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Key Points

1. This study reconstructs the history of sedimentary oxygenation processes at
mid-depths in the western subtropical North Pacific since the last glacial period.

2. Sediment-bound redox-sensitive proxies reveal millennial-scale variations in
sedimentary oxygenation that correlated closely to changes in the North Pacific
Intermediate Water.

3. A millennial-scale out-of-phase relationship between deglacial ventilation in the
western subtropical North Pacific and the formation of North Atlantic Deep Water is
suggested.

4. A larger CO, storage at mid-depths of the North Pacific corresponds to the

termination of atmospheric CO; rise during the Bolling-Allerdd interval.
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Abstract

The deep ocean carbon cycle, especially carbon sequestration and outgassing, is
one of the mechanisms to explain variations in atmospheric CO, concentrations on
millennial and orbital timescales. However, the potential role of subtropical North
Pacific subsurface waters in modulating atmospheric CO, levels on millennial
timescales is poorly constrained. An increase in respired CO; concentration in the
glacial deep ocean due to biological pump generally corresponds to deoxygenation in
the subsurface layer. This link thus offers a chance to study oceanic ventilation and
coeval export productivity based on redox-controlled, sedimentary geochemical
parameters. Here, we investigate a suite of geochemical proxies in a sediment core
from the Okinawa Trough to understand sedimentary oxygenation variations in the
subtropical North Pacific over the last 50,000 years (50 ka). Our results suggest that
enhanced mid-depth western subtropical North Pacific (WSTNP) sedimentary
oxygenation occurred during cold intervals and after 8.5 ka, while oxygenation
decreased during the Bolling-Alleréd (B/A) and Preboreal. The enhanced sedimentary
oxygenation in the WSTNP is aligned with intensified formation of North Pacific
Intermediate Water (NPIW) during cold spells, while better sedimentary oxygenation
seems to be linked to an intensified Kuroshio Current after 8.5 ka. The enhanced
formation of NPIW during Heinrich Stadial 1 (HS1) was likely driven by the
perturbation of sea ice formation and sea surface salinity oscillations in high-latitude
North Pacific. The diminished sedimentary oxygenation during the B/A due to
decreased NPIW formation and enhanced export production, indicates an expansion
of oxygen minimum zone in the North Pacific and enhanced CO, sequestration at
mid-depth waters, along with termination of atmospheric CO, concentration increase.
We attribute the millennial-scale changes to intensified NPIW and enhanced abyss
flushing during deglacial cold and warm intervals, respectively, closely related to
variations in North Atlantic Deep Water formation.

Keywords: sedimentary oxygenation; millennial timescale; North Pacific

Intermediate Water; North Atlantic Deep Water; subtropical North Pacific
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1. Introduction

A more sluggish deep ocean ventilation combined with a more efficient
biological pump widely thought to facilitate enhanced carbon sequestration in the
ocean interior, leading to atmospheric CO, drawdown during glacial cold periods
(Sigman and Boyle, 2000). These changes are tightly coupled to bottom water
oxygenation and sedimentary redox changes on both millennial and orbital timescales
(Hoogakker et al., 2015; Jaccard and Galbraith, 2012; Sigman and Boyle, 2000).
Reconstruction of past sedimentary oxygenation is therefore crucial for understanding
changes in export productivity and renewal of deep ocean circulation (Nameroff et al.,
2004). Previous studies from North Pacific margins as well as open subarctic Pacific
have identified drastic variations in export productivity and ocean oxygen levels at
millennial and orbital timescales using diverse proxies such as trace elements
(Cartapanis et al., 2011; Chang et al., 2014; Jaccard et al., 2009; Zou et al., 2012),
benthic foraminiferal assemblages (Ohkushi et al., 2016; Ohkushi et al., 2013;
Shibahara et al., 2007) and nitrogen isotopic composition (5'°N) of organic matter
(Addison et al., 2012; Chang et al., 2014; Galbraith et al., 2004; Riethdorf et al., 2016)
in marine sediment cores. These studies suggested that both North Pacific
Intermediate Water (NPIW) and export of organic matter regulate the sedimentary
oxygenation variation during the last glaciation and Holocene in the subarctic Pacific.
By contrast, little information exists on millennial-scale oxygenation changes to date
in the western subtropical North Pacific (WSTNP).

The modern NPIW precursor waters are mainly sourced from the NW Pacific
marginal seas (Shcherbina et al., 2003; Talley, 1993; You et al., 2000), spreading into
the subtropical North Pacific at intermediate depths of 300 to 800 m (Talley, 1993).
The pathway and circulation of NPIW have been identified by You (2003), who
suggested that cabbeling, a mixing process to form a new water mass with increased
density than that of parent water masses, is the principle mechanism responsible for
transforming subpolar source waters into subtropical NPIW along the
subarctic-tropical frontal zone. More specifically, a lower subpolar input of about 2 Sv

(1 Sv = 10° m%/s) is sufficient for subtropical ventilation (You et al., 2003). Benthic
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foraminiferal 8'°C, a quasi-conservative tracer for water mass, from the North Pacific
indicates an enhanced ventilation (higher 8'"°C) at water depths of < 2000 m during
the last glacial period (Keigwin, 1998; Matsumoto et al., 2002). Furthermore, on the
basis of both radiocarbon data and modeling results, Okazaki et al. (2010) suggested
the formation of deep water in the North Pacific during the early deglaciation in
Heinrich Stadial 1 (HS1). Enhanced NPIW penetration was further explored using
numerical model simulations (Chikamoto et al., 2012; Gong et al., 2019; Okazaki et
al., 2010). In contrast, substantial effects of intensified NPIW formation during
Marine Isotope Stage (MIS) 2 and 6 on the ventilation and nutrient characteristics of
lower latitude mid-depth Eastern Equatorial Pacific have been suggested by recent
studies (Max et al., 2017; Rippert et al., 2017). The downstream effects of intensified
NPIW are also reflected in the record of 8'°C of Cibicides wuellerstorfi in core PN-3
from the middle Okinawa Trough (OT), where lower deglacial §"°C values were
attributed to enhanced OC accumulation rates due to higher surface productivity by
(Wahyudi and Minagawa, 1997).

The Okinawa Trough is separated from the Philippine Sea by the Ryukyu Islands
and is an important channel of the northern extension of the Kuroshio in the WSTNP
(Figure 1). Initially the OT opened at the middle Miocene (Sibuet et al., 1987) and
since then, it has been a depositional center in the East China Sea (ECS), receiving
large sediment supplies from nearby rivers (Chang et al., 2009). Surface
oceanographic characteristics of the OT over glacial-interglacial cycles are largely
influenced by the Kuroshio and ECS Coastal Water (Shi et al., 2014); the latter is
related to the strength of summer East Asian monsoon (EAM) sourced from the
western tropical Pacific. Modern physical oceanographic investigations showed that
intermediate waters in the OT are mainly derived from horizontal advection and
mixing of NPIW and South China Sea Intermediate Water (Nakamura et al., 2013).
These waters intrude into the OT through two ways: (i) deeper part of the Kuroshio
enters the OT through the channel east of Taiwan (sill depth 775 m) and (ii) through
the Kerama Gap (sill depth 1100 m). In the northern OT, the subsurface water mainly

flows through horizontal advection through the Kerama Gap from the Philippine Sea
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(Nakamura et al., 2013). Recently, Nishina et al. (2016) found that an overflow
through the Kerama Gap controls the modern deep-water ventilation in the southern
OT.

