

1   **Archaeal lipid-inferred paleohydrology and paleotemperature of**  
2   **Lake Chenghai during the Pleistocene-Holocene transition**

3   Weiwei Sun <sup>a</sup>, Enlou Zhang <sup>a, b, \*</sup>, Jie Chang <sup>a</sup>, James Shulmeister <sup>c, d</sup>, Michael I. Bird <sup>e</sup>,  
4   Cheng Zhao <sup>a, b</sup>, Qingfeng Jiang <sup>g</sup>, Ji Shen <sup>a</sup>

5   <sup>a</sup> State Key Laboratory of Lake Science and Environment, Nanjing Institute of  
6   Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

7   <sup>b</sup> Center for Excellence in Quaternary Science and Global Change, Chinese Academy  
8   of Science, Xian 710061, China

9   <sup>c</sup> School of Earth and Environmental Sciences, The University of Queensland, St  
10   Lucia, Brisbane, Qld, 4072, Australia

11   <sup>d</sup> School of Earth and Environment, University of Canterbury, Private Bag 4800,  
12   Christchurch, New Zealand

13   <sup>e</sup> ARC Centre of Excellence for Australian Biodiversity and Heritage, James Cook  
14   University, PO Box 6811, Cairns, Queensland, 4870, Australia

15   <sup>f</sup> College of Science and Engineering, James Cook University, PO Box 6811, Cairns,  
16   Queensland, 4870, Australia

17   <sup>g</sup> School of Geography Sciences, Nantong University, Nantong, 226007, China

18   \* Corresponding author. elzhang@niglas.ac.cn. State Key Laboratory of Lake Science  
19   and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy  
20   of Sciences, Nanjing 210008, China

21

22

23

24

25 **ABSTRACT**

26 Over the past decades, paleoenvironmental studies in the Indian Summer  
27 Monsoon (ISM) region have mainly focused on precipitation change, with few  
28 published terrestrial temperature records from the region. We analyzed the distribution  
29 of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) in the sediments of  
30 Lake Chenghai in southwest China across the Pleistocene-Holocene transition, to  
31 extract both regional hydrological and temperature signals for this important transition  
32 period. Lake level was reconstructed from the relative abundance of crenarchaeol in  
33 isoGDGTs (%cren) and the crenarchaeol'/crenarchaeol ratio. The %cren-inferred  
34 lake-level identified a single lowstand (15.4-14.4 cal ka BP), while the  
35 crenarchaeol'/crenarchaeol ratio suggests relatively lower lake-level between  
36 15.4-14.4 cal ka BP and 12.5-11.7 cal ka BP, corresponding to periods of weakened  
37 ISM during the Heinrich 1 and Younger Dryas cold event. A filtered TetraEther indeX  
38 consisting of 86 carbon atoms (TEX<sub>86</sub> index) revealed that lake surface temperature  
39 was similar to present-day values during the last deglacial period, and suggests a  
40 substantial warming of ~4 °C from the early Holocene to the mid-Holocene. Our  
41 paleotemperature record is generally consistent with other records in southwest China,  
42 suggesting that the distribution of isoGDGTs in Lake Chenghai sediments has  
43 potential for quantitative paleotemperature reconstruction.

44

45 **Keywords:** Quantitative temperature reconstruction; Lake-level; TEX<sub>86</sub>; Isoprenoid  
46 GDGTs; Lacustrine sediment

47

48

49

50

51

52 **1. Introduction**

53 Precipitation variation in the Indian summer monsoon (ISM) region has a strong  
54 influence over ecosystem function, water availability and economic security across  
55 the region (Sinha et al., 2011; Sinha et al., 2015; Ljungqvist et al., 2016). As a result,  
56 scientific interest has been stimulated in understanding the underlying forcing  
57 mechanisms behind climate variability in the ISM region on a range of time-scales, in  
58 order to better predict future monsoonal variations. Over the past two decades, climate  
59 evolution in the ISM region since the Last Glacial Maximum has been reconstructed  
60 from various paleoclimatic archives, including speleothems, and marine/lacustrine  
61 sediments (Dykoski et al., 2005; Rashid et al., 2007; Govil and Divakar Naidu, 2011;  
62 Saraswat et al., 2013; Contreras-Rosales et al., 2014; Wang et al., 2014b; Dutt et al.,  
63 2015; Wu et al., 2015; Kathayat et al., 2016; Zhang et al., 2017a, 2017b; Li et al.,  
64 2018; Zhang et al., 2018; Sun et al., 2019; Zhang et al., 2019). These studies provide  
65 evidence of changes in ISM precipitation on orbital- and millennial time-scales, with  
66 a weakened ISM occurring during cold events, and strengthened ISM occurring  
67 during warm intervals.

68 In addition to precipitation, temperature is an important climatic factor, due to its  
69 significant effects on evaporation and regional hydrological cycle. There remains a  
70 lack of quantitative reconstructions of terrestrial temperature from the ISM region  
71 (Shen et al., 2006; Zhang et al., 2017a; Wu et al., 2018; Feng et al., 2019; Ning et al.,  
72 2019; Tian et al., 2019; Zhang et al., 2019). During the last deglaciation-Holocene  
73 transition, the climate of high latitudes in the Northern Hemisphere is punctuated by  
74 three abrupt, millennial-scale events: the Heinrich 1 (H1) cold event, the  
75 Bølling/Allerød (BA) warm period and the Younger Dryas (YD) cooling (Alley and  
76 Clark, 1999). These intervals are attributed to a variety of mechanisms including  
77 changes to orbitally-controlled insolation, ice sheet extent, oceanic circulation and  
78 atmospheric greenhouse concentrations (Alley and Clark, 1999). The recent  
79 quantitative summer temperature proxy based on pollen and chironomids from  
80 southwest China has been developed to address the response of long-term temperature

81 to the high latitude climate changes (Zhang et al., 2017 and 2019; Wu et al., 2018).  
82 However, the magnitude of these temperature variations is not consistent, and further  
83 studies are required.

84 Glycerol dialkyl glycerol tetraethers (GDGTs) have been widely used for the  
85 quantitative reconstruction of terrestrial paleotemperature during the Quaternary due  
86 to the fact that they are ubiquitous in soils and lacustrine sediments (Blaga et al., 2013;  
87 Wang et al., 2017b; Zheng et al., 2018; Ning et al., 2019; Tian et al., 2019).  
88 Isoprenoid GDGTs (isoGDGTs), comprising acyclic or ring-containing isoprenoidal  
89 biphytanyl carbon chains, are a suit of membrane lipids produced by some species  
90 of archaea, such as Euryarchaeota and Thaumarchaeota (Schouten et al., 2013).  
91 IsoGDGTs containing 0 to 3 cyclopentane moieties (isoGDGTs 0–3, Fig. S1) are  
92 common isoGDGTs with a large range of biological sources (Schouten et al., 2013).  
93 For example, Thaumarchaeota were the dominant biological source of GDGT-0 in  
94 Lake Lucerne from Switzerland (Blaga et al., 2011); while GDGT-0 in Lake Challa  
95 surface sediments might predominantly derive from archaea residing in the deeper,  
96 anoxic water column, such as group 1.2 and marine benthic group C group of the  
97 Crenarchaeota, and the Halobacteriales of the Euryarchaota (Sinninghe Damsté et al.,  
98 2009). Methanogenic and methanotrophic archaea can also be two important sources  
99 of GDGT-0 within the water column and sediment (Blaga et al., 2009; Powers et al.,  
100 2010). In contrast, crenarchaeol and its regioisomer, crenarchaeol' (Fig. S1), are  
101 considered to be produced specifically by mesophilic Thaumarchaeota in aquatic  
102 environments (Schouten et al., 2002; Blaga et al., 2009; Kim et al., 2010; Powers et  
103 al., 2010; Schouten et al., 2013). On this basis, the ratio of GDGT-0/crenarchaeol has  
104 been proposed to evaluate the influence of Thaumarchaeota on the distribution of  
105 isoGDGTs in lacustrine sediments, and the ratio typically varies between 0.2 and 2 in  
106 Thaumarchaeota (Schouten et al., 2002; Blaga et al., 2009).

107 Thaumarchaeota have a physiological mechanism to increase the weighted  
108 average number of cyclopentane rings in their membrane lipids with growth  
109 temperature (Schouten et al., 2002). Thus the TetraEther indeX consisting of 86

110 carbon atoms (TEX<sub>86</sub> index), which represents the relative number of cyclopentane  
111 moieties in isoGDGT molecules derived from aquatic Thaumarchaeota, has great  
112 potential for use as a paleotemperature proxy in the marine environment and large  
113 lakes (Tierney et al., 2008; Berke et al., 2012; Blaga et al., 2013; Wang et al., 2015).  
114 However, the index may not be a reliable proxy for past temperature in small lakes  
115 due to substantial amounts of soil and/or methanogenic archaea isoGDGTs identified  
116 in the same lacustrine sediment and also due to variability in the depth of isoGDGT  
117 production in aquatic ecosystems (Blaga et al., 2009; Powers et al., 2010; Sinninghe  
118 Damst   et al., 2012a).

