatures of southern Iberia exceeded the highest scores reached during
806 pre-industrial times in the 1950s. This means that the rate of warming throughout the 20th
807 century doubled that of the last stages of the LIA. Furthermore, this modern warming rate
808 is higher in the Sierra Nevada than in the Alps, highlighting the important environmental
809 stress in the Sierra Nevada ecosystems. In addition to the amplified effect of warming
810 and aridification, the local environmental pressure may have enhanced throughout the
811 20th century due to the disappearance of perennial snow fields and the gradual reduction
812 of the seasonal snow cover affecting the local water availability. Future projections
813 suggest that warming in this fragile alpine region will continue at similar rates or even
814 higher than ones registered during the last century.
815

816

817 **Data availability.** Fractional abundances of the C₂₈ 1,13-diol, C₂₈ 1,14-diol, C₃₀ 1,13-
818 diol, C₃₀ 1,14-diol, C₃₀ 1,15-diol, and C₃₂ 1,15-diol from the studied cores (LdRS shc and
819 LdRS lgc), along with the four reference temperature time-series at 3020 masl from 1908
820 to 2008 are available online at: <https://issues.pangaea.de/browse/PDI-22604>

821

822 **Supplement.** The supplement related to this article is available online at:

823 <https://doi.org/>

824

825 **Author contributions.** The study was conceived by AG-A and JLT. CPM, LJ, GJM,
826 and RSA recovered the sediment cores. AG-A analysed the samples and processed the
827 data. All co-authors discussed the data and equally contributed to the preparation of the
828 manuscript.

829

830 **Competing interests.** The authors declare that they have no conflict of interest.

831

832 **Acknowledgements.** We would like to thank V. Slaymark (University of Glasgow), for
833 her help preparing and analysing the organic and inorganic samples, as well as F.J. Bonet
834 García, C. González Hidalgo, and M.J. Esteban Parra for providing the temperature time-
835 series from the Sierra Nevada and the South of Spain. We also want to thank the Editor,
836 E. McClymont, and two anonymous reviewers for their useful comments and suggestions
837 that improved the manuscript.

838

839 **Financial support.** This study was supported by the project P11-RNM 7332 of the “Junta
840 de Andalucía”, the projects CGL2017-85415-R, CGL2013-47038-R and CGL2011-
841 23483 of the “Ministerio de Economía y Competitividad of Spain and Fondo Europeo de
842 Desarrollo Regional FEDER”, the project 87/2007 of the OAPN-Ministerio de Medio
843 Ambiente, as well as the research group RNM-190 (Junta de Andalucía). A.G.-A. was
844 also supported by a Marie Curie Intra-European Fellowship of the 7th Framework
845 Programme for Research, Technological Development and Demonstration of the
846 European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and by a
847 Ramón y Cajal Fellowship RYC-2015-18966 of the Spanish Government (Ministerio de
848 Economía y Competitividad). J.L.T. hosted the NAOSIPUK project (PIEF-GA-2012-
849 623027) at the University of Glasgow.

850

851 **References**

852

853 Abrantes, F., Lebreiro, S., Rodrigues, T., Gil, I., Bartels-Jónsdóttir, H., Oliveira, P.,
854 Kissel, C., and Grimalt, J. O.: Shallow-marine sediment cores record climate
855 variability and earthquake activity off Lisbon (Portugal) for the last 2000 years,
856 Quaternary Science Reviews, 24, 2477-2494, 2005.

857 Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R. A.: Solar
858 influence on climate during the past millennium: Results from transient
859 simulations with the NCAR Climate System Model, Proceedings of the National
860 Academy of Sciences, 104, 3713-3718, 2007.

861 Anderson, R. S., Jiménez-Moreno, G., Carrión, J., and Pérez-Martínez, C.: Postglacial
862 history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra
863 Nevada, southern Spain, Quaternary Science Reviews, 30, 1615–1629, 2011.

864 Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W.,
865 Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M.,
866 Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M.,
867 Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M.,
868 Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic,
869 K., Majstorovic, Z., and Nieplova, E.: HISTALP—historical instrumental
870 climatological surface time series of the Greater Alpine Region, International
871 Journal of Climatology, 27, 17-46, 2007.

872 Balzano, S., Lattaud, J., Villanueva, L., Rampen, S. W., Brussaard, C. P. D., van
873 Bleijswijk, J., Bale, N., Sinninghe Damsté, J. S., and Schouten, S.: A quest for the
874 biological sources of long chain alkyl diols in the western tropical North Atlantic
875 Ocean, *Biogeosciences*, 15, 5951-5968, 2018.

876 Barea-Arco, J., Pérez-Martínez, C., and Morales-Baquero, R.: Evidence of a mutualistic
877 relationship between an algal epibiont and its host, *Daphnia pulicaria*, *Limnology*
878 and *Oceanography*, 46, 871-881, 2001.

879 Blanca, G.: Flora amenazada y endémica de Sierra Nevada, *Consejería de Medio*
880 *Ambiente de la Junta de Andalucía* and *University of Granada*, 2001.

881 Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri, M.: The early
882 instrumental warm-bias: a solution for long central European temperature series
883 1760–2007, *Climatic Change*, 101, 41-67, 2010.

884 Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G., Wagner, S., Camarero,
885 J. J., Ljungqvist, F. C., Zorita, E., Oppenheimer, C., Konter, O., Tegel, W.,
886 Gärtner, H., Cherubini, P., Reinig, F., and Esper, J.: New Tree-Ring Evidence
887 from the Pyrenees Reveals Western Mediterranean Climate Variability since
888 Medieval Times, *Journal of Climate*, 30, 5295-5318, 2017.

889 Carrillo, P., Cruz-Pizarro, L., and Sánchez Castillo, P. M.: Aportación al conocimiento
890 del ciclo biológico de *Chromulina nevadensis*, *Acta Botánica Malacitana*, 16, 19-
891 26, 1991.

892 Castañeda, I. S. and Schouten, S.: A review of molecular organic proxies for examining
893 modern and ancient lacustrine environments, *Quaternary Science Reviews*, 30,
894 2851-2891, 2011.

895 Castillo Martín, A.: *Lagunas de Sierra Nevada*, Editorial Universidad de Granada,
896 Granada, 2009.

897 Catalan, J., Pla-Rabés, S., Wolfe, A. P., Smol, J. P., Rühland, K. M., Anderson, N. J.,
898 Kopáček, J., Stuchlík, E., Schmidt, R., Koinig, K. A., Camarero, L., Flower, R. J.,
899 Heiri, O., Kamenik, C., Korhola, A., Leavitt, P. R., Psenner, R., and Renberg, I.:
900 Global change revealed by palaeolimnological records from remote lakes: a
901 review, *Journal of Paleolimnology*, 49, 513-535, 2013.

902 Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A Solar
903 Irradiance Climate Data Record, *Bulletin of the American Meteorological*
904 *Society*, 97, 1265-1282, 2016.

905 Colcord, D. E., Cadieux, S. B., Brassell, S. C., Castañeda, I. S., Pratt, L. M., and White,
906 J. R.: Assessment of branched GDGTs as temperature proxies in sedimentary
907 records from several small lakes in southwestern Greenland, *Organic*
908 *Geochemistry*, 82, 33-41, 2015.

909 de Bar, M. W., Dorhout, D. J. C., Hopmans, E. C., Rampen, S. W., Sinninghe Damsté,
910 J. S., and Schouten, S.: Constraints on the application of long chain diol proxies in
911 the Iberian Atlantic margin, *Organic Geochemistry*, 101, 184-195, 2016.

912 Di Mauro, B., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P., Galvagno, M., Morra
913 di Cellà, U., Migliavacca, M., Baccolo, G., Clemenza, M., Delmonte, B., Maggi,
914 V., Dumont, M., Tuzet, F., Lafaysse, M., Morin, S., Cremonese, E., and Colombo,
915 R.: Saharan dust events in the European Alps: role on snowmelt and geochemical
916 characterization, *The Cryosphere Discuss.*, 2018, 1-28, 2018.

