| 1                                                                          | Dear Editor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2                                                                          | We have made the revision, according to the reviewers' comments. Especially, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 4                                                                          | added a few more paragraphs, in responding to Reviewer #2's comments 1 and 2, which are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5                                                                          | about model and data resolutions (see pages 5-6 and Table S1), ICE-G5 vs. ICE-G6 (see page 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 6                                                                          | and Figure S1), rotated EOF analysis (see the second paragraph in page 9).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 7                                                                          | Point-by-point replies are as follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 8                                                                          | Thank you very much for handling the review process of our paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9                                                                          | Yours sincerely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 10                                                                         | Yongyun Hu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 11                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | Reply to Reviewer #1<br>Based on climate model simulations and sensitivity experiments, this study shows that the PNA<br>was largely distorted or broken at the LGM, which was attributed to a split of the westerly jet<br>stream over North America induced by the thick Laurentide ice sheet. It further indicates that<br>ENSO had little influence on North American climate at the LGM. The results are intriguing and<br>the mechanism proposed is convincing. I would recommend a minor revision to address the<br>comments below.<br>We thank the reviewer for the reviews. Replies to the comments are as follows. All our replies<br>are in blue. |  |
| 24<br>25<br>26<br>27<br>28                                                 | <ol> <li>If the PNA is defined as the leading EOF of the 500hPa geopotential height, the results would<br/>change or not?</li> <li>We have done analysis, using different methods. The results are almost the same as our</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 29                                                                         | correlation analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 30                                                                         | Figure R1 shows the geographic distributions of the Rotated Empirical Orthogonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 31                                                                         | Function (REOF) analysis of 500 hPa height in NCEP/NCAR reanalysis. The second REOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 32                                                                         | mode well represents the loading pattern of the PNA. The second REOF in the PIC simulation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 33                                                                         | PMIP2 CCSM3 also shows the PNA pattern (Figure R2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

- 34 However, the second REOF in the LGM simulation of the PMIP2 CCSM3 does not
- show the PNA pattern (Figure R3). The third and fourth modes indicate connections between the
- 36 North Pacific and Arctic.
- 37 A few sentences of the REOF analysis will be added to the text. Figures will not be
- shown since there are already too many figures.





- <sup>39</sup> -0.06 -0.03 0.01 0.04 0.07
   <sup>40</sup> Figure R1. Spatial patterns of the Rotated Empirical Orthogonal Function (REOF) analysis of
  - 500 hPa height in NCEP/NCAR reanalysis.
- 41 42





| 43 |                    | -0.06         | -0.03   | 0.01    | 0.04      | 0.07     |
|----|--------------------|---------------|---------|---------|-----------|----------|
| 44 | Figure R2. Spatial | patterns of R | EOFs of | 500 hPa | height in | n the PI |
| 45 | CCSM3              |               |         |         |           |          |





| 47 | -0.06 -0.03 0.01 0.04 0.07                                                                           |
|----|------------------------------------------------------------------------------------------------------|
| 48 | Figure R3. Spatial patterns of REOFs of 500 hPa height in the LGM simulation of PMIP2                |
| 49 | CCSM3.                                                                                               |
| 50 |                                                                                                      |
| 51 | 2. It is better to replace Figs. 6d-f with the meridional temperature gradient, and present a figure |
| 52 | showing the sensitivity simulation result that meridional temperature gradient become sharper        |
| 53 | with increasing ice sheet thickness. This would clearly illustrate how a split of the westerly jet   |
| 54 | stream over North America is connected to the thick ice sheet through the thermal wind relation.     |
| 55 |                                                                                                      |
| 56 | Thanks for the suggestion. We have replaced Figs. 6d-f with the meridional temperature               |
| 57 | gradients. As shown in the updated figure, one can clearly see that the subtropical temperature      |

## 58 gradients in the LGM simulation are stronger than those in NCEP/NCAR reanalysis and the PIC

59 simulation.

60





| 68 | A new figure will be added to the papers to how meridional temperature gradients change          |
|----|--------------------------------------------------------------------------------------------------|
| 69 | with increasing ice-sheet thickness (Figure S4). The figure shows that subtropical temperature   |
| 70 | gradients becomes stronger with increasing ice sheet thickness, which leads to the strengthening |
| 71 | of the subtropical jet.                                                                          |

Figure S4 also shows that positive temperature gradients occur above the ice sheet as ice
sheet thickness reaches 80%. It is consistent with the occurrence of easterly winds.





- 91 4. How are the wave activity flux and stationary wavenumbers calculated?

| 93                                                                          | The three-dimensional wave activity fluxes are calculated using equation 7.1 in Plumb                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 94                                                                          | (1985), which is cited in the paper.                                                                                                                                                                                                                                                                |
| 95                                                                          | The stationary wavenumbers are calculated using equation 6.29 in Held (1983), which is                                                                                                                                                                                                              |
| 96                                                                          | also cited in the paper.                                                                                                                                                                                                                                                                            |
| 97<br>98<br>99<br>100                                                       | <ul> <li>5. The temporal span used for the individual simulations of PMIP2 and PMIP3 should be clarified. What is the degree of freedom used for the correlation coefficient of 0.35?</li> <li>Thanks for your suggestion! We used the last 30 year simulations for each model of PMIP2.</li> </ul> |
| 101                                                                         | Thanks for your suggestion: we used the last 50-year simulations for each model of PMTP2,                                                                                                                                                                                                           |
| 102                                                                         | PMIP3, and our sensitivity simulations. The degree of freedom used for the correlation                                                                                                                                                                                                              |
| 103                                                                         | coefficient of 0.35 is 30. It is explicitly pointed out in the Model and Data section.                                                                                                                                                                                                              |
| 104<br>105<br>106                                                           | 6. L189: Alberta->North Pacific                                                                                                                                                                                                                                                                     |
| 107                                                                         | Revised.                                                                                                                                                                                                                                                                                            |
| 108                                                                         |                                                                                                                                                                                                                                                                                                     |
| 109<br>110<br>111<br>112                                                    | References:<br>Held IM (1983) Stationary and Quasi-stationary Eddies in the Extratropical Troposphere:<br>Theory. in B. J. Hoskins, Pearce RP (eds.) Large-scale Dynamical Processes in the<br>Atmosphere. Academic Press, pp. 127–168.                                                             |
| <ol> <li>113</li> <li>114</li> <li>115</li> <li>116</li> <li>117</li> </ol> | Plumb RA (1985) On the Three-Dimensional Propagation of Stationary Waves. Journal of the Atmospheric Sciences 42:217-229.                                                                                                                                                                           |
| 118                                                                         | Reply to Reviewer #2                                                                                                                                                                                                                                                                                |
| 119                                                                         |                                                                                                                                                                                                                                                                                                     |
| 120<br>121<br>122                                                           | General Comments<br>The goal of this paper is to investigate whether teleconnections from the Tropical Pacific to<br>North America and the Gulf of Mexico (via the Pacific/North American pattern) are maintained                                                                                   |
| 122                                                                         | during the Last Glacial Maximum when large ice sheets covered much of North America. The                                                                                                                                                                                                            |
| 124                                                                         | analysis is performed using PMIP2 and PMIP3 simulations, the NCEP/NCAR reanalysis and                                                                                                                                                                                                               |
| 125                                                                         | some low-resolution simulations performed using CCSM3. I think this is interesting and novel,                                                                                                                                                                                                       |
| 126                                                                         | and the authors' results are supported in the datasets they analyse. However, the authors make a                                                                                                                                                                                                    |
| 127                                                                         | few methodological choices that make me wonder about the general applicability of their results,                                                                                                                                                                                                    |
| 128                                                                         | especially to historical climate conditions.                                                                                                                                                                                                                                                        |
| 129                                                                         | We thank the reviewer for the careful reviews, which are important for us to improve the paper                                                                                                                                                                                                      |
| 130<br>131<br>132                                                           | Replies to the comments are as follows. All our replies are in blue.                                                                                                                                                                                                                                |

Most of the datasets that the authors use are old. Firstly, the sensitivity experiments are
 performed with a PMIP2-era climate model, CCSM3. While the dynamical phenomena that
 the authors are investigating are not likely to be strongly compromised by this choice, their

choice to use a lower resolution with this model than was even used for PMIP2 is puzzling, 136 unless it's a dataset of opportunity. This resolution choice can have important implications 137 for the results they present, since the representations of stationary wave patterns under glacial 138 boundary conditions are known to degrade at lower resolutions (cf Lofverstrom and Lora, 139 2018). Additionally, the use of the ICE-5G ice sheet reconstruction for their LGM boundary 140 conditions is problematic, as the dome in this ice sheet reconstruction is so much larger than 141 current estimates would predict. If the authors want to suggest that their results have 142 applicability to the actual conditions at LGM, then it would be helpful if they present 143 information on which sensitivity experiment best corresponds with current estimates of true 144 145 LGM conditions. 146

We started this work a few years ago when there was only PMIP2 data, and PMIP3 data
was not available yet. We found that the PNA is distorted in PMIP2 simulations. Then, we
performed the low-resolution sensitivity simulations, with ICE-5G. The low-resolution

simulation results were also used in a different work (Lu et al., 2016).