119 It has also been shown that crenarchaeol' is only present in low abundance in  
120 most Thaumarchaeota except for the group I.1b Thaumarchaeota, where it is one of  
121 the major isoGDGTs (Kim et al., 2012; Sinninghe Damst   et al., 2012b). The  
122 crenarchaeol'/crenarchaeol ratios for enrichment cultures of group I.1a aquatic  
123 Thaumarchaeota are typically 0.01-0.04, however, for group I.1b Thaumarchaeota  
124 enriched from soils the crenarchaeol'/crenarchaeol ratios are around 0.21 and  
125 substantially higher (Pitcher et al., 2011; Sinninghe Damst   et al., 2012a). In addition,  
126 a likely Group I.1b Thaumarchaeota population inhabiting the subsurface water  
127 column near the anoxic-suboxic boundary was found in Lake Malawi, but the total  
128 production of isoGDGTs by this group appears to be much lower than the  
129 surface-dwelling Thaumarchaeota (Meegan Kumar et al., 2019).

130 In addition, aquatic Thaumarchaeota are nitrifiers, that prefer to live above the  
131 oxycline of relatively deep lakes, as has been observed by a range of lipid biomarker  
132 and DNA based investigations of vertical changes in archaea communities in lake  
133 water columns (Sinninghe Damst   et al., 2009; Blaga et al., 2011; Schouten et al.,  
134 2012; Buckles et al., 2013; Meegan Kumar et al., 2019). Some Thaumarchaeota are  
135 thought to be suppressed by a high light level, which consequently might also inhibit  
136 their ability to thrive near the surface of lakes (Schouten et al., 2013). Further,  
137 Thaumarchaeota are chemoautotrophic and thrive predominantly near the oxycline in  
138 stratified lakes, mainly due to the release of ammonia derived from descending

particulate organic matter that is recycled primarily by photoautotrophs or heterotrophs in the photic zone (Tierney et al., 2010). Consequently, the proportion of crenarchaeol in isoGDGTs (%cren) has been suggested as lake level proxy (Wang et al., 2014a; Wang et al., 2017a; Wang et al., 2019). However, it has also been suggested that mixing of the water column will be much more frequent at lowstand conditions, and therefore periodically or permanently oxic, high nutrient availability water and enhanced nitrogen cycling would be likely to result in a relatively higher production of crenarchaeol (Filippi and Talbot, 2005; Sinninghe Damsté et al., 2012).

147 In this study, we present an isoGDGT record spanning the last  
148 deglacial-Holocene transition from Lake Chenghai in the southwest China. Our stable  
149 oxygen isotope ( $\delta^{18}\text{O}$ ) record of authigenic carbonates from Lake Chenghai  
150 previously revealed that drought events occurred from 15.6 to 14.4 cal ka BP and 12.5  
151 to 11.7 cal ka BP corresponding to the H1 and YD event (Sun et al., 2019). The  
152 present study aims were to (1) identify sources of isoGDGTs in Lake Chenghai  
153 sediments and their linkage, if any, with lake-level variation; (2) test the reliability of  
154 isoGDGT-based proxies as temperature indicators, by comparing our results with  
155 other paleoenvironmental records from adjacent areas, and explore the possible  
156 mechanisms driving temperature variations during the last deglaciation-Holocene  
157 transition in southwestern China

158

## 159 2. Materials and methods

160 *2.1. Regional setting*

Lake Chenghai (26°27'-26°38'N, 100°38'-100°41'E, Fig. 1A) is a tectonic lake located in the northwestern part of Yunnan Province (Wang and Dou, 1998). The current water surface elevation is ~1500 m above sea level (a.s.l.), and the maximum water depth is ~35 m. The lake is hydrologically closed at present, with a surface area of ~77 km<sup>2</sup> and a catchment of ~318 km<sup>2</sup> (Wu et al., 2004). However, Lake Chenghai was linked to the Jinsha River via the Haikou River before a dam at an elevation of

167 ~1540 m a.s.l. was constructed on its southern side at ~0.3 cal ka BP (Wang and Dou,  
168 1998). The annual mean lake surface temperature (LST) is ~16 °C (Wan et al., 2005).  
169 In summer, the lake becomes thermally stratified, with the thermocline at between 10  
170 to 20 m (Fig. 1C, Lu, 2018). Despite a relatively large catchment, the lake level is  
171 mainly maintained by direct precipitation and groundwater, with a total dissolved  
172 solid load of ~1‰ and pH of ~8 (Wan et al., 2005). The lake is eutrophic with a total  
173 phosphate concentration of 0.05 mg/L, and total nitrogen concentration of 0.89 mg/L  
174 (Li et al., 2019). Topsoil types are lateritic red earths and mountain red brown soils in  
175 the catchment (Wang and Dou, 1998). The Lake Chenghai region is mainly affected  
176 by a warm-humid monsoonal airflow from the tropical Indian Ocean from June to  
177 September, and by the southern branch of the Northern Hemisphere westerly jet  
178 between October and May (Wang and Dou, 1998). The mean annual air temperature  
179 (MAAT) is ~14 °C, the mean annual precipitation is ~660 mm with 80% falling  
180 between June and September (the Yongsheng meteorological station 26.68 °N,  
181 100.75 °E; elevation of 2130 m a.s.l.).

182 *2.2. Sampling and dating*

183 In summer 2016, an 874-cm-long sediment core (CH2016) was retrieved using a  
184 UWITEC coring platform system with a percussion corer in 30 m of water depth  
185 (26°33'29.4"N, 100°39'6.7"E). Each section of the core was split lengthways,  
186 photographed and then sectioned at a 1-cm interval in the laboratory; the samples  
187 stored at 4 °C until analysis. The chronology was established using accelerator mass  
188 spectrometry (AMS)  $^{14}\text{C}$  dating of eight terrestrial plant macrofossils and charcoal  
189 (Sun et al., 2019). The radiocarbon analyses were performed at the Beta Analytic  
190 Radiocarbon Dating Laboratory in Miami, USA. The age model was developed  
191 utilizing Bacon, implemented in R 3.1.0 at 5-cm intervals (Blaauw and Andres  
192 Christen, 2011; R Development Core Team, 2013). All AMS  $^{14}\text{C}$  dates were calibrated  
193 to calendar years before present (0 BP =1950) using the program Calib 7.1 and the  
194 IntCal13 calibration data set (Reimer et al., 2013). The basal mean weighted age is  
195 ~15.6 cal ka BP (Fig. 2, Sun et al., 2019).

196 2.3. *Lipid extraction and analysis*

197 A total of 102 freeze-dried samples at 4-cm interval were collected for GDGT  
198 analysis over the last deglaciation-Holocene transition. The sampling resolution was  
199 increased to 1-cm between 792- 806 cm, due to the low sedimentation rate observed  
200 in this section. In addition, seven surface (the top 2 cm) sediments covering the whole  
201 lake sampled in 2014 were also analyzed. Lipid extraction was undertaken according  
202 to the procedures in Feng et al (2019). A ~4 g aliquot of each sample was extracted  
203 ultrasonically (4 times) with a mixture of dichloromethane and methanol (9:1, v/v).  
204 The supernatants were condensed and saponified at room temperature for 12 h with a  
205 1 M KOH/methanol solution. The neutral fractions were then separated into apolar  
206 and polar fractions on a silica gel column, using *n*-hexane and methanol, respectively.  
207 The polar fraction containing the GDGTs was concentrated and filtered through 0.45  
208  $\mu\text{m}$  polytetrafluoroethylene syringe filters using *n*-hexane/ isopropanol (99:1 v/v), and  
209 then dried under  $\text{N}_2$ .

210 GDGTs were analyzed using an Agilent 1260 series high performance liquid  
211 chromatography-atmospheric pressure chemical ionization-mass spectrometer  
212 (HPLC-APCI-MS), following the procedure of Yang et al. (2015) at the Institute of  
213 Tibetan Plateau Research, Chinese Academy of Sciences. Briefly, the GDGTs were  
214 separated using three silica columns in tandem (100 mm  $\times$  2.1 mm, 1.9  $\mu\text{m}$ ; Thermo  
215 Fisher Scientific, U.S.A.), maintained at 40  $^{\circ}\text{C}$ . The elution gradients were 84%  
216 *n*-hexane (A): 16% ethyl acetate (B) for 5 min, 84/16 to 82/18 A/B for another 60 min,  
217 then to 100% B for 21 min and kept for 4 min, followed by a return to 84/16 A/B for  
218 30 min. The total flow rate of pump A and pump B was maintained at 0.2 ml/min. The  
219 APCI-MS conditions were: vaporizer pressure 60 psi, vaporizer temperature 400  $^{\circ}\text{C}$ ,  
220 drying gas flow 6 L/min and temperature 200  $^{\circ}\text{C}$ , capillary voltage 3500 V and corona  
221 current 5  $\mu\text{A}$  ( $\sim$ 3200 V). Selected ion monitoring (SIM) mode was performed to target  
222 specific *m/z* values for each GDGT compound, including 1302 (GDGT-0), 1300  
223 (GDGT-1), 1298 (GDGT-2), 1296 (GDGT-3), and 1292 (crenarchaeol and  
224 crenarchaeol'). The results are presented as the fractional of the sum of the isoGDGTs

225 based on the integration of the peak areas of the  $[M+H]^+$  ions.