Both surface characterisitics and deep ventilation in the OT varied significantly
since the last glaciation. During the last glacial period, the mainstream of the
Kuroshio likely migrated to the east of the Ryukyu Islands or also became weaker due
to lower sea levels (Shi et al., 2014; Ujiié and Ujiié, 1999; Ujiié et al., 2003) and the
hypothetical emergence of a Ryukyu-Taiwan land bridge (Ujii¢ and Ujiié, 1999). In a
recent study, based on the Mg/Ca-derived temperatures in surface and thermocline
waters, and planktic foraminiferal indicators of water masses from two sediment cores
located in the northern and southern OT, Ujii¢ et al. (2016) argued that the
hydrological conditions of the North Pacific Subtropical Gyre since MIS 7 is
modulated by the interaction between the Kuroshio and the NPIW. Besides the
Kuroshio, the flux of East Asian rivers to the ECS, which is related to the summer
EAM and the sea level oscillations coupled with topography have also been regulating
the surface hydrography in the OT (Chang et al., 2009; Kubota et al., 2010; Sun et al.,
2005; Yu et al., 2009).

Based on benthic foraminiferal assemblages, previous studies have implied a
reduced oxygenation in deep waters of the middle and southern OT during the last
deglacial period (Jian et al., 1996; Li et al., 2005), but a strong ventilation during the
Last Glacial Maximum (LGM) and the Holocene (Jian et al., 1996; Kao et al., 2005).
High sedimentary 8'°N values, an indicator of increased denitrification in the
subsurface water column, also occurred during the late deglaciation in the middle OT
(Kao et al., 2008). Inconsistent with these results, Dou et al. (2015) suggested an oxic
depositional environment during the last deglaciation in the southern OT based on
weak positive cerium anomalies. Furthermore, Kao et al. (2006) hypothesized a
reduced ventilation of deepwater in the OT during the LGM due to the reduction of
KC inflow using a 3-D ocean model. Thus, the patterns and reasons that caused
sedimentary oxygenation in the OT remain controversial.

2. Paleo-redox proxies
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The sedimentary redox conditions are governed by the rate of oxygen supply from
the overlying bottom water and the rate of oxygen removal from pore water (Jaccard
et al., 2016), processes that are related to the supply of oxygen by ocean circulation
and organic matter respiration, respectively. Contrasting geochemical behaviors of
redox-sensitive trace metals (Mn, Mo, U, etc.) have been used to reconstruct bottom
water and sedimentary oxygen changes (Algeo, 2004; Algeo and Lyons, 2006;
Crusius et al., 1996; Dean et al., 1997; Tribovillard et al., 2006; Zou et al., 2012), as
their concentrations readily respond to redox condition of the depositional
environment (Morford and Emerson, 1999).

In general, enrichment of Mn with higher speciation states (Mn (III) and Mn (IV))
in the form of Mn-oxide coatings is observed in marine sediments, when oxic
conditions prevail into greater sediment depths as a result of low organic matter
degradation rates and well-ventilated bottom water (Burdige, 1993). Under reducing
conditions, the authigenic fraction of Mn (as opposed to its detrital background) is
released as dissolved Mn (II) species into the pore water and thus its concentration is
usually low in suboxic (O, and HS™ absent) and anoxic (HS™ present) sediments. In
addition, when Mn enrichment occurs in oxic sediments as solid phase Mn
oxyhydroxides, it may lead to co-precipitation of other elements, such as Mo
(Nameroff et al., 2002).

The elements Mo and U behave conservatively in oxygenated seawater, but are
preferentially enriched in oxygen-depleted water (Morford and Emerson, 1999).
However, these two trace metals behave differently in several ways. Molybdenum can
be enriched in both oxic sediments, such as the near surface manganese-rich horizons
in continental margin environments (Shimmield and Price, 1986) and in anoxic
sediments (Nameroff et al., 2002). Under anoxic conditions, Mo can be reduced either
from the +6 oxidation state to insoluble MoS,, though this process is known to occur
only under extremely reducing conditions, such as hydrothermal and/or diagenesis
(Dahl et al.,, 2010; Helz et al., 1996) or be converted to particle-reactive
thiomolybdates (Vorlicek and Helz, 2002). Zheng et al. (2000) suggested two critical

thresholds for Mo scavenging from seawater: 0.1 uM hydrogen sulfide (H,S) for
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Fe-S-Mo co-precipitation and 100 uM H,S for Mo scavenging as Mo-S or as
particle-bound Mo without Fe. Although Crusius et al. (1996) noted insignificant
enrichment of sedimentary Mo under suboxic conditions, Scott et al. (2008) argued
that burial flux of Mo is not so low in suboxic environments. Excess concentration of
Mo (Moexceess) In sediments thus suggests the accumulation of sediments either in
anoxic (H,S occurrence) or well oxygenated conditions (if Moexcess 1S in association
with Mn-oxides).

In general, U is enriched in anoxic sediments (>1 pM H,S), but not in oxic
sediments (>10 uM O;) (Nameroft et al., 2002). Accumulation of U depends on the
content of reactive organic matter (Sundby et al., 2004) and U precipitates as uraninite
(UO,) during the conversion of Fe (III) to Fe (II) in suboxic conditions (Morford and
Emerson, 1999; Zheng et al., 2002). One of the primary removal mechanisms for U
from the ocean is via diffusion across the sediment-water interface of reducing
sediments (Klinkhammer and Palmer, 1991). Under suboxic conditions, soluble U (VI)
is reduced to insoluble U (IV), but free sulfide is not required for U precipitation
(McManus et al., 2005). Jaccard et al. (2009) suggested that the presence of excess
concentration of U (Uexcess) in the absence of Mo enrichment is indicative of a suboxic,
but not sulfidic condition, within the diffusional range of the sediment-water interface.
The felsic volcanism is also a primary source of uranium (Maithani and Srinivasan,
2011). Therefore, the potential input of uranium from active volcanic sources around
the northwestern Pacific to the adjacent sediments should not be neglected.

In this study, we investigate a suite of redox-sensitive elements and the ratio of
Mo/Mn along with productivity proxies from a sediment core retrieved from the
northern OT to reconstruct the sedimentary oxygenation in the WSTNP over the last
50ka. Based on that, we propose that multiple factors, such as NPIW ventilation, the
strength of the Kuroshio Current and export productivity, control the bottom
sedimentary oxygenation in the OT on millennial timescales since the last glacial.

3. Oceanographic setting
Surface hydrographic characteristics of the OT are mainly controlled by the

warmer, more saline, oligotrophic Kuroshio water and cooler, less saline, nutrient-rich
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Changjiang Diluted Water, and the modern flow-path of the former is influenced by
the bathymetry of the OT (Figure la). The Kuroshio Current originates from the
North Equatorial Current and flows into the ECS from the Philippine Sea through the
Suao-Yonaguni Depression. In the northern OT, Tsushima Warm Current (TWC), a
branch of the Kuroshio, flows into the Japan Sea through the shallow Tsushima Strait.
Volume transport of the Kuroshio varies seasonally due to the influence of the EAM
with a maximum of 24 Sv in summer and a minimum of 20 Sv in autumn across the
east of Taiwan (Qu and Lukas, 2003).

A lower sea surface salinity (SSS) zone in summer relative to the one in winter in
the ECS migrates toward the east of OT, indicating enhanced impact of the
Changjiang discharge associated with summer EAM (Figures 2a and b). An estimated
~80% of the mean annual discharge of the river Changjiang is supplied to the ECS
(Ichikawa and Beardsley, 2002) and in situ observational data show a pronounced
negative correlation between the Changjiang discharge and SSS in July (Delcroix and
Murtugudde, 2002). Consistently, previous studies from the OT reported such close
relationship between summer EAM and SSS back to the late Pleistocene (Chang et al.,
2009; Clemens et al., 2018; Kubota et al., 2010; Sun et al., 2005).