151 As PMIP3 data became available, we found the similar results in PMIP3 simulations.

152 Especially, the LGM simulation of CCSM4 shows consistent result with that of CCSM3.

153 Therefore, we feel that the result of distorted PNA path at LGM is not dependent on model 154 versions.

ICE-6G vs. ICE-5G: To answer the question about the thickness difference of the 155 Laurentide ice sheet between ICE-6G and ICE-5G, we plot vertical cross sections of the ice sheet 156 thickness along 45 N and 60 N in Figure R1 below. It can be seen that the thickness of ICE-6G 157 is close to 80% of ICE-5G in general. ICE-6G is even higher than 80% ICE-5G in some regions. 158 The shape of 80% ICE-5G over North America does not well match the twin-peaks of ICE-6G at 159 45 N. However, the shape of 80% ICE-5G matches that of ICE-6G reasonably well at 60 N, 160 except for the region between 200 ° and 230 ° in longitude where 80% ICE-5G is even lower than 161 ICE-6G. Figure 2e shows that as 80% ICE-5G is applied, the PNA path is distorted toward 162 Arctic, and that the present-day PNA no longer exists. 163 164 The PNA is a large-scale atmospheric circulation system. It may not be very sensitive to the small-scale structures of the ice sheet, we feel. 165 In the revised manuscript, we will explicitly point out the differences between ICE-5G and 166

- 167 ICE-6G. Figure R1 will be added to the Supporting Information. In the conclusion section, we
- 168 will add a few sentences to point out how the PNA path changes with increasing ice-sheet
- thickness. For example, the present-day PNA path remains for ice sheet thicknesses no more than

- 170 60% ICE-5G (Figs. 2a-d). However, the PNA is distorted as ice sheet thickness reaches 80%
- 171 ICE-5G (Figs. 2e-g).
- In the revised manuscript, we add a table of model resolutions in Table S1. Model
- 173 resolutions are also described in the Model and Data section (page 5-6). Differences between
- 174 ICE-5G and ICE-6G are also discussed on page 5.

  - Figure R1 below is added to Supplementary Materials, as Figure S1.



<sup>179 5</sup>G are all plotted.

- 180 2. The authors use a point-based definition for the PNA rather than a principle component-181 182 based definition. Given the locations of modes of variability can change under different boundary conditions, restricting themselves to fixed locations in space seems limiting. The 183 authors attempt to compensate for this choice by including a buffer zone around each centre 184 of action, but it feels like the analysis is more convoluted as a result, requiring multiple sets 185 of correlation figures with different centres of actions to explain their results. I would like to 186 see the analyses repeated using PCA for at least one set of model data to see whether that 187 alters the interpretation of their results at all. It should also help with separating the signal 188 they are investigating from the subtropical wave train. 189 190 We have done analysis, using different methods, such as EOF and rotated EOF (REOF). 191
- 192 The results are almost the same as the correlation analysis. Figures R2-4 shows the REOF results

| 193 | of 500 hPa height in NCEP/NCAR reanalysis, CCSM3-PMIP2 PIC and LGM simulations. The          |
|-----|----------------------------------------------------------------------------------------------|
| 194 | 2nd REOFs in the NCEP/NCAR reanalysis and the CCSM3 PIC simulation well represents the       |
| 195 | loading pattern of the present-day PNA (Figures R2 and 3).                                   |
| 196 | In contrast, the 2nd REOF in the CCMS3 LGM simulation does not show the PNA pattern          |
| 197 | (Figure R4). The 3rd and 4th REOFs demonstrate connections between North Pacific and Arctic, |
| 198 | and between North Pacific and the southern part of North America. Discussion of the REOF     |
| 199 | results is added to page 9.                                                                  |
| 200 | The reason why we stay with the point-based method is because the four base-points           |

demonstrate the traditional view of the PNA path. Moreover, it is easier for us to quantify how

202 far the PNA path is distorted away from the present-day PNA path, as shown in Figure 3.





- -0.06 -0.03 0.01 0.04 0.07 Figure R2. Spatial patterns of the Rotated Empirical Orthogonal Function (REOF) analysis of 500 hPa height in NCEP/NCAR reanalysis. 204





207 -0.06 -0.03 0.01 0.04 0.07
208 Figure R3. Spatial patterns of REOFs of 500 hPa height in the PIC simulation of CCSM3.
209



-0.06 -0.03 0.01 0.04 0.07
 Figure R4. Spatial patterns of REOFs of 500 hPa height in the LGM simulation of PMIP2
 CCSM3.

<sup>212</sup> 213

Finally, I find these results interesting from the perspective of altered atmospheric dynamical 214 regimes and altered atmospheric variability in the presence of large ice sheets. I don't understand 215 the authors' interpretation that a rerouting of the teleconnection pattern and reduced strength of 216 the present-day pattern of the PNA makes it "broken". What's so special about Alberta and the 217 Gulf of Mexico? Isn't it also interesting that a re-routed teleconnection means that regions of the 218 Arctic are now being affected more directly by tropical Pacific variability? Also, a discussion of 219 220 how the tropical variability itself might be different at LGM (weaker, as I understand it) would help contextualize the work better. As it is, it makes me curious whether there is an implication 221 for this result they are working toward that isn't communicated in the manuscript. 222

| 223<br>224                                           | Thanks for the suggestion!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 225                                                  | When we use the word "broken", it means breaking of the present-day PNA teleconnection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 226                                                  | We agree with the reviewer that "distorted PNA" is good enough. Therefore, "broken" will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 227                                                  | removed. We shall also focus on the distorted PNA path in the revised version, emphasizing the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 228                                                  | connections toward Arctic and southern part of North America.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 229                                                  | Yes, previous works showed weaker ENSO at LGM (Zhu et al., 2017). We will add brief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 230                                                  | discussion in the revised version.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 231<br>232<br>233<br>234<br>235<br>236<br>237        | Scientific Comments<br>I feel like insufficient information is provided about the datasets provided, particularly for the<br>reanalysis. What years were used? What is its resolution and the resolution of the model results<br>presented?                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 238                                                  | We use the recent 30-year NCEP/NCAR reanalysis from 1988 to 2017. Information of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 239                                                  | horizontal resolutions of reanalysis and models will be added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240<br>241<br>242<br>243<br>244                      | The reanalysis seemed to be used as a proxy for observational conditions. How well does this reanalysis reproduce observed PNA variability? There is observational data for both the pattern and time series of the PNA from 1950 to compare against.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 245                                                  | Yes, reanalysis cannot be considered "real" observational data. At present, most modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 246                                                  | works are compared with reanalysis by taking the advantage of its easier access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 247                                                  | The 2nd REOF in the NCEP/NCAR reanalysis in Figure R2 is almost the same as that given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 248                                                  | by the Climate Prediction Center of NCEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 249                                                  | (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/pna_loading.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 250                                                  | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 251<br>252<br>253<br>254<br>255<br>256<br>257<br>258 | At present, there are three different time periods being presented in the plots in Figures 1, 3 and in the supplement: transient years 195? to 200? in the reanalysis, and fixed boundary conditions under preindustrial and LGM conditions. While it's unlikely that a simulation that doesn't generate a realistic PNA pattern under preindustrial conditions will produce a realistic PNA under late 20th century conditions, it is not accurate to treat the reanalysis and PIC simulations as representing the same climate state. Since the historical experiment is a Tier 1 experiment, results that do match the reanalysis time period should be available for all of the PMIP models |

presented here.

