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Abstract. Differences between paleoclimatic reconstructions are caused by two main factors, the method and the 10 
input data. While many studies compare methods, we will focus in this study on the consequences of the input 

data choice in a state-of-the-art paleo data assimilation approach. We evaluate reconstruction quality based on 

three collections of tree-ring records: (1) 54 of the best temperature sensitive tree-ring chronologies chosen by 

experts; (2) 415 temperature sensitive tree-ring records chosen less strictly by regional working groups and 

statistical screening; (3) 2287 tree-ring series that are not screened for climate sensitivity. The three data sets cover 15 
the range from small sample size, small spatial coverage and strict screening for temperature sensitivity to large 

sample size and spatial coverage but no screening. Additionally, we explore a combination of these data sets plus 

screening methods to improve the reconstruction quality.   

Neither a large, unscreened collection of proxy data nor the small expert selection leads to the best possible climate 

field reconstruction. A large collection of unscreened data leads to a poor reconstruction skill. The few best 20 
temperature proxies allow for a skillful high latitude temperature reconstruction but fail to provide improved 

reconstructions for other regions and other variables. We achieve the best reconstruction skill across all variables 

and regions by combing all available input data but rejecting records with small, insignificant information and 

removing duplicate records. In case of assimilating tree ring proxies, it appeared to be important to use a tree-ring 

proxy system model that includes both major growth limitations, temperature and moisture.  25 

1 Introduction 

In the past 20 years, a lot of effort has been invested in improving climate reconstructions for the last centuries to 

millennia based on indirect climate information – so-called “proxies”. Focus has been on both, large-scale 

averages as well as the reconstructions of regional to global fields (Masson-Delmotte et al., 2013; Smerdon and 

Pollack, 2016). Temporal and spatial resolution varied with the included paleoclimatic archives. However, most 30 
reconstructions for the past centuries rely heavily on the most abundant indirect climate archive, tree rings, and 

specifically on tree-ring width (TRW) and late-wood density (MXD). Differences between reconstructions have 

mostly been discussed with differences in reconstruction methodology in mind (Christiansen and Ljungqvist, 

2017). However, a new study shows good agreement between a wide range of methods, if reconstructions are 

based on the same input data set (Neukom et al., 2019a; 2019b). Another recent study found that temperature 35 
sensitive tree-ring proxies from the PAGES2k database (Emile-Geay et al., 2017) lack multi-centennial trends, 
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which are found in other proxy archives (Klippel et al., 2019). This suggests that the input data probably play a 

crucial role for differences between different reconstructions. Today, many proxy data archives are available, 

hence compiling input data for reconstruction is not only a matter of the amount of proxy data, but also of their 

selection, i.e., screening. 40 
In this study, we therefore aim at evaluating the effect of various tree-ring data collections and their screening on 

the final reconstructions. Because of the relevance of temperature in the climate change discussion and the fact 

that many biological proxies react to temperature stress, temperature has so far been the variable of most interest. 

However, to study the underlying processes a multi-variable perspective is required. Therefore, we evaluate the 

effects of the input data choice, using a state-of-the-art data assimilation technique, which allows for multi-45 
variable climate reconstructions in form of model simulations that are in optimal agreement with proxy 

information (Bhend et al., 2012; Franke et al., 2017).  

Previous studies based on data assimilation techniques proposed that a higher quantity of input data would always 

be beneficial. Because the regression-based proxy system models weight each proxy series by their regression 

residuals, proxies that do not contribute information would be downweighted automatically (Steiger et al., 2018; 50 
Tardif et al., 2019). However, this weighting may not work perfectly because of two factors: first, the regression 

depends on overlapping paleodata and instrumental measurements, which often results in a small sample, 

uncertain residuals and possible model overfitting. Second, moisture and temperature sensitive proxies may 

correlate in the period of overlapping data and hence moisture sensitive paleodata will be used to correct 

temperature and vice versa. However, these two variables probably have very different multi-decadal to centennial 55 
variability (Franke et al., 2013). The growth limiting factor may even change over time (Babst et al., 2019). 