Despite the effects of EAM and the Kuroshio, evidence of geochemical tracers
(temperature, salinity, oxygen, nutrients and radiocarbon) collected during the World
Ocean Circulation Experiment (WOCE) in the Pacific (transects P24 and P03) favors
the presence of low salinity, nutrient-enriched intermediate and deep waters (Talley,
2007). Dissolved oxygen content is <100 umol/kg at water depths below 600 m in the
OT, along WOCE transects PC03 and PC24 (Talley, 2007). Modern oceanographic
observations at the Kerama Gap reveal that upwelling in the OT is associated with the
inflow of NPIW and studies using a box model predicted that overflow through the
Kerama Gap is responsible for upwelling (3.8-7.6 x 10 °m s') (Nakamura et al.,
2013; Nishina et al., 2016).

4. Materials and methods
4.1. Chronostratigraphy of core CSH1
A 17.3 m long sediment core CSH1 (31° 13.7' N, 128° 43.4' E; water depth: 703
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m) was collected from the northern OT, close to the main stream of Tsushima Warm
Current (TWC) (Figure 1b) and within the depth of NPIW (Figure 1c) using a piston
corer during Xiangyanghong09 Cruise in 1998, carried out by the First Institute of
Oceanography, Ministry of Natural Resources of China. This location is enabling us
to reconstruct millennial-scale changes in the properties of TWC and NPIW. Core
CSHI mainly consists of clayey silt and silt with occurrence of plant debris at some
depth intervals (Ge et al., 2007) (Figure 3a). In addition, three layers of volcanic ash
were observed at depths of 74—106 cm, 782—794 cm, 1570—1602 cm. These three
intervals can be correlated with well-known ash layers, Kikai-Akahoya (K-Ah; 7.3
ka), Aira-Tanzawa (AT; 29.24 ka) and Aso-4 (roughly around MIS 5a) (Machida,
1999), respectively. The core was split and sub-sampled at 4 cm interval and then
stored in the China Ocean Sample Repository at 4 °C until analysis.

Previously, paleoceanographic studies have been conducted and a set of data has
been investigated for core CSH1, including the contents of planktic foraminifers as
well as their carbon (8'°C) and oxygen isotope (8'*0) compositions (Shi et al., 2014),
pollen (Chen et al., 2006), paleomagnetism (Ge et al., 2007) and CaCO3; (Wu et al.,
2004). An age model for this core has been constructed by using ten Accelerator Mass
Spectrometry (AMS) "“C dates and six oxygen isotope (8'0) age control points. The
whole 17.3 m core contains ca. 88 ka-long record of continuous sedimentation (Shi et
al., 2014).

Notably, the original age model, which used constant radiocarbon reservoir ages
throughout core CSH1 are suitable to reveal orbital-scale Kuroshio variations (Shi et
al., 2014), but insufficient to investigate millennial-scale climatic events. A higher
abundance of Neogloboquadrina pachyderma (dextral), e. g. that occurred during
warmer intervals, such as the Bolling-Allerod (B/A), has been challenging to explain.
On the other hand, paired measurements of '*C/"*C and **°Th ages from Hulu Cave
stalagmites suggest magnetic field changes have greatly contributed to high
atmospheric 1C/1C values at HS4 and the Younger Dryas (YD) (Cheng et al., 2018).
Thus a constant reservoir age (AR=0) assumed when calibrating foraminiferal

radiocarbon dates using CALIB 6 software and the Marine 13 calibration dataset
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(Reimer et al., 2013) for core CSH1 may cause large chronological uncertainties.

Here, we recalibrated the radiocarbon dates using updated CALIB 7.04 software
with Marine 13 calibration dataset (Reimer et al., 2013). Moreover, on the basis of
significant correlation between planktic foraminifera species Globigerinoides ruber
880 and Chinese stalagmite 8'°0 (Cheng et al., 2016), a proxy of summer EAM
related to SSS of the ECS, we improve the age model for core CSH1 (Figures 3b-d).
Overall, the new chronological framework is similar to the one previously reported by
Shi et al. (2014), but with more dates. In order to compare with published results
associated with ventilation changes in the North Pacific, here we mainly report the
history of sedimentary oxygenation in the northern OT since the last glacial period.
Linear sedimentation rate varied between ~10 and 40 cm/ka with higher
sedimentation rates (around 30-40 cm/ka) between ~24 ka and 32.5 ka. The new age
control points are shown in Table 2.

4.2. Chemical analyses

Sediment subsamples for geochemical analyses were freeze-dried and ground to
a fine powder with an agate mortar and pestle. Based on the age model, 85
subsamples from core CSHI, representing a temporal resolution of about 600 years
(every 4 cm interval) were selected for detailed geochemical analyses of major and
minor elements, and total carbon (TC), organic carbon (TOC) and nitrogen (TN)
contents. The pretreatment of sediment and other analytical methods have been
reported elsewhere (Zou et al., 2012).

TC and TN were determined with an elemental analyzer (EA; Vario EL III,
Elementar Analysen systeme GmbH) in the Key Laboratory of Marine Sediment and
Environment Geology, First Institute of Oceanography, Ministry of Natural Resources
of China, Qingdao. Carbonate was removed from sediments by adding 1M HCI to the
homogenized sediments for total organic carbon (TOC) analysis using the same
equipment. The content of calcium carbonate (CaCOs) was calculated using the
equation:

CaCO; = (TC-TOC) x 8.33

where 8.33 is the ratio between the molecular weight of carbonate and the atomic
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weight of carbon. National reference material (GSD-9), blank sample and replicated
samples were used to control the analytical process. The relative standard deviation of
the GSD-9 for TC, TN and TOC is < 3.4%.

About 0.5 g of sediment powder was digested in double distilled HF:HNO; (3:1),
followed by concentrated HCIO4, and then re-dissolved in 5% HNOs. Selected major
and minor elements such as aluminum (Al) and manganese (Mn) were determined by
inductively coupled plasma optical emission spectroscopy (ICP-OES; Thermo
Scientific iCAP 6000, Thermo Fisher Scientific), as detailed elsewhere (Zou et al.,
2012). In addition, Mo and U were analyzed with inductively coupled plasma mass
spectrometry (ICP-MS; Thermo Scientific XSERIES 2, Thermo Fisher Scientific), as
described in Zou et al. (2012). Precision for most elements in the reference material
GSD-9 is < 5% relative standard deviation. The excess fractions of U and Mo were
estimated by normalization to Al:

Excess fraction = totaleiemen— (€lement/Alyyerage shale*Al),with U/Alayerage shale =
0.307x10° and Mo/Alyerage shate = 0.295x10° (Li and Schoonmaker, 2014).

In addition, given the different geochemical behaviors of Mn and Mo and
co-precipitation and adsorption processes associated with the redox cycling of Mn, we
calculated the ratio of Mo to Mn, assuming that higher Mo/Mn ratio indicates lower
oxygen content in the depositional environment and vice versa. In combination with
the concentration of excess uranium, we infer the history of sedimentary oxygenation
in the subtropical North Pacific since the last glaciation.

5. Results
5.1. TOC, TN, and CaCOs3

The content of CaCO; varies from 8.8 to 35% (Figure 4a) and it mostly shows
higher values with increasing trends during the last deglaciation. In contrast, the
content of CaCOs is low and exhibits decreasing trends during the late MIS 3 and the
LGM (Figure 4a). TN content shows a larger variation compared to TOC (Figure 4b),
but it still strongly correlates with TOC (r = 0.74, p<0.01) throughout the entire core.
Concentration of TOC ranges from 0.5 to 2.1% and it shows higher values with stable

trends during the last glacial phase (MIS 3) (Figure 4c). Molar ratios of TOC/TN vary
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around 10, with higher ratios at the transition into the LGM (Figure 4d),
corresponding to higher linear sedimentation rate (Figure 4e).