| 261                                                                                                                               | We agree that the PIC simulations of PMIP2 models are different from the NCEP/NCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 262                                                                                                                               | reanalysis that includes climate changes. However, the datasets from PMIP2 simulations are only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 263                                                                                                                               | available for the PIC and LGM experiments, not including historical simulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 264                                                                                                                               | In the present paper, our key point is to address the difference of the PNA path between two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 265                                                                                                                               | very different climate states: LGM vs. present. Therefore, NCEP/NCAR reanalysis is not much                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 266                                                                                                                               | different from the PIC simulation in this context.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 267<br>268<br>269                                                                                                                 | I would like to see a discussion of how the significance of correlations was determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 270                                                                                                                               | We used 30-year data for the reanalysis (1988-2017), all models of PMIP2 and PMIP3, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 271                                                                                                                               | our sensitivity simulations. The degree of freedom is 30. For a two-tailed test, the critical value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 272                                                                                                                               | of the correlation coefficient is 0.35 for the 95% confidence level. We will explicitly point out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 273                                                                                                                               | this in the revised version.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 274<br>275<br>276                                                                                                                 | Be more precise about criteria for considering a PIC simulation to have represented the PNA successfully. Do there have to be significant correlations between Hawaii and within 10deg of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 277<br>278<br>279<br>280<br>281                                                                                                   | criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 277<br>278<br>279<br>280<br>281<br>282                                                                                            | criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.<br>First, we pointed out that our definition is a "loose definition". Such a loose definition is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 277<br>278<br>279<br>280<br>281<br>282<br>283                                                                                     | criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.<br>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 277<br>278<br>279<br>280<br>281<br>282<br>283<br>283                                                                              | criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.<br>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 277<br>278<br>279<br>280<br>281<br>282<br>283<br>283<br>284<br>285                                                                | every other centre of action of also between each of the other centres of action? Funderstood the criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds. First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation coefficient just reaches the criteria at the Gulf Coast for the PIC simulation of HadCM3M2 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286                                                                | <ul> <li>Every other centre of action of also between each of the other centres of action? Funderstood the criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.</li> <li>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation coefficient just reaches the criteria at the Gulf Coast for the PIC simulation of HadCM3M2 and CNRM-CM33 models. Figures S3b and c show two small shallow blue areas that are just at the</li> </ul>                                                                                                                                                                                                                                                                                                                                                     |
| 277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287                                                         | <ul> <li>Every other centre of action of also between each of the other centres of action? Funderstood the criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.</li> <li>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation coefficient just reaches the criteria at the Gulf Coast for the PIC simulation of HadCM3M2 and CNRM-CM33 models. Figures S3b and c show two small shallow blue areas that are just at the margin of the 10 degree circle.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| 277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292<br>293 | <ul> <li>Every other centre of action of also between each of the other centres of action? I understood the criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.</li> <li>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation coefficient just reaches the criteria at the Gulf Coast for the PIC simulation of HadCM3M2 and CNRM-CM33 models. Figures S3b and c show two small shallow blue areas that are just at the margin of the 10 degree circle.</li> <li>Ln 196 The authors claim that FGOALS-1.0g, IPSL-CN4-V1-MR and MIROC3.2 are unable to reproduce the North Pacific centre of action correlations with Hawaii, but only FGOALS-1.0G appears to have insignificant correlations at this site in Fig 3c. Why the claim that they are not reproducing it, then?</li> </ul> |
| 2777<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292<br>293<br>294       | <ul> <li>Every other centre of action of also between each of the other centres of action? I understood the criteria to suggest that the all regions had to be significantly correlated with Hawaii, but a visual inspection of Figure S2 suggests that some of the "well-performing" runs do not capture the Gulf of Mexico centre of action within 10degrees and the defined significance thresholds.</li> <li>First, we pointed out that our definition is a "loose definition". Such a loose definition is to figure out how much the PNA at LGM is distorted away from its present-day path. The quantitative results is shown in Figure 3. It can be seen from Figure 3e that the correlation coefficient just reaches the criteria at the Gulf Coast for the PIC simulation of HadCM3M2 and CNRM-CM33 models. Figures S3b and c show two small shallow blue areas that are just at the margin of the 10 degree circle.</li> <li>Ln 196 The authors claim that FGOALS-1.0g, IPSL-CN4-V1-MR and MIROC3.2 are unable to reproduce the North Pacific centre of action correlations with Hawaii, but only FGOALS-1.0G appears to have insignificant correlations at this site in Fig 3c. Why the claim that they are not reproducing it, then?</li> </ul> |

Ln 242-243 The authors state there are two jets at LGM: a subtropical jet at 30N and a subpolar 297 jet at 63N. Do they actually intend to say that the southward branch is actually a subtropical jet 298 or a subtropically-located eddy-driven jet? 299

#### Yes, the southward branch is the subtropical jet. 301

302

309

300

303 In 247-248 It is true that the latitudinal temperature gradients are sharper at 35-50N, but not much at 70N, where the subpolar jet the authors are discussing arises, unless you include the 304 temperature gradient associated with the ice sheet surface. Due to the lack of evident meridional 305

gradients in temperature here, I question their interpretation. What about the role of katabatic 306 winds or non-linear interactions of the winds with the ice sheet at their westernmost interaction 307 point? 308

Agree. 310

Following the suggestion, we have replotted Figure 6. The bottom panels of temperatures are 311

replaced with meridional temperature gradients (Figs. 6d-f), which are shown below. Meridional 312

temperature gradients show a local maximum at about 70N, right over the northern side of the 313

ice sheet. 314

Katabatic winds are mainly near the surface. Here, the subpolar jet is located between 400 315







Fig. 6. Vertical cross sections of DJF zonal winds and meridional temperature gradients along 319 the longitude of 100 °W in the NCEP/NCAR reanalysis and PMIP2 CCSM3 simulations. Top 320 panels: zonal winds, and bottom panels: temperature gradients. Left panels: NCEP/NCAR,

| 321 | middle panels: PIC, and right panels: LGM. Zonal-wind unit is ms <sup>-1</sup> , and temperature gradient |
|-----|-----------------------------------------------------------------------------------------------------------|
| 322 | unit is K/(1000 km).                                                                                      |
| 323 |                                                                                                           |
| 324 | Ln 260-261 How much does the core of the jet shift southward as the ice sheet height increases            |
| 325 | in supplemental figure 4e? It doesn't appear to be more than a couple of degrees and is barely            |
| 326 | discernible from these plots. The more apparent feature is that the core of the jet becomes much          |
| 327 | narrower as it strengthens, while the 12 m/s isoline initially expands northward and eventually           |
| 328 | breaks away from the rest of the jet.                                                                     |
| 329 |                                                                                                           |
| 330 | Agree. The subtropical jet shifts southward by about 3 degrees. In the revised version, we                |
| 331 | will point out that the jet core becomes narrower with increasing ice sheet thickness.                    |
| 332 |                                                                                                           |
| 333 | Technical Details                                                                                         |
| 334 | Given the authors are analysing CCSM3 simulations at different resolutions, it would be helpful           |
| 335 | to specify which resolution version they are referring to in plots and discussions.                       |
| 336 |                                                                                                           |
| 337 | We will add more specific information of data resolutions in the revised version.                         |
| 338 |                                                                                                           |
| 339 | In Figures 3c and d, it would be helpful for interpreting the results if PMIP2 and PMIP3 models           |

from the same model tree were given the same symbols (where possible). 340 341

342 We have updated Fig. 3.



Fig. 3. Correlation coefficients at the four PNA action centers in PIC and LGM simulations for
PMIP2 and PMIP3 models, with the base point near Hawaii. The negative values over Alberta
and the Gulf Coast are reversed to positive. The dashed lines correspond to 0.35, which represent
the 95% confidence level. (a) CCSM3 and CCSM4, (b) sensitivity simulations, (c) PIC
simulations of PMIP2 models, (d) PIC simulations of PMIP3 models, (e) LGM and PIC
simulations for well-performing PMIP2 models, and (f) LGM and PIC simulations for wellperforming PMIP3 models.

Figures 3e and f caption was difficult to understand without reading a few times and figuring out from the plots themselves. A modification as simple as "LGM and PIC simulations for wellperforming PMIP2 models" would get rid of this problem.

```
356 Thanks, changed.
```

357

355

| 358<br>359<br>360                      | Ln 198 typo "FGOAL-1.0g" to "FGOALS-1.0g" ln 202 typo "Albert" to "Alberta"<br>Thanks, changed.                                                                                                                                                                                                                                                               |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 361<br>362<br>363<br>364<br>365        | In 203-205 missing key point in the text that it is at LGM that these simulations are unable to reproduce correlations of PIC.                                                                                                                                                                                                                                |
| 366<br>367<br>368<br>369               | Ln 240 "North American" to "North America"<br>Revised.                                                                                                                                                                                                                                                                                                        |
| 370<br>371<br>372<br>373               | In 261 "Significant jet split" to "Significant jet splitting"<br>Revised.                                                                                                                                                                                                                                                                                     |
| 374<br>375<br>376<br>377               | In 271 "westerly jet act as wave guides" to "westerly jet acts as a wave guide "<br>Revised.                                                                                                                                                                                                                                                                  |
| 378<br>379<br>380<br>381               | In 339 "We have showed" to "We have shown"<br>Revised.                                                                                                                                                                                                                                                                                                        |
| 382<br>383<br>384<br>385               | In 340 "forced jet split" to "forced jet splitting"<br>Revised.                                                                                                                                                                                                                                                                                               |
| 386<br>387<br>388<br>389<br>390        | In 341-342 double negative makes this sentence say the opposite of what you're trying to say<br>"ENSO would have little direct influence"<br>Thanks, revised.                                                                                                                                                                                                 |
| 391<br>392<br>393<br>394<br>395<br>396 | Figure 7 Overall, I find this plot very effective at illustrating the critical latitudes. However, the presentation of the results in units of $m\Box 1$ rather than the number of wavelengths per latitude circle (e.g. a wave 1 field would have one complete wavelength around the hemisphere) makes it difficult to get meaning from the colour contours. |
| 397                                    | Thanks for the suggestion. We prefer to keep the unit because it is the standard unit. The                                                                                                                                                                                                                                                                    |
| 398                                    | stationary wavenumbers are calculated following equation 6.29 in Held (1983).                                                                                                                                                                                                                                                                                 |