917 Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and
918 Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts, *Science*,
919 289, 2068-2074, 2000.

920 Foster, L. C., Pearson, E. J., Juggins, S., Hodgson, D. A., Saunders, K. M., Verleyen,
921 E., and Roberts, S. J.: Development of a regional glycerol dialkyl glycerol
922 tetraether (GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes,
923 *Earth and Planetary Science Letters*, 433, 370-379, 2016.

924 Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M.,
925 Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., and Swart, N. C.: Making
926 sense of the early-2000s warming slowdown, *Nature Climate Change*, 6, 224,
927 2016.

928 Gal, J.-K., Kim, J.-H., and Shin, K.-H.: Distribution of long chain alkyl diols along a
929 south-north transect of the northwestern Pacific region: Insights into a paleo sea
930 surface nutrient proxy, *Organic Geochemistry*, 119, 80-90, 2018.

931 García Montoro, C., Titos Martínez, M., and Casado Sánchez de Castilla, M.: Sierra
932 Nevada. Una expedición al pico de Veleta desde los Baños de Lanjarón (1859),
933 Universidad de Granada, Editorial Universidad de Granada, 2016.

934 García-Alix, A., Jimenez Espejo, F. J., Toney, J. L., Jiménez-Moreno, G., Ramos-
935 Román, M. J., Anderson, R. S., Ruano, P., Queralt, I., Delgado Huertas, A., and
936 Kuroda, J.: Alpine bogs of southern Spain show human-induced environmental
937 change superimposed on long-term natural variations, *Scientific Reports*, 7, 7439
938 2017.

939 Garcia-Alix, A., Jimenez-Espejo, F. J., Lozano, J. A., Jimenez-Moreno, G., Martinez-
940 Ruiz, F., Garcia Sanjuan, L., Aranda Jimenez, G., Garcia Alfonso, E., Ruiz-
941 Puertas, G., and Anderson, R. S.: Anthropogenic impact and lead pollution
942 throughout the Holocene in Southern Iberia, *Science of the Total Environment*,
943 449, 451-460, 2013.

944 García-Alix, A., Jiménez-Moreno, G., Anderson, R. S., Jiménez Espejo, F. J., and
945 Delgado Huertas, A.: Holocene environmental change in southern Spain deduced
946 from the isotopic record of a high-elevation wetland in Sierra Nevada, *Journal of*
947 *Paleolimnology*, 48, 471-484, 2012.

948 Giorgi, F.: Climate change hot-spots, *Geophysical Research Letters*, 33, 2006.

949 Gómez-Navarro, J. J., Montávez, J. P., Jerez, S., Jiménez-Guerrero, P., Lorente-Plazas,
950 R., González-Rouco, J. F., and Zorita, E.: A regional climate simulation over the
951 Iberian Peninsula for the last millennium, *Clim. Past*, 7, 451-472, 2011.

952 Gómez-Navarro, J. J., Montávez, J. P., Jiménez-Guerrero, P., Jerez, S., Lorente-Plazas,
953 R., González-Rouco, J. F., and Zorita, E.: Internal and external variability in
954 regional simulations of the Iberian Peninsula climate over the last millennium,
955 *Clim. Past*, 8, 25-36, 2012.

956 Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M., and Cortesi, N.: MOTEDAS: a
957 new monthly temperature database for mainland Spain and the trend in
958 temperature (1951–2010), *International Journal of Climatology*, 35, 4444-4463,
959 2015.

960 Grunewald, K. and Scheithauer, J.: Europe's southernmost glaciers: response and
961 adaptation to climate change, *Journal of Glaciology*, 56, 129-142, 2010.

962 Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric Blocking and Atlantic
963 Multidecadal Ocean Variability, *Science*, 334, 655-659, 2011.

964 Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature Change,
965 *Reviews of Geophysics*, 48, 2010.

966 IPCC: *Climate Change 2013: The Physical Science Basis. Contribution of Working*
967 *Group I to the Fifth Assessment Report of the Intergovernmental Panel on*
968 *Climate Change*, Cambridge University Press, Cambridge, United Kingdom and
969 New York, NY, USA, 2013.

970 Jiménez, L., Conde-Porcuna, J. M., García-Alix, A., Toney, J. L., Anderson, R. S.,
971 Heiri, O., and Pérez-Martínez, C.: Ecosystem Responses to Climate-Related

972 Changes in a Mediterranean Alpine Environment Over the Last ~180 Years,
973 *Ecosystems*, 22, 563-577, 2019.

974 Jiménez, L., Romero-Viana, L., Conde-Porcuna, J. M., and Pérez-Martínez, C.:
975 Sedimentary photosynthetic pigments as indicators of climate and watershed
976 perturbations in an alpine lake in southern Spain, *Limniteca*, 34, 439-454, 2015.

977 Jiménez, L., Rühland, K. M., Jeziorski, A., Smol, J. P., and Pérez-Martínez, C.: Climate
978 change and Saharan dust drive recent cladoceran and primary production changes
979 in remote alpine lakes of Sierra Nevada, Spain, *Global Change Biology*, 28,
980 e139–e158, 2018.

981 Jiménez-Espejo, F. J., García-Alix, A., Jiménez-Moreno, G., Rodrigo-Gámiz, M.,
982 Anderson, R. S., Rodríguez-Tovar, F. J., Martínez-Ruiz, F., Giralt, S., Delgado
983 Huertas, A., and Pardo-Igúzquiza, E.: Saharan aeolian input and effective
984 humidity variations over western Europe during the Holocene from a high altitude
985 record, *Chemical Geology*, 374-375, 1-12, 2014.

986 Jiménez-Moreno, G. and Anderson, R. S.: Holocene vegetation and climate change
987 recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra
988 Nevada, southern Spain, *Quaternary Research*, 77, 44-53, 2012.

989 Jiménez-Moreno, G., García-Alix, A., Hernández-Corbán, M. D., Anderson, R. S.,
990 and Delgado-Huertas, A.: Vegetation, fire, climate and human disturbance history
991 in the southwestern Mediterranean area during the late Holocene, *Quaternary*
992 Research, 79, 110-122, 2013.

993 Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M.-S., and Olsen, J.: Evidence for
994 external forcing of the Atlantic Multidecadal Oscillation since termination of the
995 Little Ice Age, *Nature Communications*, 5, 3323, 2014.

996 Lattaud, J., Dorhout, D., Schulz, H., Castañeda, I. S., Schefuß, E., Sinninghe Damsté, J.
997 S., and Schouten, S.: The C32 alkane-1,15-diol as a proxy of late Quaternary
998 riverine input in coastal margins, *Clim. Past*, 13, 1049-1061, 2017a.

999 Lattaud, J., Kim, J.-H., De Jonge, C., Zell, C., Sinninghe Damsté, J. S., and Schouten,
1000 S.: The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas,
1001 *Geochimica et Cosmochimica Acta*, 202, 146-158, 2017b.

1002 Lattaud, J., Kirkels, F., Peterse, F., Freymond, C. V., Eglinton, T. I., Hefter, J.,
1003 Mollenhauer, G., Balzano, S., Villanueva, L., van der Meer, M. T. J., Hopmans,
1004 E. C., Sinninghe Damsté, J. S., and Schouten, S.: Long-chain diols in rivers:

1005 distribution and potential biological sources, *Biogeosciences*, 15, 4147-4161,
1006 2018a.

1007 Lattaud, J., Lo, L., Huang, J.-J., Chou, Y.-M., Gorbarenko, S. A., Sinninghe Damsté, J.
1008 S., and Schouten, S.: A Comparison of Late Quaternary Organic Proxy-Based
1009 Paleotemperature Records of the Central Sea of Okhotsk, *Paleoceanography and*
1010 *Paleoclimatology*, 33, 732-744, 2018b.

