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Abstract. A detailed and accurate reconstruction of the past climate is essential in understanding the interactions between

ecosystems and their environment through time. We know that climatic drivers have shaped the distribution and evolution

of species, including our own, and their habitats. Yet, spatially-detailed climate reconstructions that continuously cover the

Quaternary do not exist. This is mainly because no paleoclimate model can reconstruct regional-scale dynamics over geolog-

ical time scales. Here we develop a statistical emulator, the Global Climate Model Emulator (GCMET), which reconstructs5

the climate of the last 800,000 years with unprecedented spatial detail. GCMET captures the temporal dynamics of glacial-

interglacial climates as an Earth System Model of Intermediate Complexity would whilst resolving the local dynamics with

the accuracy of a Global Climate Model. It provides a new, unique resource to explore the climate of the Quaternary, which

we use to investigate the long-term stability of major habitat types. We identify a number of stable pockets of habitat that have

remained unchanged over the last 800 thousand years, acting as potential long-term evolutionary refugia. Thus, the highly10

detailed, comprehensive overview of climatic changes through time delivered by GCMET provides the needed resolution to

quantify the role of long term habitat change and fragmentation in an ecological and anthropological context.

1 Introduction

Current patterns of diversification within and between species, such as our own (Scerri et al., 2018), and the structuring of

whole ecosystems can only be studied in the context of past climatic changes that have shaped them through time (Doebeli and15

Dieckmann, 2003). A detailed understanding of such processes has become an urgent necessity in order to predict responses

to global change. However, whilst predictions of climate change and their impacts over the next few tens or hundreds of years

are based on comprehensive Global Climate Models (GCMs) that resolve processes at high temporal and spatial resolution,

such as those used in the latest IPCC Assessment Report (Solomon et al., 2007), reconstructions back in time are challenging

as they have to span a much longer period. GCMs can provide snapshots for a specific time or short transients in the order20

of a few thousands of years, whilst periods of tens or hundreds of thousands of years can only be covered with Earth System

Models of Intermediate Complexity (EMICs) (Ganopolski and Calov, 2011; Timmermann et al., 2013), at the cost of low

spatial resolution and a simplified representation of the climate system (Claussen et al., 2002). Neither of those two types of
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models is intentionally designed for paleo-ecology or species evolution, disciplines that require appropriate temporal scales of

up to hundreds of thousands of years and spatial scales down to tens of kilometres.25

Here, we fill this gap for a long-term reconstruction of climate that resolves regional-scale dynamics by reconstructing the

last 800 thousand years (ka) at an unprecedented spatial resolution of approximately 1°. Unlike previous emulator approaches

which aimed at capturing climate dynamics at a global level (Araya-Melo et al., 2015; Lord et al., 2017), we explicitly focus

on the local emulation of climate. We critically evaluate our reconstructed 800 ka of climate history against proxy records,

demonstrating that our Global Climate Model Emulator (GCMET) provides a high quality reconstruction, equivalent to that30

provided by global climate model simulations, for the last 800 ka.

The aim of this paper is twofold: 1) We present the technical details of our emulator approach (Sect. 2), which, in this

setup, can be thought of as an extension of the HadCM3 snapshot simulations into the deeper past. We validate GCMET (as an

emulator of HadCM3) with longer-term Quaternary climate proxies (Sect. 3). 2) We regard the resulting reconstructed climate

history of the last 800 ka as a high-value data set relevant for a wide range of applications in research areas that deal with35

long-term past climate changes. As a case study, we reconstructed ecosystems throughout the last 800 ka (Sect. 4) and analysed

the long-term stability of human habitats through time in terms of their spatial fragmentation.

2 Methods and data

Our emulator approach consists of two steps (Fig. 1): a reconstruction of the global climate at moderate spatial resolution

followed by a more detailed representation of local dynamics using multiple snapshot simulations from the family of HadCM340

climate models (Valdes et al., 2017). In the first step, we use 72 simulations covering the past 120 ka from the HadCM3 cli-

mate model (Singarayer and Valdes, 2010; Davies-Barnard et al., 2017), with a resolution of 3° (2.5° × 3.75°), and build a

set of linear regression models that are the basis of GCMET. In the second step, we increase the resolution of our GCMET

reconstructions to about 1° (1.25°×0.83°) using high resolution HadAM3H (Hadley Centre Atmospheric Model 3, High reso-

lution) simulations covering the period of the last deglaciation. To do so we computed high-resolution difference maps between45

equivalent HadAM3H and GCMET simulations.

2.1 HadCM3 and HadAM3H

HadCM3 is a fully coupled global climate model with an atmospheric component, HadAM3, which has a horizontal resolution

of 2.5° × 3.75°, with 19 vertical levels, and a time step of 30 min. The ocean and sea-ice component of HadCM3 has a

horizontal resolution of 1.25° × 1.25° and 20 vertical levels. In this paper, we use 72 available HadCM3 simulations covering50

the last 120,000 years in 2,000-year intervals from 120,000 to 24,000 ka before present (BP) and in 1,000-year intervals from

22,000 to present-day (Singarayer and Valdes, 2010; Davies-Barnard et al., 2017) (https://www.paleo.bristol.ac.uk/ummodel/

data/tdwza/standard_html/tdwza.html, last accessed on 05 Oct 2018).