| <ul> <li>399</li> <li>400</li> <li>401</li> <li>402</li> <li>403</li> <li>404</li> </ul> | Figure 8 and S5 Showing the zonal anomalies of geopotential heights would make the author's argument clearer without being limited to the height scale capturing the background zonal gradient.<br>We feel that Figure 8 and S6 can give readers better intuition on how atmospheric                                                                                                                                                  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 405                                                                                      | circulation is forced by the large ice sheet. We prefer to keep the two Figures.                                                                                                                                                                                                                                                                                                                                                      |
| 406<br>407<br>408<br>409<br>410<br>411<br>412                                            | None of the data used in this study was acknowledged. Acknowledging data sources is good practice, and it is also stipulated as a condition of usage in some cases. CMIP data archives also require users to include a table listing information about each simulation used in their publications. The supplement is fine for this, I think.<br>Thanks for the reminder! All the data sources used in the paper will be acknowledged. |
| 413                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 414                                                                                      | References:                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 415                                                                                      | Held IM (1983) Stationary and Quasi-stationary Eddies in the Extratropical Troposphere:                                                                                                                                                                                                                                                                                                                                               |
| 416                                                                                      | Theory. in B. J. Hoskins, Pearce RP (eds.) Large-scale Dynamical Processes in the                                                                                                                                                                                                                                                                                                                                                     |
| 417                                                                                      | Atmosphere. Academic Press, pp. 127–168.                                                                                                                                                                                                                                                                                                                                                                                              |
| 418                                                                                      | Lu Z, Liu Z, Zhu J (2016) Abrupt intensification of ENSO forced by deglacial ice-sheet retreat in                                                                                                                                                                                                                                                                                                                                     |
| 419                                                                                      | CCSM3. Climate Dynamics 46:1877-1891.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 420                                                                                      | Zhu J, Liu Z, Brady E, Otto-Bliesner B, Zhang J, Noone D, Tomas R, Nusbaumer J, Wong T,                                                                                                                                                                                                                                                                                                                                               |
| 421                                                                                      | Jahn A, Tabor C (2017) Reduced ENSO variability at the LGM revealed by an isotope-                                                                                                                                                                                                                                                                                                                                                    |
| 422                                                                                      | enabled Earth system model. Geophysical Research Letters 44:6984-6992.                                                                                                                                                                                                                                                                                                                                                                |
| 423                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 424<br>425<br>426<br>427                                                                 | Distorted Pacific-North American Teleconnection at the Last Glacial<br>Maximum                                                                                                                                                                                                                                                                                                                                                        |
| 428                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 429                                                                                      | Yongyun Hu <sup>1*</sup> , Yan Xia <sup>1</sup> , Zhengyu Liu <sup>1,2</sup> , Yuchen Wang <sup>1</sup> , Zhengyao Lu <sup>1</sup> , and Tao Wang <sup>3</sup>                                                                                                                                                                                                                                                                        |
| 430                                                                                      | <sup>1</sup> Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and                                                                                                                                                                                                                                                                                                                                       |
| 431                                                                                      | Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China                                                                                                                                                                                                                                                                                                                                                         |

| 432 | <sup>2</sup> Atmospheric Science Program, Department of Geography, Ohio State University, Columbus,      |
|-----|----------------------------------------------------------------------------------------------------------|
| 433 | OH, 43210, USA                                                                                           |
| 434 | <sup>3</sup> Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy |
| 435 | of Sciences, Beijing 100029, China                                                                       |
| 436 |                                                                                                          |
| 437 |                                                                                                          |
| 438 |                                                                                                          |
| 439 |                                                                                                          |
| 440 |                                                                                                          |
| 441 |                                                                                                          |
| 442 | Corresponding author: Yongyun Hu, email: <u>yyhu@pku.edu.cn</u>                                          |
| 443 |                                                                                                          |

# 444 Abstract

| 445 | The Pacific-North American (PNA) teleconnection is one of the most important climate                 |
|-----|------------------------------------------------------------------------------------------------------|
| 446 | modes in the present climate condition, and it enables climate variations in the tropical Pacific to |
| 447 | exert significant impacts on North America. Here, we show climate simulations that the PNA           |
| 448 | teleconnection was largely distorted or broken at the Last Glacial Maximum (LGM). The                |
| 449 | distorted PNA is caused by a split of the westerly jet stream, which is ultimately forced by the     |
| 450 | thick and large Laurentide ice sheet at the LGM. Changes in the jet stream greatly alter the         |
| 451 | extratropical wave guide, distorting wave propagation from the North Pacific to North America.       |
| 452 | The distorted PNA suggests that climate variability in the tropical Pacific, notably, El Niño and    |
| 453 | Southern Oscillation (ENSO), would have little direct impact on North American climate at the        |
| 454 | LGM.                                                                                                 |
| 455 |                                                                                                      |
| 456 |                                                                                                      |
| 457 |                                                                                                      |
| 458 |                                                                                                      |
| 459 |                                                                                                      |
| 460 |                                                                                                      |
| 461 |                                                                                                      |
| 462 |                                                                                                      |
| 463 |                                                                                                      |
| 464 |                                                                                                      |
| 465 |                                                                                                      |
| 466 |                                                                                                      |
|     |                                                                                                      |

### 467 1 Introduction

The Pacific-Northern-American (PNA) teleconnection is the major atmospheric 468 teleconnection mode that links climate variations from the tropical Pacific to North America for 469 470 the present-day climate state (Horel and Wallace, 1981; Wallace and Gutzler, 1981). Especially, climate variability associated with El Niño and Southern Oscillation (ENSO) exerts great 471 impacts on the North American climate through the PNA teleconnection (Henderson and 472 Robinson, 1994; Lau, 1997; Leathers et al., 1991; Straus and Shukla, 2002). It is well known that 473 the PNA is largely constrained by extratropical atmospheric flows, notably, the extratropical 474 wave guide (Held, 1983; Held et al., 2002; Hoskins and Karoly, 1981; Jin and Hoskins, 1995). 475 476 Thus, changes in extratropical atmospheric flows should alter the PNA under different climate conditions. 477 It has been shown that greenhouse warming leads to a strengthening and a shift of the PNA 478

due to altered extratropical atmospheric flows (Allan et al., 2014; Chen et al., 2017). There has 479 also been a large body of works that demonstrated significant differences in extratropical 480 atmospheric circulations in cold climates, notably, the Last Glacial Maximum (LGM). It was 481 shown that during the LGM the Aleutian low pressure system was enhanced in winter, the 482 Pacific high pressure system was weakened in summer (Yanase and Abe-Ouchi, 2007; Yanase 483 and Abe-Ouchi, 2010), the westerly jet shifted southward (Braconnot et al., 2007; Otto-Bliesner 484 et al., 2006), and transient waves were weakened over the North Pacific and strengthened over 485 the North Atlantic (Justino and Peltier, 2005; Justino et al., 2005). These works suggest that the 486 PNA could be changed for different climate regimes. Therefore, a natural question is whether the 487 PNA is also significantly altered due to atmospheric circulation changes at the LGM. 488

| 489 | The LGM occurred between 23,000 and 19,000 years ago (Clark et al., 2009; Clark and                     |
|-----|---------------------------------------------------------------------------------------------------------|
| 490 | Mix, 2002). One of the most significant climatic characteristics at LGM is the maximum                  |
| 491 | expansion of mid-latitude ice sheets. Extensive ice sheets grew over North America and                  |
| 492 | northwestern Europe, with the Laurentide ice sheet over North America, in particular, of an ice         |
| 493 | thickness of 3 to 4 kilometers (Marshall et al., 2002). Early simulations have shown that the thick     |
| 494 | and large Laurentide ice sheet forced a split of the extratropical westerly jet stream into the         |
| 495 | northern and southern branches (Cohmap, 1988; Kutzbach and Wright, 1985; Rind, 1987), and               |
| 496 | that the jet split leads to regional climate changes over the globe, especially over North America.     |
| 497 | Proxy records showed that there were more storms and precipitation associated with the southern         |
| 498 | branch, causing high lake levels and increased woodlands in the southwestern United States              |
| 499 | (Cohmap, 1988; Kutzbach and Wright, 1985).                                                              |
| 500 | Recent modeling studies showed that the Arctic Oscillation and storm tracks at LGM                      |
| 501 | differ significantly from the present (Justino and Peltier, 2005; La în éet al., 2009; Li and Battisti, |
| 502 | 2008; Lüet al., 2010; Rivière et al., 2010), and that the Laurentide ice sheet can also influence       |
| 503 | the Southern-Hemisphere atmospheric teleconnection and climate variability over West                    |
| 504 | Antarctic (Jones et al., 2018). Therefore, it is possible that changed atmospheric circulations at      |
| 505 | LGM might also significantly alter the PNA and thus climate linkage between the tropical                |
| 506 | Pacific and North America.                                                                              |
| 507 | In the present paper, using climate simulation results, we show that the PNA is largely                 |
| 508 | distorted or even broken by the Laurentide ice sheet at LGM, and that ENSO had little direct            |
|     |                                                                                                         |
| 509 | impact on North American climates. We will also address how the PNA is altered by the                   |