In this study, we use the Kalman filter based state-of-the-art data assimilation technique introduced in Bhend et 

al. (2012), which is very similar to the methodology used in the last millennium reanalysis project (Hakim et al., 

2016; Tardif et al., 2019). In our experiments, we focus on the effect of the input data choice on the final 

reconstruction. We compare three published collections of tree-ring records (focusing on TRW and MXD), of 60 
which at least two are commonly used for climate reconstructions. These have very different characteristics: (1) 

The B14 collection of 2287 consistently detrended TRW chronologies from the International Tree Ring Data 

Base(ITRDB), not screened for climate sensitivity (Breitenmoser et al., 2014); (2) TRW and MXD from the 

PAGES2K database version 2 (Emile-Geay et al., 2017), with a selection of 415  temperature sensitive records, 

most selected by a statistical screening for positive correlation with instrumental temperature; and (3) the N-65 
TREND tree-ring collection of 54 TRW, MXD or blended TRW-MXD time series (Wilson et al., 2016), selected 

by experts to be the best temperature recorders. Thus, the three data sets cover the range from large sample size 

and spatial coverage but no screening for temperature sensitivity to small sample size and small spatial coverage 

but strict screening. 

In the next section the method and data sets are introduced in greater detail before we show our results. Then we 70 
discuss the possible reasons for our results and the differences compared to previous studies. Finally, we draw our 

conclusion how an optimal proxy selection process should look like. 

2 Data and Methods 

We use three input data sets for comparison, all consist of annually resolved tree-ring measurements, which have 

no dating uncertainties: 75 
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1. B14 is a collection Breitenmoser et al. (2014) of 2287 uniformly detrended and standardized TRW 

measurements from the ITRDB (Zhao et al., 2018). We use the full collection without any further 

screening for climate/temperature sensitivity. Hence, this represents the data set with the highest quantity 

of records. However, the weighting of temperature information in the paleodata is completely up to the 

reconstruction method.  80 
2. PAGES2k is a collection of 415 TRW and MXD series from PAGES2k data base version 2 (Emile-Geay 

et al., 2017). These are all records that correlate significantly (p<0.05) with nearby instrumental 

temperature measurements and/or have been described by experts to represent temperature variability. 

This compilation represents a compromise of good quantity, large spatial coverage and good quality 

paleodata, but experts from various regional groups were differently strict in their screening procedure.  85 
3. N-TREND is a collection of 54 tree-ring reconstructions based on TRW, MXD or a combination of both. 

They were chosen by experts to be just the best tree-ring paleodata for temperature reconstructions 

(Wilson et al., 2016). Hence, they are our low quantity, highest quality input data set with least spatial 

coverage. 

The Ensemble Kalman Fitting (EKF) method is a variation of the Ensemble Kalman filter (Evensen, 2003), in 90 
which paleodata are assimilated serially (Bhend et al., 2012; Franke et al., 2017). In order to assimilate the 

paleodata, we need a forward model that simulates them in the model state vector. We use a multiple regression 

proxy system model (PSM) to simulate tree-ring observations using modeled temperature or precipitation. The 

regression model is calibrated with gridded instrumental data (CRU TS 3.1, Harris et al., 2014) in the period 1901-

1970. It includes monthly temperature (and precipitation) during the growing season April to September. In this 95 
study, we limit the analysis to the northern hemisphere because the majority of the tree-ring observations can be 

found there. In the first four experiments (see Table 1), which only use temperature (T) in the PSM, we have 6 

independent variables (i.e., local temperature of the 6 months). If we assume that tree growth was limited by 

temperature and moisture (TR) variability, we have 12 independent variables. In additional experiments we 

consider only regression models with consecutive months by fitting all possible combinations of consecutive 100 
months and choosing the PSM with the lowest Akaike information criterion (AIC). In the model with temperature 

and precipitation this can be a different sequence of months for each variable, but both have to be consecutive 

(e.g. growth is limited by April to June precipitation and June to September temperature). The variance of the 

regression residuals is used to specify the observation error covariance matrix (assumed diagonal) in the 

assimilation, i.e. the larger the residuals, the less weight an observation gets and the less the model simulations 105 
get corrected.  