Both TOC and CaCO; have been used as proxies for the reconstruction of past
export productivity (Cartapanis et al., 2011; Lembke-Jene et al., 2017; Riihlemann et
al., 1999). Molar C/N ratios of >10 (Figure 4c) suggest that terrigenous organic
sources significantly contribute to the TOC concentration in core CSH1. The TOC
content therefore may be not a reliable proxy for the reconstruction of surface water
export productivity during times of the LGM and late deglaciation, when maxima in
C/N ratios co-occur with decoupled trends between CaCO3 and TOC concentrations.

Several lines of evidence support CaCOs as a reliable productivity proxy,
particularly during the last deglaciation. The strong negative correlation coefficient (r
= — 0.85, p<0.01) between Al and CaCO; in sediments throughout core CSHI1
confirms the biogenic origin of CaCO; against terrigenous Al (Figure 4f). Generally,
terrigenous dilution decreases the concentrations of CaCOs;. An inconsistent
relationship between CaCOj; contents and sedimentation rates indicates a minor effect
of dilution on CaCQOj;. Furthermore, the increasing trend in CaCOs; associated with
high sedimentation rate during the last deglacial interval indicates a substantial
increase in export productivity (Figures 4a and d). The high coherence between
CaCOs; content and alkenone-derived sea surface water (SST) (Shi et al., 2014)
indicates a direct control on CaCO; by SST. Moreover, a detailed comparison between
CaCOs; concentrations and the previously published foraminiferal fragmentation ratio
(Wu et al., 2004) shows, apart from a small portion within the LGM, no clear
co-variation between them. These evidence suggest that CaCO; changes are driven
primarily by variations in carbonate primary production, and not overprinted by
secondary processes, such as carbonate dissolution through changes in the lysocline
depth and dilution by terrigenous materials. Likewise, a similar deglacial trend in
CaCOs; is also observed in core MDO01-2404 (Chang et al., 2009), indicating a
ubiquitous, not local picture in the OT. All these lines of evidence thus support CaCOs
of core CSH1 as a reliable productivity proxy to a first order approximation.

5.2. Redox-sensitive Elements
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Figure 4 shows time series of selected redox-sensitive elements (RSEs) and
proxies derived from them. Mn shows higher concentrations during the LGM and
HS1 (16 ka—22.5 ka) and middle-late Holocene, but lower concentrations during the
last deglacial and Preboreal periods (15.8 ka-9.5 ka, Figure 4g). Generally,
concentrations of excess Mo and excess U (Figures 4j and 1) show coherent patterns
with those of Mo and U (Figures 4i and k), but both are out-of-phase with Mn over
the last glacial period (Figure 4h). Pronounced variations in U concentration after 8.5
ka are related to the occurrence of discrete volcanic materials. A significant positive
Eu anomaly (Zhu et al., 2015) confirms the occurrence of discrete volcanic materials
and its dilution effects on terrigenous components since 7 ka. Occurrence of discrete
volcanic material is likely related to intensified Kuroshio Current during the mid-late
Holocene, as supported by higher hydrothermal Hg concentrations in sediments from
the middle OT (Lim et al., 2017). A negative correlation between Mn and Moexcess
during the last glaciation and the Holocene, and the strong positive correlation
between them during the LGM and HS1 (Figures 5a and b) further corroborate the
complex geochemical behaviors of Mn and Mo. A strong positive correlation between
MoOexeess and Mn (Figure 5b) may be attributed to co-precipitation of Mo by
Mn-oxyhydroxide under oxygenated conditions. Here, we thus use the Mo/Mn ratio,
instead of excess Mo concentration to reconstruct variations in sedimentary redox
conditions in our study area. Overall, the Mo/Mn ratio shows similar downcore
pattern to that of Moeycess With higher ratios during the last deglaciation, but lower
ratios during the LGM and HS1. A strong correlation (r = 0.69) between Mo/Mn ratio
and excess U concentration (excluding the data of Holocene, due to the contamination
with volcanic material, Figure 5c) further corroborates the integrity of Mo/Mn as an
indicator of sedimentary oxygenation changes.

Rapidly decreasing Mo/Mn ratios indicate a well oxygenated sedimentary
environment after ~8 ka (Figure 4h). Both higher Mo/Mn ratios and excess U
concentrations, together with lower Mn concentrations suggest suboxic depositional
conditions during the late deglacial period (15.8 ka—9.5 ka), whereas lower ratios

during the LGM, HS1 and HS2 indicate relatively better oxygenated sedimentary
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conditions. A decreasing trend in Mo/Mn ratio and excess U concentration from 50 ka
to 25 ka also suggest higher sedimentary oxygen levels.

6.Discussion

6.1. Constraining paleoredox conditions in the Okinawa Trough

In general, three different terms, hypoxia, suboxia and anoxia, are widely used to
describe the degree of oxygen depletion in the marine environment (Hofmann et al.,
2011). Here, we adopt the definition of oxygen thresholds by Bianchi et al. (2012) for
oxic (>120 pmol/kg O,), hypoxic (<60-120 pmol/kg O,) and suboxic (<2-10
umol/kg O,) conditions, whereas anoxia is the absence of measurable oxygen.

Proxies associated with RSEs, such as sedimentary Mo concentration (Lyons et
al., 2009; Scott et al., 2008) have been used to constrain the degree of oxygenation in
seawater. Algeo and Tribovillard (2009) proposed that open-ocean systems with
suboxic waters tend to yield Uegyceess enrichment relative to Moexcess, resulting in
sediment (Mo/U)excess ratio less than that of seawater (7.5-7.9). Under increasingly
reducing and occasionally sulfidic conditions, the accumulation of Moexcess InCrease
relative to that of Ueycess leading the (Mo/U)excess ratio either is equal to or exceeds
with that of seawater. Furthermore, Scott and Lyons (2012) suggested a non-euxinic
condition with the presence of sulfide in pore waters, when Mo concentrations range
from> 2 ng/g, the crustal average to < 25 pg/g, a threshold concentration for euxinic
condition. Given that the northern OT is located in an open oceanic setting, we use
these two proxies to evaluate the degree of oxygenation in sediments.

Both bulk Mo concentration (1.2-9.5 pg/g) and excess (Mo/U) ratio (0.2-5.7) in
core CSHI1 suggest that oxygen-depleted conditions have prevailed in the deep water
of the northern OT over the last 50 ka (Figure 4m). However, increased excess Mo
concentrations with higher Mo/U ratios during the last termination (18 ka-9 ka)
indicate more reducing conditions compared to the Holocene and the last glacial
period, though Mo concentrations were less than 25 ug/g, a threshold for euxinic
deposition proposed by Scott and Lyons (2012).

