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Abstract. Differences between paleoclimatic reconstructions are mainly caused by two factors, the method and 

the input data. While many studies compare methods, we will focus in this study on the consequences of the input 

data choice in a state-of-the-art Kalman-filter paleo data assimilation approach. We evaluate reconstruction quality 

in the 20th century based on three collections of tree-ring records: (1) 54 of the best temperature sensitive tree-ring 15 
chronologies chosen by experts; (2) 415 temperature sensitive tree-ring records chosen less strictly by regional 

working groups and statistical screening; (3) 2287 tree-ring series that are not screened for climate sensitivity. 

The three data sets cover the range from small sample size, small spatial coverage and strict screening for 

temperature sensitivity to large sample size and spatial coverage but no screening. Additionally, we explore a 

combination of these data sets plus screening methods to improve the reconstruction quality.   20 

A large, unscreened collection leads generally to a poor reconstruction skill. A small expert selection of 

extratropical northern hemisphere records allows for a skillful high latitude temperature reconstruction but cannot 

be expected to provide information for other regions and other variables. We achieve the best reconstruction skill 

across all variables and regions by combing all available input data but rejecting records with insignificant climatic 

information (p-value of regression model > 0.05) and removing duplicate records. It is important to use a tree-25 
ring proxy system model that includes both major growth limitations, temperature and moisture.  

1 Introduction 

In the past 20 years, a lot of effort has been invested in improving climate reconstructions for the last centuries to 

millennia based on indirect climate information – so-called “proxies”. Focus has been on both, large-scale 

averages as well as the reconstructions of regional to global fields (Masson-Delmotte et al., 2013; Smerdon and 30 
Pollack, 2016). Temporal and spatial resolution varied with the included paleoclimatic archives. However, most 

reconstructions for the past centuries rely heavily on the most abundant indirect climate archive, tree rings, and 

specifically on tree-ring width (TRW) and late-wood density (MXD). Differences between reconstructions have 
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mostly been discussed with differences in reconstruction methodology in mind (Christiansen and Ljungqvist, 

2017). However, a new study shows good agreement between a wide range of methods, if reconstructions are 35 
based on the same input data set (Neukom et al., 2019a; 2019b). Another recent study found that temperature 

sensitive tree-ring proxies from the PAGES2k database (Emile-Geay et al., 2017) lack multi-centennial trends, 

which are found in other proxy archives (Klippel et al., 2019). This suggests that the input data play a crucial role 

for differences between reconstructions. This fact is also seen in data assimilation for weather prediction, e.g. at 

the switch from radiosonde to satellite observations (Swinbank et al., 2012, p.365). Today, many proxy data 40 
archives are available, hence compiling input data for reconstruction is not only a matter of the amount of proxy 

data, but also of their selection, i.e., screening. 

In this study, we therefore aim at evaluating the effect of various tree-ring data collections and their screening on 

the final reconstructions. Tree-ring proxies are by far the most numerous climate information source for the past 

centuries and additionally chosen because our methodology relies on annual data without dating uncertainties. 45 
Due to the relevance of temperature in the climate change discussion and the fact that many biological proxies 

react to temperature stress, temperature has so far been the variable of most interest. However, to study the 

underlying processes a multi-variable perspective is required. Therefore, we evaluate the effects of the input data 

choice, using a state-of-the-art data assimilation technique, which allows for multi-variable climate 

reconstructions in form of model simulations that are in optimal agreement with proxy information (Bhend et al., 50 
2012; Franke et al., 2017).  

Previous studies based on data assimilation techniques proposed that a higher quantity of input data would always 

be beneficial (Matsikaris et al., 2016; Steiger et al., 2018; Tardif et al., 2019). The idea is that regression-based 

proxy system models weight each proxy series by their regression residuals. Hence, proxies that do not contribute 

information will be downweighted automatically. However, this weighting may not work perfectly because of 55 
two factors: (1) the regression depends on overlapping paleodata and instrumental measurements, which often 

results in a small sample (Fig. 1 in Jones et al., 2012), uncertain residuals and possible model overfitting; (2) 

moisture and temperature sensitive proxies may correlate and hence moisture sensitive paleodata will be used to 

correct temperature and vice versa. However, these two variables probably have very different multi-decadal to 

centennial variability (Franke et al., 2013). The growth limiting factor may even change over time (Babst et al., 60 
2019). 