The same proxy series may exist in several data collections or even within a single collection, possibly in 

differently treated/detrended versions. We conduct experiments where we prevent single chronologies from being 

assimilated twice by only choosing the best proxy (smallest regression residuals) in a 0.1ºx0.1º (ca. 10km) grid. 

Note, for the sensitivity experiments in this study we ignore the length of the proxy records in case there should 110 
be records of different length within a grid box.  

Background error covariances are calculated from the 30-member ensemble at each time step. This has the 

advantage of taking time variant covariance structures into account, for instance during El Niño vs La Nina years. 

The disadvantage is the small 30 ensemble member sample for covariance estimation. We apply a covariance 

localization to remove random covariances at distant locations, e.g. > 1500 km in case of temperature(Franke et 115 
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al., 2017). A recent comparison of Valler et al. (2018) has shown superior performance when using an improved 

covariance estimation, which blends 50% of the 30-member time-dependent covariance with 50% of a 250-

member “climatological” covariance (Experiment: 50c_PbL_Pc2L in Valler et al.  (2018)). In this paper we use 

both the original setting as in Franke et al. (2017) as well as the improved setting proposed by Valler et al. (2018). 

Our paleo-reanalysis is based on anomalies from a 71-year period around the current year. Low frequency 120 
variability is a function of the models’ response to the prescribed external forcings and background conditions, 

which include sea-surface temperatures. Because low frequency variability is not consistently preserved in 

paleodata (Franke et al., 2013; Klippel et al., 2019), but reasonably well represented in the model simulations of 

the last millennium (Franke et al., 2017), this approach is expected to provide consistent skill at all time scales. 

Note that by subtracting a running mean, model biases are retained. This circumvents a big problem in data 125 
assimilation approaches with temporally varying input data networks. Observations that gradually pull the model 

away from its biased state, can lead to artificial trends or step functions in time-series. However, it must be noted 

that the final reconstruction is consistent only in the model world. 

We evaluate the quality of the reconstruction based on correlation with gridded instrumental observations of 

temperature, precipitation (Harris et al., 2014) and sea level pressure (Allan and Ansell, 2006) in the period 1901-130 
1990 as a reference (xref, where x is the state vector). However, rather than analyzing just at correlation itself, we 

analyze correlation improvements over the original model simulations, because these forced simulations already 

correlate positively with observations in many locations. Correlation focuses on the co-variability, i.e. the correct 

sign of the anomaly. Additionally, we use a root-mean-square-error skill score (RE) that describes the 

improvement of the analysis (xa) over the original model simulations (background, xb) over all time steps (i). 135 

                           (1) 

It is more difficult to reach positive RE values than correlation improvements, because this score punishes a wrong 

amplitude of variability (e.g., an uncorrelated reconstruction with correct variance would yield RE = -1). Because 

it is based on squared errors, too high variability is punished more than little variability, which the ensemble mean 

of the original model simulations has. We only evaluate correlation improvements and RE of the ensemble mean.  140 
Note that reconstructions and validation data are not completely independent, as we estimate PSM regression 

coefficient from the relationship between them. Hence, our correlation measures and RE skill score may be 

overestimated, which could be accounted for by using a higher observation error. However, both factors are not 

crucial for the sensitivity experiments presented in this study, where we are mostly interested in relative quality 

differences.  145 
To evaluate the influence of the input data on the final reconstruction, we conducted the following set of 

experiments: 

Table 1: Experiments 

Name Proxy system model Description 

NTREND_T 6 regression coeff. for 

Apr. to Sep monthly 

temperature (T) 

Just using the best tree-ring chronologies for 

temperature reconstruction, which have been chosen by 

experts, i.e. very strict selection of few, best records 

RE =1−
xi
a − xi

ref( )
2

∑
xi
b − xi

ref( )
2

∑
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PAGES_T Same as above Using a selection of temperature sensitive proxies, 

selected by the regional PAGES working groups, i.e. 

mostly statistical screening for temperature signal. 