The relative abundance of benthic foraminifera species that thrive in different

oxygen concentrations has also been widely used to reconstruct variations in bottom
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water ventilation, such as the enhanced abundance of Bulimina aculeata, Uvigerina
peregrina and Chilostomella oolina found under oxygen-depleted conditions in the
central and southern OT from 18 ka to 9.2 ka (Jian et al., 1996; Li et al., 2005). An
oxygenated bottom water condition is also indicated by abundant benthic foraminifera
species Cibicidoides hyalina and Globocassidulina subglobosa after 9.2 ka (Jian et al.,
1996; Li et al., 2005) in cores EO17 (1826 m water depth) and 255 (1575 m water
depth) and high benthic 5"°C values (Wahyudi and Minagawa, 1997) in core PN-3
(1058 m water depth) from the middle and southern OT during the postglacial period.
The poorly-ventilated deep water in the middle and southern OT inferred by benthic
foraminiferal assemblages during the last deglaciation correlates with the one in the
northern OT referring to our RSEs (Figure 4). A link thus can be hypothesized
between deep-water ventilation and sedimentary oxygenation in the OT. Overall, a
combination of our proxy records of RSEs in core CSH1 with other records shows
oxygen-rich conditions during the last glaciation and middle and late Holocene (since
8.5 ka) intervals, but oxygen-poor conditions during the last deglaciation.
6.2. Causes for sedimentary oxygenation variations

Our observed pattern of RSEs in core CSH1 suggests that drastic changes in
sedimentary oxygenation occurred on orbital and millennial timescales over the last
glaciation in the OT. In general, four factors can regulate the redox condition in the
deep water column: (i) O, solubility, (ii) export productivity and subsequent
degradation of organic matter, (ii1) vertical mixing, and (iv) lateral supply of oxygen
through intermediate and deeper water masses (Ivanochko and Pedersen, 2004;
Jaccard and Galbraith, 2012). These processes have been invoked in previous studies
to explain the deglacial Pacific-wide variations in oxygenation by either one or a
combination of these factors (Galbraith and Jaccard, 2015; Moffitt et al., 2015;
Praetorius et al., 2015). Our data also suggest drastic variations in sedimentary
oxygenation over the last 50 ka. However, the mechanisms responsible for
sedimentary oxygenation variations in the basin-wide OT and its connection with
ventilation of the open North Pacific remain unclear. In order to place our core results

in a wider regional context, we compare our proxy records of sedimentary



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

oxygenation (Uexcess concentration and Mo/Mn ratio) and export productivity (CaCOs)
(Figures 6a, b, ¢) with abundance of Pulleniatina obliquiloculata (an indicator of
Kuroshio strength) and sea surface temperature (Shi et al., 2014), bulk sedimentary
nitrogen isotope (an indicator of denitrification) (Kao et al., 2008), benthic
foraminifera 5'°C (a proxy for ventilation) in cores PN-3 and PC23A (Rella et al.,
2012; Wahyudi and Minagawa, 1997), abundance of benthic foraminifera (an
indicator of hypoxia) in core EO17 (Li et al., 2005) and ODP Site 1017 (Cannariato
and Kennett, 1999) (Figures 6d-k).
6.2.1. Effects of regional ocean temperature on deglacial deoxygenation

Warming ocean temperatures lead to lower oxygen solubility. In the geological
past, solubility effects connected to temperature changes of the water column thought
to enhance or even trigger hypoxia (Praetorius et al., 2015). Shi et al. (2014) reported
an increase in SST of around 4°C (from ~21°C to ~24.6°C) during the last
deglaciation in core CSH1 (Figure 6d). Based on thermal solubility effects, a
hypothetical warming of 1°C would reduce oxygen concentrations by about 3.5
umol/kg at water temperatures around 22°C (Brewer and Peltzer, 2016), therefore a ~
4°C warming at core CSH1 (Shi et al., 2014) could drive a conservative estimate of a
drop of <15 pmol/kg in oxygen concentration, assuming no large salinity changes.
However, given the semi-quantitative nature of our data about oxygenation changes,
which seemingly exceed an amplitude of >15 pmol/kg, we suggest that other factors,
e.g. local changes in export productivity, regional influences such as vertical mixing
due to changes of the Kuroshio Current, and far-field effects may have played
decisive roles in shaping the oxygenation history of the OT.
6.2.2. Links between deglacial primary productivity and sedimentary
deoxygenation

Previous studies have suggested the occurrence of high primary productivity in
the entire OT during the last deglacial period (Chang et al., 2009; Jian et al., 1996;
Kao et al., 2008; Li et al., 2017; Shao et al., 2016; Wahyudi and Minagawa, 1997).
Such an increase in export production was due to favorable conditions for

phytoplankton blooms, which were likely induced by warm temperatures and maxima



480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

in nutrient availability, the latter being mainly sourced from increased discharge of
the Changjiang River, erosion of material from the ongoing flooding of the shallow
continental shelf in the ECS, and upwelling of Kuroshio Intermediate Water (Chang
et al., 2009; Li et al., 2017; Shao et al., 2016; Wahyudi and Minagawa, 1997). On the
basis of sedimentary reactive phosphorus concentration, Li et al. (2017) concluded
that export productivity increased during warm episodes but decreased during cold
spells on millennial timescales over the last 91 ka in the OT. Gradually increasing
concentrations of CaCOj; in core CSH1 during the deglaciation (Figure 6a) and little
changes in foraminiferal fragmentation ratios (Wu et al., 2004), are indicative of high
export productivity in the northern OT. Accordingly, our data indicate that an increase
in export productivity during the last deglaciation, which was previously evidenced by
concentrations of reactive phosphorus (Li et al., 2017) and CaCOj; (Chang et al., 2009)
from the middle OT, and thus was a pervasive, synchronous phenomenon in the entire
study region at the outermost extension of the ECS.

Similar events of high export productivity have been reported in the entire North
Pacific due to increased nutrient supply, high SST, reduced sea ice cover, etc.
(Crustus et al., 2004; Dean et al., 1997; Galbraith et al., 2007; Jaccard and Galbraith,
2012; Kohfeld and Chase, 2011). In most of these cases, increased productivity were
thought to be responsible for oxygen depletion in mid-depth waters, due to
exceptionally high oxygen consumption. However, the productivity changes during
the deglacial interval, very specifically CaCOs, are not fully consistent with the trends
of excess U and Mo/Mn ratio (Figures 6b and c). The sedimentary oxygenation thus
cannot be determined by export productivity alone.

6.2.3 Effects of the Kuroshio dynamics on sedimentary oxygenation

The Kuroshio Current, one of the main drivers of vertical mixing, has been
identified as the key factor in controlling modern deep ventilation in the OT (Kao et
al., 2006). However, the flow path of the Kuroshio in the OT during the glacial
interval remains a matter of debate. Planktic foraminiferal assemblages in sediment
cores from inside and outside the OT indicated that the Kuroshio migrated to the east

of the Ryukyu Islands during the LGM (Ujiié and Ujiié, 1999). Subsequently, Kao et
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al. (2006) based on modeling results suggested that the Kuroshio still enters the OT,
but the volume transport was reduced by 43% compared to the present-day transport
and the outlet of Kuroshio switches from the Tokara Strait to the Kerama Gap at -80
and -135m lowered sea level. Combined with sea surface temperature (SST) records
and ocean model results, Lee et al. (2013) argued that there was little effect of
deglacial sea-level change on the path of the Kuroshio, which still exited the OT from
the Tokara Strait during the glacial period. Because the main stream of the Kuroshio
Current is at a water depth of ~150 m, the SST records are insufficient to decipher past
changes of the Kuroshio (Ujii¢ et al., 2016). On the other hand, low abundances of P.
obliquiloculata in core CSH1 in the northern OT (Figure 6¢) indicate that the main
flow path of the Kuroshio migrated to the east of the Ryukyu Island (Shi et al., 2014).
Such a flow change would have been caused by the proposed block of the
Ryukyu-Taiwan land bridge by low sea level (Ujiié and Ujiié, 1999) and an overall
reduced Kuroshio intensity (Kao et al., 20006), effectively suppressing the effect of the
Kuroshio on deep ventilation in the OT. Our RSEs data show that oxygenated
sedimentary conditions were dominant in the northern OT throughout the last glacial
period (Figures 6b, c). The Kuroshio thus likely had a weak or even no effect on the
renewal of oxygen to the sedimentary environment during the last glacial period.
More recently, lower hydrothermal total Hg concentration during 20 ka - 9.6 ka,
associated with reduced intensity and/or variation in flow path of KC, relative to that
of Holocene recorded in core KX12 - 3 (1423 water depth) (Lim et al., 2017), further
validates our inference.