511 2 Models and data

| 512                                                                                                                                          | The simulation results from the Paleoclimate Modeling Intercomparison Project 2 (PMIP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 513                                                                                                                                          | (Braconnot et al., 2012; Braconnot et al., 2007) and 3 (PMIP3) (Abe-Ouchi et al., 2015) are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 514                                                                                                                                          | utilized in this studyBy comparing the PNA patterns in the Preindustrial condition (PIC) with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 515                                                                                                                                          | LGM simulations as well as our own sensitivity simulations, the changes in the PNA pattern at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 516                                                                                                                                          | LGM are identified. The horizonal resolution of the models we use are listed in table S1. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 517                                                                                                                                          | comparison, we also use the NCEP/NCAR reanalysis data from 1988 to 2017 (Kistler et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 518                                                                                                                                          | 2001), with horizontal resolution of 2.5 $\times$ 2.5 $^{\circ}$ . We shall mainly focus on the simulation results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 519                                                                                                                                          | from the Community Climate System Model version 3 (CCSM3) (Collins et al., 2006; Jones et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 520                                                                                                                                          | al., 2018; Otto-Bliesner et al., 2006; Yeager et al., 2006), since our sensitivity simulations are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 521                                                                                                                                          | performed with the same model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 522                                                                                                                                          | To understand the impact of the topography of the Northern-Hemisphere glacial ice sheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 523                                                                                                                                          | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 523<br>524                                                                                                                                   | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses, which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 523<br>524<br>525                                                                                                                            | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses, which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 523<br>524<br>525<br>526                                                                                                                     | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,<br>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used<br>in PMIP2. <u>Note that different ice sheet reconstructions were used in PMIP2 and PMIP3</u><br><u>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction The ICE 5G (VM2)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 523<br>524<br>525<br>526<br>527                                                                                                              | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,<br>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used<br>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3<br>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction <u>The ICE 5G (VM2)</u><br>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> </ul>                                                     | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,<br>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used<br>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3<br>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction <u>The ICE 5G (VM2)</u><br>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G<br>reconstruction. In general, t <del>We find that the</del> ice sheet thickness in the latest-ICE-6G                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> <li>529</li> </ul>                                        | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,<br>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used<br>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3<br>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction <u>The ICE-5G (VM2)</u><br>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G<br>reconstruction. In general, t <del>We find that the</del> ice sheet thickness in the latest-ICE-6G<br>reconstruction <del>, ICE-6G, is similar</del> approximately equal to 80% of the ice sheet thickness in-ICE-                                                                                                                                                                                                                                                                     |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> <li>529</li> <li>530</li> </ul>                           | <ul> <li>on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,</li> <li>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used</li> <li>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3</li> <li>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction The ICE-5G (VM2)</li> <li>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G</li> <li>reconstruction. In general, tWe find that the ice sheet thickness in the latest-ICE-6G</li> <li>reconstruction, ICE-6G, is similarapproximately equal to 80% of the ice sheet thickness in-ICE-5G (SG infor most parts of the North American region (Figure S1). HereIn our sensitivity</li> </ul>                                                                                                                                                     |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> <li>529</li> <li>530</li> <li>531</li> </ul>              | <ul> <li>on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,</li> <li>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used</li> <li>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3</li> <li>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction The ICE 5G (VM2)</li> <li>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G</li> <li>reconstruction, In general, tWe find that the ice sheet thickness in the latest-ICE-6G</li> <li>reconstruction, ICE-6G, is similarapproximately equal to 80% of the ice sheet thickness in ICE-</li> <li>5G infor most parts of the North American region (Figure S1), HereIn our sensitivity</li> <li>simulations, the case of 0% ice sheet thickness means that the thickness of the ice sheet is set to</li> </ul>                                  |
| <ul> <li>523</li> <li>524</li> <li>525</li> <li>526</li> <li>527</li> <li>528</li> <li>529</li> <li>530</li> <li>531</li> <li>532</li> </ul> | on the PNA, we performed a series of sensitivity simulations with different ice sheet thicknesses,<br>which are 0%, 20%, 40%, 60%, 80%, 100%, and 150% of the ice sheet thickness that was used<br>in PMIP2. Note that different ice sheet reconstructions were used in PMIP2 and PMIP3<br>simulations. PMIP2 simulations used the ICE-5G (VM2) reconstruction The ICE 5G (VM2)<br>reconstruction is used here (Peltier, 2004), while PMIP3 simulations used the ICE-6G<br>reconstruction, In general, tWe find that the ice sheet thickness in the latest-ICE-6G<br>reconstruction, ICE-6G, is similarapproximately equal to 80% of the ice sheet thickness in ICE-<br>5G infor most parts of the North American region (Figure S1), HereIn our sensitivity<br>simulations, the case of 0% ice sheet thickness means that the thickness of the ice sheet is set to<br>zero, but the surface albedo remains ice albedo. All other conditions remain-are the same as that |

resolution version of CCSM3 (T31), with horizontal a resolution of 3.8 %3.8 %, which It differs

| 535 | from that the PMIP2 models (142), with used in PMIP2 (142, a horizontal resolution of               |
|-----|-----------------------------------------------------------------------------------------------------|
| 536 | 2.8 %2.8 %. Previous work found that the lowest resolution where a poleward-propagating             |
| 537 | elimatological wave train exists is T31, which corresponds to a zonal grid spacing of about 300     |
| 538 | <u>km in midlatitudes (Löfverström et al., 2016; Magnusdottir and Haynes, 1999). Using Although</u> |
| 539 | the horizontal resolution in CCSM3 T31 is lowerour simulations, it can we find that the CCSM3       |
| 540 | at T31 resolution well reproduced the present-day PNA pattern in the PIC simulation-(Fig. 2h),      |
| 541 | which is consistent with the results in Magnusdottir and Haynes (1999) and Löfverström et al.       |
| 542 | (2016). Therefore, the results here are not sensitive to model resolutions.                         |
| 543 | All analyses are conducted with monthly-mean model outputs of the last 30-year                      |
| 544 | simulations.                                                                                        |
| 545 | In the present paper, all correlation analyses are conducted with monthly-mean model                |
| 546 | outputs of the last 30-year simulations. Correlation coefficient 0.35 corresponds to the 95%        |
| 547 | confidence level for 30-year correlations.                                                          |
| 548 | 3 Results                                                                                           |
| 549 | Fig. 1 shows one-point correlation maps of 500 hPa geopotential heights in DJF, with the            |
| 550 | base point near Hawaii. The correlation maps in Figs. 1a and 1b exhibit similar wave-train          |
| 551 | patterns, with centers of positive and negative correlations extending from Hawaii to North         |
| 552 | Pacific, Alberta, and finally to the Gulf Coast, respectively. Hence, the present-day PNA is        |
| 553 | reproduced reasonably well in CCSM3. In contrast, this PNA pattern is altered dramatically in       |
| 554 | the LGM simulation of CCSM3 (Fig. 1c). The negative correlation over North Pacific is reduced,      |
| 555 | and the center of positive correlation is rather weak and shifted to the Arctic. The most striking  |
| 556 | feature in Fig. 1c is that the center of negative correlation near the Gulf Coast completely        |

557 disappears. The results in Fig. 1 indicate that the PNA teleconnection is largely distorted at



558 LGM. This is the most important point of the present paper.

- Fig. 1. One-point correlation maps of 500 hPa geopotential heights in DJF in NCEP/NCAR
   reanalysis and PMIP2 CCSM3 simulations. (a) NCEP/NCAR, (b) PIC, and (c) LGM. The base
   point is near Hawaii. The correlation coefficient of 0.35 corresponds to the 95% confidence level
   for 30-year correlations.
- This distorted PNA at LGM can also be seen from correlation maps for the other three base 564 points. When the base point is located over North Pacific (Fig. S24c), the center of positive 565 566 correlation over North America is shifted to northern Canada. For the base point over North America (Fig. S2+f), the negative correlations over North Pacific and the Gulf Coast are all 567 largely reduced, and the center of positive correlation near Hawaii disappears. This result 568 indicates a disconnection between North America and the tropical Pacific. For the base point 569 near the Gulf Coast (Fig. S24i), a wave train is established from North Pacific to the Gulf Coast, 570 while the center of positive correlation over North America is largely reduced, and the center of 571 positive correlation near Hawaii is absent. 572
- 573 The PNA teleconnection at LGM is even completely broken in other PMIP2 models. There
- are seven PMIP2 models that have simulations available online. According to our definition,

| 575 | CCSM3, ECBILTCLIO, HadCM3M2, and CNRM-CM33 can reasonably reproduce the PNA in                   |
|-----|--------------------------------------------------------------------------------------------------|
| 576 | their PIC simulations (Fig. 1b and Figs. S32a-c), whereas IPSL-CM4-V1-MR, FGOALS-1.0g,           |
| 577 | and MIROC3.2 have poor performance. In LGM simulations, the center of negative correlation       |
| 578 | over North Pacific still exists in ECBILTCLIO, HadCM3M2, and CNRM-CM33 (Figs. S32d-f),           |
| 579 | although they all shift away from the North Pacific base point and are largely reduced. However, |
| 580 | the center of positive correlation over North America completely disappears in these plots.      |
| 581 | Moreover, the center of negative correlation near the Gulf Coast also disappears in the three    |
| 582 | models.                                                                                          |