Therefore, more records but less strictly screened than 

NTREND. Probably, included some moisture or partly 

moisture sensitive proxies, too. 

 

B14_T Same as above Consistently detrended tree-ring data from the ITRDB 

by B14. This proxy set includes the largest amount of 

proxy series. However, many of them do not include 

any climate signal. 

ALL_T Same as above All three data sets together, largest data set with 

greatest spatial coverage. However, duplicate proxies 

cannot be excluded 

ALL_TR 12 regression coeff. For 

Apr. to Sep. monthly 

temperature and 

precipitation (R) 

Same as above 

ALL_TR_scr0.05 Same as above Same as above but with additional screening, i.e. only 

records with a climate signal (p-value < 0.05) will be 

assimilated. In the experiments above these series got 

little weight due to large errors (regression residuals) 

but were still assimilated. 

ALL_TR_scr0.05_ 

AIC_NOdup 

Max. 12 regression 

coeff. but only 

consecutive months are 

allowed, still mixed 

temperature and 

precipitation signals are 

possible  

Same as above but we chose with the AIC the 

regression model under the precondition that only 

climate from consecutive months can influence tree 

growth, which is more realistic due to local growing 

season length. Additionally, we remove duplicate 

proxies by only considering the best proxy (lowest 

regression residuals) within a 0.1ºx0.1º (ca. 10 km) 

grid. In each grid box we keep both, the best mainly 

temperature limited and the best mainly moisture 

sensitive proxy if both exist. 

ALL_TR_scr0.05_ 

AIC_NOdup_ClimCovar 

Same as above  Same as above but with background error-covariance 

estimate not only from the 30 ensemble members of the 

current year. Instead we use a mix of 50% error 

covariance coming from 250 random ensemble 

members and years. 
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3 Results 150 

We start with comparing experiments NTREND_T, PAGES_T and B14_T against observations, i.e., we compare 

the role of the choice of the three input data sets assuming only temperature dependence and no constraint on the 

regression model structure. In terms of correlation improvement over the background (i.e., the model simulations) 

in temperature (Fig. 1A,B,C) the highest local improvements are reached with the NTREND data set, however 

the largest spatial coverage of improvement is found with the B14 data set. Note that temperature correlation 155 
improves with all data sets and decreases nowhere, although some proxy records in the B14 data set do not contain 

any temperature signal. In terms of correlation the data assimilation scheme appears to weight the input data 

appropriately.  

Although these first three experiments only use a temperature PSM, information can spread to other variables 

through the covariance matrix. Looking at precipitation correlation improvements (Fig. 2A,B,C), we find hardly 160 
any improvements with the NTREND collection. In contrast, the B14 data set leads to some precipitation 

correlation improvements over North America, where no NTREND series are located. B14 provides temperature 

information in places where temperature is correlated with precipitation. 

The correct sign of the anomaly, measured by correlation, is only telling us one aspect of the reconstruction 

quality. To see if the amplitude of the anomaly is also reconstructed correctly, we look at the RE skill score (see 165 
methods). Here, we find large differences between the proxy collections. With NTREND_T we find 

improvements everywhere, whereas B14_T shows more regions with negative than positive skill (note that we 

use PSM with only temperature). The PAGES data set is again in the middle. This suggest that using moisture 

sensitive proxies to reconstruct temperature as in B14_T, which works just because temperature and precipitation 

are correlated at a given location, is not ideal. Hence, we would like to take the proxies’ temperature or moisture 170 
sensitivity better into account and to find an option to use the PAGES and B14 collection at locations, where no 

expert selected proxies are available but rather keep the quality of the expert selected data, where it is available. 