In this study, we use the Kalman filter based state-of-the-art data assimilation technique introduced in Bhend et 

al. (2012), which is very similar to the methodology used in the last millennium reanalysis (LMR) project (Hakim 

et al., 2016; Tardif et al., 2019). In contrast to LMR, our method is a transient-offline method, in which the 

background state is time-dependent due to the external forcing prescribed to the climate model simulations. In our 65 
experiments, we focus on the effect of the input data choice on the final reconstruction. We compare three 

published collections of tree-ring records (focusing on TRW and MXD), of which at least two are commonly used 

for climate reconstructions. These have very different characteristics: (1) The B14 collection of 2287 consistently 

detrended TRW chronologies from the International Tree Ring Data Base (ITRDB), not screened for climate 

sensitivity (Breitenmoser et al., 2014); (2) TRW and MXD series from the PAGES2K database version 2 (Emile-70 
Geay et al., 2017), with a selection of 415 temperature sensitive records, most selected by a statistical screening 

for positive correlation with instrumental temperature; and (3) the N-TREND tree-ring collection of 54 TRW, 
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MXD or blended TRW-MXD time series (Wilson et al., 2016), selected by experts to be the best temperature 

recorders. Thus, the three data sets cover the range from large sample size and spatial coverage but no screening 

for temperature sensitivity to small sample size and small spatial coverage but strict screening. Note, that these 75 
collections were generated with slightly different aims, which affects their use in reconstructions. Thus, for 

instance, we cannot expect to achieve the best global scale field reconstruction already from a proxy collection 

covering a much smaller area (Kutzbach and Guetter, 1980). However, all data sets are used for climate 

reconstruction. 

In the next section the method and data sets are introduced in greater detail before we show our results. Then we 80 
discuss the possible reasons for our results and the differences compared to previous studies. Finally, we draw our 

conclusion how an optimal proxy selection process should look like. 

2 Data and Methods 

We use three input data sets for comparison, all consist of annually resolved tree-ring measurements, which have 

hardly any dating uncertainties: 85 

1. B14 is a collection by Breitenmoser et al. (2014) of 2287 uniformly detrended and standardized TRW 

measurements from the ITRDB (Zhao et al., 2018). We use the full collection without any further 

screening for climate/temperature sensitivity. Hence, this represents the data set with the highest quantity 

of records. However, the weighting of temperature information in the paleodata is completely up to the 

reconstruction method.  90 
2. PAGES2k is a collection of 415 TRW and MXD series from PAGES2k data base version 2 (Emile-Geay 

et al., 2017). These are all records that correlate significantly (p<0.05) with nearby instrumental 

temperature measurements and/or have been described by experts to represent temperature variability. 

This compilation represents a compromise of good quantity, large spatial coverage and good quality 

paleodata, based on global selection criteria. However, experts from various regional groups were 95 
differently strict in their screening procedure, which led to varying data density in the different regions. 

3. N-TREND is a collection of 54 tree-ring chronologies based on TRW, MXD or a combination of both. 

They were chosen by experts to be just the best tree-ring paleodata for temperature reconstructions 

(Wilson et al., 2016). Hence, they are our low quantity, highest quality input data set with least spatial 

coverage. 100 

Climate fields are reconstructed by assimilating these tree-ring observations into an ensemble of climate model 

simulations using a Kalman filter technique, Ensemble Kalman Fitting (Bhend et al., 2012; Franke et al., 2017). 

The simulations, which serve as a background (sometimes called first guess or prior) of the atmospheric state at 

each point in time, are given by a 30-member initial condition ensemble of atmospheric model simulations 

(ECHAM5.4, (Roeckner, 2003)). All simulations follow the same external forcings (volcanic (Crowley et al., 105 
2008), solar (Lean, 2000), greenhouse gases (Yoshimori et al., 2010), land use (Pongratz et al., 2008), tropospheric 

aerosols (Koch et al., 1999)) and sea surface temperatures boundary conditions based on a reconstruction by(Mann 

et al., 2009) plus additional El Niño Southern Oscillation variability (Franke et al., 2017). The data assimilation 

method is “transient offline”. “Transient” refers to the fact the our prior at each point in time consists of 30 

ensemble members that are in agreement with forcings and boundary conditions. “Offline” assimilation means 110 
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that the simulations are calculated for the full period before the assimilation is conducted. This is possible in the 

paleo-climatological setup because we have only one observation per year. Predictability on these time scales only 

comes from the boundary conditions and not from the atmospheric model.  