HadAM3H is the higher resolution version of the atmosphere model HadAM3. It has a horizontal resolution of 1.25° by

0.83° with 30 vertical levels and a time step of 10 min. HadAM3H uses the surface fluxes from the associated fully coupled55
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HadCM3 simulations. HadAM3H is available for the time since the last deglaciation, 21 ka BP, i.e., 21, 18, 15, 12, 10, 8, 6, 3,

and 0 ka BP.

2.2 The global climate model emulator GCMET

GCMET relies on a set of linear regression models, one for each individual time series of every HadCM3 model grid box

with the following independent variables: atmospheric CO2 concentrations (as a major greenhouse gas), and three variables60

reflecting the orbital forcing (Berger and Loutre, 1991). These are based on obliquity ε and two combinations of eccentricity e

and precession ω: esinω, henceforth referred to as precession index I, and ecosω (precession index II). These are a generally

accepted set of orbital forcings as they reflect insolation at any location and any time (Araya-Melo et al., 2015; Lord et al.,

2017). Atmospheric CO2 concentrations are the same as in the respective HadCM3 time slice simulation, e.g., 280 ppmv for

0 ka BP.65

Our approach interpolates the HadCM3 model output at each grid box, i.e., a time series, to the parameter settings for

which HadCM3 has been evaluated, i.e., the time series of CO2 concentrations and the three orbital parameters. This is unlike

state-of-the-art emulators that extrapolate to settings which have not been evaluated. However, it ensures that the predictions

by GCMET are well behaved. As a consequence, GCMET is only valid within the boundary conditions for which it has been

parameterised; in our case, we build valid regression coefficients for the Quaternary. These limitation could be easily alleviated70

by any additional snapshot simulation with a new, expanded parameter setting.

The dependent variables, i.e, the predictands, are climate variables such as temperature T , precipitation P , or specific hu-

midity Q. The independent variables, i.e., the predictors, are applied as normalised forcings. Thus, the resulting regression

coefficients, denoted as β coefficients, can be compared across different climate variables, i.e., temperature and precipitation,

and across each other (Fig. 2).75

Let us assume Y (x,y, t) is a time series of a climate variable at a specific location (x,y) at time t. To explain variations of Y

around a mean value Y , i.e, Y ′ = Y −Y , we run a multiple linear regression model for the anomalies Y ′:

Y ′(x,y, t) =βε(x,y)ε′(t) +βecosω(x,y)(ecosω)′(t) +βecosω(x,y)(ecosω)′(t)︸ ︷︷ ︸
orbital forcing

+βCO2(x,y)CO′2(t)︸ ︷︷ ︸
greenhouse gas forcing

+ βM (x,y)M(x,y, t)︸ ︷︷ ︸
variable land–sea mask effect

(1)

Here, the βs are the regression coefficients for the respective predictor (see Fig. 2 for maps of β coefficients). We also80

consider changes in surface type, i.e., ocean (0), land (1), and ice (2) which have been masked as M(x,y, t) ∈ [0,1,2]. For

example, around coastlines, land grid boxes can turn into ocean grid boxes when sea level is high. Similarly, expanding ice

sheets turn land grid boxes into ice-covered grid boxes, and the climate variable Y may respond to different surface types in

different ways. To make the linear regression statistically well-conditioned, all independent variables have been normalised, i.e.,

the mean has been subtracted and the data has then been divided by their standard deviation. To prevent our linear regression85
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model from predicting negative precipitation values, we apply a logarithmic transformation which maps values from [0,+∞]

to [−∞,+∞]. For bounded variables such as precipitation this is a common procedure. In the case of precipitation, the linear

regression coefficients predict the response in terms of anomalies in the exponent.

The units of specific humidity are [kg/kg] and its values fall in the range between 0 and 1. For this reason, we transform spe-

cific humidity using the logit function, logit(x) = log( x
1−x ), which maps values from [0,1] to [−∞,+∞]. The decomposition90

of temperature T , precipitation P , and specific humidity Q into anomalies, i.e., the Y ′ on the left hand side of Eq. 1 is:

T = T + T ′︸︷︷︸
=̂Y ′

(2)

log(P ) = log(P ) + log(P )′︸ ︷︷ ︸
=̂Y ′

(3)

logit(Q) = logit(Q) + logit(Q)′︸ ︷︷ ︸
=̂Y ′

(4)

In contrast to existing emulator approaches (Araya-Melo et al., 2015; Lord et al., 2017; Rangel et al., 2018), our reconstruc-95

tions are local-scale reconstructions which are in reasonable agreement with existing paleo-climate proxies as shown in our

comprehensive model–data comparison below. Furthermore, because the parameter sampling is based on realistic glacial cy-

cle snapshot simulations, the obtained regression coefficients are good enough approximations to predict previous Quaternary

glacial–interglacial climate states well.