Before we come to a more sophisticated PSM and more sophisticated input data screening, we simply combine 

all three data sets using still a model with only temperature (ALL_T). This experiment performs well. Temperature 

correlation now reaches levels of the NTREND data set, where it is available and covers the entire region, where 175 
we only have data in PAGES or B14. RE values are positive in most regions, too. However, around India and the 

Himalaya as well as in the US southwest, skill is negative. Precipitation correlations improved only marginally 

(Fig. 4D) and precipitation RE (Fig. 5D) is mostly negative.  

The obvious change to improve precipitation reconstruction skill is to use a PSM that includes precipitation, i.e. 

a multiple regression model with 12 coefficients for temperature and precipitation influence during the 6-months 180 
growing season (experiment ALL_TR). Temperature skill remains at the same high level, but precipitation skill 

clearly improves (Fig. 4E and 5E). Correlations improve everywhere and RE values become positive in most 

region with the exception of the Himalaya region and most northeast of Russia. 

So far, we have not excluded any proxies from the data assimilation. We trust that proxies with no or a weak 

climate signal simply have regression coefficient close to zero and large residuals. This way they hardly affect the 185 
analysis. However, in a regression model with 12 independent variables and only 70 years of overlapping data, 

some records may just by chance get more weight than they deserve. Therefore, our next step is the introduction 

of a weak screening. In a first step, we only assimilate proxies with p-values < 0.05 for the full regression model 
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(ALL_TR_scr0.05). This removes ca. 16% of the proxies and hardly affects correlations (Fig. 1F, 2F, 3F) but 

removes most of the negative RE values in both, temperature and precipitation (Fig. 4F and 5F). 190 
This result appears good, but this could also be a result of overfitting the regression model. In addition to this 

statistical argument, allowing all possible combinations of the 12 variables makes not much physiological sense 

either. Hence, the next step is to constrain the model. The tree growth should be affected by climate conditions in 

a locally varying growing season of consecutive months. We fit all possible combinations of temperature and 

precipitation influences in consecutive months and chose the model with the lost AIC (see methods, note that 195 
additionally, duplicates are removed; experiment ALL_TR_scr0.05_AIC_NOdup). As a result of this more 

physically based growth model, reconstruction skill decreases slighty (Fig. 4G and 5G). This suggests that the 

previously noted improvement in RE was indeed due to overfitting. Nevertheless, correlations remain on the same 

high level everywhere (Fig. 1G, 2G, 3G). Only RE decreases in some regions with a high number of paleodata 

such as parts of China and parts of North America.  200 
Recently, Valler et al. (2018) could show that major improvements of the method used in this study can be 

achieved by using a background error covariance matrix, which is not only calculated from the 30 ensemble 

members for the current year (Franke et al. 2017) but blended with a climatological error covariance matrix based 

on random years and ensemble members from the original model simulations (see methods, experiment 

ALL_TR_scr0.05_AIC_NOdup_ClimCovar). Using improved covariance information increases RE values again 205 
and only very few grid boxes with negative skill remain. Moreover, the largest effects of the better error covariance 

estimation appear in variables that have not been assimilated such as sea level pressure (Fig. 3H). This is very 

important because one of the reasons for using data assimilation instead to traditional statistical reconstruction 

techniques is the possibility to gain knowledge about further variables in a physically consistent way, which allows 

for a better dynamic interpretation of the identified climatic variations.  210 

4 Discussion 

The assimilation results with the three data sets and a temperature PSM in terms of temperature correlation 

differences are as expected. We calculate the regression coefficients based on instrumental temperature. Hence, 

all proxies that correlate in some way with instrumental temperature will be used to update the analysis 

temperature. The analysis has highest correlations improvements with instrumental temperature if the proxies 215 
themselves had highest correlations, which is the case for the NTREND data set with the best temperature proxies 

only. Correlations improvements are lower but cover a larger area with the B14 collection.  