PMIP3 simulations are also used to demonstrate the changes in the PNA teleconnection at 583 LGM. There are eight PMIP3 models that have LGM simulations available online. Again, 584 according to our definition, CCSM4, MRI-CGCM3, and MIROC-ESM can reasonably reproduce 585 the PNA in their PIC simulations (Figs. S43a-c). The LGM simulations of CCSM4 and MRI-586 CGCM3 show the absence of the center of positive correlation over North America (Figs. S43d 587 and e). The center of positive correlation in MIROC-ESM is weak and biased toward the Arctic 588 (Fig. S43f). The center of negative correlation near the Gulf Coast is absent in MRI-CGCM3 and 589 MIROC-ESM. Although there is a negative center in CCSM4 (Fig. S43d), it is more like a result 590 of the subtropical wave train, rather than a part of PNA. Thus, the LGM simulations in PMIP3 591 592 models demonstrate that the PNA is either distorted or completely broken. 593 We have also done Empirical Orthogonal Function (EOF) and rotated EOF (REOF) analysis

to examine the PNA pattern for both LGM and PIC simulations (figures not shown here). It is
 found that the second REOF modes in both the NCEP reanalysis and the CCSM3 PIC simulation

all well represent the loading pattern of the present-day PNA. However, the second REOF in the

597 CCSM3 LGM simulation does not show the PNA pattern. The third and fourth REOFs in the



Fig. 2 illustrates PNA responses to different ice sheet thicknesses in sensitivity simulations. 600 The PNA pattern remains for ice sheet thicknesses no more than 60% of that in PMIP2 (Figs. 2a-601 d). In contrast, the PNA is distorted as ice sheet thickness is increased to 80%. The center of 602 positive correlation is shifted to the Arctic, and the center of negative correlation near the Gulf 603 Coast disappears (Fig. 2e). As ice sheet thickness is further increased to 100 % and 150% (Figs. 604 605 2f-g), the center of positive correlation over North America disappears. Again, the center of negative correlation is more like a part of the subtropical wave train. These results of sensitivity 606 simulations suggest that the PNA is distorted or even broken as the Laurentide ice sheet is 607 sufficiently thick. 608



609

610 Fig. 2. One-point correlation maps of 500 hPa geopotential heights in DJF in sensitivity

simulations, with different ice sheet thicknesses. The base point is near Hawaii. (a) 0%, (b) 20%.

612 (c) 40%, (d) 60%, (e) 80%, (f) 100%, (g) 150%, and (h) PIC. The correlation coefficient of 0.35

613 corresponds to the 95% confidence level for 30-year correlations.

| 614 | Fig. 3 summarizes correlation coefficients around the four base points for PMIP2,                    |
|-----|------------------------------------------------------------------------------------------------------|
| 615 | PMIP3, and our sensitivity simulations, according to our definition above. In Fig. 3a, both          |
| 616 | CCSM3 and CCSM4 show statistically significant correlations at all the four points in the PIC        |
| 617 | simulations. In contrast, they all demonstrate insignificant correlations near Alberta in LGM        |
| 618 | simulations. The significant correlation of CCSM4 LGM simulation near the Gulf coast is a            |
| 619 | result of subtropical wave train (Fig. $S43d$ ), as mentioned above. In Fig. 3b, the correlation     |
| 620 | coefficient near Alberta becomes less significant as ice sheet thickness reaches 80%. Correlation    |
| 621 | coefficients at the Gulf coast are insignificant for 80% and 150% ice sheet thickness. The           |
| 622 | significant correlation for 100% ice sheet thickness is a result of subtropical wave train, as shown |
|     |                                                                                                      |

623 in Fig. 2f.



624

**Fig. 3.** Correlation coefficients at the four PNA action centers in PIC and LGM simulations for PMIP2 and PMIP3 models, with the base point near Hawaii. The negative values over Alberta North Pacific and the Gulf Coast are reversed to positive. The dashed lines correspond to 0.35, which represent the 05% coefficience level (c) CCSM2 and CCSM4 (b) coefficients involutions.

which represent the 95% confidence level. (a) CCSM3 and CCSM4, (b) sensitivity simulations, (c) PIC simulations of PMIP2 models, (d) PIC simulations of PMIP3 models, (e) <u>LGM and PIC</u>

630 simulations for well-performing PMIP2 models<del>comparison of LGM with PIC simulations for</del>

| 631 | PMP2gappfinnnematk;mtf1_CMmPCSimteinsfordpefinningPMP3matkcompionf1_CMwitPCsimteinsforMP3gappfinnnematk   |
|-----|-----------------------------------------------------------------------------------------------------------|
| 632 |                                                                                                           |
| 633 | Figs. 3c and d shows that most PMIP2 and PMIP3 models are able to reproduce the                           |
| 634 | center of negative correlations over the North Pacific in their PIC simulations, except for               |
| 635 | FGOAL <u>S</u> -1.0g. <del>3</del> IPSL-CN4-V1-MR, and MIROC3.2. FGOALS-1.0g that generates insignificant |
| 636 | correlations at either North Pacific or Alberta. CNRM-CM33 and MIROC3.2 cannot generate                   |
| 637 | significant correlations near the Gulf coast. Fig. 3d shows that CCSM4, MRI-CGCM3, and                    |
| 638 | MIROC-ESM are able to reproduce significant correlations at all four points in their PIC                  |
| 639 | simulations, whereas the other 5 models have insignificant correlations at either Alberta or the          |
| 640 | Gulf Coast. Figs. 3e and f show that PMIP2 and PMIP3 models, which have good performance                  |
| 641 | in simulating the PNA teleconnection in PIC simulations, all cannot reproduce significant                 |
| 642 | positive correlations at Alberta or even negative correlations near the Gulf coast in the LGM             |
| 643 | simulations. These results all suggest that the PNA was distorted or broken at LGM.                       |
| 644 | Because the PNA pattern is characterized by a quasi-stationary wave train from the                        |
| 645 | tropical Pacific to North America, the above simulation results suggest that the PNA wave-train           |
| 646 | propagation is largely altered at LGM. This can be confirmed by activity fluxes of stationary             |
| 647 | waves at 500 hPa calculated, using equation 7.1 in Plumb (1985) (Fig. 4), which represents the            |
| 648 | propagation direction of stationary waves (Plumb, 1985). At present, the wave activity fluxes             |
| 649 | have two branches for wave propagation from the North Pacific toward North America (Fig. 4a).             |
| 650 | The major branch propagates northeastward, forming the PNA teleconnection, while the minor                |
| 651 | branch propagates southeastward. At LGM, however, wave propagation is altered drastically.                |
| 652 | Wave propagation is deflected toward the subtropics (Figs. 4b and c). This is consistent with the         |
| 653 | correlation map in Fig. S24i that shows a wave train from North Pacific to the Gulf Coast.                |
| 1   |                                                                                                           |

## <sup>654</sup> Therefore, the distorted or broken PNA at LGM is mainly due to the deflection of wave

655 propagation toward the southeast.









Fig. 5. Maps of 500 hPa zonal winds in DJF in PMIP2 CCSM3 simulations. (a) PIC, (b) LGM, and (c) LGM – PIC. Color interval:  $5 \text{ m s}^{-1}$ .

| 678 | Differences of zonal winds over North American can also be illustrated with the vertical                        |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 679 | cross-sections along 100 $$ W (Fig. 6). The single subtropical westerly jet in the PIC simulation               |
| 680 | (Fig. 6b) is split into two jets at LGM (Fig. 6c): a subtropical jet at 30 % and 200 hPa, and a                 |
| 681 | subpolar jet at 63 N and between 400 and 300 hPa. The subtropical jet is intensified to a                       |
| 682 | maximum wind speed of 40 m $s^{-1}$ and is located at a lower latitude, and it is much stronger than            |
| 683 | that in the PIC simulation (~ 30 m s <sup>-1</sup> ). The subpolar jet is much weaker, with a maximum speed     |
| 684 | of about 12 m s <sup>-1</sup> . The differences in zonal winds are associated with different thermal structures |
| 685 | between LGM and PIC simulations. Comparison of Figs. 6f with 6e shows that latitudinal                          |
| 686 | temperature gradients in the subtropics are sharper at LGM than at present. Thus, the stronger                  |
| 687 | subtropical jet is associated with the sharper temperature gradient.                                            |



ice sheet thickness is increased to 100% and 150%, the jet split becomes more significant, and
easterly winds begin to develop over the ice sheet.

Note that the orographic forcing is further reinforced by the thermal forcing of the large ice sheet (Liakka, 2012). The high albedo of the ice sheet causes cold air aloft, resulting in sharper latitudinal temperature gradients in the subtropics at LGM. Thus, this enhanced temperature gradient causes a stronger subtropical jet through the thermal wind relation. Our sensitivity simulations also show that subtropical temperature gradients become sharper with increasing ice sheet thicknesses.