EKF is the offline variant of the ensemble square root filter (Whitaker and Hamill, 2002) in which the observations 

(y) are assimilated serially. The assimilation procedure is divided into an update of the ensemble mean (�̅�) and an 115 
update of the anomalies with respect to the ensemble mean (𝑥′): 

(1) �̅�$ = 	 �̅�' + 𝐾(𝑦, − 𝐻�̅�') 

(2) 𝑥0$ = 	𝑥0' + 𝐾1(𝑦0 − 𝐻𝑥0') = 	 2𝐼 − 𝐾1𝐻4𝑥0'	𝑤𝑖𝑡ℎ:	𝑦0 = 0  

where the superscript a refers to the analysis and b to the background of the atmospheric state x, which is a 

vector with values of multiple variables at all grid boxes. H	denotes	an	operator	which	maps	𝑥'	to	the	120 
observation	space	(see proxy system model PSM below). K and 𝐾1 are the Kalman gain matrices (Whitaker and 

Hamill, 2002): 

(3) 𝐾 = 𝑃'𝐻<(𝐻𝑃'𝐻< + 𝑅)>? 

(4) 𝐾1 = 𝑃'𝐻< @2√𝐻𝑃'𝐻< + 𝑅4
>?
B
<
× 2𝐻𝑃'𝐻< + 𝑅 + √𝑅4

>?
 

The K matrices control how the information from the observations updates the background. It depends on the 125 
observation error covariance matrix R and the background error covariance matrix Pb. R is estimated from the 

regression residuals of the PSM and errors are assumed to be uncorrelated. Background error covariances Pb are 

calculated from the 30-member ensemble nens of ECHAM5.4 simulations (CCC400) at each time step with row 

number i, column number j and ensemble member k (Bhend et al. 2012, Franke et al. 2017):  

(5)  𝑃D,F' = 	 ?
GHIJ>?

	∑ 𝑥L,M0' 	𝑥N,M0'
OHIJ
PQ?  130 

This has the advantage of taking time-dependent covariance structures into account, for instance during El Niño 

vs La Nina years. The disadvantage is the small sample of 30 ensemble member for covariance estimation. To 

deal with spurious correlations caused by the relatively small ensemble, we apply a distance-dependent 

localization, i.e. updates are only possible with a certain radius around the observations (Valler et al., 2019): 

(6)  𝐶 = exp V−
WXY>XZW

[

\][
^ 135 

di and dj describe the zonal and meridional distances from the selected grid box. L is the length scale parameter 

used for localization. It has been estimated based on the spatial correlation in the simulations and is variable 

dependent, e.g. 1500/450 km in case of temperature/precipitation (Franke et al., 2017).  

A recent comparison of Valler et al. (2018) has shown superior performance when using an improved covariance 

estimation, which blends 50% of the 30-member time-dependent covariance with 50% of a 250-member 140 
“climatological” time-independent covariance (Experiment: 50c_PbL_Pc2L in Valler et al.  (2018)). In this paper 

we use both the original setting as in Franke et al. (2017) as well as the improved setting proposed by Valler et al. 

(2018). 

Our paleo-reanalysis is based on anomalies from a 71-year period around the current year. Low frequency 
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variability is a function of the models’ response to the prescribed external forcings and background conditions, 145 
which include sea-surface temperatures. Because low frequency variability is not consistently preserved in 

paleodata (Franke et al., 2013; Klippel et al., 2019), but reasonably well represented in the model simulations of 

the last millennium (Franke et al., 2017), this approach is expected to provide consistent skill at all time scales. 

Note that the assimilation of anomalies retains possible model biases. This circumvents a big problem in data 

assimilation approaches with temporally varying input data networks. Observations that gradually pull the model 150 
away from its biased state, can lead to artificial trends or step functions in time-series.  

We use a linear multiple regression PSM to simulate tree-ring observations using modelled temperature and/or 

precipitation. The regression model is calibrated with gridded instrumental data (CRU TS 3.1, Harris et al., 2014) 

in the period 1901-1970. It includes monthly temperature (and precipitation) during the growing season April to 

September. In this study, we limit the analysis to the northern hemisphere because the majority of the tree-ring 155 
observations can be found there. In the first four experiments (Table 1), which only use temperature (T) in the 

PSM, we have 6 independent variables (i.e., local, monthly mean temperature of April to September). If we assume 

that tree growth was limited by temperature and moisture (TR) variability (experiments 5 and 6 in Table 1), we 

have 12 independent variables (i.e., local, monthly mean temperature of April to September, and monthly 

precipitation sums of April to September). Note that regression coefficients can be zero and thus growth can still 160 
be limited to just temperature or just precipitation and to less than 6 months. In experiments 7 and 8 (Table 1) we 

additionally consider only regression models, in which the growth occurs in consecutive months. Therefore, we 

fit all possible combinations of consecutive months and choose the PSM with the lowest Akaike information 

criterion (AIC). Temperature and precipitation limitations can occur in a different sequence of months for each 

variable (e.g. precipitation limits growth from April to June and temperature limits growth from June to 165 
September). The variance of the regression residuals is used to specify the observation error covariance matrix 

(assumed diagonal) in the assimilation, i.e. the larger the residuals, the less weight an observation gets and the 

less the model simulations get corrected.  