Note that correlation improvements can be a result of a negative relationship between tree-ring width and 

instrumental temperature if local growth is moisture limited and growing season temperature and precipitation are 

negatively correlated. This can be a benefit because through the covariance we use the extra information that dry 220 
summers are also warm and vice versa. Hence, we find much better precipitation correlation with the B14 

collection than with the NTREND data set. However, using moisture sensitive trees to update temperature fields 

may cause problems. Precipitation variability shows high inter-annual variability in many locations but neither 

the same inter- to multi-decadal variability as temperature nor its centennial trend (Hartmann et al., 2013; Landrum 

et al., 2013). Hence, updating other than the assimilated variables through the covariance matrix can cause 225 
problems on longer than inter-annual scale (Tardif et al., 2019). 
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The regression model is calibrated on the interannual time scale assuming that TRW limitations remain the same. 

However, this may not be the case (Babst et al. 2019), and therefore decadal-to-multidecadal variability may be 

less well represented. A similar argument holds for the update introduced by the model covariance matrix, which, 

although state dependent, may yield optimal estimates only for seasonal and not decadal time scales. However, 230 
our approach avoids these pitfalls in two ways. First, at multidecadal and longer time-scales, the model takes over, 

and therefore relations in our reconstructions are not constrained to be stationary across time scales. Furthermore, 

with our approach, the stationarity assumption is restricted to the regression model, thus it is a local stationarity - 

no further stationarity assumption concerning spatial variability is introduced except for experiment 

ALL_TP_scr0.05_AIC_NOdup_ClimCovar, where 50% of the background error covariance matrix is 235 
climatological and thus stationary. Most other approaches assume stationary spatial covariances.  

Theoretically, it would it be optimal to assimilate all available data and let each record be weighted based by its 

error. However, the true observation error is unknown and the estimation uncertain. In our case, we use a multiple 

regression proxy-system model with 6/12 variables (six months of temperature and optionally six months of 

precipitation) in a 70-year period of overlapping instrumental data and proxy measurements to estimate regression 240 
coefficients. This rather short period and large number of independent variables can lead to overfitting the model 

and thus underestimating the observation error, which is defined by the regression residuals. Together with the 

low signal-to-noise ratio of many tree-ring chronologies, this can lead to an over- or under-correction of the model 

field in the assimilation step. An additional experiment with doubled observation error (not shown) increases RE 

values clearly. This suggests that PSM overfitting is part of the reason for the negative RE skill scores in the 245 
B14_T experiment in contrast to the NTREND_T experiment (Fig. 2A and C).  

In the following experiments (ALL_TR_scr0.05, ALL_TR_scr0.05_AIC_NOdup, 

ALL_TR_scr0.05_AIC_NOdup_ClimCovar) we tried to reduce the consequences of uncertain error estimates 

step by step. Excluding proxies without a significant climate signal (p<0.05) for the full regression model, clearly 

improves the RE skill score for temperature and precipitation in large parts of Asia (Fig. 4F and 5F). This 250 
highlights the negative effects of spurious correlation – even if it is very weak – on the analysis. Hence, screening 

the data appears to be important, especially in data sparse regions, where there is no chance for better records with 

smaller errors to correct errors introduced due to spurious covariances. In other reconstruction methods, for 

instance principle component regression or the search for the best analogs, screening of records will additionally 

be necessary to avoid spatial biases due to non-homogeneous proxy distributions (Bradley, 1996; Rutherford et 255 
al., 2005). However, this is negligible in the data assimilation framework because the number of assimilated 

records has a regional instead of global impact and because the method provides a measure of uncertainty in form 

of ensemble spread at each grid cell. 

In the experiment, in which we only allow for a single growing season (ALL_TR_scr0.05_AIC_NOdup) per year 

instead of a statistically optimal selection of months and by removing duplicate records that are in more than one 260 
of the data collections, correlations improve slightly but RE decreases slightly. Obviously, we continue with this 

more realistic setup, but note that the choice what is “best” depends on the chosen statistic or the reconstruction 

characteristics that are wished by the user. For instance, correlation just measures covariance whereas RE is based 

on squared errors and hence punishes especially large biases, i.e. it favors an underestimation variability over an 

overestimation. 265 
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Finally, we introduce an improved background error covariance estimation scheme 

(ALL_TR_scr0.05_AIC_NOdup_ClimCovar, Valler et al. 2019). Because assimilated information is spread in 

space and in between variables through the covariance matrix, it is important to estimate covariances well. 