2.2.1 Training and test data100

In order to make useful predictions and to evaluate the skill of our model, we divide the HadCM3 snapshots into and training

and a test data set. A sensible choice is to use 80% of the HadCM3 snapshots to train the linear regression model and 20% to test

it. For a 80/20 division of the 72 time slices into training and test data, i.e., 14 or 58 out of 72, there are
(
n
k

)
=
(
72
58

)
≈ 3× 1014

possible combinations. But instead of randomly dividing the data into the training/test data, we follow an approach with the aim

to preserve as much variance as possible in the training data, i.e. maximise the variance of the predictors. This is best illustrated105

by the phase plots of the predictors (Fig. 3). The training data set covers the edges of each phase plane and thus maximises

the phase space covered by the linear regression model. This choice of training data ensures that the linear regression model

interpolates within the phase space and does not need to extrapolate for the test data.

The procedure is as follows. We calculate the covariance matrix of the full parameter set (n=72) and its eigenvalues. Then,

we randomly create a training data set (k=58) for which we compute the covariance. If the covariance of this sample training110

set is larger than the full covariance matrix, i.e., the eigenvalues of the covariance matrix are larger than the eigenvalues of the

covariance matrix of the full parameter set, this sample parameter set is marked as a candidate for the final training set. After

several iterations (N=10,000), we sum up how many times each time slice has appeared within a candidate training set. We

then rank all time slices according to this number. In the final step, we pick the 80% top-ranked time slices as training data.
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2.2.2 Validation115

For the validation of GCMET, we use the proportion of variance in the response explained by the regression (R2, a goodness of

fit estimator of the training data; Fig. 4), and the root mean squared error (RMSE), an estimator of the goodness of the model

for the prediction of the test data. Overall, our linear model is a better predictor for temperature than for precipitation.

Temperature responds more directly to local forcings because it is determined by the energy balance of downward and

upward longwave and shortwave radiation and turbulent heat fluxes. The downward shortwave radiation depends on incoming120

solar radiation that is determined by orbital variations, whereas downward longwave radiation is determined by greenhouse

gases such as CO2 and water vapour, as well as cloud cover. Large-scale atmospheric circulation changes have a much smaller

effect on temperature. Locally, it is therefore locally far better constrained by global CO2 and orbital variations. This increases

the predictive skill of our linear regression model substantially resulting in higher R2 values and lower RMSEs.

The matter is more complicated for precipitation because it is a product of the hydrological cycle, which itself depends125

mainly on large-scale atmospheric dynamics, such as monsoonal systems in the tropics and subtropics, or mid-latitude storm

systems. Local interactions between the atmosphere and the surface, such as evaporation and transpiration over the ocean, or

deep convection over the tropics, matter to a lesser extent. Processes and circulation features like moisture transport or the

atmospheric Hadley cell dynamics determine the non-local response of precipitation to CO2 or orbital variations to a much

larger extent. Because of the larger dynamical component of the hydrological cycle, compared to temperature, precipitation130

is much less constrained by external forcings than temperature. Thus, the linear regression model has less predictive skill

for precipitation than for temperature. However, we find that the predictive skill for precipitation can be improved by using

temperature and specific humidity as predictors instead of the orbital parameters and CO2. In this way, the RMSEs can be

substantially reduced, especially over land (Fig. 4E).

For the improved precipitation model we used temperature T and specific humidity Q as independent variables, i.e.,135

log(P )′ = βTT
′+βQlogit(Q)′. (5)

For the prediction of climate before 120 ka BP this implies that we first need to reconstruct T and Q, and then use the

obtained β coefficients for T and Q to reconstruct P .

2.2.3 The regression coefficients

To assess how reliable our predictor estimates are, we calculate the p-values for each of the predictors, i.e., the significance of140

our β coefficients. Here, the p-value tests the null hypothesis whether the coefficient is equal to zero, i.e., the specific predictor

has no effect. If the p-value is below a certain threshold—in our case below the 5% significance level: p < 0.05—the null

hypothesis can be rejected. That means that the specific predictor is a meaningful addition to our linear regression model and

any changes in the associated predictor are related to changes in the corresponding climate variable. Regions for which the null

hypothesis cannot be rejected are displayed as shaded and hatched in Fig. 2.145
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2.3 Dynamic downscaling to higher resolution

Using nine high-resolution HadAM3H simulations covering the deglaciation since 21 ka BP (21, 18, 15, 12, 10, 8, 6, 3, and

0 ka BP), we are able to increase the spatial resolution from 3°, which is the spatial resolution of GCMET after the linear

regression step (and the same as the coarse resolution of the original HadCM3 snapshots), to ca. 1°. We do so by calculating

the difference between equivalent coarse- and high-resolution snapshots. For example, the difference at 10 ka BP is ∆10 ka BP =150

HadAM3H10 ka BP−HadCM310 ka BP. We choose to interpolate the differences linearly according to their CO2 levels, e.g.,

231 ppm at 10 ka BP, because any statistical model with more than one variable would require more snapshots to adequately

predict the differences. Thus, we simply assume that the differences between a coarse- and high-resolution climate can be

explained as a function of the CO2 forcing, i.e., ∆10 ka BP = ∆231 ppm. For any period in the past, e.g., 300 ka BP, we add the

high-resolution difference, i.e., the ∆, which corresponds to the respective CO2 level, to the coarse-resolution reconstruction.155

Note that the downscaling approach captures the regional-scale dynamics of the GCM in this step, which change over time.