1011 Longo, W. M., Huang, Y., Yao, Y., Zhao, J., Giblin, A. E., Wang, X., Zech, R.,
1012 Haberzettl, T., Jardillier, L., Toney, J., Liu, Z., Krivonogov, S., Kolpakova, M.,
1013 Chu, G., D'Andrea, W. J., Harada, N., Nagashima, K., Sato, M., Yonenobu, H.,
1014 Yamada, K., Gotanda, K., and Shinozuka, Y.: Widespread occurrence of distinct
1015 alkenones from Group I haptophytes in freshwater lakes: Implications for
1016 paleotemperature and paleoenvironmental reconstructions, *Earth and Planetary*
1017 *Science Letters*, 492, 239-250, 2018.

1018 López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo-Lacruz, J.,
1019 Kenawy, A., and Beniston, M.: Effects of the North Atlantic Oscillation (NAO)
1020 on combined temperature and precipitation winter modes in the Mediterranean
1021 mountains: Observed relationships and projections for the 21st century, *Global*
1022 *and Planetary Change*, 77, 62-76, 2011.

1023 Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco,
1024 F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S.,
1025 Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M.,
1026 Bertolin, C., Bothe, O., Brázil, R., Camuffo, D., Dobrovolný, P., Gagen, M.,
1027 García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl,
1028 G. C., Holmgren, K., Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts,
1029 N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner,
1030 H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.:
1031 European summer temperatures since Roman times, *Environmental Research*
1032 *Letters*, 11, 024001, 2016.

1033 Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D.,
1034 Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and Dynamical Origins
1035 of the Little Ice Age and Medieval Climate Anomaly, *Science*, 326, 1256-1260,
1036 2009.

1037 Marotzke, J. and Forster, P. M.: Forcing, feedback and internal variability in global
1038 temperature trends, *Nature*, 517, 565-570, 2015.

1039 Mather, T. A., Pyle, D. M., and Oppenheimer, C.: Tropospheric Volcanic Aerosol. In:
1040 Volcanism and the Earth's Atmosphere, American Geophysical Union, 2013.

1041 Médail, F. and Quézel, P.: Biodiversity Hotspots in the Mediterranean Basin: Setting
1042 Global Conservation Priorities, *Conservation Biology*, 13, 1510-1513, 1999.

1043 Mesa-Fernández, J. M., Jiménez-Moreno, G., Rodrigo-Gámiz, M., García-Alix, A.,
1044 Jiménez-Espejo, F. J., Martínez-Ruiz, F., Anderson, R. S., Camuera, J., and
1045 Ramos-Román, M. J.: Vegetation and geochemical responses to Holocene rapid
1046 climate change in the Sierra Nevada (southeastern Iberia): the Laguna Hondera
1047 record, *Clim. Past*, 14, 1687-1706, 2018.

1048 Morales-Baquero, R., Pulido-Villena, E., and Reche, I.: Atmospheric inputs of
1049 phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical
1050 responses of high mountain lakes, *Limnology and Oceanography* 51, 830–837,
1051 2006.

1052 Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B.,
1053 González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J. P.,
1054 Belmonte, Á., Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J. O.,
1055 Jiménez-Espejo, F., Martínez-Ruiz, F., Vegas-Vilarrúbia, T., and Valero-Garcés,
1056 B. L.: The Medieval Climate Anomaly in the Iberian Peninsula reconstructed
1057 from marine and lake records, *Quaternary Science Reviews*, 43, 16-32, 2012.

1058 Mulitza, S., Heslop, D., Pittauerova, D., Fischer, H. W., Meyer, I., Stuut, J.-B., Zabel,
1059 Mollenhauer, G., Collins, J. A., Kuhnert, H., and Schulz, M.: Increase in
1060 African dust flux at the onset of commercial agriculture in the Sahel region,
1061 *Nature*, 466, 226-228, 2010.

1062 Munguira, M. L. and Martin, J.: The Sierra Nevada blue, *Polyommatus golgus*
1063 (Hiibner). In: *Conservation Biology of Lycaenidae (Butterflies)*, New, T. R. (Ed.),
1064 IUCN, Gland, Switzerland, 1993.

1065 Nieto-Moreno, V., Martínez-Ruiz, F., Willmott, V., García-Orellana, J., Masqué, P., and
1066 Sinnenhe Damsté, J. S.: Climate conditions in the westernmost Mediterranean
1067 over the last two millennia: An integrated biomarker approach, *Organic*
1068 *Geochemistry*, 55, 1-10, 2013.

1069 O'Reilly, C. H., Woollings, T., and Zanna, L.: The Dynamical Influence of the Atlantic
1070 Multidecadal Oscillation on Continental Climate, *Journal of Climate*, 30, 7213-
1071 7230, 2017.

1072 Observatorio del cambio global de Sierra Nevada: Linaria v1.0. iEcolab – Laboratorio
1073 de Ecología Terrestre – Universidad de Granada, <http://linaria.obsnev.es>, 2016.

1074 Oliva, M. and Gomez-Ortiz, A.: Late-Holocene environmental dynamics and climate
1075 variability in a Mediterranean high mountain environment (Sierra Nevada, Spain)
1076 inferred from lake sediments and historical sources, *The Holocene*, 22, 915-927,
1077 2012.

1078 Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J. M., Domínguez-
1079 Castro, F., García-Ruiz, J. M., Giralt, S., Gómez-Ortiz, A., Hernández, A., López-
1080 Costas, O., López-Moreno, J. I., López-Sáez, J. A., Martínez-Cortizas, A.,
1081 Moreno, A., Prohom, M., Saz, M. A., Serrano, E., Tejedor, E., Trigo, R., Valero-
1082 Garcés, B., and Vicente-Serrano, S. M.: The Little Ice Age in Iberian mountains,
1083 *Earth-Science Reviews*, 177, 175-208, 2018.

1084 Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and Abdalati,
1085 W.: End of the Little Ice Age in the Alps forced by industrial black carbon,
1086 *Proceedings of the National Academy of Sciences*, 110, 15216-15221, 2013.

1087 Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B.,
1088 Coldea, G., Dick, J., Erschbamer, B., Calzado, R. F., Ghosn, D., Holten, J. I.,
1089 Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau,
1090 U., Mesa, J. M., Nagy, L., Pelino, G., Puşcaş, M., Rossi, G., Stanisci, A.,
1091 Syverhuset, A. O., Theurillat, J.-P., Tomaselli, M., Unterluggauer, P., Villar, L.,
1092 Vittoz, P., and Grabherr, G.: Recent Plant Diversity Changes on Europe's
1093 Mountain Summits, *Science*, 336, 353-355, 2012.

1094 Pérez-Luque, A., Pérez-Pérez, R., Aspizua, R., Muñoz, J., and Bonet, F.: Climate in
1095 Sierra Nevada: present and future. . In: *Change impacts in Sierra Nevada: challenges for conservation*, Zamora, R., Pérez-Luque, A., Bonet, F., Barea-Azcón, J., and Aspizua, R. (Eds.), Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Andalucía, 2016.

1099 Pulido-Villena, E., Reche, I., and Morales-Baquero, R.: Food web reliance on
1100 allochthonous carbon in two high mountain lakes with contrasting catchments: a
1101 stable isotope approach, *Canadian Journal of Fisheries and Aquatic Sciences*, 62,
1102 2640–2648 2005.

1103 Ramos-Román, M. J., Jiménez-Moreno, G., R.S., A., García-Alix, A., Toney, J. L.,
1104 Jiménez-Espejo, F. J., and Carrión, J. S.: Centennial-scale vegetation and North

1139 Rodrigo-Gámiz, M., Rampen, S. W., de Haas, H., Baas, M., Schouten, S., and
1140 Sinninghe Damsté, J. S.: Constraints on the applicability of the organic
1141 temperature proxies UK'37, TEX86 and LDI in the subpolar region around
1142 Iceland, *Biogeosciences*, 12, 6573-6590, 2015.

1143 Romero-Viana, L., Kienel, U., and Sachse, D.: Lipid biomarker signatures in a
1144 hypersaline lake on Isabel Island (Eastern Pacific) as a proxy for past rainfall
1145 anomaly (1942–2006AD), *Palaeogeography, Palaeoclimatology, Palaeoecology*,
1146 350-352, 49-61, 2012.