On the other hand, the gradually increased alkenone-derived SST and abundance
of P.obliquiloculata (Figures 6d and e) from 15 ka onwards indicates an intensified
Kuroshio Current. At present, mooring and float observations revealed that the KC
penetrates to 1200 m isobath in the East China Sea (Andres et al., 2015). However,
the effect of Kuroshio on sedimentary oxygenation was likely very limited during the
glacial period and only gradually increasing throughout the last glacial termination.
Therefore, while its effect on our observed deglacial variation in oxygenation may

provide a slowly changing background condition in vertical mixing effects on the
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sedimentary oxygenation in the OT, it cannot account for the first order, rapid
oxygenation changes, including indications for millennial-scale variations, that we
observe between 18 ka and 9 ka.

Better oxygenated sedimentary conditions since 8.5 ka coincided with intensified
Kuroshio (Li et al., 2005; Shi et al., 2014), as indicated by rapidly increased SST and
P. obliquiloculata abundance in core CSHI1 (Figures 6d and ¢) and C.hyalinea
abundance in core E017 (Figure 61). Re-entrance of the Kuroshio into the OT (Shi et
al., 2014) with rising eustatic sea level likely enhanced the vertical mixing and
exchange between bottom and surface waters, ventilating the deep water in the OT.
Previous comparative studies based on epibenthic §°C values indicated
well-ventilated deep water feeding both inside the OT and outside off the Ryukyu
Islands during the Holocene (Kubota et al., 2015; Wahyudi and Minagawa, 1997). In
summary, enhanced sedimentary oxygenation regime observed in the OT during the
Holocene is mainly related to the intensified Kuroshio, while the effect of the
Kuroshio on OT oxygenation was limited before 15 ka.

6.2.4. Effects of GNPIW on sedimentary oxygenation

Relatively stronger oxygenated Glacial North Pacific Intermediate Water
(GNPIW), coined by (Matsumoto et al., 2002), has been widely documented in the
Bering Sea (Itaki et al., 2012; Kim et al., 2011; Rella et al., 2012), the Okhotsk Sea
(Itaki et al., 2008; Okazaki et al., 2014; Okazaki et al., 2006; Wu et al., 2014), off east
Japan (Shibahara et al., 2007), the eastern North Pacific (Cartapanis et al., 2011;
Ohkushi et al., 2013) and western subarctic Pacific (Keigwin, 1998; Matsumoto et al.,
2002). The intensified formation of GNPIW due to additional source region in the
Bering Sea was proposed by Ohkushi et al. (2003) and Horikawa et al. (2010). Under
such conditions, the invasion of well-ventilated GNPIW into the OT through the
Kerama Gap would have replenished the water column oxygen in the OT, although
the penetration depth of GNPIW remains under debate (Jaccard and Galbraith, 2013;
Max et al., 2014; Okazaki et al., 2010; Rae et al., 2014). Both a gradual decrease in
excess U concentration and an increase in Mo/Mn ratio during the last glacial period

(25 ka-50 ka) validate such inference, suggesting pronounced effects of intensified
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NPIW formation in the OT.

During HS1, a stronger formation of GNPIW was supported by proxy studies
and numerical simulations. For example, on the basis of paired benthic-planktic (B-P)
'C data, enhanced penetration of NPIW into a much deeper water depth during HS1
relative to the Holocene has been revealed in several studies (Max et al., 2014;
Okazaki et al., 2010; Sagawa and Ikehara, 2008), which was also simulated by several
models (Chikamoto et al., 2012; Gong et al., 2019; Okazaki et al., 2010). On the other
hand, increased intermediate water temperature in the subtropical Pacific recorded in
core GH08-2004 (1166 m water depth) (Kubota et al., 2015) and young deep water
observed in the northern South China Sea during HS1 (Wan and Jian, 2014) along
downstream region of NPIW are also related to intensified NPIW formation.
Furthermore, the pathway of GNPIW from numerical model simulations (Zheng et al.,
2016) was similar to modern observations (You, 2003). Thus, all these evidence imply
a persistent, cause and effect relation between GNPIW ventilation, the intermediate
and deep water oxygen concentration in the OT and sediment redox state during HS1.
In addition, our RSEs data also suggested a similarly enhanced ventilation in HS2
(Figures 6b and c) that is also attributed to intensified GNPIW formation.

Hypoxic conditions during the B/A have been also widely observed in the mid-
and high-latitude North Pacific (Jaccard and Galbraith, 2012; Praetorius et al., 2015).
Our data of excess U concentration and Mo/Mn ratio recorded in core CSH1 (Figures
6b and c), together with enhanced denitrification and B.aculeata abundance (Figures
6f and h), further reveal the expansion of oxygen-depletion at mid-depth waters down
to the subtropical NW Pacific during the late deglacial period. Based on high relative
abundances of radiolarian species, indicators of upper intermediate water ventilation
in core PC-23A, Itaki et al. (2012) suggested that a presence of well-ventilated waters
was limited to the upper intermediate layer (200 m—500 m) in the Bering Sea during
warm periods, such as the B/A and Preboreal. Higher B-P foraminiferal '*C ages,
together with increased temperature and salinity at intermediate waters recorded in
core GH02-1030 (off East Japan) supported a weakened formation of NPIW during
the B/A (Sagawa and Ikehara, 2008). These lines of evidence indicate that the
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boundary between GNPIW and North Pacific Deep Water shoaled during the B/A, in
comparison to HS1. Based on a comparison of two benthic foraminiferal oxygen and
carbon isotope records from off northern Japan and the southern Ryukyu Island,
Kubota et al. (2015) found a stronger influence of Pacific Deep Water on
intermediate-water temperature and ventilation at their southern than the northern
locations, though both sites are located at similar water depths (1166 m and 1212 m
for cores GH08-2004 and GH02-1030, respectively). Higher excess U concentration
and low Mo/Mn ratio in our core CSH1 during the B/A and Preboreal suggest reduced
sedimentary oxygenation, consistent with reduced ventilation of GNPIW, contributing
to the subsurface water deoxygenation in the OT.

During the YD, both Mo/Mn ratio and excess U show a slightly decreased
oxygen condition in the northern OT. By contrast, benthic foraminiferal 'O and §'°C
values in a sediment core collected from the Oyashio region suggested a strengthened
formation and ventilation of GNPIW during the YD (Ohkushi et al., 2016). This
pattern possibly indicates a time-dependent, varying contribution of distal GNPIW to
the deglacial OT oxygenation history, and we presume a more pronounced
contribution of organic matter degradation due to high export productivity during this
period, as suggested by increasing CaCOj; content.

6.3. Subtropical North Pacific ventilation links to North Atlantic Climate

One of the characteristic climate features in the Northern Hemisphere, in
particular the North Atlantic is millennial-scale oscillation during glacial and deglacial
periods. These abrupt climatic events have been widely thought to be closely related
to varying strength of Atlantic Meridional Overturning Circulation (AMOC)
(Lynch-Stieglitz, 2017). One of dynamic proxies of ocean circulation, >*'Pa/*Th
reveals that severe weakening of AMOC only existed during Heinrich stadials due to
increased freshwater discharges into the North Atlantic (Bohm et al., 2015; McManus
et al., 2004). On the other hand, several mechanisms, such as sudden termination of
freshwater input (Liu et al., 2009), atmospheric CO, concentration (Zhang et al.,
2017), enhanced advection of salt (Barker et al., 2010) and changes in background

climate (Knorr and Lohmann, 2007) were proposed to explain the reinvigoration of
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AMOC during the B/A.