In this study, the period in which the regression coefficients of the PSM are estimated as well as the calculations 

of the regression residuals overlaps with the period when the reconstruction skill is estimated. This apparent lack 170 
of independence is negligible in this case because: regression coefficients are estimated from gridded instrumental 

data sets to translate grid cell temperature (and moisture) anomalies to local tree-ring measurements. The 

optimization is done on tree rings, not on the climate data, and it is done on many local scales. In that sense the 

effects of the dependence are rather indirect. In contrast to statistical reconstruction methods, which directly 

estimate a climate variable such as temperature through the regression parameter estimate, our assimilation 175 
method is far less affected by the calibration procedure. Nevertheless, using the same data for validation probably 

lead to a slight overestimation in reconstruction skill. However, in this study we just compare the relative skill of 

various inputs data sets, so the impact of dependencies will be the same for all. Concerning the regression 

residuals, again the error estimate concerns tree ring width, not climate parameters. We use the residuals as an 

estimate of error covariance. In case we slightly underestimate the residuals, proxy observation would have a little 180 
too much weight in the assimilation process compared to the simulations. 

If multiple data collections are combined, there may be duplicates of the same proxy, possibly in differently 

treated/detrended versions. We conduct experiments where we prevent single sites from being assimilated twice 
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by only choosing the best proxy (smallest regression residuals irrespective of series length) in a 0.1ºx0.1º (ca. 

10km) grid. This is a rare case, however, and hardly effecting the results.   185 

We evaluate the quality of the reconstruction based on correlation with gridded instrumental observations of 

temperature, precipitation (Harris et al., 2014) and sea level pressure (Allan and Ansell, 2006) in the period 1901-

1990 as a reference (xref, where x is the state vector). After showing absolute correlation coefficients of the 

analysis, we focus on correlation improvements over the original model simulations, because these forced 

simulations already correlate positively with the gridded observations in many locations. Correlation focuses on 190 
the co-variability, i.e. the correct sign of the anomaly. Additionally, we use a root-mean-square-error skill score 

RMSESS that describes the improvement of the analysis xa over the original model simulations (background) xb 

over all time steps i: 

(7)  𝑅𝑀𝑆𝐸 = 1 −	
∑cdY

e>dY
fHgh

[

∑cdY
i>dY

fHgh
[  

It is more difficult to reach positive RMSESS values than correlation improvements, because this score penalizes 195 
a wrong amplitude of variability (e.g., an uncorrelated reconstruction with correct variance would yield RMSESS 

= -1). Because it is based on squared errors, too high variability is penalized more than little variability, which the 

ensemble mean of the original model simulations has. We only present correlation improvements and RMSESS of 

the ensemble mean. In contrast to correlation coefficients, which tend to be higher for the ensemble mean than for 

the ensemble members, RMSESS of single ensemble members tends to be slightly higher than RMSESS of the 200 
ensemble mean (Fig. 6 in Bhend et al., 2012).    

To evaluate the influence of the input data on the final reconstruction, we conducted the following set of 

experiments: 

Table 1: Experiments 

 Name Proxy system model Description 
1. NTREND_T 6 regression coeff. for 

Apr. to Sep monthly 
temperature (T) 

Using the best tree-ring chronologies for 
temperature reconstruction, which have been 
chosen by experts, i.e. very strict selection of 
few, best records 

2. PAGES_T Same as above Using a selection of temperature sensitive proxies 
selected by the regional PAGES working groups. 
The mostly statistical screening for a temperature 
signal involved a sign correction, i.e. if 
temperature and moisture are negatively 
correlated, tree-ring chronologies can remain as 
temperature sensitive in the data set. Therefore, 
more records but less strictly screened than 
NTREND.  

3. B14_T Same as above Consistently detrended tree-ring data from the 
ITRDB by B14. This proxy set includes the 
largest amount of proxy series. However, many 
of them do not include any climate signal. 