714 The split of the westerly jet acts as wave guides to orient wave propagation, as shown in Fig. 4. The major path of wave propagation is associated with the major jet branch. Both Figs.  $S_{2+c}^{2+c}$ 715 716 and S24i all show that a southern wave train is established along the southern jet branch from North Pacific sweeping across the southern US. This wave train would lead to more storms and 717 precipitation in the American Southwest, consistent with proxy records and previous modeling 718 studies (Cohmap, 1988). The minor path of wave propagation toward the Arctic is along with the 719 northern branch (Fig. 1c), but of a much reduced strength. As such, a southern wave guide is 720 established along the subtropical jet, while the northern wave guide is either distorted toward the 721 Arctic or completely broken. 722

Our sensitivity simulations demonstrate dramatic changes in the PNA wave train between 80% and 100% ice sheet thicknesses (Fig. 2e vs. Fig. 2f). The dramatic changes are associated with the occurrence of easterly winds over the Laurentide ice sheet (Figs. 7a-c). For the case of 80% ice sheet thickness, westerly winds remain between the two jet streams (Fig. 7b). In contrast, easterly winds appear over the ice sheet as the ice sheet thickness is increased to 100% (Fig. 7c). The zero-wind line between easterly and westerly winds acts as the critical layer to

| 729      | reflect stationary waves (Held, 1983). This can be addressed with calculations of critical                   |
|----------|--------------------------------------------------------------------------------------------------------------|
| 730      | stationary wavenumbers (Fig. 7 <u>d-f</u> ) (eq. 6.29 in Held (1983)). The orange-red shading indicates      |
| 731      | the areas where stationary waves can propagate, while the shallow-blue shading indicates the                 |
| 732      | areas with imaginary wavenumbers, in which propagation of stationary waves is prohibited.                    |
| 733      | These shallow-blue areas are associated with the easterly winds. When the ice sheet thickness is             |
| 734      | 60% (Fig. <del>7a<u>7</u>d</del> ), North Pacific and North America are dominated with positive wavenumbers, |
| 735      | and the PNA remains. For 80% ice sheet thickness, imaginary wavenumbers occur in Northeast                   |
| 736      | Pacific and North America (Fig. 7 <u>b7e</u> ), and it forces the PNA wave train distorted toward the        |
| 737      | Arctic. For 100% ice sheet thickness, the subpolar region is dominated with imaginary                        |
| 738      | wavenumbers (Fig. 7e7f). It causes stationary waves reflected southeastward, leading to the                  |
| 1<br>739 | establishment of the southern wave train and the breaking up of the northern wave train.                     |



Fig. 7. Distributions of <u>zonal winds and eritical</u>-stationary wavenumbers for different ice sheet
 thicknesses in sensitivity simulations in DJF. <u>Top panels: zonal winds, and bottom panels:</u>
 eritical-stationary wavenumbers. (a, d) 60%, (b, e) 80%, and (c, f) 100%. <u>Zonal-wind unit is m s</u><sup>-1</sup>
 <u>1, and eritical-stationary wavenumberunitism</u><sup>1</sup><u>Colorinterval is 0.2x10<sup>7</sup> m</u><sup>-1</sup>. The shallow-blue areas in the bottom panels have
 imaginary wavenumbers.

<sup>746</sup> 

The occurrence of easterly winds can be further illustrated with the geopotential heights at 500 hPa (Fig. 8). In both NCEP/NCAR reanalysis and the PIC simulation, there is only a weak ridge along the west coast of North America (Figs. 8a and b). In contrast, the ridge at LGM is largely enhanced and shows northwestern tilting (Fig. 8c). It is this strong ridge that leads to altered zonal flows. The major branch moves equatorward, and the minor branch flows around

the ridge northward, resulting in the formation of easterly winds over the ice sheet and North

753 Pacific. It also can be seen in the sensitivity simulations that the west-coast ridge increases with





Fig. 8. Climatological mean 500 hPa geopotential heights in DJF in NCEP/NCAR reanalysis and
 PMIP2 CCSM3 simulations. (a) NCEP/NCAR, (b) PIC, and (c) LGM. The unit is meter.

The distorted or broken PNA teleconnection at LGM suggests a disconnection of climate 759 variability from the tropical Pacific to the North American continent, such that ENSO would 760 have little direct influence on North American climates. Fig. 9 shows regression maps of surface 761 air temperatures (SATs) on the Nino3.4 index in DJF. At present, the remote ENSO impacts on 762 North American SATs through the PNA teleconnection can be identified clearly (Figs. 9a and 763 9b), which is characterized by an anomalously warm climate over the northwestern North 764 America and an anomalously cold climate over the southeastern United State. However, there are 765 no significant regressions of SATs over North America at LGM (Fig. 9c), except for the positive 766

values near the east coast.



Fig. 9. DJF SAT regressions on the Nino3.4 index in NCEP/NCAR reanalysis and PMIP2
 CCSM3 simulations. (a) NCEP/NCAR reanalysis, (b) PIC, and (c) LGM. The regression value
 of 0.21 corresponds to the 95% confidence level for 30-year regressions.

- 773 At present, ENSO also has important influences on North American precipitation. Similar
- features can also be seen from regression maps of precipitation (Fig. 10). Fig. 10a shows
- precipitation regression on the Nino3.4 index in the PIC simulation. The wave train pattern of
- precipitation is clearly shown in the plot. However, the wave train of precipitation is absent in
- the LGM simulations (Fig. 10b).



- Fig. 10. Precipitation regressions on the Nino3.4 index in the CCSM4 PMIP3 simulations. (a) PIC,
- and (b) LGM. Dotted areas indicate significant regressions for the 95% confidence level for 30-
- 781 year regressions.

| 783 | 4 Conclusions and Discussions                                                                        |
|-----|------------------------------------------------------------------------------------------------------|
| 784 | We have show <u>n</u> ed in climate simulations that the large and thick Laurentide ice sheet at     |
| 785 | LGM forced jet splitting and the formation of easterly winds over North America. It                  |
| 786 | consequently causes altered wave guides and distorted or broken PNA. It appears that the PNA         |
| 787 | was separated into two teleconnections at LGM. One is from North Pacific to Arctic, and the          |
| 788 | other one is from North Pacific to the southern part of North America.                               |
| 789 | This result suggests that ENSO would not have little direct influence on North American              |
| 790 | climates at LGM. Our study provides a dynamic framework to understand the PNA                        |
| 791 | teleconnection not only at LGM but also in other glacial periods. This understanding may help us     |
| 792 | interpreting proxy records in the past. For example, a previous study on varve record in New         |
| 793 | England linked the change of the intensity of interannual variability in the northeastern US         |
| 794 | during the early glacial period to the change of ENSO intensity (Rittenour et al., 2000). Our        |
| 795 | study suggests that this interannual variability is unlikely to be caused by the climate variability |
| 796 | from the tropical Pacific, because of the distorted or broken PNA teleconnection; instead, it        |
| 797 | reflects mainly the change of local climate variability (Liu et al., 2014). Much further work is     |
| 798 | needed in developing proxy records of high temporal resolutions to identify the PNA change in        |
| 799 | paleoclimate records.                                                                                |
| 800 | Previous works have shown weaker ENSO variability at LGM (Zhu et al., 2017). How                     |
| 801 | the weaker tropical variability would impact climates over extratropics and high-latitudes,          |
| 802 | through the altered atmospheric teleconnections, deserves future studies.                            |
| 803 |                                                                                                      |

804 Acknowledgements

|  | 805 | We acknowledge thank the international | l <del>participant</del> modeling group | ps of the PMIP2 and PMIP3 projects whom |
|--|-----|----------------------------------------|-----------------------------------------|-----------------------------------------|
|--|-----|----------------------------------------|-----------------------------------------|-----------------------------------------|

- the simulation data available. We also thank modeling groups of CMIP3 and CMIP5 whose pre-
- 807 industrysimulation dataare used here, the interminant modeling or providing the industrysimulation may six NCEP Reamly six data reprovided by the
- 808 NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
- 809 <u>http://www.cdc.noaa.gov/. This workY. Hu and Y. Xia areis</u> supported by the National Natural
- 810 Science Foundation of China (<u>NSFC)</u> under grants 41888101 and -41761144072, and <u>Z. Liu is</u>
- 811 supported by NSFC under grant 41630527. We thank the Eeditor and two anonymous reviewers
- 812 for providing their insightful comments on the paper.

# 813 References

| 814 | Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-            |
|-----|-------------------------------------------------------------------------------------------------------|
| 815 | Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J. Y., and Takahashi, K.: Ice-sheet       |
| 816 | configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model                      |
| 817 | Dev., 8, 3621-3637, 2015.                                                                             |
| 818 | Allan, A. M., Hostetler, S. W., and Alder, J. R.: Analysis of the present and future winter Pacific-  |
| 819 | North American teleconnection in the ECHAM5 global and RegCM3 regional climate                        |
| 820 | models, Climate Dynamics, 42, 1671-1682, 2014.                                                        |
| 821 | Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi,        |
| 822 | A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data,          |
| 823 | Nature Climate Change, 2, 417, 2012.                                                                  |
| 824 | Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J. Y., Abe-Ouchi, A.,     |
| 825 | Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., La îr é         |
| 826 | A., Loutre, M. F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and         |
| 827 | Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial                   |
| 828 | Maximum - Part 1: experiments and large-scale features, Clim. Past, 3, 261-277, 2007.                 |
| 829 | Chen, Z., Gan, B., Wu, L., and Jia, F.: Pacific-North American teleconnection and North Pacific       |
| 830 | Oscillation: historical simulation and future projection in CMIP5 models, Climate                     |
| 831 | Dynamics, doi: 10.1007/s00382-017-3881-9, 2017. 2017.                                                 |
| 832 | Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., |
| 833 | Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710-714,                 |
| 834 | 2009.                                                                                                 |

- <sup>835</sup> Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quaternary
   <sup>836</sup> Science Reviews, 21, 1-7, 2002.
- <sup>837</sup> Cohmap, M.: Climatic Changes of the Last 18,000 Years: Observations and Model Simulations,
  <sup>838</sup> Science, 241, 1043-1052, 1988.
- <sup>839</sup> Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A.,
- 840 Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna,
- 841D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model Version 3
- 842 (CCSM3), Journal of Climate, 19, 2122-2143, 2006.