This is in contrast to the commonly used "delta method" for downscaling of climate model data which assumes a constant

difference between simulated and observed data.

To illustrate the importance of higher spatial variability, we compared the high-resolution version of GCMET, the origi-

nal resolution version denoted as GCMET-LO, and LOVECLIM, an EMIC with a horizontal resolution of ca 5.5°×5.5°, to160

present-day observations (ERA-20C re-analysis 1961–1990 average (Poli et al., 2016)). Due to their lower spatial resolution

LOVECLIM and GCMET-LO cannot capture the observed continental climate patterns, whereas GCMET resolves those spatial

features well (Fig. 5B).

2.4 Boundary conditions: CO2, global sea-level, and Northern Hemisphere ice sheets

For realistic high-resolution reconstructions the model boundary conditions for the last 800 ka need to be known: atmospheric165

CO2 levels and orbital parameters (Fig. 3A), global sea level (for the land-sea mask), and the extent of Northern Hemisphere

(NH) ice sheets. The longest, quasi-continuous record of past CO2 levels is the 800,000 years long CO2 record from the EPICA

Dome C ice core in Antarctica (Bereiter et al., 2015). The orbital parameters are from the same data set as before (Berger and

Loutre, 1991). For ice sheet extents, we use model outputs from CLIMBER-2/SICOPOLIS simulations (Ganopolski and Calov,

2011) for which NH ice sheet extents and heights are available for the last 800 ka in 1 ka-year intervals, from which we use170

the period from 800–123 ka BP . For 122–0 ka BP, we use the ice sheet configurations from the ICE-6G data set (Peltier

et al., 2014) (http://www.atmosp.physics.utoronto.ca/~peltier/data.php, last accessed 09.11.2018). Changes in the coast lines

affecting the land–sea mask are derived from a global sea-level record (Spratt and Lisiecki, 2016) which has been added on top

of present-day coast lines while preserving inland lakes.
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3 Comparing GCMET to climate proxies175

Despite the increasing number of available paleoclimate proxies, only a small fraction can be used for a quantitative compari-

son to climate models as translating sediment core data into actual climate variables remains a difficult task. Marine sediment

cores are valuable archives of past sea surface temperature (SST) records. Because their associated biogeochemistry is rel-

atively straightforward, marine proxies can be utilised as so-called paleo-thermometers and are thus well suited for a direct

proxy–model comparison. For these proxies, we make a direct comparison between mean annual temperature (MAT) and SST,180

quantified both in terms of correlation between the predicted and observed time series and the RMSE. We note that MAT and

SST are not the same climatological quantities; SST is the temperature of the ocean surface and has a lower limit of about

-1.8°C, the freezing point of saltwater. While we expect MAT and SST to co-vary in low and mid-latitudes, at higher latitudes,

seasonal or perennial sea ice cover could make a comparison between both variables problematic.

For terrestrial proxies, for which a translation into climatic variables is not straightforward, we simply quantify the corre-185

lation between the two time series. However, the interpretation of terrestrial proxies from a climate perspective can also be

problematic. For example, pollen-based vegetation reconstructions are suggested to be less reliable as climate proxies, partic-

ularly for interglacials (Herzschuh et al., 2016). Other land-based proxies such as dust deposits integrate long-term climatic

changes over large regions and hence do not necessarily capture climatic effects at their specific location.

For the comparison of GCMET against proxy reconstruction, we assembled long-term marine SST and terrestrial climate190

proxy reconstructions (Figs. 7,8) which cover a period of at least 150 ka BP during the last 800 ka (Tables 1 and 2). We

assessed the goodness of the long-term GCMET climate reconstructions by cross-comparing those SST proxy reconstructions

to the MAT reconstruction by GCMET and to surface temperature data from the LOVECLIM climate model (Timmermann

et al., 2013) (http://apdrc.soest.hawaii.edu/projects/paleomodeling/800k.php, last accessed 08/11/2018).

Reconstructions by GCMET are in good agreement with a number of marine records (Fig. 7B-E), with a mean RMSE of195

1.5 K for all SST proxies and a mean correlation of 0.5. GCMET captures long-term temporal dynamics of glacial–interglacial

climates and its performance in that respect is on average as good as LOVECLIM’s (r=0.5, Fig. 5B). Despite the diverse nature

of the terrestrial proxies (e.g. speleothems, loess, pollen), GCMET performance was as good as for marine proxies (r=0.5,

Fig. 5B and Fig. 8B,C).

4 Ecosystem reconstructions and habitat stability over the last 800 ka200

In the final part of this paper, we highlight the potential of a comprehensive, long-term climate data set. As an example we

investigate ecosystem stability (Fig. 9) over the last 800 ka, focusing on 14 major terrestrial habitats defined by the WWF

Global 200 (Olson et al., 2001) (Fig. 9A). The motivation for this is that habitat fragmentation, which is closely related to

ecosystem (in)stabilities, may have played a key role in the evolution of our species, homo sapiens (Scerri et al., 2018).