4. ALL_T Same as above All three data sets together, largest data set with 
greatest spatial coverage. However, duplicate 
proxies cannot be excluded 

5. ALL_TR 12 regression coeff. For 
Apr. to Sep. monthly 

Same as above 
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temperature and 
precipitation (R) 

6. ALL_TR_scr0.05 Same as above Same as above but with additional screening, i.e. 
only records with a climate signal (p-value < 
0.05) will be assimilated. In the experiments 
above these series got little weight due to large 
errors (regression residuals) but were still 
assimilated. 

7. ALL_TR_scr0.05_ 
AIC_NOdup 

Maximum of 12 
regression coefficients 
but only consecutive 
months are allowed, still 
mixed temperature and 
precipitation signals are 
possible  

Same as above but we chose with the AIC the 
regression model under the precondition that only 
climate from consecutive months can influence 
tree growth, which is more realistic due to local 
growing season length. Additionally, we remove 
duplicate proxies by only considering the best 
proxy (lowest regression residuals) within a 
0.1ºx0.1º (ca. 10 km) grid. In each grid box we 
keep both, the best mainly temperature limited 
and the best mainly moisture sensitive proxy if 
both exist. 

8. ALL_TR_scr0.05_ 
AIC_NOdup_ClimCovar 

Same as above  Same as above but with background error-
covariance estimate not only from the 30 
ensemble members of the current year. Instead 
we use a mix of 50% error covariance coming 
from 250 random ensemble members and years. 

 205 

3 Results 

Temperature correlation coefficients between the analyses and gridded instrumental data are positive nearly all 

around the globe and for all three proxy collections (Fig. 2a,b,c) because the transient simulations follow forcings 

and boundary conditions and hence show proper multidecadal variability and a 20th century warming trend. 

However, this is not the case for precipitation, which does not show a warming trend (Fig. 2d,e,f). In contrast to 210 
the assimilation of PAGES and NTREND (Fig. 2d,e), we can observe clearly higher correlations in the United 

States if the B14 proxies are assimilated (Fig. 2f). Although these first three experiments only use a temperature 

PSM, information can spread to other variables through the covariance matrix. 

To evaluate the differences between the experiments due to the data assimilation we focus on correlation 

improvement over the background (i.e. the model simulations, which already correlate with the reference data set 215 
mainly due to the specified SSTs and external forcing). First, we compare the role of the choice of the three input 

data sets assuming only temperature dependence and no constraint on the regression model structure (Fig. 3a,b,c; 

experiments NTREND_T, PAGES_T and B14_T). The highest local improvements are reached with the 

NTREND data set, however the largest spatial coverage of improvement is found with the B14 data set. Note that 

temperature correlation improves with all data sets and decreases nowhere, although some proxy records in the 220 
B14 data set do not contain any temperature signal. This has been identified with negative regression coefficients 

for the majority of B14 tree-ring series in the United States of America. In terms of correlation the data 

assimilation scheme appears to weight the input data appropriately. Looking at precipitation correlation 

improvements (Fig. 4a,b,c), we find hardly any improvements with the NTREND collection. In contrast, the B14 

data set leads to some precipitation correlation improvements over North America, where no NTREND series are 225 
located.   
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The correct sign of the anomaly, measured by correlation, is only telling us one aspect of the reconstruction 

quality. To see if the amplitude of the anomaly is also reconstructed correctly, we look at the RMSESS skill score 

(see methods). Here, we find large differences between the proxy collections. With NTREND_T we find 

improvements everywhere, whereas B14_T shows more regions with negative than positive skill (note that we 230 
use PSM with only temperature). The PAGES data set is again in the middle. This suggest that using moisture 

sensitive proxies to reconstruct temperature as in B14_T, which works just because temperature and precipitation 

are correlated at a given location, is not ideal. Hence, further experiments with an improved PSM and upgraded 

screening procedure were conducted to take the proxies’ temperature or moisture sensitivity better into account 

and to find an option to use the PAGES and B14 collection at locations, where no expert selected proxies are 235 
available but rather keep the quality of the expert selected data, where it is available. 

Before we come to a more sophisticated PSM and more sophisticated input data screening, we simply combine 

all three data sets using still a model with only temperature (ALL_T). This experiment performs well. Temperature 

correlation now reaches levels of the NTREND_T experiment, where NTREND data is available and additionally 

correlation improvements cover the regions, where only PAGES or B14 have data. RMSESS values are positive 240 
in most regions, too. However, around India and the Himalaya as well as in the US southwest, skill is negative. 