1147 Sánchez-Castillo, P. M.: Algas de las lagunas de alta montaña de Sierra Nevada
1148 (Granada, España), *Acta Botánica Malacitana*, 13, 21 -52, 1988.

1149 Sánchez-López, G., Hernández, A., Pla-Rabes, S., Trigo, R. M., Toro, M., Granados, I.,
1150 Sáez, A., Masqué, P., Pueyo, J. J., Rubio-Inglés, M. J., and Giralt, S.: Climate
1151 reconstruction for the last two millennia in central Iberia: The role of East Atlantic
1152 (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian
1153 Peninsula, *Quaternary Science Reviews*, 149, 135-150, 2016.

1154 Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T.
1155 J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L.,
1156 Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.:
1157 Climate forcing reconstructions for use in PMIP simulations of the last
1158 millennium (v1.0), *Geosci. Model Dev.*, 4, 33-45, 2011.

1159 Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W.,
1160 Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A.
1161 C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R.
1162 J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D.,
1163 Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P.,
1164 Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., and Zierl, B.:
1165 Ecosystem Service Supply and Vulnerability to Global Change in Europe,
1166 *Science*, 310, 1333-1337, 2005.

1167 Shimokawara, M., Nishimura, M., Matsuda, T., Akiyama, N., and Kawai, T.: Bound
1168 forms, compositional features, major sources and diagenesis of long chain, alkyl
1169 mid-chain diols in Lake Baikal sediments over the past 28,000 years, *Organic*
1170 *Geochemistry*, 41, 753-766, 2010.

1171 Sicre, M.-A., Jalali, B., Martrat, B., Schmidt, S., Bassetti, M.-A., and Kallel, N.: Sea
1172 surface temperature variability in the North Western Mediterranean Sea (Gulf of

1173 Lion) during the Common Era, *Earth and Planetary Science Letters*, 456, 124-133,
1174 2016.

1175 Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F.,
1176 Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl,
1177 S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R.,
1178 Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S., Steffensen, J. P., Vinther,
1179 B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for
1180 the past 2,500 years, *Nature*, 523, 543-549, 2015.

1181 Sinninghe Damsté, J. S., Rampen, S., Irene, W., Rijpstra, C., Abbas, B., Muyzer, G.,
1182 and Schouten, S.: A diatomaceous origin for long-chain diols and mid-chain
1183 hydroxy methyl alkanoates widely occurring in quaternary marine sediments:
1184 indicators for high-nutrient conditions, *Geochimica et Cosmochimica Acta*, 67,
1185 1339-1348, 2003.

1186 Smith, M., De Deckker, P., Rogers, J., Brocks, J., Hope, J., Schmidt, S., Lopes dos
1187 Santos, R., and Schouten, S.: Comparison of U37K', TEX86H and LDI
1188 temperature proxies for reconstruction of south-east Australian ocean
1189 temperatures, *Organic Geochemistry*, 64, 94-104, 2013.

1190 Spanish National Weather Agency - AEMet Open Data: AEMet Open Data.
1191 http://www.aemet.es/es/datos_abiertos/AEMET_OpenData, 2019.

1192 Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene,
1193 *Geophysical Research Letters*, 36, 2009.

1194 Stuiver, M. and Quay, P. D.: Changes in Atmospheric Carbon-14 Attributed to a
1195 Variable Sun, *Science*, 207, 11-19, 1980.

1196 Tejedor, E., Saz, M. Á., Cuadrat, J. M., Esper, J., and de Luis, M.: Temperature
1197 variability in the Iberian Range since 1602 inferred from tree-ring records, *Clim.
1198 Past*, 13, 93-105, 2017.

1199 Theroux, S., D'Andrea, W. J., Toney, J., Amaral-Zettler, L., and Huang, Y.:
1200 Phylogenetic diversity and evolutionary relatedness of alkenone-producing
1201 haptophyte algae in lakes: Implications for continental paleotemperature
1202 reconstructions, *Earth and Planetary Science Letters*, 300, 311-320, 2010.

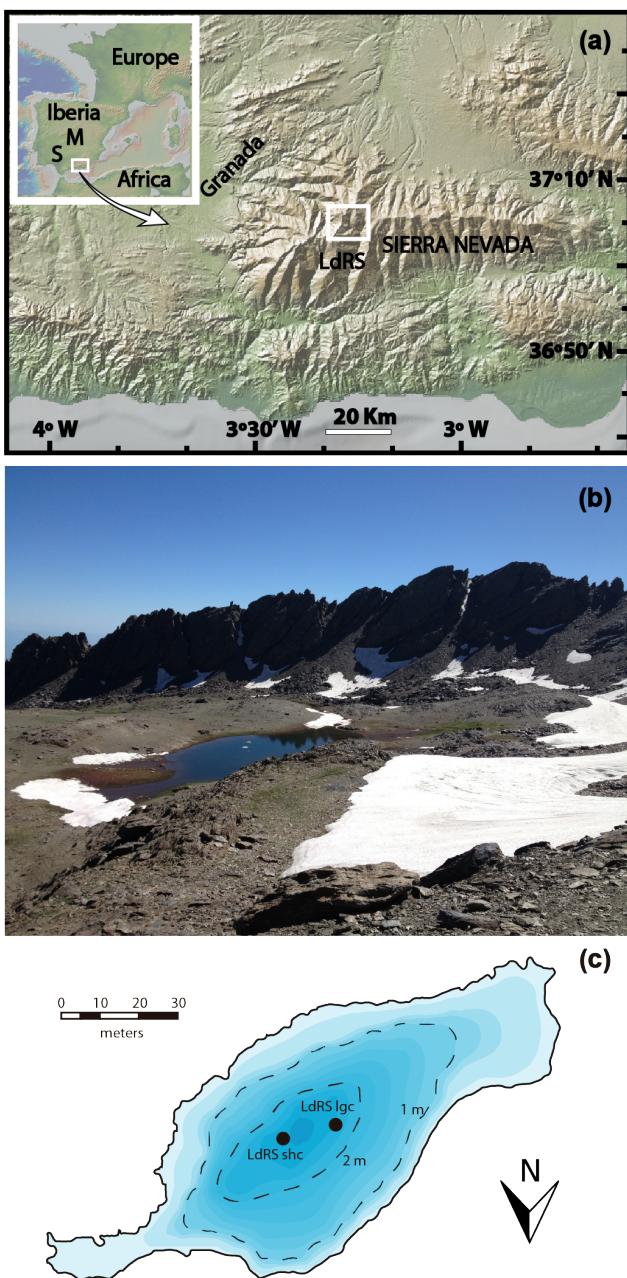
1203 Titos Martínez, M.: Los trabajos de desagüe de las lagunas de Sierra Nevada: un largo
1204 despropósito medioambiental, *Revista del Centro de Estudios Históricos de
1205 Granada y su Reino*, 2019. 223-243, 2019.

1206 Titos Martínez, M. and Ramos Lafuente, A. J.: El refugio más antiguo de Sierra
1207 Nevada: Construido en 1891, aún se mantiene en pie, Andalucía en la historia,
1208 2016. 48-53, 2016.

1209 Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.:
1210 Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval
1211 Climate Anomaly, *Science*, 324, 78-80, 2009.