We use a random forest classifier (Breiman, 2001) that is trained on a set of four climate variables from GCMET (minimum205

and mean annual temperature, and minimum and mean annual precipitation) to reconstruct the present-day distribution of the

14 ecoregions. The required present-day data was split into a training (80%) and a test data set (20%). The classification factors,
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i.e., the analogue of predictors in a linear model, from this training data set were then applied to predict ecosystem changes of

the last 800,000 years.

The goodness of the predictions by the random forest classifier can be estimated by the so-called receiver operating charac-210

teristic (ROC, Fig. 9D). A ROC curve displays the true positive rate against the false positive rate and the closer that curve is to

the upper left corner, the better the prediction for a specific ecosystem is. For example, the point at coordinate (0,1) represents

the best possible prediction with 100% sensitivity (i.e., no false negatives) and 100% specificity (i.e., no false positives). The

diagonal line corresponds to a prediction by random guessing.

The random forest classification is very close to perfect classification for the average of all ecosystem types and the area215

under the curve is an estimator for the goodness of the classification (numbers are given in legend of Fig. 9). Except for a

few instances, such as for "Tropical & Subtropical Coniferous Forests" and "Mangroves", values are always larger than 0.9

(average 0.98).

The spatially detailed reconstructions provided by GCMET allow us to explore the effect of climate on habitats over time.

As can be seen in Fig. 9C, stability depends on location, with sparsely vegetated regions such as deserts among the most stable220

habitats in the world, the others being the core tropical rainforests along the equator. Large parts of Eurasia and North America

are rendered unstable by the advancing and retreating NH ice sheets with ecosystems alternating between vast forests during

the warm interglacials and large tundras during the cold glacials (an animated version of the habitat changes throughout the

last 800 ka is available as Supplementary Video). However, a few fragmented core boreal forest habitats remain.

5 Summary and discussion225

The global climate model emulator, GCMET, is an effective and computationally efficient tool to reconstruct the climate of the

past over long periods while based on only a relatively small number of paleoclimate simulations. In contrast to other emulators,

our grid box by grid box approach assumes that the spatial correlations are sufficiently well preserved by HadCM3 and thus are

well represented in the GCMET reconstructions as can be seen in the β coefficient maps in Fig. 2. The glacial and interglacial

climate states of the Quaternary with its respective glacial and interglacial boundary conditions are an ideal testbed to show how230

well GCMET emulates the HadCM3 climate response without explicitly running any HadCM3 simulation for earlier times.

GCMET can in principle be applied to any other global climate model for which a reasonable number of simulations exists.

Our approach has several limitations. For example, we are unable to account for climate variability on time scales that

are not simulated in the underlying HadCM3 snapshots. Originally, these have been set up to examine climate changes on

orbital timescales and they are not fully transient (Singarayer and Valdes, 2010). This has implications for the ecosystem235

reconstructions and the inferred habitat stability because we can only account for climate and ecosystem variability on time

scales longer than 1000 years and more. However, the assumption of a equilibrium climate in GCMET is not too far fetched

given the relatively good level of agreement with climate proxies, most of which have a temporal resolution of more than 1000

years, and as such can be thought of as reflecting the average long-term rather than an instantaneous climatic state.
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Another limitation is that we cannot link the regression coefficients for CO2 and the orbital parameters to true geophysical240

processes. GCMET is a purely statistical model and as such any physical interpretation of β coefficients would be flawed.

However, the imposed CO2 forcing from the Antarctic ice core with its distinct late Quaternary, 100,000 year cyclicity already

accounts for the orbital effects on the Earth system. A different but interesting question would be whether it is possible to

disentangle orbital changes from the natural variations in CO2; however, this is beyond the scope of this paper.

Because GCMET is a statistical emulator, we can use it to assess the uncertainty of the predictors (i.e., boundary conditions)245

and their respective coefficient estimates. We did this for the global mean temperature comparison (Fig. 5A) but the uncertainty

in the CO2 forcing is fairly small as are the standard errors for the temperature regression (not shown), and thus, the uncertainty

is hardly visible (blue shaded). In this specific example we also see how much GCMET depends on the underlying model

performance. GCMET temperature reconstructions closely follow the HadCM3 curve for the last 120 ka simulations but differ

from the proxy record during certain periods of the past. For example, HadCM3 underestimates the global mean temperature250

120 ka ago compared to the proxy record and so does GCMET. For earlier periods, GCMET can be used to detect discrepancies

between the GCM and long-term paleo records as we did in the model–proxy comparison in Sect. 3. The performance of an

emulator strongly depends on the representation of the climate system in the underlying GCM: Realistic climate reconstructions

rely on both a realistic climate model and a good statistical model, i.e., emulator.