226 *2.4. Index calculation and temperature reconstruction*

227 The percentage of each isoGDGT (X) was calculated according to the following  
228 equation:

229 
$$\%X = X / (GDGT-0+ GDGT-1+ GDGT-2+ GDGT-3+ crenarchaeol+ crenarchaeol') \quad (1)$$

231 The  $TEX_{86}$  index was defined by Schouten et al. (2002) as follows:

232 
$$TEX_{86} = (GDGT-2+ GDGT-3+ crenarchaeol') / (GDGT-1+ GDGT-2+ GDGT-3+ crenarchaeol') \quad (2)$$

234  $TEX_{86}$ -inferred LST was calculated using the global lake calibration of  
235 Castañeda and Schouten (2015):

236 
$$LST = 49.03 \times TEX_{86} - 10.99 \quad (r^2 = 0.88, n=16, RMSE = 3.1 \text{ } ^\circ\text{C}) \quad (3)$$

237

238 **3. Results**

239 The isoGDGT compositions varied greatly in Lake Chenghai sediments. As  
240 illustrated in Fig. 3, GDGT-0 is the most abundant isoGDGT composition of the  
241 surface sediments. The relative abundance of GDGT-0 (%GDGT-0) ranged from 72.6-  
242 94.4 with a mean of 89.3%, the %cren values varied from 3.8- 18.4% with a mean of  
243 7.7%. The ratios of GDGT-0/crenarchaeol were from 4.0-24.5 with a mean of 15.5.  
244 The average values of GDGT-1, GDGT-2 and GDGT-3 relative abundance were 1.2,  
245 1.1 and 0.7%, respectively. The crenarchaeol' occurred in only low abundance, close  
246 to the detection limit, and therefore  $TEX_{86}$  values could not be calculated for these  
247 surface sediments.

248 The %cren values ranged between 2.4-61.3% with a mean of 52.4% in the core  
249 CH2016. The %cren values were relatively low and highly variable during 15.4-14.4  
250 cal ka BP, ranging between 1.8-32.0%, with a mean of 11.6%. By contrast, the values

251 were relatively stable during 14.4-7.0 cal ka BP, ranging between 41.8-61.3% with a  
252 mean of 58.3%. The relative abundances of crenarchaeol' had a mean of 1.7%. The  
253 ratios of crenarchaeol'/crenarchaeol were highly variable during 15.4-14.4 cal ka BP  
254 with a mean of 0.07. After this time, the values gradually decrease during 14.4-11.7  
255 cal ka BP time interval with a minor increase between 12.5-11.7 cal ka BP, where the  
256 ratio averaged 0.05. The crenarchaeol'/crenarchaeol ratios were generally stable and  
257 fluctuated around 0.03 during the period 11.8-7.0 cal ka BP.

258 The relative abundances of GDGT-0 (%GDGT-0) showed a significant negative  
259 correlation with the %cren in the core CH2016 ( $r= 0.99, p< 0.001$ ). The %GDGT-0  
260 values had a mean of 74.0% between 15.4-14.4 cal ka BP and a mean of 19.6% during  
261 the 14.4-7.0 cal ka BP interval. The values of GDGT-0/crenarchaeol were  
262 generally  $>2$  during the period 15.4-14.4 cal ka BP, ranging from 1.4-49.9 with a  
263 mean of 16.7, and all  $<2$  from 14.4-7.0 cal ka BP. The relative abundance of GDGT-1,  
264 GDGT-2 and GDGT-3 were generally low in the sediments, with means of 8.9, 9.2,  
265 and 1.3, respectively.

266 The  $\text{TEX}_{86}$  values were also highly variable during 15.4-14.4 cal ka BP period,  
267 ranging between 0.36-0.68 with a mean of 0.54. Thereafter, the values generally  
268 followed an increasing trend, ranging between 0.49-0.63 with a mean of 0.58.

269

## 270 **4. Discussion**

### 271 *4.1. Provenance of isoGDGTs*

272 In order to evaluate the potential sources of isoGDGTs in Lake Chenghai  
273 sediments, we plotted a ternary diagram to compare the distribution patterns of  
274 GDGT-0, crenarchaeol, and the sum of GDGT-1, GDGT-2, GDGT-3, and  
275 crenarchaeol' (' $\text{TEX}_{86}$ ' GDGT) among our samples, previously published Chinese  
276 soils and global marine sediments compiled by Yao et al. (2019), along with  
277 previously published Chinese lacustrine surface sediments results (Günther et al.,  
278 2014; Dang et al., 2016; Hu et al., 2016; Li et al., 2016, 2019; Yao et al., 2019; Wang

279 et al., 2020). In Lake Chenghai surface sediments, GDGT-0 is the predominant  
280 component among the isoGDGTs, consistent with most previous studies of lacustrine  
281 sediments (Blaga et al., 2009; Dang et al., 2016; Li et al., 2019; Yao et al., 2019;  
282 Wang et al., 2020). For example, GDGT-0 can account for more than 90% of total  
283 isoGDGTs in shallow lake surface sediments from East China (Dang et al., 2016); ~80%  
284 in saline pond surface sediments from northeast China (Li et al., 2019), and ~54% in  
285 surface sediments from the Qinghai-Tibetan Plateau (Wang et al., 2020). The values  
286 of GDGT-0/cren >2 in Lake Chenghai surface sediment suggest non-thaumarchaeotal  
287 isoGDGTs are also likely to be an important source in this lake system. The  
288 distribution of isoGDGTs between Chinese lacustrine surface sediments and soils  
289 were similar, and both were generally higher than that in global marine sediments and  
290 Thaumarchaeota. This line of evidence also suggests that the surface sediments could  
291 contain a significant contribution of soil isoGDGTs input (Li et al., 2016; Li et al.,  
292 2019).

293 The distribution of isoGDGT in Lake Chenghai sediment from 15.4-14.4 cal ka  
294 BP was similar to that of the surface sediments, suggesting a substantial contribution  
295 of non-thaumarchaeota during this period. However, the relative abundance of  
296 GDGT-0 significantly decreased and %cren increased in Lake Chenghai sediments  
297 from 14.4-7.0 cal ka BP. The plots generally overlapped with those of global marine  
298 sediments and Thaumarchaeota in the ternary diagram during this period, indicating  
299 that Thaumarchaeota dominated the archaea community in Lake Chenghai during the  
300 late glacial period and the early Holocene. The observed down-core changes in  
301 crenarchaeol'/crenarchaeol ratios may be due to relatively high contributions of group  
302 I.1b Thaumarchaeota from soils during the period 15.4-11.8 cal ka BP, and that these  
303 dominate the contributions of isoGDGTs derived from aquatic group I.1a  
304 Thaumarchaeota during the period from 11.8-7.0 cal ka BP.

305 *4.2. Assessment of isoGDGT-based lake-level proxy*

306 The environmental interpretation of %cren at Lake Chenghai during the period  
307 from the last deglaciation to the early Holocene is illustrated in Fig. 5.

308 Thaumarchaeota thrive predominantly near the oxycline in stratified lakes, and are  
309 mainly suppressed by non-thaumarchaeotal archaea when the lake level is low (Wang  
310 et al., 2014a; Wang et al., 2017a; Wang et al., 2019). Thus, the abrupt increase  
311 in %cren values is interpreted to represent an increase in lake depth in Lake Chenghai,  
312 from a lowstand during 15.4-14.4 cal ka BP, to a highstand period thereafter. The  
313 relatively low %cren values during 15.4-14.4 cal ka BP is consistent in timing with  
314 the  $\delta^{18}\text{O}$  record of authigenic carbonates derived from the same core (Fig. 4e, Sun et  
315 al., 2019), speleothem  $\delta^{18}\text{O}$  records from Mawmluh Cave and Bittoo Cave in north  
316 India (Fig. 4f, Dutt et al., 2015; Kathayat et al., 2016), and Donnge Cave in southwest  
317 China (Dykoski et al., 2005), which all record a substantial positive shift in  $\delta^{18}\text{O}$   
318 values at that time. Speleothem  $\delta^{18}\text{O}$  records in the ISM region are used as a rainfall  
319 amount proxy, with low  $\delta^{18}\text{O}$  values indicating high precipitation (Dykoski et al.,  
320 2005; Cheng et al., 2012; Dutt et al., 2015).

321 Low lake levels and a weakened ISM during the H1 cold event are also observed  
322 in several previous paleolimnological studies from the Yunnan Plateau, within the  
323 uncertainties of the age model. Diatom and grain-size records from Lake  
324 Tengchongqinghai show a significant decrease in acidophilous diatom species and an  
325 increase in the grain-size of mineral particles from 18.5 to 15.0 cal ka BP, suggesting  
326 that the climate was dry and the ISM was at its weakest since the last deglaciation  
327 (Fig. 4g, Zhang et al., 2017b; Li et al., 2018). Similarly, an increase in  $>30\text{ }\mu\text{m}$   
328 grain-size particles in the late glacial sediments from Lake Xingyun reflects a period  
329 of abrupt weakening of the ISM during the H1 cold event because of reduced lake  
330 level (Wu et al., 2015). In Lake Lugu, the loss of the planktonic diatoms and a switch  
331 to small *Fragilaria* spp. suggests a weaker stratification from 24.5 to 14.5 cal ka BP,  
332 which might also correspond to low lake-level at that time (Wang et al., 2014b).