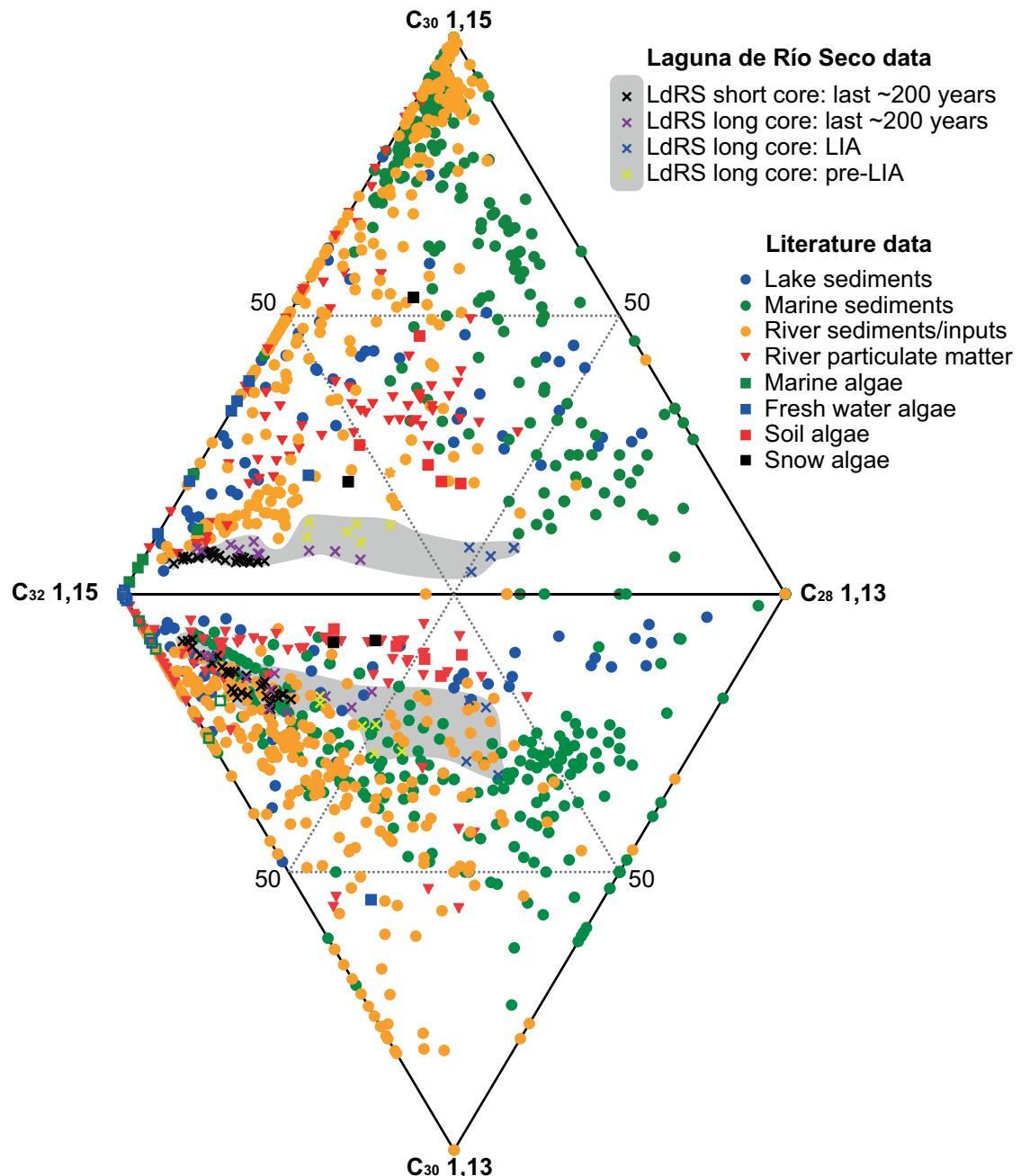
1212 Versteegh, G. J. M., Bosch, H. J., and De Leeuw, J. W.: Potential palaeoenvironmental
1213 information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty
1214 acids; a critical review, *Organic Geochemistry*, 27, 1-13, 1997.

1215 Villanueva, L., Besseling, M., Rodrigo-Gámiz, M., Rampen, S. W., Verschuren, D., and
1216 Sinninghe Damsté, J. S.: Potential biological sources of long chain alkyl diols in a
1217 lacustrine system, *Organic Geochemistry*, 68, 27-30, 2014.

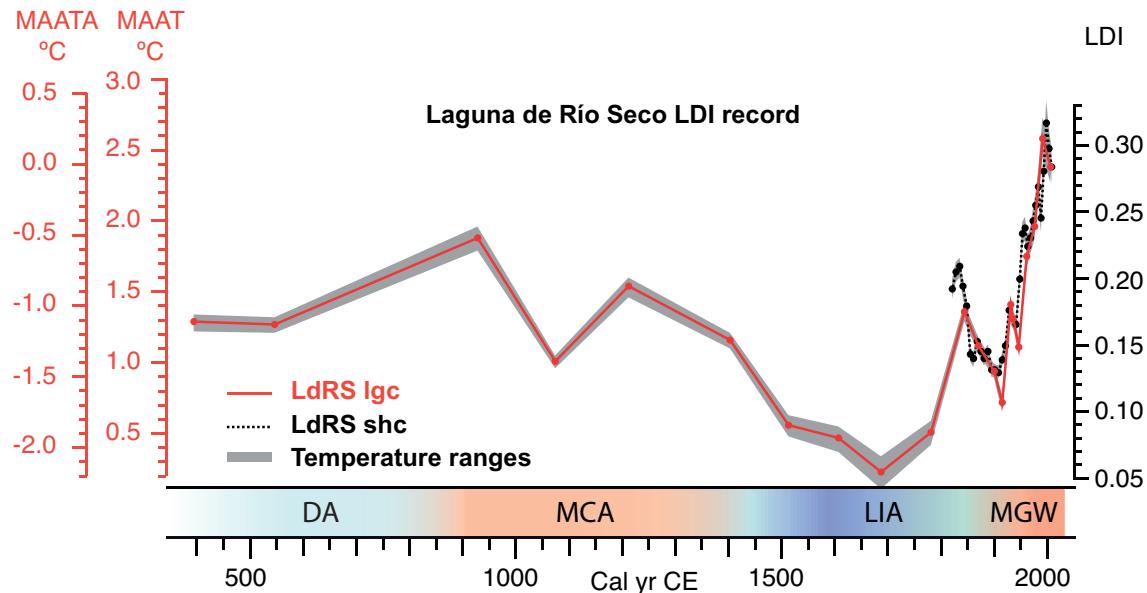

1218 Volkman, J. K., Barrett, S. M., and Blackburn, S. I.: Eustigmatophyte microalgae are
1219 potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols
1220 in freshwater environments, *Organic Geochemistry*, 30, 307-318, 1999.

1221 Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C.,
1222 Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C.,
1223 Leinfelder, R., McNeill, J. R., Richter, D. d., Steffen, W., Syvitski, J., Vidas, D.,
1224 Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N.,
1225 and Wolfe, A. P.: The Anthropocene is functionally and stratigraphically distinct
1226 from the Holocene, *Science*, 351, 2016.

1227 Willmott, V., Rampen, S. W., Domack, E., Canals, M., Sinninghe Damsté, J. S., and
1228 Schouten, S.: Holocene changes in Proboscia diatom productivity in shelf waters
1229 of the north-western Antarctic Peninsula, *Antarctic Science*, 22, 3-10, 2010.