6 Conclusions255

A major advantage of GCMET is that it is computationally inexpensive. GCMET can produce high-quality reconstructions

of the last 800 ka that compare well with proxy records of the past. This is the equivalent of hundreds of GCM snapshots, a

prohibitive endeavour for the foreseeable future. A way to understand the fit of GCMET predictions against climate proxy time

series is that our approach captures the quasi-equilibrium state of the climate system, thus allowing us to efficiently describe

the behaviour over the longer, millennial, time scales. In turns, this implies that the glacial-interglacial climate of the Middle260

and Late Pleistocene responded in a consistent manner to orbital forcings and CO2. It will be interesting to test whether this

approximation is also valid for the Early Pleistocene with its faster ice age cyclicity of 41 ka; for this endeavour, we currently

lack quasi-continuous CO2 estimates before the Mid-Pleistocene Transition, however GCMET is fully capable of covering the

appropriate time periods if estimates became available. For the moment, we can offer a detailed, coherent reconstruction of the

past 800 thousand years, which allowed us to pinpoint long-term potential refugia that have been characterised by the same265

habitat, and we expect that this will open up new ways to study the impact of past climate in a number of disciplines such as

ecology and anthropology.

Code and data availability. The generated climate reconstructions for the last 800,000 years are publicly available in the project’s Open Sci-

ence Framework repository at this address: https://bit.ly/2XWrGvF. This data set comes in two version, one is the output after the dynamical

downscaling step and one that has been bias corrected afterwards using the ERA-20C climatology from 1961–1990 (Poli et al., 2016). The270

9

https://doi.org/10.5194/cp-2019-91
Preprint. Discussion started: 1 August 2019
c© Author(s) 2019. CC BY 4.0 License.



variables listed in Table 3 are available in 1000 year intervals and in 1°, the HadAM3H resolution, and 1.125° horizontal, i.e, the ERA-20C

grid resolution under the project’s data directory. The individual proxy time series and their respective GCMET counterpart as shown in

Fig. 7 and 8 are available as Excel spreadsheet (output_150ka.xlsx) in the same directory.

Model code for GCMET as well as the code for the analysis and visualisation of figures is also publicly available at the same address

under the project’s code directory (gcmet.tar.gz and required input files inputs.tar.gz). NetCDF files have been processed using275

cdo (Schulzweida, 2019). The linear regression for GCMET is based on the Python library statsmodels (Seabold and Perktold, 2010).

The random forest classifier has been implemented using the Python library scikit-learn (Pedregosa et al., 2011). All visualisations are

made with matplotlib (Hunter, 2007) and cartopy (Met Office, 2010).

Video supplement. Movies of the habitat evolution over the last 800,000 years can be found in the Open Science Framework repository

(https://bit.ly/2XWrGvF) under the project’s movies directory. The 14 major WWF habitats (ecosystems_800ka.mp4) have been280

aggregated into the four categories: snow and ice, barren and sparsely vegetated, open habitat, and forests (habitats_800ka.mp4). The

temporal evolution of the atmospheric CO2 concentrations are shown below the map.
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Table 1. Marine proxy records that have been used in the validation of the climate reconstruction, their coordinates, correlation coefficients,

types, and respective references.

core/name lon lat corr coeff type reference(s)

DSDP 594 175.0 -45.5 0.60 SST PIGS, Schaefer et al. 2005
DSDP 607 -33.0 41.0 0.46 SST PIGS, Ruddiman et al. 1989
GeoB 1105 -12.4 -1.7 0.62 SST Nürnberg et al. 2000
GeoB 1112 -10.7 -5.8 0.53 SST Nürnberg et al. 2000
HY04 -95.0 4.0 0.30 SST PIGS, Horikawa et al. 2010
MD01-2444 -10.1 37.6 0.71 SST Martrat et al. 2007
MD02-2529 -84.1 8.2 0.53 SST Rincón-Martínez and Leduc 2012
MD03-2699 -10.7 39.0 0.61 SST Rodrigues et al. 2011
MD06-2986 167.9 -43.4 0.70 SST PIGS, Hayward et al. 2012
MD06-3018 166.2 -22.6 0.38 SST Russon et al. 2010
MD85-668 46.0 0.0 0.48 SST Bard et al. 1997
MD90-963 73.9 5.1 0.50 SST Rostek et al. 1993
MD96-2048 36.0 -26.2 0.52 SST Caley et al. 2011
MD97-2120 174.9 -45.5 0.73 SST Pahnke et al. 2003
MD97-2140 141.5 2.0 0.55 SST PIGS, Garidel-Thoron et al. 2005
ODP 1012 -118.4 32.3 0.59 SST PIGS, Liu et al. 2005
ODP 1014 -118.9 32.8 0.75 SST Yamamoto et al. 2007
ODP 1020 -126.4 41.0 0.50 SST PIGS, Herbert 2001
ODP 1077b 10.4 -5.2 0.18 SST Schefuß et al. 2004
ODP 1082 11.8 -21.1 0.43 SST Etourneau et al. 2009
ODP 1087 15.3 -31.5 0.13 SST McClymont et al. 2005
ODP 1090 8.9 -42.9 0.69 SST PIGS, Martínez-Garcia et al. 2009
ODP 1123 -171.5 -41.8 0.35 SST PIGS, Crundwell et al. 2008
ODP 1125 -178.2 -42.6 0.55 SST Hayward et al. 2008
ODP 1143 113.3 9.4 0.61 SST PIGS, Li et al. 2011
ODP 1146 116.3 19.5 0.53 SST PIGS, Herbert et al. 2010
ODP 1172 149.9 -44.0 0.28 SST Nürnberg and Groeneveld 2006
ODP 1239 -82.1 -0.7 0.53 SST Dyez et al. 2016
ODP 306 -27.9 56.4 0.33 SST Alonso-Garcia et al. 2011
ODP 722 59.8 16.6 0.45 SST PIGS, Herbert et al. 2010
ODP 806b 159.4 0.3 0.55 SST PIGS, Medina-Elizalde and W Lea 2005
ODP 846 -90.8 -3.1 0.49 SST PIGS, Liu 2004
ODP 871 172.3 5.6 0.63 SST Dyez and Ravelo 2013
ODP 882 167.6 50.4 0.11 SST Martínez-Garcia et al. 2010
ODP 977A 0.0 37.5 0.63 SST Martrat et al. 2007
ODP 982 -15.9 57.5 0.35 SST PIGS, Lawrence et al. 2009
ODP 999 -78.7 12.8 0.21 SST Schmidt et al. 2006
PS75034-2 -80.1 -54.4 0.79 SST PIGS, Ho et al. 2012
RC09-166 48.8 12.5 0.35 SST Tierney et al. 2017