Estimating covariance from both, the 30 members at the current time step and from climatology and then blending 270 
both information, especially improves our results for variables, which have not been assimilated such as sea level 

pressure (Fig. 3H).  

In reality, climate signals in tree-ring proxies may be even more complicated than a function of moisture 

availability and growing season temperature. Limiting factors may change over time (Babst et al., 2019) or light 

availability may be important and not always be highly correlated with temperature, i.e. more diffuse light after 275 
volcanic eruptions may stimulate growth (Stine and Huybers, 2014). More sophisticated proxy system forward 

models such as VS-Lite (Tolwinski-Ward et al., 2011) could be used in data assimilation (Acevedo et al., 2016). 

In fact, we have applied VS-lite to all TRW records in B14 (Breitenmoser et al., 2014). However, addressing the 

effects of using VS-lite rather than a regression model would require a dedicated paper. 

Finally, we tested the order of assimilated data, because we assimilate data serially. In combination with using 280 
covariance localization, the order could influence the final reconstruction (Greybush et al., 2011). Assimilating 

the data from the best to worst record in terms of regression residuals and in opposite order from worst to best, 

hardly influenced correlation and RE skill scores at all (not shown). Hence, we continue to assimilate records 

starting with the best ones, similar to traditional reanalysis, which sort observations from the largest to smallest 

expected variance reduction in the reanalysis (Slivinski et al., 2019; Whitaker et al., 2008). 285 

Conclusion 

How to choose input data for paleo data assimilation? We address this question by comparing three paleodata 

compilations of different sizes as well as using all data set together in combination with various screening 

approaches. 

 290 
Just using a large collection of proxy data (B14) does not lead to a skillful reconstruction. In contrast, just using 

a small expert selection of the best temperature proxies (NTREND) leads to a good high latitude temperature 

reconstruction but wastes the potential of modern data assimilation technique to reconstruct the 4-dimensional 

multi-variate state of the atmosphere. However, simply combing all available input data and leaving the weighting 

completely to a statistical model does not lead to optimal results, either. Rejecting records without a clear climatic 295 
signal, removing duplicates and using a physically plausible PSM altogether lead to a better reconstruction.  

 

Hence the answer to our research question if it is better to assimilate all available proxy data or just the best expert 

selection has to be answered with: neither of the two is optimal. 

We achieve the best results in terms of correlation and RE, if we use a large collection of proxy records. However, 300 
to make proper use of input data, which was not screened by experts, it is crucial to: 

1. use proxy system models that properly represent the paleodata, here taking possible temperature and 

moisture limitations of tree growth into account. 

2. use correct physical assumptions, in our case about tree growth, to avoid statistical overfitting.  

3. remove input data with random, not significant climate signals. 305 
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4. care about overfitting (underestimation of errors) 

 

For a future project, it would be very interesting to study how different reconstruction methods handle these three 

differently screened data sets to see, if these results are valid for other reconstructions methods, too? 
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Figure 1: Temperature correlation improvement of the analysis over the original model simulations, i.e. correlation 
between analysis and CRU TS minus correlation between simulations and CRU TS, where red colors indicate an 
improvement of the analysis. All maps show the Apr. to Sep. growing season of the northern hemisphere.  
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Figure 2: Same as Fig. 1 for precipitation correlation, where green colors indicate an improvement of the analysis. 

 
Figure 3: Same as Fig. 1 for SLP correlation, where red colors indicate an improvement of the analysis. 
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Figure 4: Temperature RE skill score, where red colors indicate an improvement of the analysis. 

 
Figure 5: Precipitation RE skill score, where greens colors indicate an improvement of the analysis. 
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