Our RSEs data in the Northern OT and endobenthic 8 °C in the Bering Sea
(Figures 7a-c) both show a substantial millennial variability in intermediate water
ventilation in the subtropical North Pacific. Notably, enhanced ventilation during HS1
and HS2 and oxygen-poor condition during the B/A respectively correspond to the
collapse and resumption of AMOC (Figure 7d). Such out-of-phase millennial-scale
pattern is consistent with the results of various modeling simulations (Chikamoto et
al., 2012; Menviel et al., 2014; Okazaki et al., 2010; Saenko et al., 2004), although
these models had different boundary conditions and causes for the observed effects in
GNPIW formation, and ventilation ages derived from B-P Hc (Freeman et al., 2015;
Max et al., 2014; Okazaki et al., 2012). These lines of evidence confirm a persistent
link between the ventilation of North Pacific and the North Atlantic climate
(Lohmann et al., 2019). Such links have also been corroborated by proxy data and
modeling experiment between AMOC and East Asian monsoon during the 8.2 ka
event (Liu et al., 2013), the Holocene (Wang et al., 2005) and 34 ka—60 ka (Sun et al.,
2012). The mechanism linking East Asia with North Atlantic has been attributed to an
atmospheric teleconnection, such as the position and strength of Westerly Jet and
Mongolia-Siberian High (Porter and Zhisheng, 1995). However, the mechanism
behind such out-of-phase pattern between the ventilation in the subtropical North
Pacific and the North Atlantic deep water formation remains unclear.

Increased NPIW formation during HS1 may have been caused by enhanced
salinity-driven vertical mixing through higher meridional water mass transport from
the subtropical Pacific. Previous studies have proposed that intermediate water
formation in the North Pacific hinged on a basin-wide increase in sea surface salinity
driven by changes in strength of the summer EAM and the moisture transport from
the Atlantic to the Pacific (Emile-Geay et al., 2003). Several modeling studies found
that freshwater forcing in the North Atlantic could cause a widespread surface
salinification in the subtropical Pacific Ocean (Menviel et al., 2014; Okazaki et al.,
2010; Saenko et al., 2004). This idea has been tested by proxy data (Rodriguez-Sanz
et al., 2013; Sagawa and lkehara, 2008), which indicated a weakened summer EAM
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and reduced transport of moisture from Atlantic to Pacific through Panama Isthmus
owing to the southward displacement of Intertropical Convergence Zone caused by a
weakening of AMOC. Along with this process, as predicted through a general
circulation modeling, a strengthened Pacific Meridional Overturning Circulation
would have transported more warm and salty subtropical water into the high-latitude
North Pacific (Okazaki et al., 2010). In accordance with comprehensive Mg/Ca
ratio-based salinity reconstructions, however, Riethdorf et al. (2013) found no clear
evidence for such higher salinity patterns in the subarctic northwest Pacific during
HSI.

On the other hand, a weakened AMOC would deepen the wintertime Aleutian
Low based on modern observation (Okumura et al., 2009), which is closely related to
the sea ice formation in the marginal seas of the subarctic Pacific (Cavalieri and
Parkinson, 1987). Once stronger Aleutian Low, intense brine rejection due to sea ice
expansion, would have enhanced the NPIW formation. Recently modeling-derived
evidence confirmed that enhanced sea ice coverage occurred in the southern Okhotsk
Sea and off East Kamchatka Peninsula during HS1 (Gong et al., 2019). In addition,
stronger advection of low-salinity water via the Alaskan Stream to the subarctic NW
Pacific was probably enhanced during HS1, related to a shift of the Aleutian Low
pressure system over the North Pacific, which could also increase sea ice formation,
brine rejection and thereafter intermediate water ventilation (Riethdorf et al., 2013).

During the late deglaciation, ameliorating global climate conditions, such as
warming Northern Hemisphere, and a strengthened Asian summer monsoon, are a
result of changes in insolation forcing, greenhouse gases concentrations, and variable
strengths of the AMOC (Clark et al., 2012; Liu et al., 2009). During the B/A, a
decrease in sea ice extent and duration was indicated by combined reconstructions of
SST and mixed layer temperatures from the subarctic Pacific (Riethdorf et al., 2013).
At that time, the rising eustatic sea level (Spratt and Lisiecki, 2016) would have
supported the intrusion of Alaska Stream into the Bering Sea by deepening and
opening glacial closed straits of the Aleutian Islands chain, while reducing the

advection of the Alaska Stream to the subarctic Pacific gyre (Riethdorf et al., 2013).
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In this scenario, saltier and more stratified surface water conditions would have
inhibited brine rejection and subsequent formation and ventilation of NPIW (Lam et
al., 2013), leading to a reorganization of the Pacific water mass, closely coupled to the
collapse and resumption modes of the AMOC during these two intervals.
6.4 Increased storage of CO; at mid-depth water in the North Pacific at the B/A
One of the striking features of RSEs data is higher Mo/Mn ratios and excess U

concentrations across the B/A, supporting an expansion of Oxygen Minimum Zone in
the North Pacific (Galbraith and Jaccard, 2015; Jaccard and Galbraith, 2012; Moffitt
et al., 2015) and coinciding with the termination of atmospheric CO, concentration
rise (Marcott et al., 2014) (Figure 7e). As described above, it can be related to the
upwelling of nutrient- and CO,-rich Pacific Deep Water due to resumption of AMOC
and enhanced export production. Notably, boron isotope data measured on
surface-dwelling foraminifera in core MD01-2416 situated in the western subarctic
North Pacific did reveal a decrease in near-surface pH and an increase in pCO, at the
onset of B/A (Gray et al., 2018), indicating that the subarctic North Pacific is a source
of relatively high atmospheric CO, concentration at that time. Here we cannot
conclude that the same processes could have occurred in the subtropical North Pacific
due to the lack of well-known drivers to draw out of the old carbon in the deep sea
into the atmosphere. In combination with published records from the North Pacific
(Addison et al., 2012; Cartapanis et al., 2011; Crusius et al., 2004; Galbraith et al.,
2007; Lembke-Jene et al., 2017; Shibahara et al.,, 2007), an expansion of
oxygen-depletion zone during the B/A suggest an increase in respired carbon storage
at mid-depth waters of the North Pacific, which likely stalls the rise of atmospheric
CO;. Our results support the findings by Galbraith et al. (2007). Given the sizeable
volume of the North Pacific, potentially, once the respired carbon could be emitted to
the atmosphere in stages, which would bring the planet out of the last ice age (Jaccard
and Galbraith, 2018).
7. Conclusions

Our geochemical results of sediment core CSH1 revealed substantial changes in

intermediate water redox conditions in the northern Okinawa Trough over the last 50
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ka on orbital and millennial timescales. Enhanced sedimentary oxygenation mainly
occurred during cold intervals, such as the last glacial period, Heinrich stadials 1 and
2, and during the middle and late Holocene, while diminished sedimentary
oxygenation prevailed during the Bolling-Allerdd and Preboreal. The sedimentary
oxygenation variability presented here provides key evidence for the substantial
impact of ventilation of NPIW on the sedimentary oxygenation in the subtropical
North Pacific and shows out-of-phase pattern with North Atlantic Climate during the
last deglaciation. The linkage is attributable to the disruption of NPIW formation
caused by climate changes in the North Atlantic, which is transferred to the North
Pacific via atmospheric and oceanic teleconnections. We also suggest an expansion of
oxygen-depleted zone and accumulation of respired carbon at the mid-depth waters
from previously reported subarctic locations into the western subtropical the North
Pacific during the B/A, coinciding with the termination of atmospheric CO, rise. A
step-wise injection of such respired carbon into the atmosphere would be helpful to
maintain high atmospheric CO, levels during the deglaciation and bring the planet out

of the last ice age.
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Captions
Table 1. Locations of different sediment core records and their source references

discussed in the text.