PIGS refers to Past Interglacials Working Group of PAGES (2016)
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Table 2. Terrestrial proxy records that have been used in the validation of the climate reconstruction, their coordinates, correlation coeffi-

cients, types, and respective references.

core/name lon lat corr coeff type reference(s)

Baoji, China 107.1 34.4 0.62 rainfall Beck et al. 2018

Bittoo 77.8 30.8 -0.43 δ18O Kathayat et al. 2016

Chanwu 107.7 35.2 0.58 δ18O Guo et al. 2009

Clearwater 114.9 4.1 -0.47 δ18O Carolin et al. 2016

Dead Sea 35.0 30.5 -0.68 lake level Waldmann et al. 2010

Devil’s Hole -116.3 36.4 0.67 δ18O Landwehr et al. 2011

Duhlata 23.2 42.5 0.41 ODL Stoykova et al. 2008

EPICA Dome C 123.4 -75.0 0.91 temperature Jouzel et al. 2007

Kesang 81.8 42.9 -0.15 δ18O Cheng et al. 2012

Lake Baikal 108.4 53.7 -0.16 Bio. sil. Prokopenko et al. 2006

Lake El’gygytgyn 172.0 67.5 0.17 mag. susc. Melles et al. 2012

Negev 34.8 30.6 -0.61 δ18O Vaks et al. 2010

Peqiin 36.0 32.6 -0.67 δ18O Bar-Matthews et al. 2003

Sanbao-Dongge 110.4 31.7 0.12 δ18O Cheng et al. 2016

Soreq 36.0 31.4 -0.56 δ18O Bar-Matthews et al. 2003

Tenaghi Philippon 24.2 41.0 0.65 arb. pollen PIGS, Tzedakis et al. 2006

Tzavoa 35.2 31.2 -0.37 δ18O Vaks et al. 2006

Weinan 109.6 34.4 0.48 temperature K. Thomas et al. 2016

Xifeng loess 107.6 35.7 0.60 Fed/Fet Guo et al. 2009

Yimaguan Luochuan 108.5 35.8 0.60 mag. susc. PIGS, Hao et al. 2012

PIGS refers to Past Interglacials Working Group of PAGES (2016)
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Table 3. List of file names for GCMET regression results and climate reconstructions of the last 800 ka as well as the Excel spreadsheet for

the proxy–model comaprison. This data can be found in the Open Science Framework repository https://bit.ly/2XWrGvF under the project’s

data directory.

variable file name

re
gr

es
si

on
re

su
lts

MAT hadcm3_000-120_ann_regression_temp_co2-ecospre-esinpre-obl.nc

MAP hadcm3_000-120_ann_regression_prec_co2-ecospre-esinpre-obl.nc

MAQ hadcm3_000-120_ann_regression_shum_co2-ecospre-esinpre-obl.nc

MAP (MAT and MAQ) hadcm3_000-120_ann_regression_prec_shum-temp.nc

MINT hadcm3_000-120_min_regression_temp_co2-ecospre-esinpre-obl.nc

MINQ hadcm3_000-120_min_regression_shum_co2-ecospre-esinpre-obl.nc

MINP (MINT and MINQ) hadcm3_000-120_min_regression_prec_shum-temp.nc

re
co

ns
tr

uc
tio

ns

MAT temp_800ka_ann_hi_nobc.nc

MINT temp_800ka_min_hi_nobc.nc

MAP prec_800ka_ann_hi_nobc.nc

MINP prec_800ka_min_hi_nobc.nc

WWF 14 major habitats ecosystems_random_forests_wwf_tmean_tmin_pmean_pmin.nc

MAT (BC) temp_800ka_ann_hi_20c_bc.nc

MINT (BC) temp_800ka_min_hi_20c_bc.nc

MAP (BC) prec_800ka_ann_hi_20c_bc.nc

MINP (BC) prec_800ka_min_hi_20c_bc.nc

Proxy comparison output_150ka.xlsx

MAT–mean annual temperature; MINT–minimum temperature; MAP–mean annual precipitation; MINP–minimum precipitation; MAQ–mean annual specific

humidity; MINQ–minimum specific humidity

BC–bias correction with ERA-20C 1961–1990 climatology
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120–0 ka BP (n=72)