333 Lake levels inferred from %cren do not show a lowstand during the YD  
334 ( $\sim 12.8\text{-}11.7$  cal ka BP), which is generally recognised as a period of low rainfall due  
335 to the weakening of the ISM (Dutt et al., 2015; Dykoski et al., 2005; Kathayat et al.,  
336 2016). In contrast, a low lake-level signal is observed in the  $\delta^{18}\text{O}$  record of authigenic

337 carbonates from Lake Chenghai (Sun et al., 2019). Increased lake water alkalinity and  
338 decreased lake level are also recorded in the diatom and grain-size proxy records  
339 between 12.8-11.1 cal ka BP of Lake Tengchongqinghai (Fig. 4g, Zhang et al., 2017b;  
340 Li et al., 2018). In addition, there is a peak of %cren centered at ~15.2 cal ka BP,  
341 suggesting a centennial scale high lake level and strengthened ISM period, which was  
342 not identified in a previous  $\delta^{18}\text{O}$  record of authigenic carbonates (Sun et al., 2019).  
343 The inferred high lake levels during the YD and at ~15.2 cal ka BP, which are  
344 inconsistent with weakened ISM inferred from other proxies, might be due to the  
345 erosion of soil organic matter into the lake during these periods (Wang et al., 2019).  
346 The crenarchaeol are relatively abundant in topsoils from southwest China, and the  
347 influence of soil input should be more significant at times of drier conditions (Yang et  
348 al., 2019). It is also worth noting that the crenarchaeol'/crenarchaeol ratios were not  
349 only relatively higher during the H1 cold event, but also showed a minor reversal  
350 during the YD cold event. These results are consistent with group I.1b  
351 Thaumarchaeota being an important source of isoGDGTs in small lakes and in the  
352 nearshore areas of large lakes (Wang et al., 2019).

353 Another possibility for the different H1 and YD lake level variation is the  
354 sensitivity of the proxy to lake level in the case of Lake Chenghai. The  $\delta^{18}\text{O}$  record of  
355 authigenic carbonates from Lake Chenghai and speleothem  $\delta^{18}\text{O}$  records in the ISM  
356 region suggest that the weakening of the ISM during the YD was less marked than  
357 that occurring during the H1 event, in turn suggesting that lake-levels in southwest  
358 China may have been higher during the YD than the H1 event (Dykoski et al., 2005;  
359 Dutt et al., 2015; Kathayat et al., 2016; Sun et al., 2019; Zhang et al., 2019). For  
360 the %cren proxy, we note that the values are correlated to the logarithm of depth,  
361 suggesting that %cren may be less sensitive to water depth variation when the  
362 lake-level is relatively high, and more sensitive to water depth variation when the  
363 lake-level is lower (Wang et al., 2019).

364 The interpretation of %cren presented here differs from that proposed for Lake  
365 Challa, but is consistent with that proposed for Lake Qinghai in northwest China

380 4.3. Warming in the last deglaciation-Holocene transition

The application of the  $\text{TEX}_{86}$ -based paleotemperature calibration depends critically on the assumption that the isoGDGTs used for calculation of  $\text{TEX}_{86}$  values are mainly been derived from group I.1a in the water column (Blaga et al., 2009; Castañeda and Schouten, 2011; Powers et al., 2010; Sinnighe Damst   et al., 2012a). Since the influence of methanogenic archaea in the water column or archaea in the catchment soils has been recognized as significant, Lake Chenghai sediments with crenarchaeol'/crenarchaeol ratios  $>0.04$  and/or GDGT-0/crenarchaeol ratio  $>2$  are excluded from the discussion below (Powers et al., 2010; Castañeda and Schouten, 2015). The ratio of branched GDGTs to isoGDGTs (BIT) should be  $<0.5$  if the  $\text{TEX}_{86}$ -temperature calibration in previous studies, because the values are generally  $>0.90$  in soils, whereas values are close to zero for sediments from large lakes (Hopmans et al., 2004; Weijers et al., 2006). However, recent studies of a wide variety of lakes have suggested that at least some of the branched GDGTs can be produced *in situ* in the lake (Blaga et al., 2010; Tierney et al., 2010; Pearson et al.,

395 2011; Hu et al., 2016; Dang et al., 2018; Russell et al., 2018). Therefore, *in situ*  
396 production of branched GDGTs in Lake Chenghai cannot be fully excluded, and  
397 therefore the ratio of BIT was ignored in this study. 74 samples remain that have  
398 isoGDGT distributions consistent with their dominant source being the aquatic  
399 Thaumarchaeota, most of these being from the time interval between 11.7-7.0 cal ka  
400 BP, and only a few from the last deglaciation (n= 6). Using Equation 4 developed by  
401 Castañeda and Schouten (2015) to calculate mean LST, yielded LST values from  
402 14.3-20.1 °C, with a mean of 18.0 °C (Fig. 5a).

403 LST was ~15.9 °C during the last deglacial period, a temperature approaching  
404 the 16 °C observed in the present Lake Chenghai. Considering the TEX<sub>86</sub>-based LST  
405 transfer function has a RMSE of 3.1 °C, this result is consistent with other recent  
406 reconstructed MAAT in southwest China, which show the temperatures during the last  
407 deglaciation were generally similar to the present-day values. For example, the  
408 MAAT inferred from branched GDGTs from Lake Tengchongqinghai in southwest  
409 China increased episodically from 12.0 °C to 14.0 °C between 19.2 and 10.0 cal ka BP,  
410 where the modern mean annual temperature is 14.7 °C (Tian et al., 2019). The  
411 TEX<sub>86</sub>-based deglacial LST and MAAT inferred from branched GDGTs from Nam Co  
412 in south Tibetan Plateau also reported values similar to the present-day (Günther et al.,  
413 2015). In contrast, the July air temperature derived from the chironomid record from  
414 Lake Tiancai, and pollen record from Lake Yidun showed that the climate during the  
415 deglacial period was ~2-3 °C cooler relative to today (Fig. 5b and c, Shen et al., 2006;  
416 Zhang et al., 2019). The amplitudes of reconstructed terrestrial temperatures change in  
417 the Indian summer monsoon region are generally consistent with those from the  
418 tropical Indian Ocean. Although estimates of sea surface temperatures in the Andaman  
419 Sea and Bay of Bengal were variable, the cooling relative to today ranged from  
420 1-4 °C (Rashid et al., 2007; MARGO, 2009; Govil and Naidu, 2011; Gebregiorgis et  
421 al., 2016).

422 Following the YD cold event, LST at Lake Chenghai ranged from 16.2 °C to  
423 20.1 °C with an increasing trend, and the middle Holocene was generally warmer than

424 the early Holocene (11.7- 8.2 cal ka BP). In the Indian summer monsoon region, the  
425 reconstructed MAAT using the branched GDGT calibration from Lake  
426 Ximenglongtan remained at ~12.5 °C from 9.4-7.6 cal ka BP, then experienced a rapid  
427 warming to 13.8 °C from 7.6-5.5 cal ka BP (Ning et al., 2019). Meanwhile, the  
428 branched GDGTs-MAAT from Lake Tengchongqinghai also achieved its highest the  
429 highest value at around 7.1 cal ka BP (Tian et al., 2019). Similarly, summer air  
430 temperatures reconstructed from Lake Tiancai and Lake Xingyun displayed a  
431 warming trend from the early Holocene to the mid-Holocene (Zhang et al., 2017a; Wu  
432 et al., 2018). The amplitude of the absolute scale of warming is of a lower magnitude  
433 in the chironomid, pollen and branched GDGT records as compared to the  
434 TEX<sub>86</sub>-based reconstruction from Lake Chenghai. This may be due to the difference  
435 in the accuracy and precision of the proxy-based models, which also depend on the  
436 biological and seasonal sensitivity of the proxy, to constrain the absolute temperature  
437 values (Zhang et al., 2017a).

438 We also noted that most of the lake records from not only the Indian summer  
439 monsoon region, but other parts of Asia, show a warming from 11.7-7.0 cal ka BP  
440 (Ning et al., 2019). In southwest China, Holocene summer air temperature generally  
441 follows summer isolation over the Northern Hemisphere, but lags the highest value by  
442 3-4 ka (Berger and Loutre, 1991; Zhang et al., 2017a; Wu et al., 2018). This indicates  
443 that additional feedback between solar insolation and internal processes, such as the  
444 persistence of remnants of the Northern Hemisphere ice-sheets and snow cover during  
445 the early Holocene, should be considered in explaining this discrepancy (Zhang et al.,  
446 2017a, Wu et al., 2018; Ning et al., 2019). This is evidenced by records from the  
447 Laurentide ice-sheets, which were still relatively large at ~11 cal ka BP, despite the  
448 occurrence of peak summer insolation (Shuman et al., 2005). The melting of  
449 ice-sheets from 11-6 cal ka BP is likely to have slowed down the Atlantic Meridional  
450 Overturning Circulation and impeded the northward shift of the Intertropical  
451 Convergence Zone (Dykoski et al., 2005). This process could further result in a  
452 relatively weakened Indian summer monsoon, and a reduction in heat transported to

453 the continent during the early Holocene (Zhang et al., 2017a). In addition, the  
454 ice-sheets in the early Holocene enhanced surface albedo and reduced air temperature  
455 in the high latitudes, which likely led to enhanced westerlies transporting more cold  
456 air from the North Atlantic Ocean downward to the ISM affected regions through its  
457 south branch flow, especially during the winter (Ning et al., 2019). A long-term winter  
458 warming trend in southwest China was revealed by the pollen record from Lake Wuxu  
459 and Muge from the southeast margin of the Qinghai-Tibetan Plateau (Zhang et al.,  
460 2016; Ni et al., 2019). In the high latitudes of the Northern Hemisphere, the early  
461 Holocene winter warming is attributed to increasing winter insolation, as well as the  
462 retreat of the Northern Hemisphere ice-sheets (Baker et al., 2017; Marsicek et al.,  
463 2018). Although our LST record from Lake Chenghai has not been determined to be  
464 an indicator of summer or winter temperature, it does appear that long-term  
465 temperature evolution during the early Holocene to the mid-Holocene, which was  
466 driven mainly by solar insolation and the status of Northern Hemisphere ice-sheets. In  
467 essence, more temperature records with unambiguous seasonal significance from  
468 different regions are needed to achieve a comprehensive understanding of Holocene  
469 temperature dynamics.