Table 2. Age control points adopted between planktic foraminifera species
Globigerinoides ruber 8'*0 of Core CSHI1 and Chinese stalagmite 8'*0 (Cheng et al.,
2016) for tuning the age model between 10 ka and 60 ka in this study. A linear

interpolation was assumed between age control points.

Figure 1. (a) Spatial distribution of dissolved oxygen content at 700 m water depth in
the North Pacific. Black arrows denote simplified Kuroshio and Oyashio circulations
and North Pacific Intermediate Water (NPIW) in the North Pacific. The red thick
dashed line indicates transformation of Okhotsk Sea Intermediate Water (OSIW) by
cabbeling the subtropical NPIW along the subarctic-tropical frontal zone (You, 2003).
The light brown solid line with arrow indicates the spreading path of subtropical
NPIW from northeast North Pacific southward toward the low-latitude northwest
North Pacific (You, 2003). Yellow solid lines with arrow represent two passages
through which NPIW enter into the Okinawa Trough. This figure was created with
Ocean Data View (odv.awi.de). (b) Location of sediment core CSH1 investigated in
this study (red diamond). Also shown are locations of sediment cores PN-3, E017, 255
and MDO012404 investigated previously from the Okinawa Trough, GH08-2004 from
the East of Ryukyu Island, GH02-1030 off the east of Japan, PC-23A from the Bering
Sea and ODP Site 1017 from the northeastern Pacific. Letters A to E represent the
sediment cores from and near the OT. The detailed information for these cores is

shown in Table 1.

Figure 2. Spatial distribution of sea surface salinity in the East China Sea. (a) summer
(July to September); (b) winter (January to March). Lower sea surface salinity in
summer relative to that of winter indicates strong effects of summer East Asian

Monsoon.
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Figure 3. (a) Lithology and oxygen isotope (5'°0) profile of planktic foraminifera
species Globigerinoides ruber (G.ruber) in core CSH1. (b) Plot of ages versus depth
for core CSH1. Three known ash layers are indicated by solid red rectangles. (c) Time
series of linear sedimentation rate (LSR) from core CSH1. (d) Comparison of age
model of core CSH1 with Chinese Stalagmite composite 8'*O curve of (Cheng et al.,
2016). Tie points for CSH1 core chronology (Table 2) in Figures 3¢ and 3d are

designated by colored crosses.

Figure 4. Age versus (a) CaCOj; concentration, (b) Total nitrogen (TN) concentration,
(c) Total organic carbon (TOC) concentration, (d) C/N molar ratio, (e) linear
sedimentation rate (LSR), (f) Al concentration, (g) Mn concentration, (h) Mo/Mn ratio,
(1) Mo concentration, (j) excess Mo concentration, (k) U concentration and (1) excess
U concentration and (m) (Mo/U)excess ratio in core CSHI1. Light gray and dark gray
vertical bars indicate different sediment intervals in core CSHI1. 8.2 ka, PB, YD, B/A,
HS1, LGM and HS2 refer to 8,200 year cold event, Preboreal, Younger Dryas, Bolling
- Allerod, Heinrich Stadial 1, Last Glacial Maximum and Heinrich Stadial 2,
respectively, which were identified in core CSH1. Blue solid diamonds in Figure 4m

indicate the age control points.

Figure 5. Scatter plots of Moexcess VS Mn concentrations and Uegycess cOncentration vs
Mo/Mn ratio at different time intervals in core CSH1. A various correlation is present
in core CSHI1 at different time intervals, which shows their complicated geochemical
behaviors (Figs.5a and b). Strong positive correlation between Mo/Mn ratio and
Uexcess concentration (Fig.5c) suggest that Mo/Mn ratio is a reliable proxy to track

sedimentary redox conditions in the geological past.

Figure 6. Proxy-related reconstructions of mid-depth sedimentary oxygenation at site
CSHI (this study) compared with oxygenation records from other locations of the

North Pacific and published climatic and environmental records from the Okinawa
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Trough. From top to bottom: (a) CaCOs; concentration, (b) Uecxcess cOncentration, (c)
Mo/Mn ratio, and (d) sea surface temperature (SST) (Shi et al., 2014), (e) abundance
of P.obliquiloculata in core CSH1 (Shi et al., 2014), (f) bulk sedimentary organic
matter 8'°N in core MDO01-2404 (Kao et al, 2008), (g) 8“C of epibenthic
foraminiferal C.wuellerstorfi in core PN-3 (Wahyudi and Minagawa, 1997), (h)
relative abundance of B. aculeata (hypoxia-indicating species) and (i) C.hyalinea
(oxygen-rich indicating species) (Li et al., 2005), (j) dysoxic taxa (%) in core ODP
167-1017 in the northeastern Pacific (Cannariato and Kennett, 1999) and (k) 8"C of
benthic foraminiferal Uvigerina akitaensisthe in core PC23A in the Bering Sea (Rella

et al., 2012). Light gray and dark gray vertical bars are the same as those in Figure 4.

Figure 7. Proxy records favoring the existence of out-of-phase connections between
the subtropical North Pacific and North Atlantic during the last deglaciation and
enhanced carbon storage at mid-depth waters. (a) U excess cOncentration in core CSH1;
(b) Mo/Mn ratio in core CSH1; (c) benthic 8'°C record in core PC-23A in the Bering
Sea (Rella et al., 2012); (d) Indicator of strength of Atlantic Meridional Ocean
Circulation (**'Pa/*"Th) (Bohm et al., 2015; McManus et al., 2004); (¢) Atmospheric
CO, concentration (Marcott et al., 2014). Light gray and dark gray vertical bars are

the same as those in Figure 4.



Table 1

Label in
Station Latitude (°N)  Longitude (°E) ~ Water depth (m)  Area Reference
Figure 1b
CSH1 31.23 128.72 703 Okinawa Trough this study
Wahyudi and Minagawa,
A PN-3 28.10 127.34 1058 Okinawa Trough
(1997)
B MDO012404 26.65 125.81 1397 Okinawa Trough Kao et al., (2008)
E017 26.57 126.02 1826 Okinawa Trough Li et al., (2005)
D 255 25.20 123.12 1575 Okinawa Trough Jian et al., (1996)
East of Ryukyu
E GH08-2004 26.21 127.09 1166 Kubota et al. (2015)
Island
Sagawa and Ikehara,
GH02-1030 42.23 144.21 1212 Off Japan
(2008)
PC-23A 60.16 179.46 1002 Bering Sea Rella et al.,(2012)
Cannariato and Kennett,
ODP Sitel017  34.54 239.11 955 NE Pacific

(1999)




Table 2

Depth(cm) AMS "C (yr) Error (yr) Calibrated Age (yr) Tie Point Type LSR (cm/ka) Source

10 3420 +35 3296 (® Shi et al., (2014)
106 7060 +40 7545 ® 22.59 Shi et al., (2014)
218 12352 Stalagmite, YD 23.30 This study

322 16029 Stalagmite, H1 28.28 This study

362 19838 Stalagmite 10.50 This study

506 24163 Stalagmite, H2 33.29 This study

698 28963 Stalagmite, DO4 40.00 This study

834 32442 Stalagmite, DO5 39.09 This study

938 37526 Stalagmite, DO8 20.46 This study

978 39468 Stalagmite, H4 20.60 This study

1058 46151 Stalagmite, DO12 11.97 This study

1122 49432 Stalagmite, DO13 19.51 This study

1242 52831 Stalagmite, DO14 35.30 This study

1282 57241 Stalagmite, DO16 9.07 This study

1346 61007 Stalagmite, H6 16.99 This study

1530 +2590 73910 MIS4/5 14.26 Shi et al., (2014)

1610 +3580 79250 MIS 5.1 14.98 Shi et al., (2014)
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