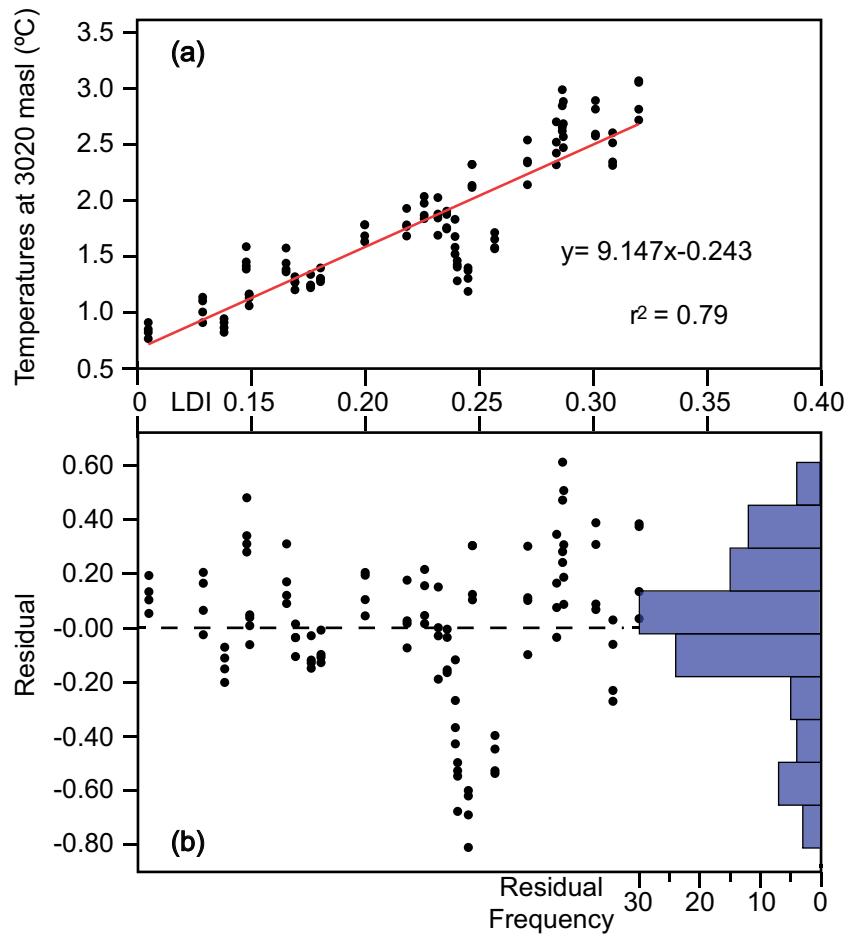

1230 Yu, M., Zhang, H., Li, L., and Zhao, M.: Spatial Distributions and Potential Sources of
1231 Long Chain (C30, C32 1,15-) Alkyl Diols in Surface Sediments from Eastern
1232 China Marginal Seas, *Journal of Ocean University of China*, 17, 1114-1122, 2018.

1233


1234 **FIGURES**

1235

1236 **Figure 1. Geographical setting.** (a) Location of the Sierra Nevada in the western
 1237 Mediterranean region, Madrid (M), Sevilla (S) and Granada observatories, as well as the
 1238 studied area: Laguna de Río Seco (LdRS), (b) LdRS catchment basin (0.42 ha) in spring
 1239 2013, (c) bathymetry map of LdRS along with the sampling points of both cores. Data
 1240 source and software: (a) map created by A. García-Alix using GeoMapApp (3.6.6)
 1241 (<http://www.geomapapp.org>), (b) picture from A. García-Alix, (c) digitalized map of a
 1242 bathymetry report from Egmasa S.A.



1243 **Figure 2.** Double-ternary diagram of the relative abundances of the C₂₈ 1,13-diol, C₃₀
1244 1,13-diol, C₃₀ 1,15-diol, and C₃₂ 1,15-diol from LdRS short core (LdRS shc ~200 years)
1245 and LdRS long core (LdRS lgc ~1500 years). Diol data compiled from the literature: lake
1246 sediments ([Rampen et al., 2014a](#)), algal cultures ([Rampen et al., 2014a](#)), marine sediments
1247 ([de Bar et al., 2016](#); [Lattaud et al., 2017a](#); [Rampen et al., 2014b](#); [Rampen et al., 2012](#)),
1248 river sediments/inputs ([de Bar et al., 2016](#); [Lattaud et al., 2017b](#)), river particulate organic
1249 matter ([Lattaud et al., 2018a](#)).

1251

1252 **Figure 3.** LDI record from LdRS, including both long core (solid line) and short core
 1253 (dashed line), mean annual air temperature (MAAT °C) reconstruction from LDI records
 1254 of LdRS, as well as mean annual air temperature anomaly reconstruction (MAATA°C)
 1255 respect to the annual MAAT of the last 30 years (1979-2008). The grey shade shows the
 1256 reconstructed maximum and minimum temperature ranges obtained from the four LDI
 1257 individual calibrations.

1258

1259

1260 **Figure 4. LDI temperature calibration.** (a) Correlation by means of ordinary least
 1261 square regression between both LDI records from LdRS (from 1908 to 2008) and the four
 1262 reference temperature time-series at 3020 masl. (b) LDI values of LdRS *vs* residual
 1263 temperatures (calculated between the calibrated LDI temperatures *vs* reference
 1264 temperature time series at 3020 masl), as well as the histogram of the frequency of these
 1265 residuals.

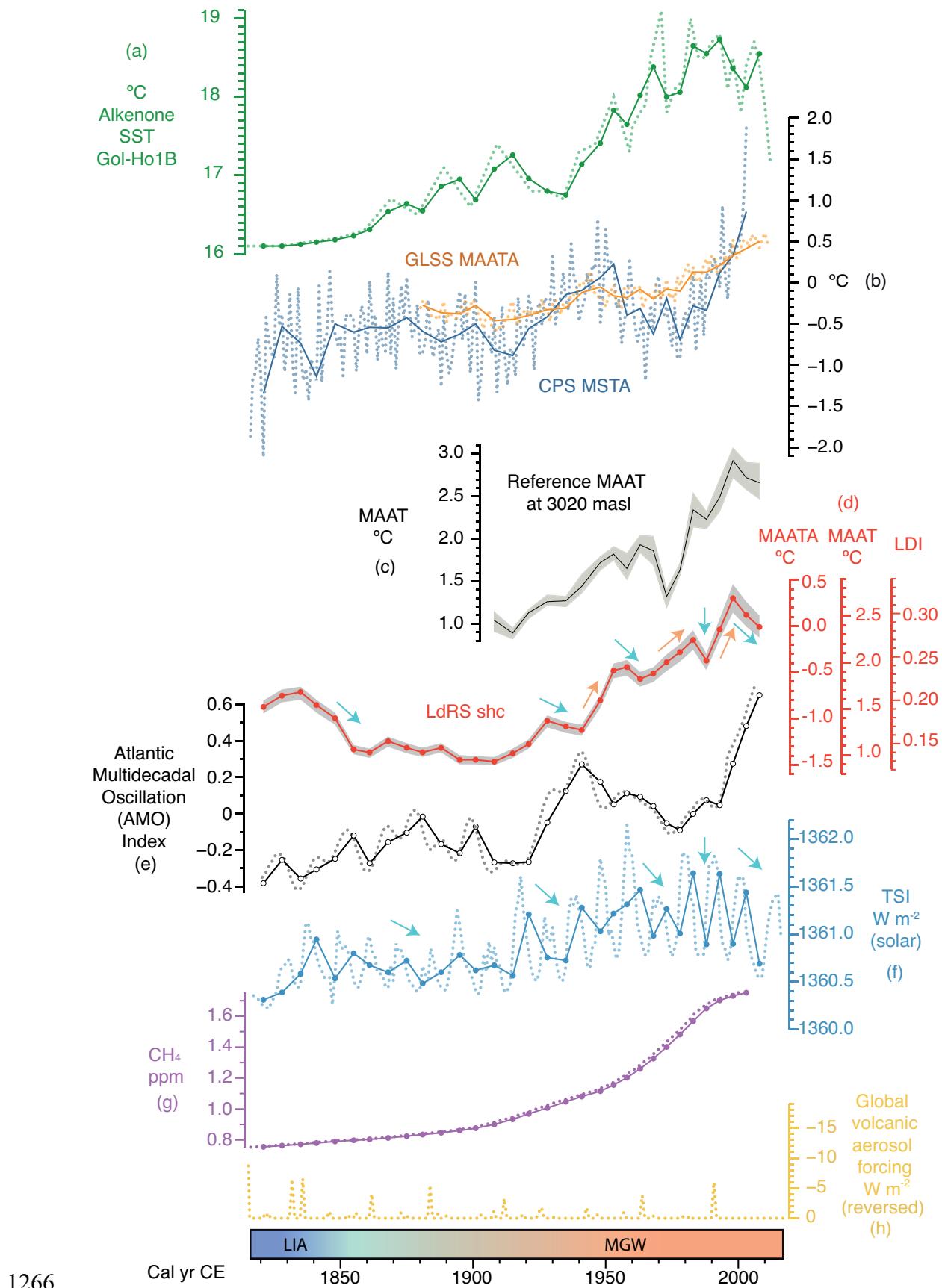


Figure 5. Comparison of the LDI record and the reconstructed temperatures for the last ~200 years of LdRS with marine and terrestrial temperature records, Atlantic