470

## 471 **5. Conclusions**

472 The record of isoGDGTs in the sediments of Lake Chenghai in southwest China  
473 presented in this study allows us to test the ability of isoGDGT-based proxies in the  
474 ISM region to reconstruct lake-level and temperature during the last  
475 deglaciation-Holocene transition. The lake-level history inferred from %cren shows a  
476 relative lowstand of Lake Chenghai during 15.4-14.4 cal ka BP, corresponding to a  
477 period of weakened ISM during the H1 cold event. The indistinct signal of lake-level  
478 variation during the YD cold event may be due to the group I.1b Thaumarchaeota  
479 being an important source of isoGDGTs and consequently the lake level may have  
480 been low during the YD cold event. After filtering for the influence of isoGDGTs  
481 derived from soils in the surrounding catchment and non-thaumarchaeota, the  $\text{TEX}_{86}$

482 paleothermometry revealed that the LST of Lake Chenghai was similar to the  
483 present-day value during the last deglaciation. The lake also experienced a substantial  
484 warming of ~4 °C from the early-Holocene to the mid-Holocene due to the melting of  
485 the remnants of the continental ice-sheets in the Northern Hemisphere, which  
486 gradually enhanced the ISM and reduced the winter westerly circulation. Overall, our  
487 results show that records of isoGDGTs in Lake Chenghai sediments have potential for  
488 quantitative paleotemperature reconstruction once potential underlying biases are  
489 properly constrained.

490

491 **Data availability.**

492 All data generated in this study can be found in the Supplement.

493 **Author contributions.**

494 W.S and E.Z designed the study, W.S performed the fieldwork and lab analysis. W.S  
495 and E.Z led the writing of the paper, J.C, J. S, M.I.B, C.Z, Q.J and J.S contributed to  
496 data interpretation and paper writing. All authors contributed to discussions and  
497 writing of the manuscript. The authors declare that they have no competing financial  
498 interests.

499 **Competing interests.**

500 The authors declare that they have no conflict of interest.

501 **Acknowledgments.**

502 We would like to thank two anonymous reviewers for their valuable suggestion on  
503 this article, as well as Dr. R. Chen and D. Ning for field assistance and laboratory  
504 analysis.

505 **Financial support.**

506 The research was supported by the found from the program of Global Change and  
507 Mitigation (2016YFA0600502), the National Natural Science Foundation of China

508 (41702183 and 41572337), the Strategic Priority Research Program of Chinese  
509 Academy of Sciences (XDB40010200), and the fund from State Key Laboratory of  
510 Lake Science and Environment (2016SKL003).

511

512 **References**

- 513 Alley, R.B., Clark, P.U.: The deglaciation of the northern hemisphere: A global  
514 perspective. *Annu. Rev. Earth Pl. Sc.* 27, 149-182, DOI:  
515 10.1146/annurev.earth.27.1.149, 1999.
- 516 Baker, J.L., Lachniet, M.S., Chervyatsova, O., Asmerom, Y., Polyak, V.J.: Holocene  
517 warming in western continental Eurasia driven by glacial retreat and greenhouse  
518 forcing. *Nature Geosci.* 10, 430-435, DOI: 10.1038/ngeo2953, 2017.
- 519 Berger, A., Loutre, M.-F.: Insolation values for the climate of the last 10 million years.  
520 *Quaternary. Sci. Rev.* 10, 297-317: DOI: 10.1016/0277-3791(91)90033-Q, 1991.
- 521 Berke, M.A., Johnson, T.C., Werne, J.P., Schouten, S., Sinninghe Damst   J.S.: A  
522 mid-Holocene thermal maximum at the end of the African Humid Period. *Earth.*  
523 *Planet. Sc. Lett.* 351-352, 95-104, DOI: 10.1016/j.epsl.2012.07.008, 2012.
- 524 Blaauw, M., Andres Christen, J.: Flexible paleoclimate age-depth models using an  
525 autoregressive gamma process. *Bayesian. Anal.* 6, 457-474,  
526 DOI: 10.1214/11-BA618, 2011.
- 527 Blaga, C.I., Reichart, G.-J., Heiri, O., Sinninghe Damst   J.S.: Tetraether membrane  
528 lipid distributions in water-column particulate matter and sediments: a study of  
529 47 European lakes along a north-south transect. *J. Paleolimnol.* 41, 523-540,  
530 DOI: 10.1007/s10933-008-9242-2, 2009.
- 531 Blaga, C.I., Reichart, G.-J., Lotter, A.F., Anselmetti, F.S., Sinninghe Damst   J.S.: A  
532  $TEX_{86}$  lake record suggests simultaneous shifts in temperature in Central Europe  
533 and Greenland during the last deglaciation. *Geophys. Res. Lett.* 40, 948-953,  
534 DOI: 10.1002/grl.50181, 2013.
- 535 Blaga, C.I., Reichart, G.-J., Vissers, E.W., Lotter, A.F., Anselmetti, F.S., Sinninghe  
536 Damst   J.S.: Seasonal changes in glycerol dialkyl glycerol tetraether

- 537 concentrations and fluxes in a perialpine lake: Implications for the use of the  
538 TEX86 and BIT proxies. *Geochim. Cosmochim. Ac.* 75, 6416-6428, DOI:  
539 10.1016/j.gca.2011.08.016, 2011.
- 540 Blaga, C.I., Reichart, G.J., Schouten, S., Lotter, A.F., Werne, J.P., Kosten, S., Mazzeo,  
541 N., Lacerot, G., Damste, J.S.S.: Branched glycerol dialkyl glycerol tetraethers in  
542 lake sediments: Can they be used as temperature and pH proxies? *Org. Geochem.*  
543 41, 1225-1234, DOI: 10.1016/j.orggeochem.2010.07.002, 2010.
- 544 Buckles, L.K., Villanueva, L., Weijers, J.W.H., Verschuren, D., Damsté, J.S.S.:  
545 Linking isoprenoidal GDGT membrane lipid distributions with gene abundances  
546 of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in  
547 the water column of a tropical lake (Lake Challa, East Africa). *Environ.1*  
548 *Microbiol.* 15, 2445-2462, DOI: 10.1111/1462-2920.12118, 2013.
- 549 Carlson, A.E., LeGrande, A.N., Oppo, D.W., Came, R.E., Schmidt, G.A., Anslow, F.S.,  
550 Licciardi, J.M., Obbink, E.A.: Rapid early Holocene deglaciation of the  
551 Laurentide ice sheet. *Nature Geosci.* 1, 620-624, DOI: 10.1038/ngeo285, 2008.
- 552 Castañeda, I.S., Schouten, S.: A review of molecular organic proxies for examining  
553 modern and ancient lacustrine environments. *Quaternary. Sci. Rev.* 30,  
554 2851-2891, DOI: 10.1016/j.quascirev.2011.07.009, 2011.
- 555 Castañeda, I.S., Schouten, S.: Corrigendum to “A review of molecular organic proxies  
556 for examining modern and ancient lacustrine environments” [Quat. Sci. Rev. 30  
557 (2011) 2851–2891]. *Quaternary. Sci. Rev.* 125, 174-176, DOI:  
558 10.1016/j.quascirev.2015.07.020, 2015.
- 559 Cheng, H., Sinha, A., Wang, X., Cruz, F.W., Edwards, R.L.: The Global  
560 Paleomonsoon as seen through speleothem records from Asia and the Americas.  
561 *Clim. Dynam.* 39, 1045-1062, DOI: 10.1007/s00382-012-1363-7, 2012.
- 562 Contreras-Rosales, L.A., Jennerjahn, T., Tharammal, T., Meyer, V., Lückge, A., Paul,  
563 A., Schefuß, E.: Evolution of the Indian Summer Monsoon and terrestrial  
564 vegetation in the Bengal region during the past 18 ka. *Quaternary. Sci. Rev.* 102,  
565 133-148, DOI: 10.1016/j.quascirev.2014.08.010, 2014.
- 566 Dang, X., Ding, W., Yang, H., Pancost, R.D., Naafs, B.D.A., Xue, J., Lin, X., Lu, J.,

- 567 Xie, S.: Different temperature dependence of the bacterial brGDGT isomers in  
568 35 Chinese lake sediments compared to that in soils. *Org. Geochem.*, DOI:  
569 10.1016/j.orggeochem.2018.02.008, 2018.
- 570 Dang, X.Y., Xue, J.T., Yang, H., Xie, S.C.: Environmental impacts on the distribution  
571 of microbial tetraether lipids in Chinese lakes with contrasting pH: Implications  
572 for lacustrine paleoenvironmental reconstructions. *Sci. China. Earth. Sci.* 59,  
573 939-950, DOI: 10.1007/s11430-015-5234-z, 2016.
- 574 Dutt, S., Gupta, A.K., Clemens, S.C., Cheng, H., Singh, R.K., Kathayat, G., Edwards,  
575 R.L.: Abrupt changes in Indian summer monsoon strength during 33,800 to  
576 5500 years B.P. *Geophys. Res. Lett.* 42, 5526-5532, DOI:  
577 10.1002/2015GL064015, 2015.
- 578 Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing,  
579 J., An, Z., Revenaugh, J.: A high-resolution, absolute-dated Holocene and  
580 deglacial Asian monsoon record from Dongge Cave, China. *Earth. Planet. Sc.*  
581 *Lett.* 233, 71-86, DOI: 10.1016/j.epsl.2005.01.036, 2005.
- 582 Feng, X., Zhao, C., D'Andrea, W.J., Liang, J., Zhou, A., Shen, J.: Temperature  
583 fluctuations during the Common Era in subtropical southwestern China inferred  
584 from brGDGTs in a remote alpine lake. *Earth. Planet. Sc. Lett.* 510, 26-36, DOI:  
585 10.1016/j.epsl.2018.12.028, 2019.
- 586 Filippi, M.L., Talbot, M.R.: The palaeolimnology of northern Lake Malawi over the  
587 last 25 ka based upon the elemental and stable isotopic composition of  
588 sedimentary organic matter. *Quaternary. Sci. Rev.* 24, 1303-1328, DOI:  
589 10.1016/j.quascirev.2004.10.009, 2005.
- 590 Gebregiorgis, D., Hathorne, E.C., Sijinkumar, A.V., Nath, B.N., Nürnberg, D., Frank,  
591 M.: South Asian summer monsoon variability during the last ~54 kyrs inferred  
592 from surface water salinity and river runoff proxies. *Quaternary. Sci. Rev.* 138,  
593 6-15, DOI: 10.1016/j.quascirev.2016.02.012, 2016.
- 594 Govil, P., Divakar Naidu, P.: Variations of Indian monsoon precipitation during the  
595 last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal.  
596 *Quaternary. Sci. Rev.* 30, 3871-3879, DOI: 10.1016/j.quascirev.2011.10.004,