Precipitation correlations improved only marginally (Fig. 6d) and precipitation RMSESS (Fig. 7d) is mostly 

negative.  

The obvious change to improve precipitation reconstruction skill is to use a PSM that includes precipitation, i.e. 

a multiple regression model with 12 coefficients for temperature and precipitation influence during the 6-months 245 
growing season (experiment ALL_TR). Temperature skill remains at the same high level, but precipitation skill 

clearly improves (Fig. 6e and 7e). Correlations improve everywhere and RMSESS values become positive in most 

regions with the exception of the Himalaya region and most northeast of Russia. 

So far, we have not excluded any proxies from the data assimilation. We trust that proxies with no or a weak 

climate signal simply have regression coefficient close to zero and large residuals. This way they hardly affect the 250 
analysis. However, in a regression model with 12 independent variables and only 70 years of overlapping data, 

some records may just by chance get more weight than they deserve. Therefore, our next step is the introduction 

of a weak screening. In a first step, we only assimilate proxies with p-values < 0.05 for the full regression model 

(ALL_TR_scr0.05). This removes ca. 16% of the proxies and hardly affects correlations (Fig. 3f, 4f, 5f) but 

removes most of the negative RMSESS values in both, temperature and precipitation (Fig. 6f and 7f). 255 

This result appears good, but this could also be a result of overfitting the regression model because any 

combination of growing season months was allowed to affect tree growth. It would not make physiological sense 

if a tree would be limited for instance by May, July and September temperatures but not by June and August 

temperatures. Hence, the next step is to further constrain the model. The tree growth should be affected by climate 

conditions in a locally varying growing season of consecutive months. We fit all possible combinations of 260 
temperature and precipitation influences in consecutive months and chose the model with the lowest AIC (note 

that additionally duplicates are removed; experiment ALL_TR_scr0.05_AIC_NOdup). As a result of this more 

physically based growth model, reconstruction skill decreases slightly (Fig. 6g and 7g). This suggests that the 

previously noted improvement in RMSESS was indeed partly due to overfitting. Nevertheless, correlations remain 
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on the same high level everywhere (Fig. 3g, 4g, 5g). Only RMSESS decreases in some regions with a high number 265 
of paleodata such as parts of China and parts of North America.  

Recently, Valler et al. (2018) could show that major improvements of the method used in this study can be 

achieved by using a background error covariance matrix, which is not only calculated from the 30 ensemble 

members for the current year (Franke et al. 2017) but blended with a climatological error covariance matrix based 

on random years and ensemble members from the original model simulations (see methods, experiment 270 
ALL_TR_scr0.05_AIC_NOdup_ClimCovar). Using improved covariance information increases RMSESS values 

again and only very few grid boxes with negative skill remain. Moreover, the largest effects of the better error 

covariance estimation appear in variables that have not been assimilated such as sea level pressure (Fig. 5h). This 

is very important because one of the reasons for using data assimilation instead to traditional statistical 

reconstruction techniques is the possibility to gain knowledge about further variables in a physically consistent 275 
way, which allows for a better dynamic interpretation of the identified climatic variations.  

4 Discussion 

Correlations of the reconstructions with temperature improved as it would be expected after the assimilation of 

the three data sets and using a temperature PSM. We calculate the regression coefficients based on instrumental 

temperature. Hence, all proxies that correlate in some way with instrumental temperature will be used to update 280 
the analysis temperature. The analysis has highest correlations improvements with instrumental temperature if the 

proxies themselves had highest correlations, which is the case for the NTREND data set with the best temperature 

proxies only. Correlations improvements are lower but cover a larger area with the B14 collection.  

Note that correlation improvements can be a result of a negative relationship between tree-ring width and 

instrumental temperature if local growth is moisture limited and growing season temperature and precipitation are 285 
negatively correlated. This can be a benefit because through the covariance we use the extra information that dry 

summers are also warm and vice versa. Hence, we find much better precipitation correlation with the B14 

collection than with the NTREND data set. However, using moisture sensitive trees to update temperature fields 

may cause problems. Precipitation variability shows high inter-annual variability in many locations but neither 

the same inter- to multi-decadal variability as temperature nor its centennial trend (Hartmann et al., 2013; Landrum 290 
et al., 2013). Although we cannot study this with our methods, another study shows that updating other than the 

assimilated variables through the covariance matrix can cause problems on longer than inter-annual scale (Tardif 

et al., 2019).  