21–0 ka BP (n=9)
external forcing

+ +

linear regression︷ ︸︸ ︷ downscaling︷ ︸︸ ︷
GCMET︷ ︸︸ ︷

Figure 1. Schematic of the GCMET components: A linear regression combines 72 HadCM3 snapshot simulations with the external forcings,

i.e., CO2 and the three orbital parameters, which provides the basis of the long-term climate reconstructions of the last 800 thousand (or

2 million) years. Using 9 high-resolution snapshots covering the last deglaciation provides the basis of the downscaling approach based on

CO2 which yields the final high-resolution long-term climate reconstructions of GCMET.
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Figure 2. Regression coefficients, i.e., β coefficients, for (A) mean annual temperature, (B) precipitation, (C), specific humidity, and (D) the

alternative model for precipitation—based on temperature and specific humidity. Regions where the respective coefficient is not statistically

significant (p < 0.05) are hatched and shaded.
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Figure 3. (A) Time series of the four external parameters: CO2 and orbital parameters for the last 800 ka and (B) the associated parameter

space as scatter plot matrix (blue dots). The continuous CO2 record is from the EPICA Dome C ice core in Antarctica (Bereiter et al., 2015).

The orbital parameters are numerical solutions for the Earth’s orbit and rotation in terms of eccentricity, precession, and obliquity (Berger

and Loutre, 1991). In (B), black lines with black dots represent the total 72 parameter sets. Orange dots highlight the parameter sets of the

58 HadCM3 snapshot simulations which we used as training data (80% of the total 72) for the linear regression model.
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Figure 4. Left panel (A, C, E): Root mean square errors (RMSE) as estimators of the goodness of fit (lower is better) calculated using the

test data. Right panel (B, D, F): R2 values as estimator for the goodness of the model (higher is better) using the training data. Shown are

the R2 and RMSEs for (A,B) mean annual temperature, (C, D) precipitation, and (E, F) the alternative model for precipitation—based on

temperature and specific humidity.
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A

B C

Figure 5. (A) Global mean temperature for the last 800 ka as predicted by GCMET based on different CO2 records in comparison with a

proxy-based global mean temperature reconstruction (Snyder, 2016). Furthermore, the time series from the 72 HadCM3 snapshots for the

last 120 ka have also been added. Note the change in the spacing of the time axis at 140 ka BP. (B) Map of correlation coefficients between

marine (in terms of as sea surface temperature) and terrestrial climate proxy time series and mean annual temperatures as reconstructed by

GCMET-LO for the respective locations. The left panel shows the latitudinal distribution of the correlation coefficients. (C) Box plot of the

correlation coefficients of GCMET and LOVECLIM with marine and terrestrial proxies.
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Figure 6. Root mean square error of the GCMET-LO predictions for the 14 HadCM3 snapshots for (A) MAT and (B) MAP (lower is

better). (C) Present-day, i.e., 0 ka BP, temperature–precipitation phase diagram for Asia, North America, Africa, Europe, South America, and

Australia, as modelled by LOVECLIM and reconstructed by GCMET-LO and GCMET and compared to observed multi-annual mean values

(grey contours) for the period from 1961-1990 of the ERA-20C re-analysis data set (Poli et al., 2016). All model outputs have been bi-linearly

interpolated onto the same grid, i.e. of the observational data, ERA-20C. (D) Maps of present-day temperature (in K) and precipitation (in

mm/a) as reconstructed by GCMET for the six continents.
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Figure 7. (A) Map of the 39 Middle and Late Pleistocene marine sea surface temperature proxies used in this study and tehir respective

time series (B–E). Black dots indicate proxy sea surface temperature while blue lines indicate mean annual temperature as reconstructed by

GCMET. Proxy–derived and model temperature are on the same scale, in °C).
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Figure 8. (A) Map of the 39 Middle and Late Pleistocene terrestrial climate proxies used in this study and their respective time series (B, C).

Black dots indicate proxy variables (in different units) while blue lines indicate mean annual temperature as reconstructed by GCMET (in

°C).
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Figure 9. (A) Map of 14 major terrestrial habitats as defined by the WWF (Olson et al., 2001) for present-day and (B) as reconstructed

with GCMET inputs of minimum and annual temperature and minimum and annual precipitation. (C) Stability of open habitats, such as

grasslands and savannahs, and forest habitats, and sparsely vegetated regions across the world through the last 800,000 years. Regions in

which the habitats have been unstable, i.e., of different type, for more than 90% are coloured in grey. (D) Receiver operating characteristic

curve for the random forest classifier of the WWF 14 major habitats. The upper left corner represents a perfect prediction of an ecosystem,

while the diagonal line represents a prediction made by random guessing. The closer the ROC curve is to the perfection point (0,1) the better

the random forest classification is.
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