- 597 2011.
- 598 Günther, F., Thiele, A., Gleixner, G., Xu, B., Yao, T., Schouten, S.: Distribution of  
599 bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes:  
600 Implications for GDGT-based proxies in saline high mountain lakes. *Org. Geochem.* 67, 19-30, DOI: 10.1016/j.orggeochem.2013.11.014, 2014.
- 601 Günther, F., Witt, R., Schouten, S., Mäusbacher, R., Daut, G., Zhu, L., Xu, B., Yao, T.,  
602 Gleixner, G.: Quaternary ecological responses and impacts of the Indian Ocean  
603 Summer Monsoon at Nam Co, Southern Tibetan Plateau. *Quaternary. Sci. Rev.*  
604 112, 66-77, 10.1016/j.quascirev.2015.01.023, 2015.
- 605 Hu, J., Zhou, H., Peng, P.a., Spiro, B.: Seasonal variability in concentrations and  
606 fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE  
607 China: Implications for the applicability of the MBT-CBT paleotemperature  
608 proxy in lacustrine settings. *Chem. Geol.* 420, 200-212, DOI:  
609 10.1016/j.chemgeo.2015.11.008, 2016.
- 610 Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R.L., Zhang, H., Li, X., Yi, L.,  
611 Ning, Y., Cai, Y., Lui, W.L., Breitenbach, S.F.M.: Indian monsoon variability on  
612 millennial-orbital timescales. *Sci. Rep-UK.* 6, DOI: 10.1038/srep24374, 2016.
- 613 Kim, J.-G., Jung, M.-Y., Park, S.-J., Rijpstra, W.I.C., Sinninghe Damsté J.S., Madsen,  
614 E.L., Min, D., Kim, J.-S., Kim, G.-J., Rhee, S.-K.: Cultivation of a highly  
615 enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an  
616 agricultural soil. *Environ. Microbiol.* 14, 1528-1543, DOI:  
617 10.1111/j.1462-2920.2012.02740.x, 2012.
- 618 Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F.,  
619 Koç N., Hopmans, E.C., Damsté J.S.S.: New indices and calibrations derived  
620 from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for  
621 past sea surface temperature reconstructions. *Geochim. Cosmochim. Ac.* 74,  
622 4639-4654, DOI: 10.1016/j.gca.2010.05.027, 2010.
- 623 Li, J.J., Pancost, R.D., Naafs, B.D.A., Yang, H., Zhao, C., Xie, S.C.: Distribution of  
624 glycerol dialkyl glycerol tetraether (GDGT) lipids in a hypersaline lake system.  
625 *Org. Geochem.* 99, 113-124, DOI: 10.1016/j.orggeochem.2016.06.007, 2016.

- 627 Li, J., Pancost, R.D., Naafs, B.D.A., Yang, H., Liu, D., Gong, L., Qiu, X., Xie, S.:  
628       Multiple environmental and ecological controls on archaeal ether lipid  
629       distributions in saline ponds. *Chem. Geol.* 529, 119293; DOI:  
630       10.1016/j.chemgeo.2019.119293, 2019.
- 631 Li, K., Zhou, Y., Zhou, Q., Dong, Y., Zhang, Y., Chang, J., Chen, L., Lu, Y.:  
632       Temporal-spatial distribution of euphotic depth and its influencing factors in  
633       Lake Chenghai, Yunnan Province, China. *J. Lake Sci.* 31 (1), 256-267, DOI: 10.  
634       18307 /2019. 0124, .2019
- 635 Li, Y., Chen, X., Xiao, X., Zhang, H., Xue, B., Shen, J., Zhang, E.: Diatom-based  
636       inference of Asian monsoon precipitation from a volcanic lake in southwest  
637       China for the last 18.5 ka. *Quaternary. Sci. Rev.* 182, 109-120, DOI:  
638       10.1016/j.quascirev.2017.11.021, 2018.
- 639 Ling, Y., Sun, Q., Zheng, M., Wang, H., Luo, Y., Dai, X., Xie, M., Zhu, Q.:  
640       Alkenone-based temperature and climate reconstruction during the last  
641       deglaciation at Lake Dangxiong Co, southwestern Tibetan Plateau. *Quatern. Int.*  
642       443, 58-69, DOI: 10.1016/j.quaint.2016.07.036, 2017.
- 643 Ljungqvist, F.C., Krusic, P.J., Sundqvist, H.S., Zorita, E., Brattström, G., Frank, D.:  
644       Northern Hemisphere hydroclimate variability over the past twelve centuries.  
645       *Nature* 532, 94-98, DOI: 10.1038/nature17418, 2016.
- 646 Lu Z., Study on climatic and environmental changes of the Yunnan Chenghai region  
647       recorded by lake sediments since 1800 [D]. Kunming: The master Thesis of  
648       Yunnan Normal University, 39-43, 2018.
- 649 MARGO Project Members: Constraints on the magnitude and patterns of ocean  
650       cooling at the Last Glacial Maximum. *Nature Geosci.* 2, 127-132, DOI:  
651       10.1038/ngeo411, 2009.
- 652 Marsicek, J., Shuman, B.N., Bartlein, P.J., Shafer, S.L., Brewer, S.: Reconciling  
653       divergent trends and millennial variations in Holocene temperatures. *Nature* 554,  
654       92-96, DOI: 10.1038/nature25464, 2018.
- 655 McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., Brown-Leger, S.:  
656       Collapse and rapid resumption of Atlantic meridional circulation linked to

- 657 deglacial climate changes. *Nature* 428, 834-837, DOI: 10.1038/nature02494,  
658 2004.
- 659 Meegan Kumar, D., Woltering, M., Hopmans, E.C., Sinninghe Damsté, J.S., Schouten,  
660 S., Werne, J.P.: The vertical distribution of Thaumarchaeota in the water column  
661 of Lake Malawi inferred from core and intact polar tetraether lipids. *Org. Geochem.* 132, 37-49, DOI: 10.1016/j.orggeochem.2019.03.004, 2019.
- 663 Ni, Z., Jones, R., Zhang, E., Chang, J., Shulmeister, J., Sun, W., Wang, Y., Ning, D.:  
664 Contrasting effects of winter and summer climate on Holocene montane  
665 vegetation belts evolution in southeastern Qinghai-Tibetan Plateau, China.  
666 *Palaeogeogr. Palaeoocl.* 533, 109232, DOI: 10.1016/j.palaeo.2019.06.005, 2019.
- 667 Ning, D., Zhang, E., Shulmeister, J., Chang, J., Sun, W., Ni, Z.: Holocene mean  
668 annual air temperature (MAAT) reconstruction based on branched glycerol  
669 dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. *Org.*  
670 *Geochem.* 133, 65-76, DOI: 10.1016/j.orggeochem.2019.05.003, 2019.
- 671 Pearson, E.J., Juggins, S., Talbot, H.M., Weckstrom, J., Rosen, P., Ryves, D.B.,  
672 Roberts, S.J., Schmidt, R.: A lacustrine GDGT-temperature calibration from the  
673 Scandinavian Arctic to Antarctic: Renewed potential for the application of  
674 GDGT-paleothermometry in lakes. *Geochim. Cosmochim. Ac.* 75, 6225-6238,  
675 DOI: 10.1016/j.gca.2011.07.042, 2011.
- 676 Pitcher, A., Hopmans, E.C., Mosier, A.C., Park, S.-J., Rhee, S.-K., Francis, C.A.,  
677 Schouten, S., Sinninghe Damsté, J.S.: Core and Intact Polar Glycerol  
678 Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea  
679 Enriched from Marine and Estuarine Sediments. *Appl. Environ. Microb.* 77,  
680 3468, DOI: 10.1128/AEM.02758-10, 2011.
- 681 Powers, L., Werne, J.P., Vanderwoude, A.J., Sinninghe Damsté, J.S., Hopmans, E.C.,  
682 Schouten, S.: Applicability and calibration of the TEX<sub>86</sub> paleothermometer in  
683 lakes. *Org. Geochem.* 41, 404-413, DOI: 10.1016/j.orggeochem.2009.11.009,  
684 2010.
- 685 Powers, L.A., Werne, J.P., Johnson, T.C., Hopmans, E.C., Damsté, J.S.S., Schouten, S.:  
686 Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature

- 687 proxy for continental paleoclimate reconstruction? *Geology* 32, 613-616, DOI:  
688 10.1130/G20434.1, 2004.
- 689 R Development Core Team, R: A language and environment for statistical computing,  
690 R Foundation for Statistical Computing, Vienna, Austria, 2013.
- 691 Rashid, H., Flower, B.P., Poore, R.Z., Quinn, T.M.: A ~25 ka Indian Ocean monsoon  
692 variability record from the Andaman Sea. *Quaternary. Sci. Rev.* 26, 2586-2597,  
693 DOI: 10.1016/j.quascirev.2007.07.002, 2007.
- 694 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck,  
695 C.E., Cheng, H., Edwards, R.L., Friedrich, M.: IntCal13 and Marine13  
696 radiocarbon age calibration curves 0–50,000 years cal BP. *Radiocarbon* 55,  
697 1869-1887, DOI: 10.2458/azu\_js\_rc.55.16947, 2013.
- 698 Russell, J.M., Hopmans, E.C., Loomis, S.E., Liang, J., Sinninghe Damst  , J.S.:  
699 Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers  
700 (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new  
701 lacustrine paleotemperature calibrations. *Org. Geochem.* 117, 56-69, DOI:  
702 10.1016/j.orggeochem.2017.12.003, 2018.
- 703 Saraswat, R., Lea, D.W., Nigam, R., Mackensen, A., Naik, D.K.: Deglaciation in the  
704 tropical Indian Ocean driven by interplay between the regional monsoon and  
705 global teleconnections. *Earth. Planet. Sc. Lett.* 375, 166-175, DOI:  
706 10.1016/j.epsl.2013.05.022, 2013.
- 707 Schouten, S., Hopmans, E.C., Schefu  , E., Sinninghe Damst  , J.S.: Distributional  
708 variations in marine crenarchaeotal membrane lipids: a new tool for  
709 reconstructing ancient sea water temperatures? *Earth. Planet. Sc. Lett.* 204,  
710 265-274, DOI: 10.1016/S0012-821X(02)00979-2, 2002.
- 711 Schouten, S., Hopmans, E.C., Sinninghe Damst  , J.S.: The organic geochemistry of  
712 glycerol dialkyl glycerol tetraether lipids: A review. *Org. Geochem.* 54, 19-61,  
713 DOI: 10.1016/j.orggeochem.2012.09.006, 2013.
- 714 Schouten, S., Rijpstra, W.I.C., Durisch-Kaiser, E., Schubert, C.J., Sinninghe Damst  ,  
715 J.S.: Distribution of glycerol dialkyl glycerol tetraether lipids in the water  
716 column of Lake Tanganyika. *Org. Geochem.* 53, 34-37, DOI:  
25

- 717 10.1016/j.orggeochem.2012.01.009, 2012.
- 718 Shen, C., Liu, K.-b., Tang, L., Overpeck, J.T.: Quantitative relationships between  
719 modern pollen rain and climate in the Tibetan Plateau. *Rev. Palaeobot. Palyno.*  
720 140, 61-77, DOI: 10.1016/j.revpalbo.2006.03.001, 2006.
- 721 Shuman, B., Bartlein, P.J., Webb, T.: The magnitudes of millennial- and orbital-scale  
722 climatic change in eastern North America during the Late Quaternary. *Quaternary*.  
723 *Sci. Rev.* 24, 2194-2206, DOI: 10.1016/j.quascirev.2005.03.018, 2005.
- 724 Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S.F.M., Berkelhammer, M.,  
725 Mudelsee, M., Biswas, J., Edwards, R.L.: Trends and oscillations in the Indian  
726 summer monsoon rainfall over the last two millennia. *Nat. Commun.* 6, DOI:  
727 10.1038/ncomms7309, 2015.
- 728 Sinha, A., Stott, L., Berkelhammer, M., Cheng, H., Edwards, R.L., Buckley, B.,  
729 Aldenderfer, M., Mudelsee, M.: A global context for megadroughts in monsoon  
730 Asia during the past millennium. *Quaternary. Sci. Rev.* 30, 47-62, DOI:  
731 10.1016/j.quascirev.2010.10.005, 2011.
- 732 Sinninghe Damst   J.S., Ossebaar, J., Abbas, B., Schouten, S., Verschuren, D.: Fluxes  
733 and distribution of tetraether lipids in an equatorial African lake: Constraints on  
734 the application of the TEX<sub>86</sub> palaeothermometer and BIT index in lacustrine  
735 settings. *Geochim. Cosmochim. Ac.* 73, 4232-4249, DOI:  
736 10.1016/j.gca.2009.04.022, 2009.
- 737 Sinninghe Damst   J.S., Ossebaar, J., Schouten, S., Verschuren, D.: Distribution of  
738 tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting  
739 reliable TEX<sub>86</sub> and MBT/CBT palaeotemperatures from an equatorial African  
740 lake. *Quaternary. Sci. Rev.* 50, 43-54, DOI: 10.1016/j.quascirev.2012.07.001,  
741 2012a.
- 742 Sinninghe Damst   J.S., Rijpstra, W.I.C., Hopmans, E.C., Jung, M.-Y., Kim, J.-G.,  
743 Rhee, S.-K., Stieglmeier, M., Schleper, C.: Intact Polar and Core Glycerol  
744 Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b *Thaumarchaeota*  
745 in Soil. *Appl. Environ. Microb.* 78, 6866-6874, DOI: 10.1128/AEM.01681-12,  
746 2012b.

- 747 Sun, W., Zhang, E., Shulmeister, J., Bird, M.I., Chang, J., Shen, J.: Abrupt changes in  
748 Indian summer monsoon strength during the last deglaciation and early Holocene  
749 based on stable isotope evidence from Lake Chenghai, southwest China.  
750 Quaternary. Sci. Rev. 218, 1-9, DOI: 10.1016/j.quascirev.2019.06.006, 2019.
- 751 Tian, L., Wang, M., Zhang, X., Yang, X., Zong, Y., Jia, G., Zheng, Z., Man, M.:  
752 Synchronous change of temperature and moisture over the past 50 ka in  
753 subtropical southwest China as indicated by biomarker records in a crater lake.  
754 Quaternary. Sci. Rev. 212, 121-134, DOI: 10.1016/j.quascirev.2019.04.003,  
755 2019.
- 756 Tierney, J.E., Russell, J.M., Huang, Y., Damst   J.S.S., Hopmans, E.C., Cohen, A.S.:  
757 Northern Hemisphere controls on tropical southeast African climate during the  
758 past 60,000 years. Science 322, 252-255, DOI: 10.1126/science.1160485, 2008.
- 759 Tierney, J.E., Russell, J.M., Eggermont, H., Hopmans, E.C., Verschuren, D., Damste,  
760 J.S.S.: Environmental controls on branched tetraether lipid distributions in  
761 tropical East African lake sediments. Geochim. Cosmochim. Ac. 74, 4902-4918,  
762 DOI: 10.1016/j.gca.2010.06.002, 2010.
- 763 Wan, G.J., Chen, J.A., Wu, F.C., Xu, S.Q., Bai, Z.G., Wan, E.Y., Wang, C.S., Huang,  
764 R.G., Yeager, K.M., Santschi, P.H.: Coupling between  $^{210}\text{Pb}_{\text{ex}}$  and organic matter  
765 in sediments of a nutrient-enriched lake: An example from Lake Chenghai, China.  
766 Chem Geol 224, 223-236, DOI: 10.1016/j.chemgeo.2005.07.025, 2005.
- 767 Wang, H., Dong, H., Zhang, C.L., Jiang, H., Liu, Z., Zhao, M., Liu, W.: Deglacial and  
768 Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of  
769 Lake Qinghai, northeastern Qinghai-Tibetan Plateau. Quaternary. Res. 83,  
770 116-126, DOI: 10.1016/j.yqres.2014.10.003, 2015.
- 771 Wang, H., Dong, H., Zhang, C.L., Jiang, H., Zhao, M., Liu, Z., Lai, Z., Liu, W.: Water  
772 depth affecting thaumarchaeol production in Lake Qinghai, northeastern  
773 Qinghai-Tibetan plateau: Implications for paleo lake levels and paleoclimate.  
774 Chem. Geol. 368, 76-84, DOI: 10.1016/j.chemgeo.2014.01.009, 2014a.
- 775 Wang, H., He, Y., Liu, W., Zhou, A., Kolpakova, M., Krivonogov, S., Liu, Z.: Lake  
776 Water Depth Controlling Archaeal Tetraether Distributions in Midlatitude Asia:

- 777        Implications for Paleo Lake-Level Reconstruction. *Geophys. Res. Lett.* 46,  
778        5274-5283, DOI: 10.1029/2019GL082157, 2019.
- 779        Wang, H., Leng, Q., Liu, W., Yang, H.: A rapid lake-shallowing event terminated  
780        preservation of the Miocene Clarkia Fossil Konservat-Lagerstätte (Idaho, USA).  
781        *Geology* 45, 239-242, DOI: 10.1130/G38434.1, 2017a.
- 782        Wang, M., Tian, Q., Li, X., Liang, J., He, Y., Hou, J.:  $\text{TEX}_{86}$  as a potential proxy of  
783        lake water pH in the Tibetan Plateau. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 538, 109381, DOI:  
784        10.1016/j.palaeo.2019.109381, 2020.
- 785        Wang, M., Zheng, Z., Man, M., Hu, J., Gao, Q.: Branched GDGT-based  
786        paleotemperature reconstruction of the last 30,000 years in humid monsoon  
787        region of Southeast China. *Chem. Geol.* 463, 94-102, DOI:  
788        10.1016/j.chemgeo.2017.05.014, 2017b.
- 789        Wang, Q., Yang, X., Anderson, N.J., Zhang, E., Li, Y.: Diatom response to climate  
790        forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last  
791        Glacial Maximum and its implications for understanding regional monsoon  
792        variability. *Quaternary. Sci. Rev.* 86, 1-12, DOI: 10.1016/j.quascirev.2013.12.024,  
793        2014b.
- 794        Wang, S., Dou, H.: Lakes in China. Science Press, Beijing, China (in Chinese), 1998.
- 795        Weijers, J.W.H., Schouten, S., Spaargaren, O.C., Damste, J.S.S.: Occurrence and  
796        distribution of tetraether membrane lipids in soils: Implications for the use of the  
797         $\text{TEX}_{86}$  proxy and the BIT index. *Org. Geochem.* 37, 1680-1693, DOI:  
798        10.1016/j.orggeochem.2006.07.018, 2006.
- 799        Wu, D., Chen, X., Lv, F., Brenner, M., Curtis, J., Zhou, A., Chen, J., Abbott, M., Yu, J.,  
800        Chen, F.: Decoupled early Holocene summer temperature and monsoon  
801        precipitation in southwest China. *Quaternary. Sci. Rev.* 193, 54-67, DOI:  
802        10.1016/j.quascirev.2018.05.038, 2018.
- 803        Wu, D., Zhou, A., Chen, X., Yu, J., Zhang, J., Sun, H.: Hydrological and ecosystem  
804        response to abrupt changes in the Indian monsoon during the last glacial, as  
805        recorded by sediments from Xingyun Lake, Yunnan, China. *Palaeogeogr.*  
806        *Palaeoclimatol. Palaeoecol.* 421, 15-23, DOI: 10.1016/j.palaeo.2015.01.005, 2015.

- 807 Wu, J., Gagan, M.K., Jiang, X., Xia, W., Wang, S.: Sedimentary geochemical  
808 evidence for recent eutrophication of Lake Chenghai, Yunnan, China. *J.*  
809 *Paleolimnol.* 32, 85-94, 2004.
- 810 Yao, Y., Zhao, J., Bauersachs, T., Huang, Y.: Effect of water depth on the TEX<sub>86</sub> proxy  
811 in volcanic lakes of northeastern China. *Org. Geochem.* 129, 88-98, DOI:  
812 10.1016/j.orggeochem.2019.01.014, 2019.
- 813 Yang, H., Xiao, W., Słowakiewicz, M., Ding, W., Ayari, A., Dang, X., Pei, H.:  
814 Depth-dependent variation of archaeal ether lipids along soil and peat profiles  
815 from southern China: Implications for the use of isoprenoidal GDGTs as  
816 environmental tracers. *Org. Geochem.* 128, 42-56, DOI:  
817 <https://doi.org/10.1016/j.orggeochem.2018.12.009>, 2019.
- 818 Zhang, E., Chang, J., Cao, Y., Sun, W., Shulmeister, J., Tang, H., Langdon, P.G., Yang,  
819 X., Shen, J.: Holocene high-resolution quantitative summer temperature  
820 reconstruction based on subfossil chironomids from the southeast margin of the  
821 Qinghai-Tibetan Plateau. *Quaternary. Sci. Rev.* 165, 1-12, DOI:  
822 10.1016/j.quascirev.2017.04.008, 2017a.
- 823 Zhang, E., Chang, J., Shulmeister, J., Langdon, P., Sun, W., Cao, Y., Yang, X., Shen, J.:  
824 Summer temperature fluctuations in Southwestern China during the end of the  
825 LGM and the last deglaciation. *Earth. Planet. Sc. Lett.* 509, 78-87, DOI:  
826 10.1016/j.espl.2018.12.024, 2019.
- 827 Zhang, E., Sun, W., Chang, J., Ning, D., Shulmeister, J.: Variations of the Indian  
828 summer monsoon over the last 30 000 years inferred from a pyrogenic carbon  
829 record from south-west China. *J. Quaternary. Sci.* 33, 131-138, DOI:  
830 10.1002/jqs.3008, 2018.
- 831 Zhang, E., Wang, Y., Sun, W., Shen, J.: Holocene Asian monsoon evolution revealed  
832 by a pollen record from an alpine lake on the southeastern margin of the  
833 Qinghai-Tibetan Plateau, China. *Clim. Past* 12, 415-427, DOI:  
834 10.5194/cp-12-415-2016, 2016.
- 835 Zhang, E., Zhao, C., Xue, B., Liu, Z., Yu, Z., Chen, R., Shen, J.: Millennial-scale  
836 hydroclimate variations in southwest China linked to tropical Indian Ocean since

837 the Last Glacial Maximum. *Geology* 45, 435-438, DOI: 10.1130/G38309.1,  
838 2017b.  
839 Zheng, Y., Pancost, R.D., Naafs, B.D.A., Li, Q., Liu, Z., Yang, H.: Transition from a  
840 warm and dry to a cold and wet climate in NE China across the Holocene. *Earth.*  
841 *Planet. Sc. Lett.* 493, 36-46, DOI: 10.1016/j.epsl.2018.04.019, 2018.

842

843 **Figure captions**

844



845  
846 **Fig. 1.** (a) Map showing the location of Lake Chenghai in southwest China (red  
847 triangle) and other sites (circles) mentioned in the text: 1. Bittoo Cave (Kathayat et al.,

848 2016); 2. Mawmluh Cave (Dutt et al., 2015); 3. Lake Ximenglongtan (Ning et al.,  
 849 2019); 4. Lake Tengchongqinghai (Zhang et al., 2017b; Li et al., 2018; Tian et al.,  
 850 2019); 5. Lake Tiancai (Zhang et al., 2017a, 2019); 6. Lake Lugu (Wang et al., 2014);  
 851 7. Lake Xingyun (Wu et al., 2015, 2018); 8. Dongge Cave (Dykoski et al., 2005); 9.  
 852 Nam Co (Günther et al., 2015); 10. Dangxiong Co (Ling et al., 2017); 11. Lake Yidun  
 853 (Shen et al., 2006); 12. Lake Wuxu (Zhang et al., 2016); 13. Lake Muge (Ni et al.,  
 854 2019), (b) The red triangle indicates the location of core CH2016 in Lake Chenghai,  
 855 while green triangles indicate the locations of surface samples. (c) The vertical  
 856 variation of Lake Chenghai water temperature in March, May, July and October (Lu,  
 857 2018).



858

859 **Fig. 2.** (a) Age-depth model for the Lake Chenghai sediment core produced using  
 860 Bacon software (Blaauw and Andres Christen, 2011) from Sun et al. (2019). Dotted  
 861 lines indicate the 95% confidence range and the solid line indicates the weighted  
 862 mean ages for each depth, error bars indicate the standard deviation range ( $2\sigma$ ) of the  
 863 calibrated radiocarbon dates. (b) estimated sedimentation rate (Sun et al., 2019).

864



865

866 **Fig. 3.** Variations in the relative isoGDGT distribution and isoGDGTs-based proxies  
 867 of the Lake Chenghai sediment core. The Box-Whisker plots indicate the values from  
 868 surface sediments.

869



870

871 **Fig. 4.** Ternary diagram showing the distributions of GDGT-0, crenarchaeol, and  
 872 'TEX<sub>86</sub>' GDGTs in surface and core sediments from Lake Chenghai, global marine  
 873 sediments (Kim et al., 2010), published Chinese soils compiled by Yao et al. (2019),  
 874 and Chinese lacustrine surface sediments (Günther et al., 2014; Dang et al., 2016; Hu  
 875 et al., 2016; Li et al., 2016, 2019; Yao et al., 2019; Wang et al., 2020).

876



877

878 **Fig. 5.** Comparison of the isoGDGT-based lake-level record from Lake Chenghai (a-c)  
 879 with the  $\delta^{18}\text{O}$  record of carbonate finer in grain size than 63  $\mu\text{m}$  from Lake Chenghai  
 880 (d, Sun et al., 2019), the stalagmite  $\delta^{18}\text{O}$  records from Mawmluh Cave in northeast  
 881 Indian (e, Dutt et al., 2015); grain-size and diatom record from Lake  
 882 Tengchongqinghai (f and g, Zhang et al., 2017; Li et al., 2018). The shading is utilised  
 883 to represent 'cold' events in the North Atlantic.

884



885

886 **Fig. 6.** A comparison of  $\text{TEX}_{86}$ -based lake surface temperature of Lake Chenghai (a)  
 887 with other paleotemperature records from the ISM region. (b) mean annual  
 888 temperature based on branched GDGTs from Lake Ximenglongtan (blue line, Ning et  
 889 al., 2019) and Lake Tengchongqinghai (black line, Tian et al., 2019); (c)  
 890 Alkenone-based mean annual temperature at Lake Dangxiong (blue line, Ling et al.,  
 891 2017), and  $\text{TEX}_{86}$ -based lake surface temperature of Nam Co from the southern  
 892 Tibetan Plateau (black line, Günther et al., 2015); (d) July temperature reconstructed  
 893 from pollen record from Lake Xingyun (blue line, Wu et al., 2018) and subfossil  
 894 chironomids from Lake Tiancai (black line, Zhang et al., 2017a, 2019);; and (e) sea

895 surface temperatures in the Andaman Sea and Bay of Bengal (Rashid et al., 2007;  
896 Govil and Naidu, 2011; Gebregiorgis et al., 2016).  
897