The regression model is calibrated on the interannual time scale assuming that TRW limitations are time-

independent. However, this may not be the case (Babst et al. 2019), and therefore decadal-to-multidecadal 295 
variability may be less well represented. A similar argument holds for the update introduced by the model 

covariance matrix, which, although state dependent, may yield optimal estimates only for seasonal and not decadal 

time scales. However, our approach avoids these pitfalls in two ways. First, at multidecadal and longer time-

scales, the model takes over, and therefore relations in our reconstructions are not constrained to be stationary 

across time scales. Furthermore, with our approach, the stationarity assumption is restricted to the regression 300 
model, thus it is a local stationarity - no further stationarity assumption concerning spatial variability is introduced 

except for experiment ALL_TP_scr0.05_AIC_NOdup_ClimCovar, where 50% of the background error 
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covariance matrix is climatological and thus stationary. Most other approaches assume stationary spatial 

covariances.  

Theoretically, it would be optimal to assimilate all available data and let each record be weighted based by its 305 
error. However, the true observation error is unknown and its estimation is uncertain. In our case, we use a multiple 

regression proxy-system model with 6/12 variables (six months of temperature and optionally six months of 

precipitation) in a 70-year period of overlapping instrumental data and proxy measurements to estimate regression 

coefficients. This rather short period and large number of independent variables can lead to overfitting the model 

and thus underestimating the observation error, which is defined by the regression residuals. Together with the 310 
low signal-to-noise ratio of many tree-ring chronologies, this can lead to an over- or under-correction of the model 

field in the assimilation step. An additional experiment with doubled observation error (not shown) increases 

RMSESS values clearly. This suggests that PSM overfitting is part of the reason for the negative RMSESS skill 

scores in the B14_T experiment in contrast to the NTREND_T experiment (Fig. 4a and c).  

In the following experiments (ALL_TR_scr0.05, ALL_TR_scr0.05_AIC_NOdup, ALL_TR_scr0.05_AIC_ 315 
NOdup_ClimCovar) we tried to reduce the consequences of uncertain error estimates step by step. Excluding 

proxies without a significant climate signal (p<0.05) for the full regression model, clearly improves the RMSESS 

skill score for temperature and precipitation in large parts of Asia (Fig. 6f and 7f). This highlights the negative 

effects of spurious correlation – even if it is very weak – on the analysis. Hence, screening the data appears to be 

important, especially in data sparse regions, where there is no chance for better records with smaller errors to 320 
correct errors introduced due to spurious covariances. In other reconstruction methods, for instance principal 

component regression or the search for the best analogs, screening of records will additionally be necessary to 

avoid spatial biases due to non-homogeneous proxy distributions (Bradley, 1996; Rutherford et al., 2005). 

However, this is negligible in the data assimilation framework because the number of assimilated records has a 

regional instead of global impact and because the method provides a measure of uncertainty in form of ensemble 325 
spread at each grid cell. 

In the experiment, in which we only allow for a single growing season (ALL_TR_scr0.05_AIC_NOdup) per year 

instead of a statistically optimal selection of months and by removing duplicate records that are in more than one 

of the data collections, correlations improve slightly but RMSESS decreases slightly. Obviously, we continue with 

this more realistic setup, but note that the choice what is “best” depends on the chosen statistic or the 330 
reconstruction characteristics that are wished by the user. For instance, correlation just measures covariance 

whereas RMSESS is based on squared errors and hence penalizes especially large biases, i.e. it favors an 

underestimation variability over an overestimation. 

Finally, we introduce an improved background error covariance estimation scheme 

(ALL_TR_scr0.05_AIC_NOdup_ClimCovar, Valler et al. 2019). Because assimilated information is spread in 335 
space and in between variables through the covariance matrix, it is important to estimate covariances well. 

Estimating covariance from both, the 30 members at the current time step and from climatology and then blending 

both information, especially improves our results for variables, which have not been assimilated such as sea level 

pressure (Fig. 5h).  

In reality, climate signals in tree-ring proxies may be even more complicated than a function of moisture 340 
availability and growing season temperature. Limiting factors may change over time (Babst et al., 2019) or light 
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availability may be important and not always be highly correlated with temperature, i.e. more diffuse light after 

volcanic eruptions may stimulate growth (Stine and Huybers, 2014). More sophisticated proxy system forward 

models such as VS-Lite (Tolwinski-Ward et al., 2011) could be used in data assimilation (Acevedo et al., 2016; 

Dee et al., 2016). In fact, we have applied VS-lite to all TRW records in B14 (Breitenmoser et al., 2014). Although 345 
these model are more realistic and represent for instance non-linear responses, they introduce new problems 

mainly related to model biases. This currently prevents them for being used more broadly (Dee et al., 2016).  