Held, I. M.: Stationary and Quasi-stationary Eddies in the Extratropical Troposphere: Theory. In:
Large-scale Dynamical Processes in the Atmosphere, B. J. Hoskins and Pearce, R. P. (Eds.),

- Academic Press, 1983.
- Held, I. M., Ting, M., and Wang, H.: Northern Winter Stationary Waves: Theory and Modeling,
  Journal of Climate, 15, 2125-2144, 2002.
- 848 Henderson, K. G. and Robinson, P. J.: Relationships between the pacific/north american
- teleconnection patterns and precipitation events in the south eastern USA, International
  Journal of Climatology, 14, 307-323, 1994.
- <sup>851</sup> Horel, J. D. and Wallace, J. M.: Planetary-Scale Atmospheric Phenomena Associated with the
  <sup>852</sup> Southern Oscillation, Monthly Weather Review, 109, 813-829, 1981.
- Hoskins, B. J. and Karoly, D. J.: The Steady Linear Response of a Spherical Atmosphere to
  Thermal and Orographic Forcing, Journal of the Atmospheric Sciences, 38, 1179-1196,
  1981.
- Jin, F. and Hoskins, B. J.: The Direct Response to Tropical Heating in a Baroclinic Atmosphere,
  Journal of the Atmospheric Sciences, 52, 307-319, 1995.

| 858      | Jones, T. R., Roberts, W. H. G., Steig, E. J., Cuffey, K. M., Markle, B. R., and White, J. W. C.:  |
|----------|----------------------------------------------------------------------------------------------------|
| 859      | Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet                    |
| 860      | topography, Nature, 554, 351, 2018.                                                                |
| 861      | Justino, F. and Peltier, W. R.: The glacial North Atlantic Oscillation, Geophysical Research       |
| 862      | Letters, 32, 2005.                                                                                 |
| 863      | Justino, F., Timmermann, A., Merkel, U., and Souza, E. P.: Synoptic Reorganization of              |
| 864      | Atmospheric Flow during the Last Glacial Maximum, Journal of Climate, 18, 2826-2846,               |
| 865      | 2005.                                                                                              |
| 866      | Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki,   |
| 867      | W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-             |
| 868      | NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, B Am Meteorol                     |
| 869      | Soc, 82, 247-267, 2001.                                                                            |
| 870      | Kutzbach, J. E. and Wright, H. E.: Simulation of the climate of 18,000 years BP: Results for the   |
| 871      | North American/North Atlantic/European sector and comparison with the geologic record of           |
| 872      | North America, Quaternary Science Reviews, 4, 147-187, 1985.                                       |
| 873      | La ît é, A., Kageyama, M., Salas-M dia, D., Voldoire, A., Rivi ère, G., Ramstein, G., Planton, S., |
| 874      | Tyteca, S., and Peterschmitt, J. Y.: Northern hemisphere storm tracks during the last glacial      |
| 875      | maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle,             |
| 876      | precipitation, Climate Dynamics, 32, 593-614, 2009.                                                |
| 877      | Lau, NC.: Interactions between Global SST Anomalies and the Midlatitude Atmospheric                |
| l<br>878 | Circulation, B Am Meteorol Soc, 78, 21-34, 1997.                                                   |

| 879 | Leathers, D. J., Yarnal, B., and Palecki, M. A.: The Pacific/North American Teleconnection                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 880 | Pattern and United States Climate. Part I: Regional Temperature and Precipitation                                                                       |
| 881 | Associations, Journal of Climate, 4, 517-528, 1991.                                                                                                     |
| 882 | Li, C. and Battisti, D. S.: Reduced Atlantic Storminess during Last Glacial Maximum: Evidence                                                           |
| 883 | from a Coupled Climate Model, Journal of Climate, 21, 3561-3579, 2008.                                                                                  |
| 884 | Liakka, J.: Interactions between topographically and thermally forced stationary waves:                                                                 |
| 885 | implications for ice-sheet evolution, Tellus A: Dynamic Meteorology and Oceanography,                                                                   |
| 886 | 64, 11088, 2012.                                                                                                                                        |
| 887 | Liu, Z., Lu, Z., Wen, X., Otto-Bliesner, B. L., Timmermann, A., and Cobb, K. M.: Evolution and                                                          |
| 888 | forcing mechanisms of El Niño over the past 21,000 years, Nature, 515, 550, 2014.                                                                       |
| 889 | Löfverström, M., Caballero, R., Nilsson, J., and Messori, G.: Stationary <u>w</u> Wave <u>r</u> Reflection as a                                         |
| 890 | <u>m</u> Mechanism for <u>z</u> Zonalizing the Atlantic <u>w</u> Winter jJet at the LGM, Journal of the <u>i</u>                                        |
| 891 | Atmospheric Atmos. Sciences Sci., 73, 3329-3342, 2016.                                                                                                  |
| 892 | Lü, JM., Kim, SJ., Abe-Ouchi, A., Yu, Y., and Ohgaito, R.: Arctic Oscillation during the Mid-                                                           |
| 893 | Holocene and Last Glacial Maximum from PMIP2 Coupled Model Simulations, Journal of                                                                      |
| 894 | Climate, 23, 3792-3813, 2010.                                                                                                                           |
| 895 | Magnusdottir, G. and Haynes, P. H.: Reflection of $\underline{pP}$ lanetary $\underline{wW}$ aves in $\underline{tT}$ hree- $\underline{dP}$ imensional |
| 896 | tTropospheric fFlows, Journal of the <u>Atmospheric Atmos.</u> Sciences Sci., 56, 652-670, 1999.                                                        |
| 897 | Marshall, S. J., James, T. S., and Clarke, G. K.: North American ice sheet reconstructions at the                                                       |
| 898 | Last Glacial Maximum, Quaternary Science Reviews, 21, 175-192, 2002.                                                                                    |
| 899 | Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and Kothavala, Z.: Last                                                          |
| 900 | Glacial Maximum and Holocene Climate in CCSM3, Journal of Climate, 19, 2526-2544,                                                                       |
| 901 | 2006.                                                                                                                                                   |
|     |                                                                                                                                                         |

| 902 | Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2)   |
|-----|--------------------------------------------------------------------------------------------------|
| 903 | model and GRACE, Annual Review of Earth and Planetary Sciences, 32, 111-149, 2004.               |
| 904 | Plumb, R. A.: On the Three-Dimensional Propagation of Stationary Waves, Journal of the           |
| 905 | Atmospheric Sciences, 42, 217-229, 1985.                                                         |
| 906 | Rind, D.: Components of the ice age circulation, Journal of Geophysical Research: Atmospheres,   |
| 907 | 92, 4241-4281, 1987.                                                                             |
| 908 | Rittenour, T. M., Brigham-Grette, J., and Mann, M. E.: El Niño-Like Climate Teleconnections in   |
| 909 | New England During the Late Pleistocene, Science, 288, 1039-1042, 2000.                          |
| 910 | Rivière, G., La în é, A., Lapeyre, G., Salas-M dia, D., and Kageyama, M.: Links between Rossby   |
| 911 | Wave Breaking and the North Atlantic Oscillation-Arctic Oscillation in Present-Day and           |
| 912 | Last Glacial Maximum Climate Simulations, Journal of Climate, 23, 2987-3008, 2010.               |
| 913 | Sherriff-Tadano, S. and Itoh, H.: Teleconnection Patterns Appearing in the Streamfunction Field, |
| 914 | SOLA, 9, 115-119, 2013.                                                                          |
| 915 | Straus, D. M. and Shukla, J.: Does ENSO Force the PNA?, Journal of Climate, 15, 2340-2358,       |
| 916 | 2002.                                                                                            |
| 917 | Wallace, J. M. and Gutzler, D. S.: Teleconnections in the Geopotential Height Field during the   |
| 918 | Northern Hemisphere Winter, Monthly Weather Review, 109, 784-812, 1981.                          |
| 919 | Yanase, W. and Abe-Ouchi, A.: The LGM surface climate and atmospheric circulation over East      |
| 920 | Asia and the North Pacific in the PMIP2 coupled model simulations, Clim. Past, 3, 439-451,       |
| 921 | 2007.                                                                                            |
| 922 | Yanase, W. and Abe-Ouchi, A.: A Numerical Study on the Atmospheric Circulation over the          |
| 923 | Midlatitude North Pacific during the Last Glacial Maximum, Journal of Climate, 23, 135-          |
| 924 | 151, 2010.                                                                                       |

- 925 Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The Low-Resolution CCSM3,
- 926 Journal of Climate, 19, 2545-2566, 2006.
- 227 Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas, R., Nusbaumer, J.,
- 928 Wong, T., Jahn, A., Tabor, C.: Reduced ENSO variability at the LGM revealed by an isotope-
- 929 enabled Earth system model. Geophysical Research Letters 44, 6984-6992, 2017.