1269 **multidecadal oscillations, greenhouse gases, solar radiation and volcanic eruption**
1270 **records.** Original data are in dashed lines. Solid lines represent the same time averaging
1271 as the LDI data in LdRS shc (data were linearly interpolated and time-averaged to the
1272 same resolution as the sampling points of LdRS shc) to facilitate the correlation. **(a)**
1273 Alkenone-derived Sea Surface Temperatures (SST, °C) of the core Gol-Ho1B_KSGC-31
1274 (Gulf of Lion: NW Mediterranean Sea ([Sicre et al., 2016](#))), **(b)** Composite-plus-scaling
1275 (CPS) mean summer temperature anomaly reconstruction from tree rings records in
1276 Europe with respect to 1974-2003 (MSTA °C) ([Luterbacher et al., 2016](#)) as well as global
1277 land and sea surface (GLSS) mean annual temperature anomalies with respect to 1979-
1278 2008 CE (MAATA °C) ([Hansen et al., 2010](#)), **(c)** Summary of the four reference
1279 temperature time-series at 3020 masl: grey shade shows the maximum and minimum
1280 temperature range and the black solid line represent the mean temperature values, **(d)** LDI
1281 record along with the reconstructed mean annual air temperatures (MAAT °C) and mean
1282 annual air temperature anomalies with respect to 1979-2008 CE (MAATA °C) for the last
1283 ~200 years in LdRS, **(e)** Atlantic Multidecadal Oscillation (AMO) reconstruction ([Mann](#)
1284 [et al., 2009](#)), **(f)** high-resolution total solar irradiance reconstruction (TSI, W m⁻²)
1285 ([Coddington et al., 2016](#)), **(g)** reconstructed concentration of atmospheric CH₄ (ppm)
1286 ([Schmidt et al., 2011](#)), and **(h)** reconstruction of the global volcanic aerosol forcing (W
1287 m⁻²) (reversed) ([Sigl et al., 2015](#)). Acronyms: LIA, Little Ice Age; MGW, Modern Global
1288 Warming. Blue arrows: decrease; orange arrows: increase.

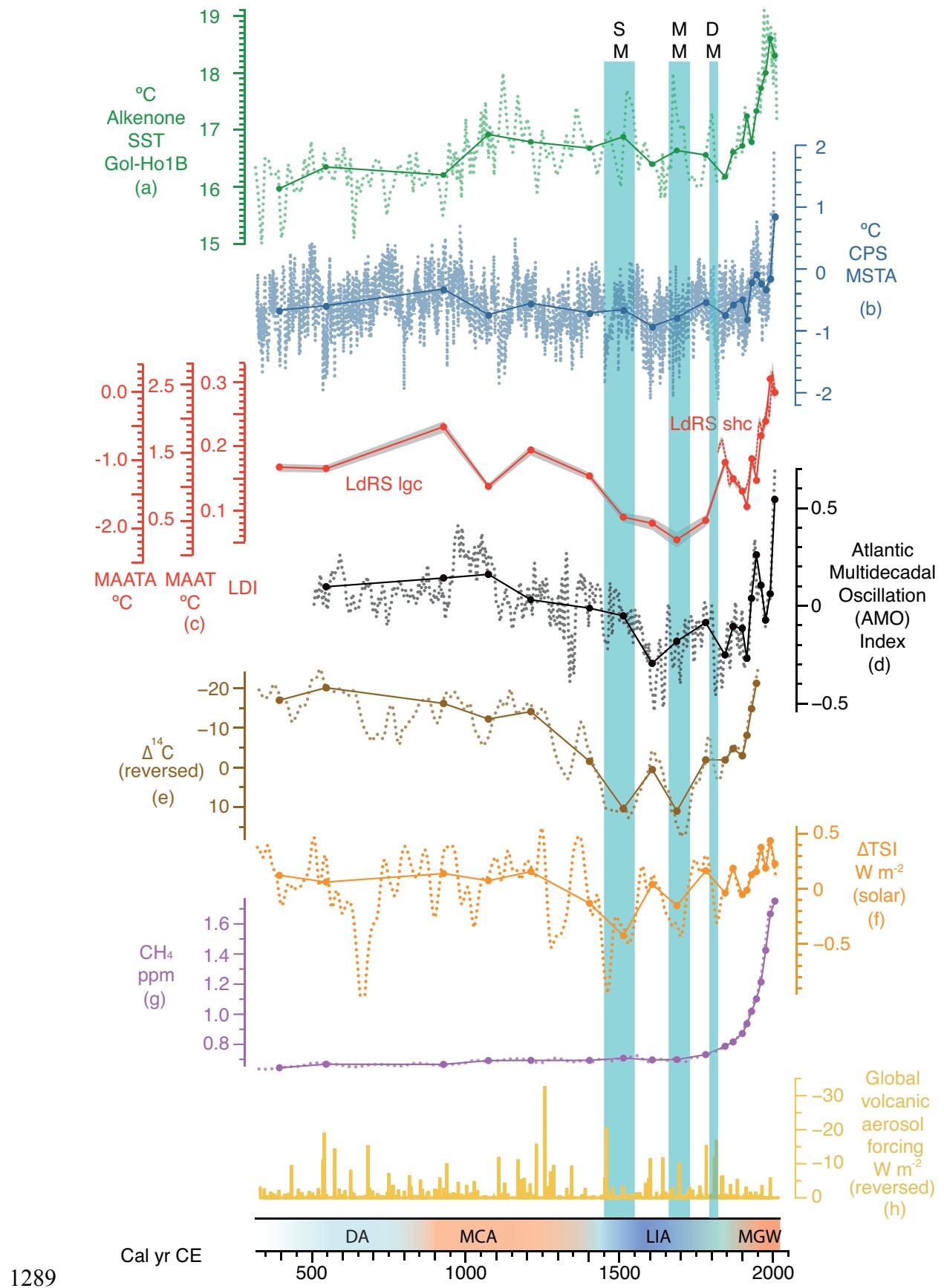
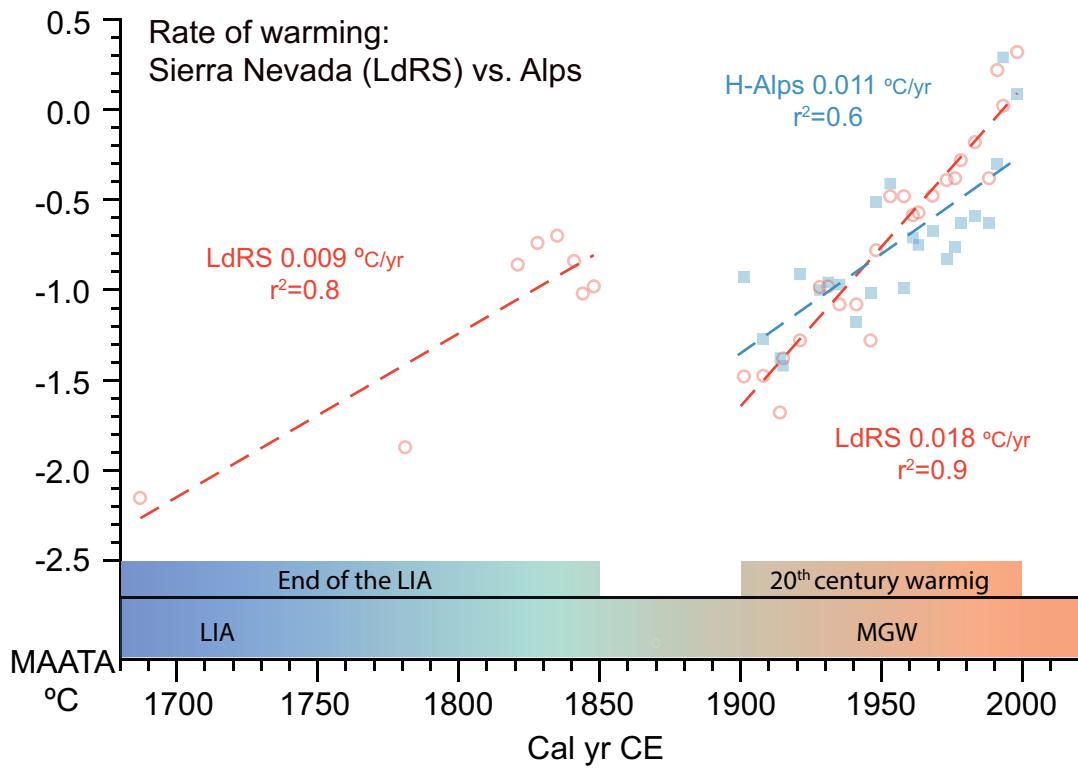
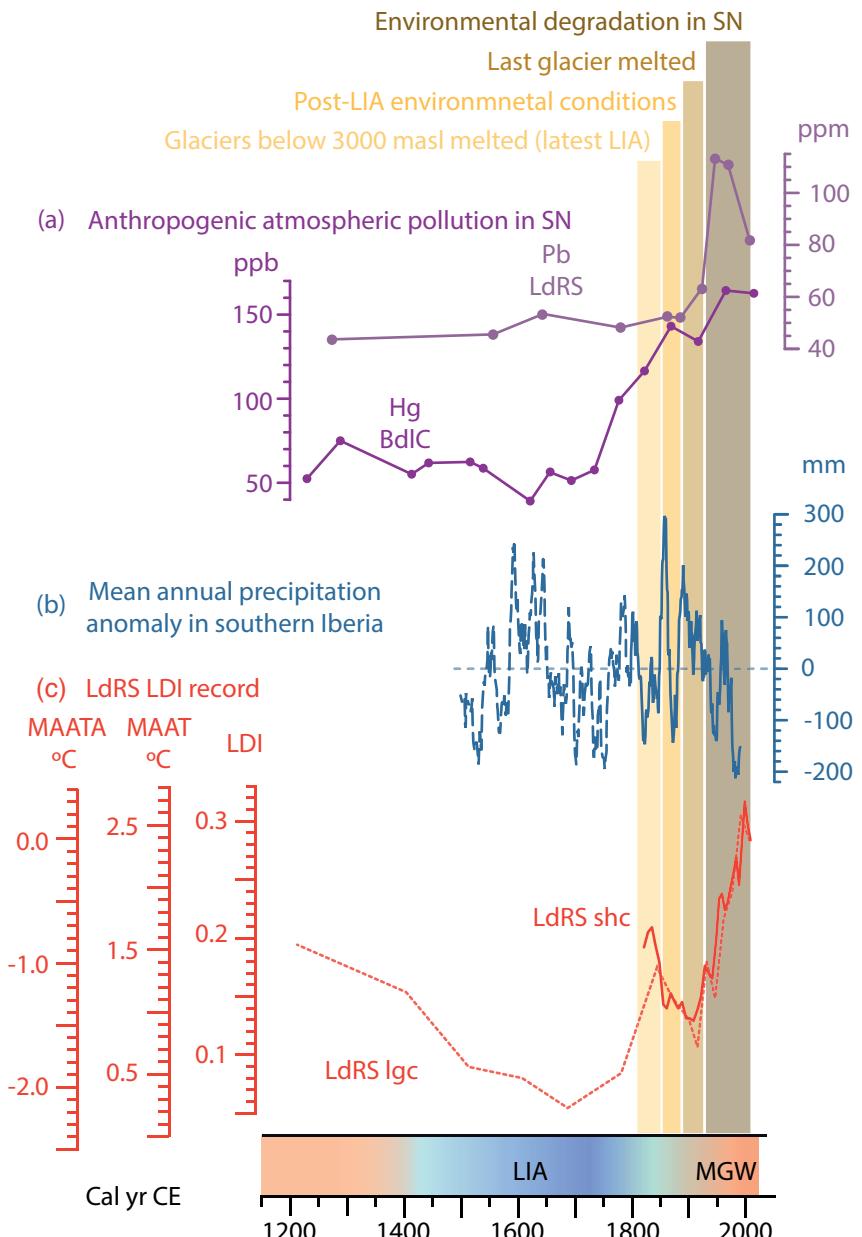