Finally, we tested the order of assimilated data, because we assimilate data serially. In combination with using 

covariance localization, the order could influence the final reconstruction (Greybush et al., 2011). Assimilating 

the data from the best to worst record in terms of regression residuals and in opposite order from worst to best, 350 
hardly influenced correlation and RMSESS skill scores (not shown). Hence, we continue to assimilate records 

starting with the best ones, similar to traditional reanalysis, which sort observations from the largest to smallest 

expected variance reduction in the reanalysis (Slivinski et al., 2019; Whitaker et al., 2008). 

Although our results are specifically valid only for the data assimilation method used herein, it is likely that 

methods with a similar structure, i.e. using PSMs and variations of Kalman filters, will have similar sensitivities 355 
to the selection of input data. We expect that they are even valid for most climate field reconstruction techniques, 

because the basic principles of transferring proxy information to climatic variables and dealing with errors share 

common concepts across these methods. Even though all such methods include some routines to separate climatic 

information from non-climatic noise, in practice results can almost always be improved by pre-selecting the 

records with the highest information content, independent from the reconstruction technique applied (Neukom et 360 
al., 2019a; 2019b; Smerdon and Pollack, 2016 and references therein). This suggests that our results are 

qualitatively transferrable to climate field reconstruction methods in general. 

Conclusion 

In this study, we use existing proxy data collections to generate climate field reconstructions, as it is common 

practice. We are aware that this is not in all cases the main aim for which these data collections were compiled. 365 
Hence, we want to highlight the consequences of using the data set for field reconstructions. These results are not 

meant the rank any data set above another. Disadvantages of one data set in our setup are most probable a result 

of unintended usage. 

How to choose input data for paleo data assimilation? We address this question by comparing three paleodata 

compilations of different sizes as well as using all data sets together in combination with various screening 370 
approaches. 

Just using a large collection of proxy data (B14) does not lead to a skillful reconstruction. In contrast, just using 

a small expert selection of the best temperature proxies (NTREND) leads to a good high latitude temperature 

reconstruction but wastes the potential of modern data assimilation technique to reconstruct the 4-dimensional 

multi-variate state of the atmosphere. However, simply combing all available input data and leaving the weighting 375 
completely to a statistical model does not lead to optimal results, either. Rejecting records without a clear climatic 

signal, removing duplicates and using a physically plausible PSM altogether lead to a better reconstruction.  
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Hence the answer to our research question if it is better to assimilate all available proxy data or just the best expert 

selection has to be answered with: neither of the two is optimal. We achieve the best results in terms of correlation 

and RMSESS, if we use a large collection of proxy records. However, to make proper use of input data, which was 380 
not screened by experts, it is crucial to: 

1. use proxy system models that properly represent the paleodata, here taking possible temperature and 

moisture limitations of tree growth into account. 

2. use correct physical assumptions, in our case about tree growth, to avoid statistical overfitting.  

3. remove input data with random, not significant climate signals. 385 
4. care about overfitting (underestimation of errors) 

For a future project, it would be very interesting to study how different reconstruction methods handle these three 

differently screened data sets to see, if these results are valid for other reconstructions methods, too? 
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Figure 1: Proxy locations of the three collections. 

 

Figure 2: Pearson correlations coefficients between the analysis and gridded instrumental data in the 20th century. 

The top panels show temperature and the bottom panels precipitation correltation. This figure shows results from 

experiments 1 to 3 (Table 1), i.e. after assimilation of the three proxy data collections using the proxy system model 

that assumes only growth limitation by temperature.  

 

Figure 3: Temperature correlation improvement of the analysis over the original model simulations, i.e. correlation 

between analysis and CRU TS minus correlation between simulations and CRU TS, where red colors indicate an 

improvement of the analysis. All maps show the Apr. to Sep. growing season of the northern hemisphere.  
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Figure 4: Same as Fig. 3 for precipitation correlation, where green colors indicate an improvement of the analysis. 

 

Figure 5: Same as Fig. 3 for SLP correlation, where red colors indicate an improvement of the analysis. 
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Figure 6: Temperature RMSESS skill score, where red colors indicate an improvement of the analysis. 

 

Figure 7: Precipitation RMSESS skill score, where greens colors indicate an improvement of the analysis. 
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