Figure 6. Comparison of the LdRS record and the reconstructed temperatures for the last ~1500 years of LdRS with marine and terrestrial temperature records, Atlantic

1292 **multidecadal oscillations, solar radiation, greenhouse gases, and volcanic eruption**
1293 **records.** Original data are in dashed lines. Solid dots represent the same time averaging
1294 as the LDI data in LdRS lgc (data were linearly interpolated and time-averaged to the
1295 same resolution as the sampling points of LdRS lgc) to facilitate the Pearson correlation:
1296 **(a)** Alkenone-Sea Surface Temperatures (SST, °C) of the core Gol-Ho1B_KSGC-31
1297 (Gulf of Lion: NW Mediterranean Sea ([Sicre et al., 2016](#))), **(b)** Composite-plus-scaling
1298 (CPS) mean summer temperature anomaly reconstruction from tree rings records in
1299 Europe with respect to 1974-2003 CE (MSTA °C) ([Luterbacher et al., 2016](#)), **(c)** LDI
1300 record along with the reconstructed mean annual air temperatures (MAAT °C) and mean
1301 annual air temperature anomalies with respect to 1979-2008 CE (MAATA °C) for the last
1302 1500 years in LdRS, **(d)** Atlantic Multidecadal Oscillation (AMO) reconstruction ([Mann](#)
1303 [et al., 2009](#)), **(e)** $\Delta^{14}\text{C}$ in the atmosphere (reversed) ([Reimer et al., 2013](#)), **(f)** reconstruction
1304 of the difference of the total solar irradiance from the value of the PMOD composite
1305 series during the solar cycle minimum of the year 1986 CE (1365.57 W m^{-2}) (ΔTSI)
1306 ([Steinhilber et al., 2009](#)), **(g)** reconstructed concentration of atmospheric CH₄ (ppm)
1307 ([Schmidt et al., 2011](#)), and **(h)** reconstruction of the global volcanic aerosol forcing (W m^{-2})
1308 (reversed) ([Sigl et al., 2015](#)). Acronyms: DA, Dark Ages; MCA, Medieval Climate
1309 Anomaly; LIA, Little Ice Age; MGW, Modern Global Warming. Blue bars show three
1310 low solar activity periods, the Spörer Minimum (SM), the Maunder Minimum (MM), and
1311 the Dalton Minimum (DM).


1312

1313

1314

1315 **Figure 7. Comparison between the average temperature warming rates from LdRS**
 1316 **and the alpine areas of the Alps by means of ordinary least square regressions.** LDI-
 1317 deduced MAATA (respect to the period 1979-2008 CE) from LdRS long and short cores
 1318 for the last stage of the LIA and the 20th century (red open circles), and high-Alps
 1319 historical (homogenised) temperature records from the Historical Instrumental
 1320 Climatological Surface Time Series of the Greater Alpine Region (HISTALP) database
 1321 (Auer et al., 2007; Böhm et al., 2010) at the same time averaging as LdRS shc-lgc to
 1322 facilitate the comparison (blue closed squares).

Figure 8. Comparison among different factors affecting the environmental evolution of alpine wetlands in the Sierra Nevada. (a) records of anthropogenic heavy metal atmospheric pollution (Pb and Hg) in two alpine sites of the Sierra Nevada: Laguna de Río Seco (LdRS) and Borreguil de la Caldera (BdIC) (Garcia-Alix et al., 2017; Garcia-Alix et al., 2013), (b) mean annual precipitation anomaly in southern Iberia from 1500 to 1990 CE with respect to the mean value of the instrumental period (1791-1990 CE): solid line- instrumental data from Gibraltar (southern Iberia); dashed line- precipitation anomaly reconstruction (Rodrigo et al., 1999), (c) LDI and reconstructed temperatures in LdRS. Colour bars indicate the four main environmental stages in the Sierra Nevada (SN) during the last 200 years. Acronyms: LIA, Little Ice Age; MGW, Modern Global Warming.